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Numerical Simulation of Stack–Heat Exchangers Coupling
in a Thermoacoustic Refrigerator

David Marx∗ and Philippe Blanc-Benon†

Ecole Centrale de Lyon, 69134 Ecully, France

The Navier–Stokes equations for an unsteady and compressible flow are solved numerically to investigate the
flow near the stack of a thermoacoustic refrigerator. The computational domain is a resonator “slice” including
the resonator end but not the source. An incoming wave is introduced into the domain using the method of
characteristics. Also included in the domain is a stack plate and two heat exchangers. The effects of the acoustic
Mach number and geometrical parameters on refrigerator performance is investigated. Of special interest are some
nonlinear temperature oscillations, which are not predicted by linear models and are due to acoustic propagation,
and coupling between the stack plate and the heat exchangers. It is shown that the maximum heat pumping occurs
for a stack/heat exchanger separation that is of the order of one particle displacement amplitude.

Introduction

E XAMPLES of thermoacoustic heat engines include, among
others, Sondhauss oscillations.1 These were observed over 100

years ago by glassblowers who noticed that when a hot glass bulb is
attached to a cool stem, the stem tip sometimes emits a sound. In such
a system, thermal energy is converted into sound, which corresponds
to a prime mover. The generated sound can be either a traveling
wave or a standing wave. Heat-pumping devices utilizing acoustic
energy can also be fabricated. These are termed thermoacoustic
refrigerators. Both types of thermoacoustic engines, prime movers
and heat pumps, have been described in a unified fashion by Swift.1

Thermoacoustic heat pumping is a second-order phenomenon re-
sulting from the interaction between two first-order acoustic pertur-
bations. As an example, consider a plane-traveling acoustic wave
propagating in a fluid at rest. The first-order temperature and ve-
locity associated with the plane wave are T1 and u1, respectively.
These two quantities oscillate in phase, so that the time average
〈T1u1〉t (where 〈 〉t is the time average operator) is a nonzero quan-
tity. Hence, the sound wave carries a second-order (as a product of
two first-order quantities) mean enthalpy flux 〈ρ0cpT1u1〉t , where
ρ0 is the density of the fluid at rest and cp is the isobaric specific
heat of the fluid. In normal conditions, T1 and u1 are small and
the mean enthalpy flux is negligible. It is possible to obtain much
stronger values for T1 and u1 within an acoustic resonator driven at
high amplitudes. Of course, in an ideal resonator a standing wave
is formed for which 〈T1u1〉t is nearly zero. But the addition of a
stack of tightly spaced plates aligned with the resonator axis allows
a phasing in the stack such that 〈T1u1〉t �= 0, while both u1 and T1

are large. Hence, there is a significant mean enthalpy flux along the
stack that can be used to pump heat from a cold heat exchanger into
a hot heat exchanger, which is the basic principle of thermoacoustic
refrigerators.

Thermoacoustic refrigerators are relatively recent; they have been
developed since the early 1980s. They are environmentally benign
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and offer an alternative to traditional systems based on refrigerants
such as chlorofluorocarbons, which have already been phased out
due to environmental concerns, or hydrochlorofluorocarbons, which
soon will be. Also their miniaturization is possible and would pro-
vide small-size refrigerators. A disadvantage is that the coefficient
of performance of such devices is still low, typically 20% of the
Carnot coefficient of performance.2 Better performance, 40% of the
Carnot efficiency, has been reached recently for a thermoacoustic
Stirling heat engine.3 To improve efficiency, it is necessary to better
understand nonlinear effects,4 including second-order effects such
as streaming5 (mean flow motions that accompany acoustic waves in
a resonator) and heat transfer from the stack to the heat exchangers.
The investigation of nonlinear effects is important because these are
not taken into account within the framework of available linear the-
ory, which is based on a linearization of the fundamental equations.1

Nonlinear effects (harmonic generation) in prime movers have been
frequently reported and are due, among other things, to nonlinear
wave propagation at high amplitudes in the resonator.6 In the re-
frigerator case, departures from linear theory have been reported
even at moderate amplitudes.7,8 In the simulation by Worlikar and
Knio,8 such departure is observed despite the fact that the resonator
is not included in the simulation. Hence, nonlinear phenomena are
probably not only due to propagation in the resonator and further
investigations are required. Also lacking is a design methodology
for heat exchangers.

Numerical simulations of thermoacoustic devices have already
been performed. Cao et al.9 simulated an isothermal zero-thickness
plate in a standing wave by solving the compressible unsteady two-
dimensional Navier–Stokes equations. A very similar simulation
has been done recently by Ishikawa and Mee.10 Worlikar and Knio11

have simplified the governing equations using a low-Mach-number
approach to simulate a plate of finite thickness, including heat ex-
changers in contact with the stack plates.8 This work, and a study
of heat exchangers detached from the stack plates, has been com-
pleted by Besnoin.12 The flow at the edges of the plate obtained
using their simulations was found to be in good agreement with ex-
perimental observations.13 Karpov and Prosperetti14 have combined
a nonlinear one-dimensional formulation and a numerical simula-
tion to study thermoacoustic devices of variable cross section. The
effects of cross-sectional variation on wave nonlinearity have also
been investigated by Hamilton et al.,15 but using a two-dimensional
formulation and zero-thickness stack plates. Both studies confirmed
the importance of nonlinear wave propagation in the resonator. Fi-
nally, Boluriaan and Morris16 performed a numerical study of minor
losses through a sudden contraction in an acoustic resonator.

In the present study, numerical simulations of the flow in a
portion of a half-wavelength cooler were performed. The role of
zero-thickness stack plates and heat exchangers was investigated.
The choice of a high operating frequency was made to reduce
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computational effort. Results were obtained first in the case of an
isothermal plate, and second in the case of a nonisothermal plate
without heat exchangers. Nonlinear behavior not predicted by linear
theory was observed in the stack at high Mach numbers. In particu-
lar, temperature oscillation harmonics not due to acoustic nonlinear
propagation were observed. Finally, heat exchangers were included
and the effect of geometrical parameters on refrigerator coefficient
of performance was investigated. Particularly, it was found that one
specific value of the heat exchanger length, and for the gap between
heat exchangers and stack plates, yields a maximum efficiency.

Numerical Model
Geometry and Computational Domain

The geometry of the thermoacoustic refrigerator under considera-
tion is shown in Fig. 1. The system includes a resonator, an acoustic
driver, a hot heat exchanger, a stack, and a cold heat exchanger.
The operating frequency f is related to the wavelength λ through
λ = c/ f , where c is the sound speed. The wave number is k = 2π/λ.
The length of the resonator, l, is one-half the wavelength λ. The
driver is located at x = 0, and the stack plates center is at x = xs .
The complete simulation of an entire thermoacoustic refrigerator
is prohibitively expensive, and so the simulation was performed on
the reduced computational domain, referred to as CD in Fig. 1, and
shown in more detail in Fig. 2. It is a two-dimensional domain, which
includes the resonator end, a zero-thickness stack plate boundary
(surface Splate), a zero-thickness cold heat exchanger boundary (sur-
face Sc), and a zero-thickness hot heat exchanger boundary (surface
Sh). Only one plate was included because the structure is assumed
to be periodic in the y direction. The lengths of the stack plate, the
cold heat exchanger, and the hot heat exchanger are L , Lc, and Lh ,

Fig. 1 Schematic of a thermoacoustic refrigerator.

Fig. 2 Computational domain referred to as region CD in Fig. 1.

respectively. The gap between the cold heat exchanger and the plate
is Gc. The gap between the hot heat exchanger and the plate is Gh .
The height of the domain, y0, is one-half the distance between two
stack plates. In the following, L = λ/40 unless specified otherwise.

Boundary Conditions
On the boundaries Ssym (dashed lines in Fig. 2), symmetry bound-

ary conditions were imposed. This is expressed by

∂φ

∂y
= 0

v = 0





on Ssym (1)

where φ is one of the following variables: the pressure p; the tem-
perature T ; the density ρ, or the velocity in the x direction, u. The
velocity in the y direction is v. The velocity vector is u = (u, v).
A nonslip boundary condition was imposed on the solid surfaces
Send, Splate, and Sc. The end of the resonator was an adiabatic wall,
and each heat exchanger was treated as an isothermal wall. On the
plate surface, the fluid temperature was the same as that of the plate.
Hence, the following boundary conditions were enforced:

u = v = 0
∂T

∂x
= 0

}

on Send (2)

u = v = 0

T = Tc

}

on Sc (3)

u = v = 0

T = Th

}

on Sh (4)

u = v = 0

T = Ts

}

on Sp (5)

where Tc and Th are the prescribed temperatures of the cold and hot
heat exchangers, respectively, and Ts is the temperature of the solid
plate.

Modeling of the acoustic source is a difficult problem. The choice
was made not to consider the acoustic driver. Instead, an incom-
ing acoustic wave was introduced into the computational domain
through the boundary Sinout located at x = xinout using the method
of characteristics. This incident wave travels through the domain, is
reflected by the resonator end wall, travels back, and exits through
Sinout. The superposition of the incident and reflected waves creates
a standing wave in the domain. However, this standing wave is not
a resonant wave resulting from a wave traveling back and forth be-
tween the source and the end of the resonator. The advantage of
this method is that the acoustic wave travels in the domain during
less than one acoustic cycle. Hence, there is no sufficient time for
shock formation or wave steepening, even for large pressure ratios.
An alternative method consists of replacing the surface Send by an-
other Sinout surface to create a standing wave by superimposing two
traveling waves, each one coming from one end of the domain and
exiting at the other end. A difficulty would then be to choose the
correct phasing between the two traveling waves, a problem that has
been encountered by Cao et al.,9 who needed to adjust the phase to
get correct energy flow results.

Computational Cost
Computer simulations of thermoacoustic devices require large

amounts of CPU time. This is due to a length-scale disparity. The
length scale in the y direction is of the order of the viscous penetra-
tion depth δν . The length scale in the x direction is the length l of
the resonator. This is expressed by

y0 ∼ δν, l ∼ λ (6)

The viscous penetration depth δν is defined by

δν =
√

νλ/πc (7)
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where ν is the kinematic viscosity. In the usual frequency range
for thermoacoustic refrigerators (less than 1 kHz), the relation
λ/δν ∼ 103 holds. Let �x and �y be the smallest mesh size in the
x and y directions and let them be equal. For a precise resolution of
the flow between the plates, δν/�x ∼ 10. The number of grid points
in the x direction, nx , satisfies

nx ∼ l/�x ∼ (δν/�x)(λ/δν) ∼ 104 (8)

Hence, nx will necessarily be large. Moreover, the Courant–
Friedrich–Levy (CFL) stability condition implies that

�t < �x/c ∼ (�x/δν)(δν/c) (9)

The number of time steps, nτ , per period τ of the wave is then

nτ ∼ τ/�t ∼ (δν/�x)(λ/δν) ∼ 104 (10)

where the relation λ = cτ was used. Note that nτ and nx have a
common value. The number of time steps per acoustic cycle is large
and unfortunately many acoustic cycles must be calculated before a
steady state is reached. Hence, unless a strategy is used to circum-
vent the CFL stability condition,15 using for example a low-Mach-
number method,11,17 the computational cost is high. This was the
case in the present simulation. This cost can nevertheless be reduced
in two different ways. The first is to reduce as much as possible the
size of the computational domain, as discussed earlier. The second
is to simulate a high-frequency device: because both nx and nτ de-
pend on λ/δν , which is proportional to

√
λ, the computational cost

(∼nx nτ ) is proportional to λ, which is inversely proportional to the
frequency f . In the present simulation, the system was operated
at f = 20 kHz. This frequency is high but corresponds to minia-
turization goals, because the resonator length varies with the wave-
length, that is, as the inverse of the frequency. The miniaturization of
thermoacoustic refrigerators is attractive for microelectronic device
refrigeration and a high-frequency device (about 5 kHz) has been
tested recently by Chen et al.18 This frequency was much greater
than those used until now in most experiments (i.e., a few hundred
hertz).1

Governing Equations
The equation of state for the flow, which is assumed to be an ideal

gas, and the conservation equations for the fluid are

p = ρrT (11)

∂ρ

∂t
+ ∇ · (ρu) = 0 (12)

∂(ρu)

∂t
+ ∇ · (ρuu) + ∇ p = ∇ · τ (13)

∂T

∂t
+ u · ∇T + (γ − 1)T ∇ · u = (γ − 1)

ρr
[� + ∇ · (K∇T )] (14)

where r is the gas constant (r = 287 JK−1kg−1). Components of the
viscous stress tensor τ can be written as

τxx = 4

3
µ

∂u

∂x
− 2

3
µ

∂v

∂y

τxy = τyx = µ

(
∂u

∂y
+ ∂v

∂x

)

τyy = 4

3
µ

∂v

∂y
− 2

3
µ

∂u

∂x
(15)

The viscous dissipation � is defined by

� = 2µ

[(
∂u

∂x

)2

+
(

∂v

∂y

)2

+ 1

2

(
∂u

∂y
+ ∂v

∂x

)2

− 1

3

(
∂u

∂x
+ ∂v

∂y

)2]

(16)

where µ is the shear viscosity and K is the thermal conductivity of
the fluid. The temperature dependence of µ and K was not taken
into account, which is a reasonable approximation because the tem-
perature gradients were small in the present case. In Eqs. (12–14),
thermoviscous terms are grouped on the right-hand side to indicate
that they are source terms for the thermoacoustic effect.

The temperature of the plate is governed by the energy equation

ρscs
∂Ts

∂t
= ∂

∂x

(

Ks
∂

∂x
Ts

)

+ K

E

(
∂T

∂y

)

Splate

(17)

where ρs , cs , and Ks are the density, the specific heat, and the thermal
conductivity of the plate, respectively. The temperature dependence
of all solid properties was ignored. The second term on the right-
hand side of Eq. (17) is a source term for the plate, which results
from energy exchange with the fluid and also takes into account
the heat flux continuity at the fluid/solid interface. The length E is
the actual thickness of the plate. This means that one-dimensional
equation (17) is the average over y of a two-dimensional energy
equation for a plate of finite thickness E . Here, E characterizes the
heat capacity of the plate. Such a model equation was first used by
Schneider et al.17 and Besnoin and Knio.19

In the following, every variable ψ will be written as

ψ = ψ0 + ψ ′ (18)

where ψ0 is the uniform value when the system is at rest and ψ ′

is the perturbation. Decomposition (18) was also used in the code
to allow simulations including only the linear terms of the gov-
erning equations. In the simulations the following values at rest
were used: T0 = 298 K, p0 = 105 Pa. The working fluid was air;
γ denotes its ratio of specific heats. The isobaric specific heat of
the gas is then cp = γ r/(γ − 1). The constants’ values were pre-
scribed: γ = 1.4, ν = 1.5 10−5 m2s−1, K = 2.5 10−2 WK−1m−1. For
the plate, the properties of Mylar were used: Ks = 0.14 WK−1m−1,
ρs = 1.35 103 kgm−3, cs = 1.3 103 JK−1kg−1. The speed of sound,
c0, is defined by c0 = √

(γ rT0), and its value is c0 = 346 ms−1.

Numerical Methods
Equations (12–14) and (17) were advanced in time using an ex-

plicit, fourth-order Runge–Kutta method. Spatial derivatives were
calculated using fourth-order finite differences. Selective filtering20

was used to suppress grid-to-grid oscillations. For most calculations,
a uniform mesh size �y = δν/6 was used in the y direction. For cal-
culations corresponding to Fig. 6, this value was decreased down to
�y = δν/23 because the height of the channel is small. Above the
plate and heat exchangers, a regular mesh size �x = �y was used
in the x direction. Outside the heat exchangers, the mesh size in
the x direction was stretched with a 5% rate until �x = 20�y was
reached: then the mesh size was regular again. Typically, 30 grid
points were used in the y direction, and 400 grid points were used
in the x direction. Further details about the numerical simulations,
as well as a grid refinement study, may be found elsewhere.21

Results for an Isothermal Plate
In this section the case of an isothermal plate without heat ex-

changers is discussed. A uniform Ts = T0 was imposed, where T0

is the ambient temperature. Such a condition was used in earlier
studies.9,10 Such a boundary condition is not very realistic because
there is usually a temperature gradient in the stack plate due to ther-
moacoustic heat pumping. Nevertheless, this condition allows us to
obtain a thermoacoustic heat pumping. It also allows a mean tem-
perature gradient to develop in the fluid above the plate (in the x
direction), although it remains small. From a computational point of
view, an isothermal plate is attractive because a shorter time is nec-
essary to reach a steady state in the plate, so that computations are
not too costly; 50 acoustic cycles were sufficient to reach a steady
state. Moreover, this simple problem allowed the study of important
phenomena, such as the effects of channel height and of the Mach
number, defined by

Ma = u A/c0 (19)
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where u A is the maximum amplitude of the acoustic velocity in the
resonator. The Mach number is an important parameter representa-
tive of the power of the device. Standard linear theory is expected to
be valid for low Mach numbers (typically less than a few percent),
whereas nonlinear effects not taken into account by linear theory
are expected at higher Mach numbers (see the Introduction).

First the velocity and temperature profiles above the plate in the
presence of the acoustic standing wave were investigated. These
profiles are important because their temporal average supplies the
mean enthalpy flux along the plate. The parameters of the sim-
ulation were kxs = 2.13, δκ/y0 = 0.37. A low value of the Mach
number Ma = 0.005 was used. Figures 3 and 4 show the instanta-
neous velocity and temperature profiles in section SM (see Fig. 2) at
different times within one acoustic period. They are compared with
the following analytical expressions:

u′ = Re

((

ũM

{

1 − cosh[(1 + i)(y − y0)/δν]

cosh[(1 + i)y0/δν]

}

eiωt

))

(20)

T ′ = Re

((

T̃M

{

1 − cosh[(1 + i)(y − y0)/δκ ]

cosh[(1 + i)y0/δκ ]

}

eiωt

))

(21)

where Re denotes the real part. In Eq. (21), δκ is the thermal boundary
layer, given by

δκ =
√

κλ/πc (22)

where κ = K/(ρcp). Expressions (20) and (21) can be obtained from
Swift1 by setting the mean temperature gradient in the fluid equal to
zero, which is a good approximation in the present calculation for

Fig. 3 Instantaneous velocity profiles in section SM (see Fig. 2) at
different times within one period τ : ◦, t = 0; �, t = τ /8; �, t = 2τ /
8; ∗, t = 3τ /8; ∇, t = 4τ /8; �, t = 5τ /8; +, t = 6τ /8; and •, t = 7τ /8; ——,
theoretical curves [Eq. (20)].

Fig. 4 Instantaneous temperature profiles in section SM (see Fig. 2)
at different times within one period τ : ◦, t = 0; �, t = τ /8; �, t = 2τ /8;
∗, t = 3τ /8; ∇, t = 4τ /8; �, t = 5τ /8; +, t = 6τ /8; and •, t = 7τ /8; ——,
theoretical curves [Eq. (21)].

the isothermal plate at a low Mach number. Analytical expressions
are given for a domain of height y0, for which nonslip and isothermal
boundary conditions are imposed at y = 0 and a symmetry condition
is imposed at y = y0. The quantities ũM and T̃ M are complex am-
plitudes. They were provided by the simulation. Numerical results
and theoretical predictions in Figs. 3 and 4 are in very good agree-
ment. This shows that viscous and thermal boundary layer are well
resolved using six points per viscous penetration depth, consistent
with an earlier study by Besnoin and Knio.19

As previously mentioned, a mean thermoacoustic enthalpy flux
in the x direction, hxm(y), can be written as

hxm(y) = 〈ρ0cpu′(y)T ′(y)〉t (23)

where, for any time-dependent quantity A, the notation 〈A〉t = Am is
used. The flux hxm is directed toward the end of the resonator (Send)
and carries heat from edge C of the plate to edge H. It is normalized
using h0 = ρ0c3

0. The mean enthalpy flux, hxm , is plotted in Fig. 5
as a function of y/y0 for different values of the parameter δκ/y0,
and for Ma = 0.02, kxs = 2.13. The smallest value of δκ/y0, 0.19,
corresponds to the case of a large channel compared with boundary-
layer thicknesses. The heat flux peaks at a value of y/y0 = 0.3, which
corresponds to y/δκ ∼ 1.6. Thus, for a very large channel, the heat
flux is carried within a distance of a few thermal boundary-layer
thicknesses from the plate, which is well known.1 For larger values
of δκ/y0, the heat flux peaks at y/y0 = 1 in the center of the channel
between two stack plates. If δκ/y0 is increased from 0.19 to 0.75
the total flow along the plate increases as well. If δκ/y0 is increased
further, the total heat flux decreases. The maximum value of the heat
flux is obtained for δκ/y0 = 0.75. Similar results were obtained by
Cao et al.9 for values of the parameter δκ/y0 limited to 1.2 due to
numerical instabilities.

The mean heat flux in the y direction was investigated, in particu-
lar on the plate surface where energy can be carried in the y direction
only by heat conduction. The mean heat flux hym conducted in the
y direction is defined by

hym = −K

〈
∂T ′

∂y

〉

t

(24)

The mean heat flux at the plate surface, hplate
ym , is the value of hym

obtained from the temperature gradient calculated at the plate. The
effect of channel height on hplate

ym is shown in Fig. 6, where plots of
hplate

ym for different values of δκ/y0 are shown. For hplate
ym > 0, heat is

pumped from the plate to the gas, and for hplate
ym < 0, heat is pumped

from the gas to the plate. For δκ/y0 = 1.1 (and for lower values
as well) heat is pumped from the plate at x = 0 (edge C) into the
plate at x/L = 1 (edge H), which is expected. If the value of δκ/y0 is
increased, the value of hplate

ym (x = 0) diminishes until it becomes neg-
ative for δκ/y0 > 1.2. Hence, when the channel height is very small,
heat is transferred on both sides of the plate. This surprising result

Fig. 5 Mean enthalpy flux hxm in the section SM of Fig. 2 for differ-
ent values of δκ/y0: +, δκ/y0 = 0.19; ◦, δκ/y0 = 0.37; �, δκ/y0 = 0.75; ∇,
δκ/y0 = 1.1; ∗, δκ/y0 = 1.2; �, δκ/y0 = 1.3; and �, δκ/y0 = 1.45.



1342 MARX AND BLANC-BENON

Fig. 6 Mean heat flux at the plate, hplate
ym (x), for different values of

δκ/y0; origin x = 0 at the edge C of the plate; ——, δκ/y0 = 1.1; - - - -,
δκ/y0 = 1.2; · · · ·, δκ/y0 = 1.3; and – – –, δκ/y0 = 1.45.

was also reported by Ishikawa and Mee,10 who attributed the heat-
ing to enhanced viscous dissipation for small channel heights. This
hypothesis does not explain why hplate

ym is positive even in the center
of the plate where the dissipation is very high. Calculations made
without including the viscous dissipation term [� in Eq. (14)] yield
the same sign reversal of hplate

ym (x = 0) when y0 becomes very small;
therefore, such sign reversal could simply be due to end effects.

As mentioned in the Introduction, nonlinear effects are important
in thermoacoustic refrigerators, and so the effect of Mach number
variation on the performance of the system was investigated. The
total (that is, summed over a section) mean enthalpy carried along
the plate, Hxm , is

Hxm =
∫ y = y0

y = 0

hxm(y) dy (25)

where the integration is performed over section SM (see Fig. 2). The
quantity Hxm is a measure of the heat transported by thermoacoustic
pumping along the plate. It is normalized using H0 = h0δν . A simu-
lation was performed with δκ/y0 = 0.37, kxs = 2.13, and L = λ/40.
The enthalpy flux Hxm is plotted vs the Mach number in Fig. 7. The
dotted line corresponds to an M2

a function that fits the calculated
curve at low Mach numbers. For Ma < 0.04, Hxm varies as M2

a .
Such a dependence is expected from linear theory. At high Mach
numbers, however, Hxm varies as Ma . To understand the reason for
this change of behavior, the velocity and temperature were mon-
itored at two locations in the computational domain: at point M
above the stack, and at point R located at y = y0, midway between
the stack and the resonator end (see Fig. 2). Point R is in the core of
the resonator, far from the stack. For all values of the Mach number,
it is observed (not shown) that velocity and temperature temporal
variations remain sinusoidal at point R. Let us recall here that the
standing wave in this computation is created by an incident wave
that is reflected by the resonator end. The total time the wave spends
in the resonator is less than one period and, hence, there is no suffi-
cient time for the incoming wave to be deformed through nonlinear
propagation. It is thus not surprising that the standing wave at point
R is sinusoidal, even at high Mach number. This would probably
not be the case for a complete (and straight) resonator driven by
a source, such as a moving piston. But as was pointed out in the
Introduction, the nonlinear behavior associated by the resonator is
not of interest in the present work. At point M, the velocity is si-
nusoidal as well, but the temperature becomes inharmonic at high
Mach numbers (this will be shown in a later figure), indicating a non-
linear behavior for the temperature. This behavior is responsible for
a quasi saturation of the amplitude of the temperature oscillations
at point M, which is shown in Fig. 8. This temperature saturation
is the reason for the change of behavior of Hxm observed in Fig. 7:
at low Mach number, both the velocity u′ and the temperature T ′

vary with the Mach number Ma , so that the mean enthalpy flux
Hxm , which is proportional to the product u′T ′, varies as the square

Fig. 7 Variation of the total enthalpy flux Hxm carried along an isother-
mal plate with the Mach number Ma: ——, calculated Hxm and – – –,
M2

a fitting at low Mach numbers.

Fig. 8 Variation of the amplitude T′
M,max of temperature oscillation at

point M with the Mach number Ma, for two plate lengths: ——, L =λ/40
and – – –, L = 2λ/40.

of the Mach number, M2
a . At high Mach numbers, the velocity u′

varies with Ma , but the temperature T ′ saturates and remains nearly
constant, so that the enthalpy flux Hxm varies with Ma . This non-
linear effect appears in the stack (point M) but not in the resonator
(point R); thus, it is not due to a nonlinear propagation effect but
to an interaction with the stack. In particular, and unfortunately, it
is expected to occur even in inharmonic resonators,22 which have
a linear behavior. The nonlinear deformation and the saturation of
temperature oscillations are affected by two parameters. First, at a
fixed position of the plate (that is, a fixed value of kxs), the Mach
number at which the quasi saturation occurs depends on the plate
length L . This is shown in Fig. 8 where the saturation occurs later
for a plate with L = 2λ/40 compared with the case of a plate with
L = λ/40. For a very short plate, the saturation Mach number can
be very low. Second, for a plate of fixed length, the position of the
plate is another important parameter. The Mach number at which
quasi saturation of temperature occurs decreases when the plate is
moved toward the velocity antinode. This could be the reason for the
observation made by Atchley et al.7 that the temperature gradient
generated in stack plates is better predicted by linear theory near the
pressure antinode than near the velocity antinode.

The temperature oscillations near the edge of the plate were stud-
ied. The temporal variations of the temperature over two acoustic
cycles are plotted for different values of the Mach number and for
two different locations in the domain in Fig. 9, corresponding to
point M, and in Fig. 10, corresponding to the the grid point located
just above C. Constant values δκ/y0 = 0.37 and kxs = 2.13 are taken.
For Ma = 0.005, the temporal variations of the temperature at points
C and M are sinusoidal. For Ma = 0.01, the fluctuations at point M
are still sinusoidal, whereas they have a U shape at point C. For
larger Mach numbers, nonlinear deformation is observed at point
M (this deformation leads to a saturation of the amplitude, as de-
scribed in the preceding paragraph) and deformation at point C is
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Fig. 9 Time variation of temperature at point M for different Mach
numbers: +, Ma = 0.005; · · · ·, Ma = 0.01; - - - -, Ma = 0.04; and ——,
Ma = 0.08.

Fig. 10 Time variation of temperature at grid point located just above
C (near the plate edge) for different Mach number: +, Ma = 0.005; · · · ·,
Ma = 0.01; – – –, Ma = 0.04; and ——, Ma = 0.08.

much larger. Hence, the temperature oscillations at the edges of the
plate are highly nonlinear. This tends to confirm that there is indeed
temperature harmonic generation at the edges of the plate, which has
been predicted analytically by Gusev et al.23 and is due to the tran-
sition from an adiabatic behavior outside the plate to an isothermal
behavior on the plate surface.

To conclude, the simulation of an isothermal plate has been per-
formed. The isothermal model is a simplified one for a stack plate,
but it may be useful as a benchmark problem. The model is much
more realistic when a heat exchanger is involved. The model al-
lowed some simple comparisons with other theoretical and numer-
ical results while keeping the computation time reasonable. Some
important nonlinear behaviors were observed. It is noteworthy that
similar effects have also been observed21 in the case of a more re-
alistic nonisothermal model, which is presented in the next section.
Hence, the isothermal model appears to be not too restrictive.

Results for a Nonisothermal Plate
In this section, the case of a nonisothermal plate with no heat ex-

changers is discussed. The temperature of the plate was calculated
via Eq. (17) rather than prescribed. As previously mentioned, a non-
isothermal plate simulation is costly because a temperature gradient
develops in the plate, which requires some time. At least 300 acous-
tic cycles were necessary to reach a steady state compared to 50
acoustic cycles for an isothermal plate. To decrease the transient
duration, one method is to use a small value of E in Eq. (17), but
large enough so that the plate temperature does not oscillate during
an acoustic cycle. (Using Swift’s notation,1 εs is kept small.) With
E small, conduction of heat in the plate is small, which represents
an ideal situation for practical devices. To simulate more realistic
conditions, one possibility for increasing the heat conduction in the
plate is to multiply Ks in Eq. (17) by a constant, αs . In the following,
αs = 1 unless specified otherwise, and E/δν = 0.05.

Fig. 11 Temperature of the plate as a function of time at point C
(negative temperatures) and H (positive temperatures): ——, simula-
tion including viscous dissipation and – – –, simulation without viscous
dissipation.

Fig. 12 Temperature difference between the extremities of the plate:
– – –, Ma = 0.02; ——, Ma = 0.04; and · · · ·, prediction for very small Ma.

Using a low-heat-capacity plate allows the observation of the
effects of viscous dissipation. These effects are usually relatively
small, but in the absence of heat exchangers they lead to a uniform
heating of the plate. This has been observed in experiments.24,25

In these experiments, the temperature of the cold side of a plate
immersed in a resonator was recorded. The temperature first de-
creased due to thermoacoustic heat pumping, and then increased
due to the viscous heating. This increase was stronger when the
plate was located near the velocity antinode. The hot side is heated
by viscous dissipation at the same rate as the cold side. As a result,
although the cold side temperature is increasing, the temperature
difference between cold and hot sides of the plate is stationary. Two
simulations were made for the same plate, with and without the
viscous dissipation term � in Eq. (14). The following values were
used: δκ/y0 = 0.37, kxs = 2.13, and Ma = 0.02. The mean temper-
atures, Tsm(C) and Tsm(H), at the extremities C and H of the plate
are plotted in Fig. 11 as a function of time for both simulations.
Without viscous dissipation, the temperatures at points C and H
both converge to a steady state. When viscous dissipation is in-
cluded these temperatures drift. However, the temperature differ-
ence �T = Tsm(H) − Tsm(C) at the end of the calculation is the
same for both simulations. Note that heating is observed after only
200 acoustic cycles because E is small.

The temperature difference �T = Tsm(H) − Tsm(C) was investi-
gated as a function of the position of the plate for δκ/y0 = 0.37 and
αs = 20. In Fig. 12, �T normalized by its maximum value �Tmax

(when the position is varied) is plotted as a function of position rep-
resented by kxs for different Mach numbers. (kxs = π at the end of
the resonator.) The low-Mach-number prediction has a maximum
for kxs = 3π/4 = 2.35 that is between the pressure antinode and ve-
locity antinode. The optimal position for the stack moves toward
the resonator end as the Mach number increases, as expected from
linear theory.7

Results with a Plate and Heat Exchangers
Two heat exchangers modeled by isothermal plates were added

to the plate of the previous section. The temperatures of the hot
and cold heat exchangers were prescribed as indicated in Eqs. (3)



1344 MARX AND BLANC-BENON

and (4). The effect of these temperatures, as well as geometrical
parameters, on the performance of the refrigerator were investigated.
In the following, Th − T0 = T0 − Tc, Gh = Gc, and Lh = Lc.

To measure the performance of the refrigerator, the cooling power,
Qc,m , is calculated by integrating hcold

ym over the cold heat exchanger
surface, where hcold

ym is the value of hym given by Eq. (24) when the
temperature gradient is calculated at the cold exchanger:

Qc,m =
∫

Sc

hcold
ym (x) dx (26)

Equivalent quantities, hhot
ym and Qh,m , can be defined at the hot heat

exchanger. The mean acoustic power Wm(x) at position x is obtained
by integrating the average acoustic energy flux over the channel
cross section:

Wm(x) =
∫ y = y0

y = 0

〈p′(x, y)u′(x, y)〉t dy (27)

The acoustic power absorbed by the refrigerator, Wm,0, is sim-
ply the value of Wm calculated over the surface Sinout; that is,
Wm,0 = Wm(xinout). The total mean heat Qm that is carried in the
x direction is defined by

Qm(x) =
∫ y = y0

y = 0

ρ0T0〈u′(x, y)s ′(x, y)〉t dy (28)

where s is the entropy.
As an example, the axial variation of Hxm(x), Wm(x), and Qm(x)

is shown in Figs. 13 and 14 for one typical calculation. Three regions
may be distinguished on these figures.

First, in the region between the surface Sinout and the cold heat
exchanger (x/δν < 0), Wm = Wm,0 is constant. The heat flux Qm

Fig. 13 Axial variation of total enthalpy flux: x = 0 is at the edge of the
cold heat exchanger located toward Sinout.

Fig. 14 Axial variation of total work flux and total heat flux: ——,
Wm(x)/H0; · · · ·, Qm(x)/H0; x = 0 is at the edge of the cold heat exchanger
located toward Sinout.

is zero: no heat is carried outside the region of the plate/heat ex-
changers. The energy flux Hxm is simply equal to the work flux:
Hxm = Wm = Wm,0. In this part of the resonator, a traveling wave
is superimposed with the standing wave, such that the work Wm,0

provided to the plate by the wave is not zero. (In a pure standing
wave there is no work flux.)

Second, between the two heat exchangers (0 < x/δν < 12), at the
cold heat exchanger the value of Qm increases suddenly by the
amount Qc,m that is received from the exchanger. Past the cold heat
exchanger, along the plate, Wm decreases linearly, whereas Qm in-
creases linearly, because work is transformed into heat by the plate.
The enthalpy flux Hxm , which is equal to Qm + Wm (neglecting heat
conduction), remains constant: Hxm = Wm,0 + Qc,m = Qh,m . Just be-
fore the hot heat exchanger the value of Qm reaches Qh,m . At the
hot heat exchanger Qh,m is transferred to the exchanger, and past
this exchanger, Qm = 0.

Finally, in the region between the hot heat exchanger and the end
of the resonator (x/δν > 12), Qm = 0, there is no thermoacoustic ef-
fect outside the region of plate/heat exchangers, and Wm = 0, which
means that a nearly perfect standing wave exists in this part of the
resonator.

The coefficient of performance (COP) of the refrigerator is de-
fined as

COP = Qc,m/Wm,0 (29)

The maximum value of the COP that corresponds to an isentropic
operation is given by the Carnot coefficient of performance (COPC),
defined by

COPC = Tc/(Th − Tc) (30)

Finally the relative coefficient of performance (COPR) of the refrig-
erator is given by

COPR = COP/COPC (31)

First the effect of temperatures Tc and Th was studied. Con-
stant values Ma = 0.04, δκ/y0 = 0.37, kx s = 2.13, Lc/L = 0.2, and
Gc/L = 0.1 were used. In Fig. 15 the cooling power is plotted as a
function of Tc/Th . The cooling power Qc,m is a linear function of
Tc/Th . For a value of Tc/Th that is small, Qc,m is negative, which
means that heat flows from the fluid to the heat exchanger because
power is not sufficient to pump heat at a too-cold temperature Tc.

The COPR is plotted as a function of the temperature differ-
ence between the two heat exchangers in Fig. 16. The COPR has
a maximum value. It was observed that this maximum occurs at a

Fig. 15 Cooling power Qc,m as a function of the ratio of heat exchanger
temperatures.
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Fig. 16 COPR as a function of temperature difference between the
two heat exchangers.

Fig. 17 Mean heat flux hym at y = 0 for (Th−−Tc)/(γT0) = 0.016. Origin
x = 0 on the left edge of the cold heat exchanger. Thick lines at the bottom
represent the plate and the heat exchangers.

temperature difference that is nearly the one that would exist be-
tween the two extremities of the plate if the heat exchangers were
suppressed.

Up to here in this section only the global quantity of heat extracted
from the cold heat exchanger was considered. It is interesting to look
at the local mean heat flux. In Fig. 17, hym along the y = 0 boundary
is plotted to capture the local mean heat flux at the two exchangers
and at the plate.

First, note that hplate
ym has very small absolute values compared with

hcold
ym and hhot

ym . The plate induces a thermoacoustic heat transport in
the x direction but there is little heat exchange between the fluid and
the plate in the y direction. It can be seen that hcold

ym has a nonuniform
value over the cold heat exchanger surface and peaks at the edge
away from the plate. Finally, hcold

ym has a negative value at the edge
of the cold heat exchanger facing the plate. This reverse heat flux at
the cold exchanger reduces refrigerator performance. This was also
observed in earlier studies of both thin exchangers19 as well as thick
exchangers.12

Another point of interest was the study of the effect of geomet-
rical parameters: first, the gap between the plate and the cold heat
exchanger, Gc, and the length of the cold heat exchanger, Lc, were
varied. The position of the plate was kept constant at kxs = 2.13.
The following values were chosen: (Th − Tc)/(γ T0) = 0.016,
Ma = 0.04, and δκ/y0 = 0.37. An important quantity is the parti-
cle displacement amplitude da , computed according to

da = uM/2π f (32)

where uM is the amplitude of the velocity u at point M. It is well
known that the heat exchanger length as well as the gap between the

Fig. 18 Cooling power vs the gap Gc,m between the plate and the cold
heat exchanger; Lc/da = 0.72.

Fig. 19 COPR vs the gap Gc between the plate and the cold heat ex-
changer; Lc/da = 0.72.

plate and the heat exchanger must have a length that is of the order
of the particle displacement.1 The aim was to study the evolution of
cooling power and COPR as Gc and Lc vary around da .

In Figs. 18 and 19, the cooling power and the COPR are plotted as
a function of the gap between the cold exchanger and the plate. The
length of the cold heat exchanger is kept constant at Lc/L = 0.2,
which corresponds to Lc/da = 0.72, and the gap Gc/L varies be-
tween 0.02 and 0.2. The cooling power reaches a maximum for
Gc/da ∼ 0.4. The COPR reaches a maximum for Gc/da ∼ 0.2. The
decrease of Qc,m and COPR at low values of Gc/da seems to be due
to the reversed heat flux on the portion of the cold heat exchanger
facing the stack. For the smallest value of Gc/da , the reverse heat
flux at the cold heat exchanger is 17% that of the “nonreverse”
heat flux. Hence, the maximum cooling power does not occur when
there is no gap between the plate and the heat exchanger. This was
predicted theoretically.26 The dependencies of Qc,m and COPR on
Lc/da are very similar. The cooling power is plotted in Fig. 20 as
a function of Lc/da for a constant value Gc/L = 0.1, which cor-
responds to Gc/da = 0.36. The normalized heat exchanger length,
Lc/L , varies between 0.05 and 0.6. For a too-small value of Lc/da ,
the exchanger surface is too small and the cooling power remains
low, and so the efficiency is low. When Lc/da is large, once again,
Qc,m (and hence the COPR) diminishes due to a reverse heat flux
on the portion of the cold heat exchanger facing the stack.

Finally the effects of channel height y0 were studied. Constant
values Lc/L = 0.2 and Gc/L = 0.1 were imposed (corresponding
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Fig. 20 COPR vs the length Lc of the cold heat exchanger; Gc/da = 0.36.

Fig. 21 COPR vs the height δκ/y0 of the domain; Gc/da = 0.36 and
Lc/da = 0.72.

to Lc/da = 0.72 and Gc/da = 0.36), and the parameter δκ/y0 was
varied. The same values as before were used for other parameters:
kxs = 2.13, (Th − Tc)/(γ T0) = 0.016, and Ma = 0.04. The COPR is
plotted as a function of δκ/y0 in Fig. 21. Again there is an opti-
mal value for this parameter, which is δκ/y0 ∼ 0.3. Moreover, the
value for which the cooling power is the highest is δκ/y0 = 0.37 (not
shown). This is less than the value of 0.75 that was found previously
for the isothermal plate and for a lower Mach number (see Fig. 5).

Note that, in the preceding calculations, the relative efficiency is
typically 1.5%, which is small. There are several reasons for this.
First, the plate is located at kxs = 2.13 although the optimal position
for the same Mach number is about kxs = 2.7. For a plate located at
kxs = 2.4, the highest relative efficiency was 6% (not shown). Sec-
ond, as concluded from this study, each parameter (Lc, Gc, y0) must
be chosen carefully. And of course these parameters and some oth-
ers (Lh , Gh , L , Ma , xs) should be chosen simultaneously, which has
not been done here. For example, the optimum value Gc/da ∼ 0.4
is correct for Lc/da = 0.72 but could be different for another value
of Lc/da . Hence, to get an optimal efficiency a parametric study
has to be made by varying all the parameters simultaneously. The
important conclusion here is that Gc or Lc must be close to da , but
a bad choice around this value can severely decrease the efficiency
of the refrigerator.

Conclusions
Numerical simulations of flow and heat transfer in the vicinity

of a zero-thickness stack plate and heat exchangers within a high-
amplitude acoustic standing wave were performed. Nonlinear ef-

fects could be observed in the simplest case of an isolated isother-
mal plate. They consist of nonsinusoidal temperature oscillations at
the edges of the plate, for any Mach number, and of nonlinear dis-
tortion of the temperature oscillations above the plate at relatively
high Mach numbers. This induces a saturation of the temperature
amplitude. These effects, not taken into account by available lin-
ear theory, have important consequences on the performance of the
device. In particular, at high Mach numbers, the total energy flux car-
ried along the plate is proportional to the Mach number rather than
to the square of the Mach number. This effect is stronger near the
velocity antinode and for short plates. Interestingly, these nonlinear
effects are not due to acoustic nonlinear propagation in the resonator
and appear in the stack region only. Heat exchangers were included
and the effect of operating and geometrical parameters on the refrig-
erator performance was studied. It was found that both the cold heat
exchanger length and the gap between the cold heat exchanger and
the plate must be close to the particle displacement amplitude, but
a poor choice around this value can decrease refrigerator efficiency.
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