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ABSTRACT:
Parabolic equations are among the most popular numerical techniques in many fields of physics. This article

considers extra-wide-angle parabolic equations, wide-angle parabolic equations, and narrow-angle parabolic equa-

tions (EWAPEs, WAPEs, and NAPEs, respectively) for sound propagation in moving inhomogeneous media with

arbitrarily large variations in the sound speed and Mach number of the (subsonic) wind speed. Within their ranges of

applicability, these parabolic equations exactly describe the phase of the sound waves and are, thus, termed the

phase-preserving EWAPE, WAPE, and NAPE. Although variations in the sound speed and Mach number are often

relatively small, omitting the second-order terms pertinent to these quantities can result in large cumulative phase

errors for long propagation ranges. Therefore, the phase-preserving EWAPE, WAPE, and NAPE can be preferable

in applications. Numerical implementation of the latter two equations can be performed with minimal modifications

to existing codes and is computationally efficient. Numerical results demonstrate that the phase-preserving WAPE

and NAPE provide more accurate results than the WAPE and NAPE based on the effective sound speed approxima-

tion. https://doi.org/10.1121/10.0024460
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I. INTRODUCTION

The narrow-angle parabolic equation (NAPE) and

wide-angle parabolic equation (WAPE) are among the most

popular computational techniques in atmospheric acous-

tics,1–5 ocean acoustics,6–8 nonlinear acoustics,9,10 biomedi-

cal acoustics,11 and electromagnetic propagation.12 The

NAPE and WAPE are well suited to relatively small com-

puters, large domains, and high frequencies and can handle

many phenomena such as atmospheric and ocean stratifica-

tion and refraction; scattering by turbulence, internal waves,

and other inhomogeneities; ground impedance and ocean

bottom interactions; and propagation over slowly varying

terrain and ocean bathymetry.

In atmospheric acoustics, the NAPE and WAPE should

account for the effect of the wind velocity on the sound

field. The corresponding equations have been formulated in

a number of references, e.g., Ref. 2 and references therein.

The WAPEs used in atmospheric acoustics are rather

involved because they include the derivatives of the sound,

density, and wind velocity, e.g., Refs. 13 and 14. These

NAPEs and WAPEs are usually formulated assuming that

the variations in the sound speed are small and the wind-

speed Mach numbers are low.

A recent article15 suggests considering EWAPEs (extra-

wide-angle parabolic equations or one-way equations),

NAPEs, and WAPEs in the high-frequency approximation, in

which the derivatives of the ambient quantities can be omitted.

(Also, see Sec. 11.2 in Ref. 2.) The resulting PEs become

much simpler than the previous formulations and still can be

used in many applications. Specifically, Ref. 15 considers, in

detail, the EWAPE given by Eq. (39) and the NAPE and

WAPE derived from that equation. The WAPE from Ref. 15

has already been used in the literature, e.g., Refs. 16–19.

Reference 15 also suggests the other EWAPE, which is

given by Eq. (B1), but considers the latter equation very

briefly. One of the goals of the present article is to study this

EWAPE in detail and determine when it is preferable com-

pared to the EWAPE given by Eq. (39). To this end, starting

with the EWAPE given by Eq. (B1) in Ref. 15, the NAPE

and WAPE are derived. The newly formulated NAPE is

remarkably simple and valid for arbitrary variations in the

sound speed and Mach numbers. The new NAPE and the

WAPE in the Pad�e (1,1) approximation can be implemented

numerically with minimal modifications to existing codes

and are computationally efficient.

In the literature, EWAPEs, NAPEs, and WAPEs are

derived by omitting some terms in the Helmholtz-type equa-

tions. The ranges of applicability of the resulting equations

are often difficult to assess. Hence, another goal of the pre-

sent article is to study the ranges of applicability of these

equations, which is examined by two approaches. In the first

approach, starting with these equations, the dispersion

a)Preliminary results from this research were presented in V. E. Ostashev, J.
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relations (which are equivalent to the eikonal equations) are

derived and compared to geometrical acoustics. When these

dispersion relations agree with geometrical acoustics, the

corresponding parabolic equations exactly describe the

phase of a sound wave. The present article formulates the

EWAPE, NAPE, and WAPE exactly describing the phase of a

sound wave within the ranges of their applicability for arbitrary

variations in the sound speed and Mach numbers. Therefore,

these equations are termed the phase-preserving parabolic

equations. On the other hand, many NAPEs and WAPEs from

the literature preserve the phase of a sound wave only for low

Mach numbers and/or small variations in the sound speed

when the second-order terms can be omitted. Although the var-

iations in the sound speed and Mach numbers are often rela-

tively small, omitting the second-order terms might result in

large cumulative phase errors for long ranges. For example,

Ref. 15 argues that the second-order small terms cannot be

omitted for the wind speed greater than or about 15 m/s; in this

case, equations for arbitrary Mach numbers should be used.

Thus, in many applications (such as sound propagation in the

near-ground atmosphere and infrasound propagation in the

upper atmosphere), it is desirable to use the phase-preserving

EWAPE, NAPE, and WAPE.

The second approach for studying the ranges of applicabil-

ity of parabolic equations is to compare them with the exact

equation for sound propagation in stratified moving media.

This article shows that the phase-preserving EWAPE, NAPE,

and WAPE correctly describe sound propagation in stratified

moving media within the ranges of their applicability.

This article is organized as follows. Section II briefly

outlines results from Ref. 15 and presents new results such

as the phase-preserving NAPE. In Sec. III, the ranges of

applicability of EWAPEs, NAPEs, and WAPEs are studied

by comparing them to the geometrical acoustics equations.

In Sec. IV, these parabolic equations are compared to the

exact equation in a stratified moving medium. Section V

provides numerical algorithms for the phase-preserving

NAPE and WAPE. Numerical results are presented in Sec.

VI. The results are summarized in Sec. VII.

II. PARABOLIC EQUATIONS

This section considers parabolic equations for sound

propagation in moving media.

A. EWAPE

First, we briefly overview some results from Ref. 15

and provide additional analysis of these results. Reference

15 expresses the sound pressure p of a monochromatic

sound wave in a moving medium in terms of the auxiliary

function / such that

pðRÞ ¼
ffiffiffiffiffi
.
.0

r
1þ i

x
v � r

� �
/ðRÞ: (1)

Here, R ¼ ðx; y; zÞ is the vector of Cartesian coordinates,

vðRÞ is the medium velocity, .ðRÞ and .0 are the density

and its reference value, respectively, and x is the angular

frequency of the sound wave. The auxiliary function satis-

fies the convective Helmholtz equation,

D� ix� v � rð Þ2

c2

" #
/ðRÞ ¼ 0; (2)

where cðRÞ is the sound speed. Equations (1) and (2) are

derived by applying the high-frequency approximation (for

which the sound wavelength is smaller than the characteris-

tic scale of medium inhomogeneities) to the linearized equa-

tions of fluid dynamics. This approach was originally

suggested in Ref. 20. Additionally, Eq. (2) is derived assum-

ing that r � v ¼ 0. This equality is valid in a stratified mov-

ing medium. It is also approximately valid if the deviation

from a stratified medium is relatively small or the deriva-

tives of the medium velocity can be omitted.

Starting with Eq. (2), the following one-way equation is

obtained [Eq. (38) in Ref. 15]:

@

@x
þ ikcŝ � irk0cx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l̂r þ v̂r

p� �
/ ¼ 0: (3)

Equation (3) describes sound propagation in the positive

direction of the x axis and, following Refs. 15 and 21, is

termed the EWAPE (or the parabolic equation for extra-

wide angles). In Eq. (3), r is a factor specified below and

k0 ¼
x
c0

; kc ¼
x
c
; Mx ¼

vx

c
; cx ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

x

p ;

m̂? ¼
i

x
v? � r?; ŝ ¼ Mxc

2
x 1þ m̂?ð Þ: (4)

Here, k0 and c0 are the reference wavenumber and sound

speed, respectively; kc is the wavenumber in a motionless

medium; vx and v? ¼ ðvy; vzÞ are the velocity components in

the direction of the x axis and the transverse plane, respec-

tively; Mx and cx are the Mach number and Lorentz factor,

respectively, pertinent to vx; r? ¼ ð@=@y; @=@zÞ; and the

operators m̂? and ŝ act on the transverse coordinates

r ¼ ðy; zÞ. Furthermore, in Eq. (3),

l̂r ¼
1

r2k2
0

D?; v̂r ¼
k2

cc
2
x

r2k2
0

ð1þ m̂?Þ2 � 1; (5)

where D? ¼ ð@2=@y2; @2=@z2Þ. Note that the factor r
appears in the notations given by Eq. (5) but not in Eq. (4).

Equation (3) is valid if the angle h between the direction of

sound propagation and the x axis is less than 90�. In deriving

this equation, the derivatives of c and v are omitted; these deriv-

atives are beyond the measurement accuracy in many applica-

tions. It is important to emphasize that Eq. (3) is valid for

arbitrary subsonic Mach numbers, M ¼ v=c, and arbitrary varia-

tions in the sound speed (provided that the derivatives of c and

v can be omitted), which are characterized by the function e:

e ¼ c2
0

c2
� 1 ¼ k2

c

k2
0

� 1: (6)
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The function e is the deviation of the refractive index

squared in a motionless medium from one. In contrast,

many parabolic equations from the literature are obtained

assuming that e and/or M are small parameters, keeping

terms of order e and M, and omitting higher-order terms

such as e2 and M2. However, omitting the second- and

higher-order terms may result in significant phase errors for

relatively long propagation ranges. For example, Ref. 15

argues that for the wind speed greater than 15 m/s

(M � 0:05), the second- and higher-order terms in M should

not be neglected such that parabolic equations valid for arbi-

trary Mach numbers should be used.

The EWAPE given by Eq. (3) does not actually depend

on the factor r. (This can be readily shown by moving r pre-

multiplying the square root into this square root.) However,

when a NAPE or WAPE is obtained from Eq. (3) by approx-

imating the square-root operator in this equation, it does

depend on the choice of r. We desire that the resulting

NAPE and WAPE be valid for arbitrary variations in the

sound speed and Mach numbers, respectively, i.e., arbitrary

e and M. First, consider the NAPE, which can be obtained

from Eq. (3) by approximating the square-root operator with

the first two terms of the Taylor series. This approximation

can be used only if the terms containing the operators l̂r

and v̂r in Eq. (3) are small compared to one. To estimate

these operators, we use a zeroth-order approximation for

the auxiliary function: / � exp ½ik0ðx cos hþ e � r sin hÞ�,
where e is a unit vector characterizing the propagation direc-

tion of the sound wave in the (y,z)-plane. For relatively

small angles h, for which the NAPE is applicable, we have

jr?/j � k0h/ and D?/ � k2
0h

2/. Then, in Eq. (3), the

operators m̂?; l̂r, and v̂r can be estimated as

m̂? � Mh; l̂r �
h2

r2
; v̂r �

k2
cc

2
x

r2k2
0

ð1þMhÞ2 � 1: (7)

It follows from these relationships that for small h, the terms

containing the operator l̂r are small compared to one.

However, the terms containing the operator v̂r are small

only if r2k2
0 ¼ k2

cc
2
x or

r ¼ kccx

k0

: (8)

This is the desired value of r for which the square-root oper-

ator in Eq. (3) can be accurately approximated with the first

two terms of the Taylor series for arbitrary e and M.

Next, consider the WAPE obtainable from Eq. (3) by

approximating the square-root operator with the Pad�e
series expansion. The Pad�e series converges for all values

of the operators l̂r and v̂r and, hence, for all values of

r.22 However, if l̂r and v̂r are small compared to one,

fewer terms in this series are needed for a good approxi-

mation of the square root than in the case of large l̂r and

v̂r. (This result is illustrated in Table I of Ref. 23.) This,

again, dictates the choice of r given by Eq. (8), at least for

small h.

Thus, the factor r given by Eq. (8) is preferable for

approximating the square-root operator in the EWAPE [Eq.

(3)]. Substituting Eq. (8) into Eqs. (3) and (4), we obtain

@

@x
þ ikcŝ � ikcc

2
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l̂ þ v̂

p� �
/ ¼ 0; (9)

l̂ ¼ 1

k2
cc

2
x

D?; v̂ ¼ 2m̂? þ m̂2
?: (10)

Equation (9) is the desired EWAPE with the operators l̂ and

v̂ given by Eq. (10). In these operators, the subscript r is

omitted because the factor r is specified with Eq. (8). With

r given by Eq. (8) and for small h, the operators l̂ and v̂ are

estimated as

l̂ � k2
0h

2

k2
cc

2
x

; v̂ � Mhþ ðMhÞ2: (11)

The terms containing these operators are small compared to

one for small h. This leads to the NAPE that is valid for

arbitrary e and M and requires fewer terms in the Pad�e series

expansion for the WAPE.

Equations (9) and (10) coincide with Eqs. (B1) and

(B2) in Ref. 15. However, Ref. 15 considers the EWAPE

given by Eq. (9) only briefly in Appendix B. One of the

main goals of this article is to study in detail this EWAPE

and the NAPE and WAPE derived from this equation.

In the literature, the factor r differs from that given by

Eq. (8). In a motionless medium, r is often set to one, e.g.,

Ref. 7. In this case, v̂r ¼ e and the Taylor series expansion

of the square-root operator in Eq. (3) is valid only for small

e. In a moving medium, the bulk of Ref. 15 considers the

EWAPE, NAPE, and WAPE pertinent to r ¼ cx. With this

choice of r, the NAPE is valid only for small e, whereas the

WAPE requires more terms in the Pad�e series.

Thus, the EWAPE given by Eq. (9) might be preferable

compared to other equations used in the literature because the

terms containing the operators l̂ and v̂ are small compared to

one for arbitrary e and M (for small h). This feature of Eq. (9)

is achieved by the factor kcc2
x premultiplying the square-root

operator, whereas other EWAPEs do not have this factor. The

EWAPE given by Eq. (9) does not contain the reference

wavenumber k0. It is worthwhile to point out that Eqs. (9) and

(10) are simpler (i.e., have fewer terms) than the correspond-

ing Eqs. (39) and (40) in Ref. 15, which pertain to r ¼ cx. As

expected, these equations coincide if c is constant.

In the literature, EWAPEs, NAPEs, and WAPEs are

derived by omitting some terms in starting equations such as

Eq. (2). The ranges of applicability of the resulting equations

are often difficult to assess. Another goal of this article is to

study the ranges of applicability of these equations in detail. To

this end, two approaches are used. First, starting with the

EWAPE, NAPE, and WAPE, the dispersion relations (which

are equivalent to the eikonal equations) are derived and com-

pared to geometrical acoustics. Section III shows that within

the ranges of applicability of the EWAPEs given by Eqs. (3)
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and (9) (h < 90�), the dispersion relations following from these

equations coincide with geometrical acoustics. Therefore, Eqs.

(3) and (9) are termed the phase-preserving EWAPEs.

In the second approach, EWAPEs, NAPEs, and WAPEs

are compared with the exact equation for sound propagation

in stratified moving media. Section IV shows that for

h < 90�, the EWAPEs given by Eqs. (3) and (9) coincide

with this exact equation.

Equations presented in this section are the starting point

of the subsequent analysis.

B. NAPE

To derive the NAPE from Eq. (9), the operator

v̂ ¼ 2m̂? þ m̂2
? is substituted into this equation. Then, we

take into account that in the square-root operator in the

resulting equation, m̂? � Mh while l̂ � k2
0h

2=ðk2
cc

2
xÞ; see

Eqs. (7) and (11). Approximating the square-root operator

with the Taylor series and keeping terms of order h and h2

yields

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l̂ þ v̂

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l̂ þ 2m̂? þ m̂2

?

q
� 1þ l̂=2þ m̂?: (12)

Note that in this formula, terms of order m̂2
? cancel out.

Substituting Eq. (12) into Eq. (9), we obtain

@

@x
� i

2kc
D? �

ix
ceff

þ 1

ceff

v? � r?
� �

/ ¼ 0: (13)

Here, ceff ¼ cþ vx is the effective sound speed, which

appears in this equation as a convenient notation rather

than an approximation. Equation (13), which is a new

result, is the desired NAPE that is valid for the arbitrary

variations in the sound speed and arbitrary Mach num-

bers, i.e., arbitrary e and M. Equation (13) does not con-

tain the reference wavenumber k0. After the auxiliary

function / is calculated with Eq. (13), the sound pressure

is determined with Eq. (1). In a motionless medium, Eq.

(13) coincides with Eq. (3.38) from Ref. 6 and Eq. (4.17)

from Ref. 24 if in these equations, the derivatives of the

sound speed are set to zero.

The NAPE [Eq. (13)] is valid for relatively small propa-

gation angles h. By studying the phase errors of a sound

wave in motionless and moving media, Refs. 7 and 15 con-

clude that NAPEs are valid for the propagation angles

h � 20�. However, this conclusion depends on an acceptable

phase error and the problem considered. For near-ground

sound propagation, there is generally a consensus2,13 that a

NAPE [including Eq. (13)] can be used if h � 20�.
Section III shows that the dispersion relation derived

from Eq. (13) coincides with geometrical acoustics within

the ranges of applicability of Eq. (13); therefore, this equa-

tion is termed the phase-preserving NAPE. Section IV

shows that within the ranges of its applicability, Eq. (13)

coincides with the exact equation in a stratified moving

medium. Given the wide range of applicability of the phase-

preserving NAPE [Eq. (13)], it is remarkably simple.

Numerical implementation of Eq. (13) is provided in

Sec. V A.

Other NAPEs appearing in the literature are valid either

for low Mach numbers and/or small variations in the sound

speed. They preserve the phase of a sound wave only

approximately and do not exactly coincide with the exact

equation in a stratified moving medium. For example, the

NAPE given by Eq. (46) in Ref. 15 is valid only for jej � 1;

that equation is also much more involved than the phase-

preserving NAPE [Eq. (13)].

The NAPE in a moving medium is usually formulated

for the sound pressure p rather than for the auxiliary func-

tion /. It is often written in the form

@

@x
� i

2k0

D? �
ik0

2
1þ c2

0

c2
eff

 !
þ 1

c0

v? � r?

" #
p ¼ 0: (14)

[Equation (14) coincides with Eq. (2.111) in Ref. 2 if p is

replaced with p̂ exp ðik0xÞ.] Equation (14) describes sound

propagation only for small variations in the sound speed e
and low Mach numbers M. With the last term omitted, Eq.

(14) can be obtained from the NAPE in a motionless

medium using the effective sound speed approximation; that

is, by replacing c with ceff .
1 Because Eq. (14) is valid only

for small e and M the deviation of ceff from c0 is also rela-

tively small, i.e., jceff � c0j=c0 � 1. Therefore, keeping c2
eff

in Eq. (14) is inconsistent with its ranges of applicability. It

can be shown that within these ranges, 1þ c2
0=c2

eff in Eq.

(14) can be replaced with 2c0=ceff . In this case, the third

terms in Eqs. (13) and (14) coincide.

C. WAPE

WAPEs are usually derived by approximating the

square-root operator in Eq. (9) with the Pad�e (m,m) series

expansion such that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l̂ þ v̂

p
¼ 1þ

Xm

j¼1

aj;m l̂ þ v̂ð Þ
1þ bj;m l̂ þ v̂ð Þ : (15)

In this series, the coefficients aj;m and bj;m are given by25

aj;m ¼
2

2mþ 1
sin 2 jp

2mþ 1
; bj;m ¼ cos 2 jp

2mþ 1
: (16)

Substituting Eq. (15) into Eq. (9), we obtain

@

@x
� ix

ceff

�Mxc2
x

c
v? � r?

�

� ikcc
2
x

Xm

j¼1

aj;mðl̂ þ v̂Þ
1þ bj;mðl̂ þ v̂Þ

#
/ ¼ 0: (17)

Equation (17) is the desired WAPE valid for the arbitrary

variations in the sound speed and Mach numbers. This
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characteristic is attained because the Pad�e series converges

for all values of l̂ and v̂. Note that Eq. (17) is formulated

without the reference wavenumber k0. This equation is not

explicitly presented in Ref. 15. In the Pad�e (1,1) approxima-

tion, only the first term in the series in Eq. (17) is retained.

Numerical implementation of this WAPE is considered in

Sec. V B. Keeping more terms in the Pad�e series enables

larger propagation angles h to be considered.

The Pad�e (1,1) approximation is a more accurate

approximation of the square-root operator in Eq. (9) than the

first two terms in the Taylor series. (For example, see Table

I in Ref. 23.) Therefore, a WAPE in the Pad�e (1,1) approxi-

mation is valid for larger propagation angles than a NAPE.

By studying the phase errors pertinent to WAPEs in the

Pad�e (1,1) approximation, Refs. 7 and 15 conclude that

these equations can be used if the propagation angles

h � 35�. As with NAPEs, this conclusion depends on an

acceptable accuracy and the problem at hand.

Section III shows that the dispersion relation obtained

from Eq. (17) coincides with geometrical acoustics within

the ranges of applicability of Eq. (17). Therefore, Eq. (17)

is termed the phase-preserving WAPE. In a stratified

moving medium, Eq. (17) coincides with the exact equa-

tion, again, within the ranges of its applicability (See Sec.

IV.).

As the Pad�e series converges for all values of the opera-

tors l̂r and v̂r in Eq. (3), the WAPE given by Eq. (44) in

Ref. 15, which is obtained from Eq. (3) with r¼ 1, is also

phase preserving. However, as explained in Sec. II, more

terms in the Pad�e series might be needed in Eq. (44) from

Ref. 15 than in Eq. (17). Furthermore, Eq. (17) is simpler

(has fewer terms) than Eq. (44) from Ref. 15. (See also Sec.

V B.) Other WAPEs in moving media, such as those in Refs.

2, 13, and 14, are valid for small e and M.

III. GEOMETRICAL ACOUSTICS

In this section, the ranges of applicability of EWAPEs,

NAPEs, and WAPEs are studied by comparing them with

the geometrical acoustics equations.

A. Dispersion relation and eikonal equation

In moving media, the dispersion relation for geometri-

cal acoustics [e.g., Eq. (3.35) in Ref. 2] can be written as

k ¼ x
c
� k � v

c
: (18)

Here, k is the wave vector and k ¼ jkj. For sound propaga-

tion in the positive direction of the x axis, it is convenient to

write k ¼ ðkx; k?Þ, where k? ¼ ðky; kzÞ. Squaring both sides

of Eq. (18) and using notations from Eq. (4) yields

ð1�M2
xÞk2

x þ 2Mxkx kc �
k? � v?

c

� �
þ k2

?

� k2
c þ 2kc

k? � v?
c
� ðk? � v?Þ

2

c2
¼ 0; (19)

where k? ¼ jk?j. Multiplying both sides of Eq. (19) by c2
x , it

can be recast in the equivalent form

kx þ kcMxc
2
x 1� k? � v?

x

� �� �2

� k2
cc

4
x 1� k? � v?

x

� �2

� k2
?

k2
cc

2
x

" #
¼ 0: (20)

Equation (20) is an exact consequence of the dispersion rela-

tion [Eq. (18)] and describes sound propagation in the posi-

tive and negative directions of the x axis. Equation (20) is

recast as a2 � b2 ¼ ða� bÞðaþ bÞ ¼ 0, where a2 and b2 are

the first and second terms in this equation, respectively. For

sound propagation in the positive direction of the x axis, the

latter equation reduces to a� b ¼ 0. Thus,

kx þ kcMxc
2
x 1� k? � v?

x

� �

� kcc
2
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k? � v?

x

� �2

� k2
?

k2
cc

2
x

s
¼ 0: (21)

This is the desired dispersion relation for sound propagation

in the positive direction of the x axis and is valid for

h < 90�. In Eq. (21), k? � h for small h. Therefore, the

square root has the form

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ OðhÞ þ Oðh2Þ

q
and can be

effectively approximated using the Pad�e or Taylor series for

arbitrary e and M.

The wave vector k of a sound wave and its phase U are

related by k ¼ rU. Substitution of this formula into Eq.

(18) yields the eikonal equation for the phase U. For sound

propagation in the direction of the x axis, it is convenient to

write

ðkx; k?Þ ¼
@U
@x

;r?U
� �

: (22)

Substituting kx and k? from Eq. (22) into Eq. (21), we can

obtain the eikonal equation for the phase U of a sound wave

propagating in the positive direction of the x axis.

B. EWAPE

In this section, starting from Eqs. (1) and (3), we derive

the dispersion relation and compare it with Eq. (21). The

sound pressure p and auxiliary function / are expressed in

the form used in geometrical acoustics:

p ¼ eik0Hp0; p0 ¼ p1 þ
p2

ik0

þ p3

ðik0Þ2
þ � � � ; (23)

/ ¼ eik0H/0; /0 ¼ /1 þ
/2

ik0

þ /3

ðik0Þ2
þ � � � : (24)

Here, H is the eikonal and k0 is the same reference wave-

number as in Eq. (4). In geometrical acoustics, 1=k0 plays
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the role of a small parameter and facilitates formulations of

the dispersion relation and transport equation.

Equations (23) and (24) are substituted into Eq. (1).

Keeping terms of order k
ð0Þ
0 and omitting higher-order terms,

such as k
ð�1Þ
0 , yields

p1 ¼
ffiffiffiffiffi
.
.0

r
1� k0v � rH

x

� �
/1: (25)

The geometrical acoustics equations can be written in forms

that do not include the reference wavenumber k0. To this

end, recall that the wave vector of a sound wave can be

expressed in terms of the eikonal

k ¼ k0rH; ðkx; k?Þ ¼ k0

@H
@x

;r?H
� �

: (26)

Using the first of these relationships, Eq. (25) can be written

without k0 such that

p1 ¼
ffiffiffiffiffi
.
.0

r
1� k � v

x

� �
/1: (27)

Next, Eq. (24) is substituted into the EWAPE [Eq. (3)].

To derive the dispersion relation (or the eikonal equation),

we keep terms of order k0 and omit higher-order terms such

as k
ð0Þ
0 ; k

ð�1Þ
0 , etc. The first term in Eq. (3) is transformed as

follows:

@

@x
eik0H/0

� �
¼ eik0H @

@x
þ ik0

@H
@x

� �
/0

¼ eik0H @

@x
þ ikx

� �
/0 ¼ ikxeik0H/0: (28)

Here, following Eq. (26), k0@H=@x is replaced with kx. The

last equality is obtained by taking into account that kx/0 is

of order k0 while @/0=@x is of order k
ð0Þ
0 . Thus, when deriv-

ing the dispersion relation, the operator @=@x in Eq. (3) is

replaced by ikx, i.e., @=@x! ikx. The operator, m̂?, in this

equation can be assessed similarly:

m̂? eik0H/0

� �
¼ i

x
eik0H v? � r? þ ik0r?Hð Þ/0

¼ i

x
eik0H v? � r? þ ik?ð Þ/0

¼ m?eik0H/0; m? ¼ �
k? � v?

x
: (29)

Here, we used Eq. (26) for k? and took into account that

k?/0 is of order k0 while r?/0 is of order k
ð0Þ
0 . Thus,

m̂? ! m?.

Equations (28) and (29) exemplify the rule that when

one or more differential operators are applied to the ansatz

eik0H/0F (where F is a function that may appear in transfor-

mations), they should act only on the exponential function

eik0H yielding terms proportional to k0, whereas the deriva-

tives of F and /0 can be omitted to order k0. As a result of

this rule, m̂n
? ! mn

? while the operators l̂r and v̂r appearing

in Eq. (3) transform to

l̂r eik0H/0

� �
¼ lreik0H/0; lr ¼ �

k2
?

r2k2
0

; (30)

v̂r eik0H/0

� �
¼ vreik0H/0; vr ¼

k2
cc

2
x

k2
0r

2
1þ m?ð Þ2 � 1:

(31)

To complete the derivation, the square-root operator in Eq.

(3) is expressed as the Taylor series and assessed as follows:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l̂r þ v̂r

p
eik0H/0

� �
¼ 1þ 1

2
l̂r þ v̂rð Þ � 1

8
l̂r þ v̂rð Þ2 þ � � �

� �
eik0H/0

� �
¼ 1þ 1

2
lr þ vrð Þ �

1

8
lr þ vrð Þ2 þ � � �

� �
eik0H/0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lr þ vr

p
eik0H/0: (32)

Here, we took into account that the operators l̂r and v̂r

commute to order k0.

Using all these transformations of the operators in Eq.

(3), the dispersion relation following from this equation

takes the form

kx þ kcMxc
2
x 1þ m?ð Þ � rk0cx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

cc
2
x

k2
0r

2
1þ m?ð Þ2 þ lr

s
¼ 0:

(33)

Taking into account the definitions of m? and lr, it can be

shown that this dispersion relation does not depend on r and

coincides with Eq. (21). Thus, the EWAPE given by Eq. (3)

exactly describes the phase of a sound wave within the

ranges of its applicability, i.e., h < 90�, for any r.

The EWAPE given by Eq. (3) is derived from the con-

vective Helmholtz equation [Eq. (2)]. The dispersion rela-

tion can also be formulated starting with Eq. (2). To this

end, Eq. (24) is substituted into the convective Helmholtz

equation. Similar to the analysis above, it can be shown that

the operator r transforms to ik and the operator D trans-

forms to �k2. With these transformations, the dispersion

relation following from Eq. (2) exactly coincides with that

used in geometrical acoustics [Eq. (18)].

C. NAPE

This section considers dispersion relations pertinent to

NAPEs. To this end, Eq. (24) is substituted into Eq. (13). In

the resulting equation, the operators v? � r? and D? are

transformed similarly to Eqs. (29) and (30), respectively. As

a result, we obtain the following dispersion relation:

kx þ
k2
?

2kc
� x

ceff

þ k? � v?
ceff

¼ 0: (34)

The same result can be derived from the dispersion relation

in geometrical acoustics [Eq. (21)]. To this end, the square
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root in Eq. (21) should be approximated similarly to Eq.

(12). Thus, within the ranges of its applicability, the NAPE

[Eq. (13)] correctly describes the phase of a sound wave

for arbitrary variations in the sound speed and Mach

numbers.

Other NAPEs in moving media correctly describe the

phase of a sound wave only approximately when M and/or

e are small. For example, starting with Eq. (14), the dis-

persion relation can be derived. It can be shown that it

coincides with the dispersion relation given by Eq. (34)

only for small e and M and the NAPE given by Eq. (46)

from Ref. 15 preserves the phase of a sound wave only for

small e.

D. WAPE

Next, we consider the dispersion relation obtained from

the WAPE given by Eq. (17), where the auxiliary function /
is specified by Eq. (24). The operators l̂ and v̂ are estimated

with Eqs. (30) and (31), respectively, in which r is given by

Eq. (8) such that

l̂ eik0H/0

� �
¼ leik0H/0; l ¼ � k2

?
k2

cc
2
x

; (35)

v̂ eik0H/0

� �
¼ veik0H/0; v ¼ 2m? þ m2

?: (36)

Using these results, Eq. (17) becomes

kx�
x

ceff

�Mxc2
x

c
k? � v? � kcc

2
x

Xm

j¼1

aj;mðlþ vÞ
1þ bj;mðlþ vÞ ¼ 0: (37)

The same equation can be obtained from the dispersion rela-

tion in geometrical acoustics [Eq. (21)]. To this end, the

square root in Eq. (21) is expressed as the Pad�e series [Eq.

(15)]. Therefore, in the Pad�e approximation, the phase-

preserving WAPE [Eq. (17)] correctly describes the phase

of a sound wave for arbitrary variations in the sound speed

and Mach numbers, i.e., arbitrary e and M.

The WAPE obtained from Eq. (3) in the Pad�e approxi-

mation also preserves the phase of a sound wave within the

ranges of its applicability but might require more terms in

the corresponding Pad�e series. (See Sec. II.) Other WAPEs

appearing in the literature2,13,14 preserve the phase of a

sound wave only for small e and M.

IV. STRATIFIED MOVING MEDIUM

In this section, the ranges of applicability of EWAPEs,

NAPEs, and WAPEs are studied by comparing them to an exact

result for sound propagation in a stratified moving medium.

A. Exact equation

As is commonly done in atmospheric acoustics, here,

we assume a stratified moving medium. Thus, the ambient

quantities depend only on the vertical coordinate z, i.e.,

c ¼ cðzÞ; . ¼ .ðzÞ, vz¼ 0, and �v?ðzÞ ¼ ðvxðzÞ; vyðzÞÞ.
Equations (2.63) and (2.64) in Ref. 2 exactly describe sound

propagation in a stratified moving medium. For a monochro-

matic sound wave, by omitting the time dependence e�ixt,

these equations can be recast as

pð�r; zÞ ¼
ffiffiffiffiffi
.
.0

r ð1
�1

1� j � �v?
x

� �
/̂ðj; zÞ exp ij � �rð Þ d2j;

(38)

@2

@z2
þ x� j � �v?ð Þ2

c2
� j2

� �
/̂ðj; zÞ ¼ 0: (39)

Here, �r ¼ ðx; yÞ; j ¼ ðjx; jyÞ, and the function /̂ðj; zÞ is

proportional to the two-dimensional (2D) spatial spectrum

of the sound pressure. In this section, the check marks above

�r and �v? are used to distinguish these quantities from those

in Secs. II and III. In Eq. (39), the derivatives of c, ., and �v?
are omitted, as consistent with the high-frequency approxi-

mation considered in this article.

Equation (39) can be recast in the following equivalent

form:

1�M2
x

� �
j2

x þ 2kcMx 1� jyvy

x

� �
jx �

@2

@z2

"

þj2
y � k2

c 1� jyvy

x

� �2
#
/̂ ¼ 0: (40)

Multiplying both sides of this equation by c2
x , it can be writ-

ten as

jx þ kcMxc
2
x 1� jyvy

x

� �� �2
(

�k2
cc

4
x 1� jyvy

x

� �2

þ 1

k2
cc

2
x

@2

@z2
�

j2
y

k2
cc

2
x

" #)
/̂ ¼ 0:

(41)

Because we omit the derivatives of c and �v?, Eq. (41) can

be recast as a2 � b2 ¼ ða� bÞðaþ bÞ ¼ 0. For sound propa-

gation in the positive direction of the x axis, the latter equa-

tion reduces to a� b ¼ 0. Thus,

jx þ kcMxc
2
x 1� jyvy

x

� ��

�kcc
2
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jyvy

x

� �2

þ 1

k2
cc

2
x

@2

@z2
�

j2
y

k2
cc

2
x

s 3
5/̂ ¼ 0:

(42)

Equation (42) exactly describes sound propagation in the

positive direction of the x axis (i.e., h < 90�) provided that

the derivatives of c and �v? can be omitted.

B. EWAPE

Next, we consider the EWAPE [Eq. (3)] in a stratified

moving medium. The auxiliary function / is expressed in

the form
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/ð�r; zÞ ¼
ð

/̂ðj; zÞ exp ij � �rð Þ d2j: (43)

Substitution of Eq. (43) into Eq. (1) yields Eq. (38). Thus,

the relationship between p and /̂ is the same as that in Ref.

2 and the formulations pertinent to the EWAPE given by

Eq. (3). When Eq. (43) is substituted into Eq. (3), the opera-

tors are transformed as follows:

@

@x
! ijx; (44)

m̂? ¼
i

x
�v? � r? ¼

ivy

x
@

@y
! m?;s ¼ �

jyvy

x
; (45)

l̂r ¼
1

r2k2
0

@2

@y2
þ @2

@z2

 !
! l̂r;s ¼

1

r2k2
0

@2

@z2
�j2

y

� �
; (46)

v̂r ! vr;s ¼
k2

cc
2
x

r2k2
0

ð1þ m?;sÞ2 � 1: (47)

Here, the subscript s indicates that the corresponding quan-

tity is pertinent to a stratified medium. When deriving these

relationships, we also took into account that the operators

m̂?; l̂r, and v̂r commute if the derivatives of c and �v? are

omitted. Because of this property, in Eq. (3),ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l̂r þ v̂r

p
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l̂r;s þ vr;s

q
: (48)

With these results, Eq. (3) for / transforms to the following

equation for /̂:

jxþ kcMxc
2
x 1þm?;sð Þ

h

�rk0cx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

cc
2
x

r2k2
0

1þm?;sð Þ2þ
1

r2k2
0

@2

@z2
�

j2
y

r2k2
0

s #
/̂ ¼ 0:

(49)

This is the EWAPE for propagation in a stratified moving

medium, which is derived from Eq. (3). Substituting with

m?;s, it can be shown that Eq. (49) does not depend on r and

coincides with Eq. (42). Thus, the EWAPE given by Eq. (3)

exactly describes propagation in a stratified moving medium

within the ranges of its applicability (for h < 90� and when

the derivatives of c and �v? can be omitted) for any r.

C. NAPE

Formulations for the NAPE proceed similarly to those

for the EWAPE. To this end, Eq. (43) is substituted into Eq.

(13). The operators @=@x and �v? � r? are assessed with

Eqs. (44) and (45). The result is

jx �
x

ceff

� 1

2kc

@2

@z2
� j2

y

� �
þ jyvy

ceff

" #
/̂ðj; zÞ ¼ 0: (50)

This is the NAPE for a stratified moving medium, which fol-

lows from Eq. (13). The same equation can be obtained from

Eq. (42) by approximating the square root with Eq. (12).

Thus, within the ranges of its applicability, the phase-

preserving NAPE [Eq. (13)] correctly describes sound prop-

agation in a stratified moving medium with arbitrary varia-

tions in the sound speed e and Mach number M. Other

NAPEs [such as Eq. (14)] are valid only if M and/or e are

small.

D. WAPE

Next, consider the WAPE [Eq. (17)] in a stratified mov-

ing medium, where / is specified by Eq. (43). To derive the

equation for /̂, the operators @=@x and �v? � r? are replaced

with Eqs. (44) and (45). With r given by Eq. (8), Eqs. (46)

and (47) for the operators l̂r and v̂r, respectively, take the

form

l̂ ! l̂s ¼
1

k2
cc

2
x

@2

@z2
� j2

y

� �
;

v̂ ! vs ¼ 2m?;s þ m2
?;s: (51)

Here, the subscript r is omitted because the factor r is speci-

fied with Eq. (8). Also, similar to Eq. (48), the following

transformation holds:

aj;mðl̂ þ v̂Þ
1þ bj;mðl̂ þ v̂Þ !

aj;mðl̂s þ vsÞ
1þ bj;mðl̂s þ vsÞ

: (52)

With these results, the WAPE for /̂ takes the form

jx �
x

ceff

�Mxc
2
x

jyvy

c
� kcc

2
x

Xm

j¼1

aj;mðl̂s þ vsÞ
1þ bj;mðl̂s þ vsÞ

" #

	 /̂ðj; zÞ ¼ 0: (53)

This is the WAPE in a stratified moving medium, derived

from Eq. (17). The same equation can be obtained from Eq.

(42) by approximating the square root with the Pad�e series

[Eq. (15)]. Thus, within the ranges of its applicability, the

phase-preserving WAPE [Eq. (17)] coincides with the exact

equation for sound propagation in a stratified moving

medium for arbitrary variations in the sound speed e and

Mach numbers M.

It can be shown that the WAPE given by Eq. (44) in

Ref. 15 also coincides with the exact equation for sound

propagation in a stratified medium within the ranges of its

applicability. However, this equation might require more

terms in the Pad�e series than in Eq. (53), as discussed in

Sec. II. The WAPEs in Refs. 2, 13, and 14 coincide with the

exact equation in a stratified moving medium only approxi-

mately for small e and M.

V. NUMERICAL IMPLEMENTATION OF THE
PARABOLIC EQUATIONS

In this section, we consider numerical implementation

of the phase-preserving NAPE [Eq. (13)] and WAPE [Eq.

(17)] for 2D sound propagation in the vertical (x,z) plane.
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As is typical for sound propagation modeling, we also

assume that vz¼ 0.

A. NAPE

First, consider the phase-preserving NAPE. For 2D

sound propagation, the operators in Eq. (13) simplify such

that v? � r? ¼ 0 and D? ¼ @2=@z2. In this equation, the

auxiliary function / is expressed in the form

/ðx; zÞ ¼ /̂ðx; zÞeik0x: (54)

Here, k0 is the reference wavenumber and /̂ is the complex

amplitude of the auxiliary function. With these results, the

phase-preserving NAPE [Eq. (13)] takes the form

@

@x
� i

2k0n

@2

@z2
� ik0 neff � 1ð Þ

� �
/̂ ¼ 0; (55)

where n is the refractive index in a motionless medium and

neff is the effective refractive index,

n ¼ c0

c
; neff ¼

c0

ceff

¼ c0

cþ vx
: (56)

Note that neff appears in Eq. (55) as a convenient notation

rather than the result of the effective sound speed

approximation.

For further analysis, it is convenient to express Eq. (55)

in the equivalent form

h1;0 þ
h1;2

k2
0

@2

@z2

 !
@/̂
@x
¼ ik0 h2;0 þ

h2;2

k2
0

@2

@z2

 !
/̂; (57)

where the coefficients hn;m are given by

h1;0 ¼ 1; h1;2 ¼ 0; h2;0 ¼ neff � 1; h2;2 ¼
1

2n
: (58)

The initial condition for the function /̂ at x¼ 0 is chosen as

that adopted in the literature for a point source and

NAPE,1,6

/̂ðx ¼ 0; zÞ ¼ � i/0

2
ffiffiffiffiffiffi
2p
p exp � k2

0ðz� zsÞ2

2

� �
: (59)

Here, /0 characterizes the amplitude of the point source and

zs is the source height above the ground. In numerical exam-

ples to follow, /0 ¼ 1 Pa. Numerical implementation of Eq.

(57) is outlined in Sec. VI A of Ref. 15. It involves only

minimal modifications to existing Crank-Nicholson NAPE

algorithms and is just as computationally efficient.

After the auxiliary function /̂ is found as a solution of

Eq. (57), the sound pressure is calculated as

pðx; zÞ ¼
ffiffiffiffiffi
.
.0

r
eik0x 1�Mx þ

iMx

k0

@

@x

� �
/̂ðx; zÞ: (60)

This result follows from Eqs. (1) and (54). Numerical imple-

mentation of Eq. (60) is also considered in Sec. VI A of Ref. 15.

In the literature, the sound pressure in a moving

medium, such as the atmosphere, is often calculated with

the NAPE based on the effective sound speed approximation

or the NAPEeff.
1 This equation is given by Eq. (14) with the

last term omitted. In the NAPEeff, the sound pressure is

expressed in the form

pðx; zÞ ¼ p̂ðx; zÞeik0x; (61)

where p̂ is the complex amplitude of the sound pressure. For

2D sound propagation calculations using Eqs. (14) and (61),

p̂ also satisfies Eq. (57) but with different coefficients hn;m,

namely,

h1;0 ¼ 1; h1;2 ¼ 0; h2;0 ¼
n2

eff � 1

2
; h2;2 ¼

1

2
: (62)

The initial condition for the NAPEeff is formulated for

p̂ð0; zÞ and is given by the right-hand side of Eq. (59).

B. WAPE

Next, consider the phase-preserving WAPE [Eq. (17)].

For 2D sound propagation in the (x,z)-plane, the operators v̂
and l̂ in this equation simplify to

v̂ ¼ 0; l̂ ¼ 1

k2
0n2c2

x

@2

@z2
: (63)

In Eq. (17), / is replaced with Eq. (54). With these transfor-

mations and in the Pad�e (1,1) approximation, the phase-

preserving WAPE takes the form

@

@x
� ik0 neff � 1ð Þ � ik0nc2

x

a1;1l̂
1þ b1;1l̂

� �
/̂ ¼ 0: (64)

It follows from Eq. (16) that in the Pad�e (1,1) approxima-

tion, a1;1 ¼ 1=2 and b1;1 ¼ 1=4. Multiplying both sides of

Eq. (64) by 1þ b1;1l̂, this equation can be recast as Eq.

(57), in which the coefficients hn;m are given by

h1;0 ¼ 1; h1;2 ¼
1

4n2c2
x

; h2;0 ¼ neff � 1;

h2;2 ¼
1

2n
þ neff � 1

4n2c2
x

: (65)

Although written in a somewhat different form, Eq. (65) for

the coefficients hn;m is consistent with Eq. (B5) in Ref. 15.

The initial condition for the WAPE in the Pad�e (1,1) approx-

imation is chosen as that adopted in the literature [see Eq.

(G.75) in Ref. 1]:

/̂ðx ¼ 0; zÞ ¼ � i/0

2
ffiffiffiffiffiffi
2p
p ½1:3717� 0:3701k2

0ðz� zsÞ2�

	 exp � k2
0ðz� zsÞ2

3

� �
: (66)
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In the literature, the sound pressure p in a moving

medium is often calculated with the WAPE based on the

effective sound speed approximation or the WAPEeff, e.g.,

see Ref. 1 and Eq. (56) in Ref. 15. In the Pad�e (1,1)

approximation and substituting with Eq. (61), the

WAPEeff can also be written as Eq. (57) with the follow-

ing coefficients:

h1;0 ¼ 1þ n2
eff � 1

4
; h1;2 ¼

1

4
; h2;0 ¼

n2
eff � 1

2
;

h2;2 ¼
1

2
: (67)

The initial condition for the WAPEeff coincides with the

right-hand side of Eq. (66).

C. Intercomparison of the parabolic equations

It follows from Secs. V A and V B that the phase-

preserving NAPE and WAPE and the corresponding equations

based on the effective sound speed approximation, NAPEeff

and WAPEeff, reduce to the same equation [Eq. (57)] but with

different coefficients hn;m. These coefficients are summarized

in Table I. The rows “NAPE” and “WAPE” correspond to the

phase-preserving NAPE and WAPE [Eqs. (13) and (17)], and

the rows “NAPEeff” and “WAPEeff” correspond to the equa-

tions based on the effective sound speed approximation. The

row “WAPEM” corresponds to Eq. (78) in Ref. 15, which is

the 2D WAPE in the Pad�e (1,1) approximation and can be

obtained from Eq. (3) in this article by setting r¼ 1 and writ-

ten in the form given by Eq. (57). As mentioned in the

Introduction, Eq. (78) from Ref. 15 has already been used in

the literature16–19 and is valid for arbitrary Mach numbers but

small variations in the sound speed. In the WAPEM row,

s ¼ ðn�MxÞMxc2
x .

Interestingly, although the parabolic equations in Table I

describe similar sound propagation phenomena, the coeffi-

cients hn;m in these equations differ significantly. Also, these

coefficients are more complex for the WAPEM than for the

phase-preserving WAPE. This result elucidates the statements

above that the EWAPE, NAPE, and WAPE, which are

obtained from Eq. (3) by setting r equal to Eq. (8), are simpler

than those pertinent to r¼ 1.

Another difference between these parabolic equations is

that the phase-preserving NAPE and WAPE and the WAPEM

are formulated for the complex amplitude of the auxiliary

function /̂, while the NAPEeff and WAPEeff are formulated

for the complex amplitude of the sound pressure p̂.

VI. NUMERICAL RESULTS

In this section, numerical results obtained with the

phase-preserving NAPE and WAPE and the NAPEeff and

WAPEeff are compared to analytical and reference solutions.

We will also briefly consider results obtained with the

WAPEM.

In all numerical examples to follow, we consider a point

source with the frequency f ¼ x=ð2pÞ ¼ 200 Hz located

above a perfectly reflecting, flat surface. The reference

sound speed is c0 ¼ 340 m/s. The computational domain is

500 m long and 125 m high. At the lower boundary, the ver-

tical derivative of / for NAPE and WAPE and the vertical

derivative of p for NAPEeff and WAPEeff are zero due to a

perfectly reflecting surface. For the upper boundary, a per-

fectly matched layer (PML) is used.26 The thickness of the

PML is 30 grid points. It is implemented as described in

Ref. 19. In all numerical examples, for x greater than about

100 m but smaller than 500 m, the propagation angles

h � 35�.

A. Uniformly moving medium

This section considers the point source located 50 m

above the surface in a uniformly moving medium with

Mach number M¼ 0.5 and constant sound speed c¼ c0. The

relatively large Mach number is chosen to elucidate the dif-

ference between the results obtained with the phase-

preserving NAPE and WAPE and the NAPEeff and

WAPEeff. Note that for the considered case c¼ c0, the

WAPEM coincides with the phase-preserving WAPE, i.e.,

the coefficients hnm in Table I for these parabolic equations

are the same. Using these parabolic equations, the sound

pressure level (SPL) and relative level are calculated. The

latter is defined as follows

DLðx; zÞ ¼ 20 log 10

jpðx; zÞj
jp0ðx; zÞj

� �
; (68)

TABLE I. Comparison between the NAPEs and WAPEs. The first two columns specify the parabolic equation and the function which satisfies this equation.

The coefficients hn;m pertinent to these equations are in the last four columns.

Equation Function h1;0 h1;2 h2;0 h2;2

NAPE /̂ 1 0 neff � 1 1

2n
WAPE /̂ 1 1

4n2c2
x

neff � 1 1

2n
þ neff � 1

4n2c2
x

WAPEM /̂
1þ n2 � 1

4

1

4c2
x

ðn2 � 1Þc2
x

2
� 1þ n2 � 1

4

� �
s

1

2
� s

4c2
x

NAPEeff p̂ 1 0 n2
eff � 1

2

1

2

WAPEeff p̂
1þ n2

eff � 1

4

1

4

n2
eff � 1

2

1

2
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where p0 is the sound pressure produced by the point source

in free space. In these calculations, the steps along the x and

z axes are 0.05 m, which corresponds to k=34. Here, k is the

sound wavelength. These relatively small steps are needed

to correctly predict the sound pressure at interference min-

ima. In practical applications, the grid steps in the WAPE

and NAPE can be set to those typically used in the literature,

e.g., k=10.1 Therefore, the computational cost of these equa-

tions is about the same as for the NAPEeff and WAPEeff.

The SPL calculated with the parabolic equations is

depicted in Fig. 1, which also presents the SPL correspond-

ing to the exact analytical solution of the problem consid-

ered, presented in Sec. VI B of Ref. 15. The SPL has several

minima and maxima due to interference between the direct

wave from the source to receiver and that reflected from the

surface. For x � 100 m, the SPL calculated with the phase-

preserving WAPE is indistinguishable from the exact ana-

lytical solution. The phase-preserving NAPE results are also

close to the analytical solution but at larger propagation

ranges. The results obtained with the WAPEeff and NAPEeff

noticeably deviate from the analytical solution.

These conclusions are reinforced by Fig. 2, in which the

relative level DL obtained with the analytical solution and

parabolic equations, is plotted versus the propagation range

x for four heights z above the surface. For x � 100 m, propa-

gation angles h can be relatively large such that the ranges

of applicability of the NAPEs and WAPEs might not be ful-

filled. Therefore, the predictions based on the parabolic

equations can significantly deviate from the analytical solu-

tion. For x � 100 m, the results obtained with the phase-

preserving WAPE are very close to the analytical solution.

The results obtained with the phase-preserving NAPE

slightly deviate from the analytical solution in the range

100 m � x � 400 m because the NAPE is valid for smaller h
than the WAPE. However, for x � 400 m (where h becomes

small), the NAPE is close to the analytical solution. On the

other hand, Fig. 2 clearly shows that the results obtained

with the WAPEeff and NAPEeff significantly deviate from

the analytical solution. For the problem considered (but with

different source height and frequency), inaccurate predic-

tions of WAPEeff are also reported in Ref. 15.

The difference between the results obtained with the

parabolic equations and analytical solution can be quantified

by the normalized errors,

�ðx; zÞ ¼ jpPEðx; zÞj � jpanðx; zÞj
jp0ðx; zÞj

; (69)

where pPE is the sound pressure calculated with one of the

parabolic equations from Table I, and pan is the sound pres-

sure obtained with the exact analytical solution. (Note that

the errors � are normalized by p0 rather than by pan because

pan can be very small at the interference minima; see Fig. 2.)

The normalized errors � versus the propagation range x are

plotted in Fig. 3 for four heights z above the ground. These

errors correspond to the results shown in Fig. 2. In Fig. 3,

the x axis starts with xmin ¼ 100 m because at shorter ranges,

the parabolic equations might not applicable. It follows

from Fig. 3 that the normalized errors � pertinent to the

phase-preserving WAPE are almost zero. The normalized

errors � for the phase-preserving NAPE are small and tend

to zero as the propagation range x increases. The normalized

errors pertinent to the WAPEeff and NAPEeff are large and,

generally, do not decrease with range.

Next, we consider the cumulative normalized errors,

which are obtained by integrating the normalized errors �
along the x axis:

��ðzÞ ¼ 1

xmax � xmin

ðxmax

xmin

j�ðx; zÞj dx; (70)

where xmax ¼ 500 m. The cumulative errors pertinent to

the normalized errors in Fig. 3 are shown in Table II. It

FIG. 1. (Color online) SPL in a uniformly moving medium with M¼ 0.5

produced by a point source located 50 m above a perfectly reflecting, flat

surface. The sound frequency is 200 Hz. The subplots correspond to the

exact analytical solution and numerical results obtained with the parabolic

equations as labeled.
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follows from the table that the phase-preserving WAPE
has the smallest cumulative errors, followed by those for
the phase-preserving NAPE and the NAPEeff and
WAPEeff.

B. Linear sound speed profile

This section considers sound propagation in a motion-

less medium. The source is located 10 m above the surface.

FIG. 2. (Color online) Relative level DL versus the propagation range x for four heights z above the surface. The geometry of the problem is the same as that

for the SPL in Fig. 1. Different curves correspond to the analytical solution and parabolic equations.

FIG. 3. (Color online) Normalized errors � between the analytical solution and results obtained with the parabolic equations from Fig. 2.
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The sound speed linearly increases with the height z such

that

cðzÞ ¼ c0 þ az; (71)

where a¼ 1 s�1. As in Sec. VI A, the relatively large value

of the coefficient a is chosen to elucidate the difference

between the results obtained with the phase-preserving

WAPE and NAPE and the WAPEeff and NAPEeff. It follows

from Table I that in a motionless medium, the WAPEM coin-

cides with the WAPEeff.

The SPL calculated with these parabolic equations is

depicted in Fig. 4, which also shows the SPL calculated

with the finite-difference time-domain (FDTD) solution of

linearized equations of fluid dynamics. (For details, see the

Appendix.) For the linear sound speed profile, the FDTD

approach can be considered as a reference solution.

It can be observed from Fig. 4 that the phase-preserving

WAPE provides the best agreement with the FDTD solution,

followed by the WAPEeff, NAPE, and NAPEeff. This con-

clusion is further illustrated in Fig. 5, where the relative

level DL calculated with the FDTD approach and parabolic

equations is plotted versus the propagation range x for four

heights z above the ground. Figure 5 clearly shows that for

x � 100 m, the results obtained with the phase-preserving

WAPE are in a very good agreement with those obtained

with the FDTD solution.

The normalized errors � pertinent to the results dis-

played in Fig. 5 are depicted in Fig. 6. It follows from Fig. 6

that the normalized errors for the phase-preserving WAPE

are smaller compared to those for the WAPEeff. Similarly,

the phase-preserving NAPE has smaller normalized errors

compared to the NAPEeff. The WAPEeff outperforms the

NAPE because this section considers sound propagation in a

motionless medium for which the effective sound speed

approximation is not relevant.

Table III shows the cumulative errors �� pertinent to the

normalized errors � in Fig. 6. It follows from Table III that

the phase-preserving WAPE has smaller cumulative errors

compared to the WAPEeff, as does the phase-preserving

NAPE compared to the NAPEeff.

C. Stratified moving medium

This section considers a stratification for which the

sound speed and medium velocity depend on z. Again, the

sound speed profile is given by Eq. (71) but with a much

smaller coefficient a ¼ 0:1 s�1. The medium velocity loga-

rithmically increases with height,

vxðzÞ ¼ v0 lnð1þ bzÞ; (72)

where v0 ¼ 9 m/s and b¼ 1 m�1. As in Sec. VI B, the source

is located at zs¼ 10 m above the surface.

Figure 7 shows the relative level DL versus the prop-

agation range x for four heights z above the surface. The

results correspond to the FDTD solution, the phase-

preserving NAPE and WAPE, and the NAPEeff and

WAPEeff. For the considered case of a stratified moving

medium, the FDTD solution is valid for arbitrary Mach

numbers (see Sec. IV D in Ref. 27). It follows from Fig. 7

that the results obtained with the phase-preserving

WAPE are very close to the FDTD solution and the

phase-preserving NAPE outperforms the NAPEeff and

WAPEeff. The results obtained with the latter two para-

bolic equations often deviate from the reference solution

TABLE II. Cumulative errors �� pertinent to the normalized errors � shown

in Fig. 3.

Equation z¼ 1 m z¼ 2 m z¼ 5 m z¼ 10 m

NAPE 0.03 0.03 0.09 0.15

WAPE 0.00 0.01 0.01 0.02

NAPEeff 0.44 0.32 0.45 0.43

WAPEeff 0.46 0.51 0.59 0.76

FIG. 4. (Color online) SPL for a linear profile of the sound speed produced

by a point source located 10 m above a perfectly reflecting, flat surface. The

sound frequency is 200 Hz. The subplots correspond to the results obtained

with the FDTD solution and parabolic equations as labeled.
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not only at the interference minima and maxima but also

at the ranges between them.

Table IV shows the cumulative errors �� pertinent to the

results in Fig. 7. It follows from the table that the phase-

preserving WAPE has the smallest errors, followed by the

phase-preserving NAPE, WAPEeff, and NAPEeff. The

WAPEM was also used to calculate the relative level for the

stratification considered in this section. The results obtained

are very close to those for the phase-preserving WAPE with

the same cumulative errors. This can be explained by the

FIG. 5. (Color online) Relative level DL versus the propagation range x for a linear profile of the sound speed and four heights z above the surface. The geome-

try of the problem is the same as that for the SPL in Fig. 4 Different curves correspond to the results obtained with the FDTD solution and parabolic equations.

FIG. 6. (Color online) Normalized errors � between the FDTD solution and results obtained with the parabolic equations from Fig. 5.
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fact that for the stratification considered, the variation in the

sound speed is relatively small.

VII. CONCLUSIONS

This article considered the phase-preserving EWAPEs,

WAPEs, and NAPEs for sound propagation in moving

media. These equations [Eqs. (9), (17), and (13), respec-

tively] were derived in the high-frequency approximation

while omitting the derivatives of the sound speed and

medium velocity. Within the ranges of their applicability,

the EWAPE, WAPE, and NAPE exactly describe the phase

of sound waves and are valid for arbitrary variations in the

sound speed and arbitrary (subsonic) Mach numbers.

These equations also correctly describe sound propagation

in a stratified moving medium within the ranges of their

applicability.

Although variations in sound speed and wind Mach

number are often relatively small, omitting the correspond-

ing second-order terms can result in significant phase errors

for long propagation ranges. Therefore, it is preferable to

use the phase-preserving WAPE and NAPE, at least in some

practical applications.

This article further showed that the WAPE given by

Eq. (44) in Ref. 15 can also correctly describe the phase

of a sound wave but might require more terms in the Pad�e
series expansion. Moreover, that equation involves more

terms than the phase-preserving WAPE given by Eq. (17)

in this article. The WAPEs from Refs. 2, 13, and 14 pre-

serve the phase of sound waves only approximately for

small variations in sound speed and Mach numbers.

Previous NAPEs from the literature (e.g., Refs. 2 and 15)

correctly describe the phase of sound waves only for

small variations in the sound speed and/or low Mach

numbers.

Numerical simulations showed that the results obtained

with the phase-preserving WAPE and NAPE agree better

with the analytical and reference solutions than those with

the parabolic equations based on the effective sound speed

approximation (the WAPEeff and NAPEeff), which are often

TABLE III. Cumulative errors �� pertinent to the normalized errors �

depicted in Fig. 6.

Equation z¼ 1 m z¼ 2 m z¼ 5 m z¼ 10 m

NAPE 0.34 0.51 0.68 1.01

WAPE 0.08 0.09 0.11 0.17

NAPEeff 0.52 1.09 1.15 1.55

WAPEeff 0.27 0.41 0.50 0.69

FIG. 7. (Color online) Relative level DL versus the propagation range x for a stratified moving medium (Sec. V C) and four heights z above a perfectly

reflecting, flat surface. The source is located 10 m above the surface and the sound frequency is 200 Hz. Different curves correspond to the results obtained

with the FDTD solution and parabolic equations.

TABLE IV. Cumulative errors �� pertinent to the results depicted in Fig. 7.

Equation z¼ 1 m z¼ 2 m z¼ 5 m z¼ 10 m

NAPE 0.09 0.08 0.13 0.13

WAPE 0.04 0.02 0.02 0.05

NAPEeff 0.18 0.80 0.56 0.92

WAPEeff 0.05 0.14 0.17 0.21

1100 J. Acoust. Soc. Am. 155 (2), February 2024 Ostashev et al.

https://doi.org/10.1121/10.0024460

https://doi.org/10.1121/10.0024460


used in the literature. Limitations of this approximation

have been reported elsewhere, e.g., Refs. 2, 15, and 28.

There are, of course, problems for which the effective sound

speed approximation might be suitable. However, because

the complexity of numerical implementation of the phase-

preserving WAPE and NAPE is about the same as that for

the WAPEeff and NAPEeff, it makes sense to use the phase-

preserving equations.
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APPENDIX

This appendix briefly outlines the FDTD approach

employed in Secs. VI B and VI C. The approach is based on

solution of Eqs. (17) and (18) in Ref. 27, which, for 2D

sound propagation in a stratified moving medium, become

@p

@t
þ vx

@p

@x
þ .c2 @wx

@x
þ @wz

@z

� �
¼ .c2Q;

@wx

@t
þ vx

@wx

@x
þ 1

.
@p

@x
¼ 0;

@wz

@t
þ vx

@wz

@x
þ 1

.
@p

@z
¼ 0; (A1)

where t is time and (wx,wz) are the components of the acous-

tic particle velocity. The source term is given by

Qðx; z; tÞ ¼ q0

pB2
exp � x2 þ ðz� zsÞ2

B2

� �
sinðxtÞ; (A2)

where q0 ¼ 1 m2 s�1 is the source flow rate and B¼ 0.24 m

is its radius.

The FDTD solution uses the optimized fourth-order finite-

difference technique (see Ref. 29 for details). The mesh grid is

uniform with a grid step of 0.1 m, which corresponds to 17

points per wavelength for f¼ 200 Hz. The Courant-Friedrichs-

Lewy number is set to 0.5, yielding a time step 1:47	 10�4 s.

The FDTD simulation runs for 1.54 s.

The root mean square (rms) sound pressure is determined

from the FDTD solution using the last three periods of the

sound signal. For comparison with the parabolic equations,

the rms pressure is normalized using the factor

q0x. exp f�x2B2=½4c2ðzsÞ�g.
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