
ANALYTICAL MODELLING OF SOUND TRANSMISSION THROUGH A
ROW OF THICK-WALLED CHANNELS

Mohcene Oulmi1,2 Michel Roger1 Benali Boualem2
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ABSTRACT

The present work is dealing with the transmission of
oblique plane waves through a periodic row of thick-walled
channels of finite length. It is aimed at investigating how
sound is transmitted in some parts of the ventilation ducts
integrated in electrical machines used in railways applica-
tions.

A two-dimensional analytical mode-matching method
without flow is proposed, according to which modal ex-
pressions are written in sub-domains and matched accord-
ing to conservation laws of fluid dynamics. The trans-
mission and reflection coefficients are computed from the
matching equations. Effects of channel length, frequency,
wall thickness, are discussed. A particular attention is paid
to the resonances in the system.

1. INTRODUCTION

The reduction of the noise generated by electrical ma-
chines used in railway traction has become a very impor-
tant criterion during their design phase. The noise comes
from three main sources, of vibrational, aerodynamic and
electromagnetic origins. Among these contributions, aero-
dynamic noise is dominant at high rotation speeds. It is
generated by the ventilation system of the machines. The
latter consists of several elements: radial impeller, guide
vanes and cooling channels. More precisely the noise gen-
erated by the impingement of the impeller wakes on the
guide vanes is transmitted through all components of the
ventilation system. It is therefore important to be able to
predict the sound propagation in the ventilation system at
the early design stage in order to avoid any resonance that
can amplify the noise.

The analytical methods are better suited at this stage due
to the very low computational time compared to numerical
simulations.

In a complicate architecture various analytical models
of noise propagation must be set up as a successive combi-
nation of sub-models. After having split the complete ge-
ometry into simplified blocks form mathematical tractabil-
ity. The present work is dealing only with the problem of
noise transmission through the cooling channels. The typi-
cal configuration is illustrated in Fig.1. It features two thin
annular parts connected to a periodic array of channels, the
interfaces including both the channel ends and rigid front

Figure 1: A typical configuration of the ventilation ducts
of electrical machines

walls. At most frequencies of interest the annulus thick-
ness and the channel cross-section are smaller than wave-
lengths, which justifies that a 2D approach is selected to
investigate primary technological effects. For this an un-
wrapped cylindrical cut of the true geometry is described
in Cartesian coordinates. The radial impeller and the guide
vanes located upstream of the left-side annulus are ignored
but they generate sound that is considered as incident plane
waves on the system.

Several studies on sound transmission in acoustic
waveguide discontinuities have been suggested in litera-
ture [1–4]. These models are valid only when two seg-
ments of different properties are connected to each other.
In our case the channels are periodically excited in the
same way as a row of outlet guide vanes of axial-flow tur-
bomachines. Thus why a 2D mode-matching technique
previously applied to model rotor-stator stages has been
selected.

The simplicity of the present paper is to consider the
transmission of oblique plane waves through a row of
thick-walled channels. The mode matching technique is
presented in detail in section 2. The results and the in-
fluence of physical parameters on sound propagation are
shown in section 3.

2. MODE MATCHING METHOD

The mode-matching method is usually applied to deal with
problems of transmission of waves at an interface, which
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includes electromagnetic [5] and acoustic waves [6–9]. It
is applied in the frequency domain on the Helmholtz equa-
tion. it allows calculating the modal amplitudes of re-
flected and transmitted waves. This technique is usable
when the geometry can be considered as the junction of
several sub-domains. The unwrapped representation of a
cylindrical cut of the ventilation ducts at the radius r0 is
shown in Fig.2. The channel walls have a thickness b and
are assumed to be perfectly rigid. The channel width is
a = 2πr0/B − b, B being the number of channels.

Figure 2: Two-dimensional unwrapped representation of
the scattering of an acoustic wave through a row of thick-
walled channels

The incident wave of potential φi is scattered at the in-
terface x = 0 and generates reflected waves φr propagat-
ing upstream of the interface and transmitted waves φd into
the channels. The latter propagate downstream to the open
ends of channels x = L, generating a reflected field φu in
the channels and a transmitted field φt downstream.

The mode matching technique is used in four steps:

• Dividing the geometry into sub-domains in which
the Helmholtz equation is separable.

• Describing the sound field as a sum of orthogonal
modes in each sub-domain.

• Matching the acoustic fields at each interface using
the continuity of pressure and axial velocity.

• Solving the matching equations by matrix inversion
to get the modal coefficients.

2.1 Acoustic Potentials

A time harmonic factor e−iωt is implicitly assumed
throughout this paper. All the acoustic fields are described
by their acoustic potentials. The Helmholtz equation is
written as:

∂2φ(x, z)

∂x2
+
∂2φ(x, z)

∂z2
+ k2φ(x, z) = 0 (1)

where k = ω/c is the acoustic wavenumber, ω the angular
frequency and c is the sound speed. This equation can be
solved by separation of variables.

The acoustic pressure and axial velocity are related to
the acoustic potential by the equations:

p = iωρ0φ (2)

vx =
∂φ

∂x
(3)

The incident field φi is considered as a plane wave prop-
agating upstream of the interface x = 0, in the direction of
the positive x with an angle θi. The potential of the inci-
dent wave is written as:

φi(x, z) = eiαizeik
+
i x (4)

with

αi = k sin(θi) =
n

r0
, k+i =

√
k2 − α2

i

n being the number of lobes.
The potential of the reflected wave reads

φr(x, z) =

+∞∑
s=−∞

Rse
iαszeik

−
s x (5)

with

αs = αi + s
2π

a+ b
, k−s = −

√
k2 − α2

s

The acoustic potential of the transmitted wave φd in the
mth channel is given by:

φmd (x, z) =

+∞∑
q=0

D0
qe

imαi(a+b) cos(αq [z −m(a+ b)])

× eik
+
q x (6)

with
αq = q

π

a
, k+q =

√
k2 − α2

q

where eimαi(a+b) is the phase shift between adjacent chan-
nels.

The potential of the wave propagating upstream φmu
from the interface x = L is expressed as

φmu (x, z) =

+∞∑
q=0

U0
q eimαi(a+b) cos(αq [z −m(a+ b)])

× eik
−
q (x−L) (7)

with
k−q = −

√
k2 − α2

q

The transmitted potential can be written as:

φr(x, z) =

+∞∑
s=−∞

Rse
iαszeik

−
s x (8)

with
k+s =

√
k2 − α2

s
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2.2 Matching equations

The only unknowns in this problem are the modal coeffi-
cients Rs, Dq , Uq and Ts. In order to calculate them, the
mode matching technique must be applied on the both ends
of the channels. The matching equations are obtained from
the continuity of the acoustic pressure and the axial veloc-
ity at the open ends of channels. The acoustic pressure and
the axial velocity are gathered into a vector Ξ

Ξg(x, z) =

pg(x, z)
vxg (x, z)

 , g = {i, r, d, u, t} (9)

The continuity of the acoustic pressure and axial veloc-
ity at the interfaces x = 0 and x = L is written as

Ξi(0, z) + Ξr(0, z) = Ξd(0, z) + Ξu(0, z) (10)

Ξd(L, z) + Ξu(L, z) = Ξt(L, z) (11)

The rigid-wall boundary condition is imposed on the
front face of the channel separators which corresponds to
vanishing normal velocity vx = 0. This condition is equiv-
alent to∫ a+b

0

(vi + vr)e
−iανzdz =

∫ a

0

(vi + vr)e
−iανzdz (12)

2.2.1 Channel inlet (x = 0)

After replacing the expressions of acoustic pressure and
axial velocity in Eqn.(10), we obtain:

+∞∑
s=−∞

(δs,0 +Rs) eiαsz =

+∞∑
q=0

(
D0
q + U0

q e−ik
−
q L
)

× cos(αqz) (13)

+∞∑
s=−∞

(Rs − δs,0) k−s eiαsz =

+∞∑
q=0

(
D0
q − U0

q e−ik
−
q L
)

× k+q cos(αqz) (14)

with

δs,0 =

{
1 , if s = 0

0 , if s 6= 0

A modal projection must be used to solve the system of
equations, based on the orthogonality properties of the
modes. The orthogonality relation is given by∫ a

0

ΨiΨ
∗
jdz = 0, if i 6= j

where Ψ∗j is the complex conjugate of the eigenfunction
Ψi. The equations of continuity of acoustic pressure and
axial velocity are projected on the eigenfunctions of the
channels and of the unbounded medium respectively.

The modal projection for the pressure, leads to

+∞∑
s=−∞

(δs,0 +Rs) Λµ,s =
(
D0
µ + U0

µe−ik
−
µ L
)

× a

2
(1 + δµ,0) (15)

where
αµ = µ

π

a

The matrix term Λµ,s is found analytically as:

Λµ,s =

∫ a

0

eiαsz cos(αµz)dz

Λµ,s =


iαs[1−(−1)µe−iαsa]

α2
s−α2

µ
, if αµ 6= αs

a
2 (1 + δµ,0) , if αµ = αs

(16)

The projection of Eqn.(14) on the eigenfunction e−iανz

gives:∫ a

0

(vi + vr)e
−iανzdz =

∫ a

0

(vq + vu)e−iανzdz (17)

The Eqn.(17) and Eqn.(12) give∫ a+b

0

(vi + vr)e
−iανzdz =

∫ a

0

(vq + vu)e−iανzdz (18)

After accounting for the orthogonality, we obtain

(a+ b) (Rν − δν,0) k−ν =

+∞∑
q=0

(
D0
q − U0

q e−ik
−
q L
)

× k+q ϕν,q (19)

where
αν = ν

2π

a+ b

and

ϕν,q =

∫ a

0

cos(αqz)e
−iανzdz

ϕν,q =


iαν [(−1)qe−iανa−1]

α2
ν−α2

q
, if αq 6= αν

a
2 (1 + δq,0) , if αq = αν

(20)

The Eqn.(15) and Eqn.(19) are valid for any mode, so
that we can write in matrix notation:

(δ0 +R) Λ = D + U

(R− δ0) = (D − U)ϕ
(21)

where

ϕ =
1

(a+ b)

k+q

k−ν
ϕν,q ,Λ =

1
a
2 (1 + δµ,0)

Λµ,s
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U = U0
µe−ik

−
µ L

Finally, the vector of reflection coefficients is given by

R =
(
I − ϕΛ

)−1 [(
I + ϕΛ

)
δ0 − 2ϕU

]
(22)

with I is the identity matrix.
The transmission coefficients are directly deduced from

Eqn.(15) as:

D0
µ =

1
a
2 (1 + δµ,0)

+∞∑
s=−∞

(δs,0 +Rs) Λµ,s − U0
µe−ik

−
q L

(23)

2.2.2 Channel outlet (x = L)

For the channel m = 0, the continuity equations at the in-
terface (x = L) are written

+∞∑
q=0

(
D0
qe

ik+q L + U0
q

)
cos(αqz) =

+∞∑
s=−∞

Tse
iαsz (24)

+∞∑
q=0

(
U0
q −D0

qe
ik+q L

)
k−q cos(αqz) =

+∞∑
s=−∞

Tsk
+
s eiαsz

(25)

In the same way, we project the equations of acoustic
pressure Eqn.(24) and axial velocity Eqn.(25) on the eigen-
functions cos(αµz) and e−iανz , respectively, and obtain:

(
D0
µeik

+
µL + U0

µ

) a
2

(1 + δµ,0) =

+∞∑
s=−∞

TsΛµ,s (26)

+∞∑
q=0

(
U0
q −D0

qe
ik+q L

)
k−q ϕν,q = (a + b)k+ν Tν (27)

The matrix notation of Eqn.(26) and Eqn.(27) is :
D + U = TΛ

(U −D)ϕ2 = T
(28)

where

ϕ2 =
1

(a+ b)

k−q

k+ν
ϕν,q ,D = D0

µeik
+
µL.

The resolution of this equation by matrix inversion al-
lows the determination of the vector of the reflection coef-
ficients U .

U =
(
Λϕ2 − I

)−1 (
Λϕ2 + I

)
D (29)

Using Eqn.(27), the transmission coefficients are deter-
mined by:

Tν =
1

(a+ b)

+∞∑
q=0

(
U0
q −D0

qe
ik+q L

) k−q
k+ν

ϕν,q (30)

2.3 Solving procedure

The two sets of equations are solved by an iterative pro-
cedure because of the multiple reflections inside the chan-
nels. The index of iterations used in the solving procedure
is noted j. In the first iteration j = 0 we assume no re-
flected wave in the channels: U0

q = 0. The Eqn.(10) be-
comes:

Ξi(0, z) + Ξj=1
r (0, z) = Ξj=1

d (0, z) (31)

The Eqn.(31) is used to compute the reflection coefficient
Rs and the transmission coefficient D0

q . The latter is used
in Eqn.(32) to compute the new values of U0

q and Ts.

Ξj=1
d (L, z) + Ξj=1

u (L, z) = Ξj=1
t (L, z) (32)

The Eqn.(33) is solved again using the new value of U0
q

as input. The procedure is repeated till convergence. The
different steps of the iterative method are shown in Fig.3.

Ξi(0, z) + Ξj=2
r (0, z) = Ξj=2

d (0, z) + Ξj=1
u (0, z) (33)

Figure 3: Solving procedure

In practice the infinite series must be truncated to have a
finite number of modes. The maximum numbers of modes
Ns and Nq depend on the number of cut-on modes, with
−Ns ≤ s ≤ Ns and 0 ≤ q ≤ Nq − 1. The ratio
(2Ns + 1)/Nq must be close to (a + b)/a to satisfy the
edge condition at best. Nq is given by:

Nq ≈ (2Ns + 1)
a

a+ b

3. RESULTS

The mode matching technique is applied in this section to a
test case of 12 channels. The parameters are listed in Tab.1.
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f (Hz) b (m) r0 (m) L (m) n

2800 0.04 0.15 0.3 3

Table 1: Test-case parameters

A convergence study on the number of iterations is carried
out, by estimating that the results are converged when the
relative variation of the modal amplitudes between succes-
sive iterations is less than 10−9. The Fig.4 shows that con-
vergence only requires a few iterations, about 12.
Fig.5 shows the instantaneous pressure field for the inci-
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Figure 4: Modal amplitudes of the reflected Rs (a) and
transmitted Ts (b) modes of order s = 0 as functions of the
number of iterations.

dent mode n = 3. Upstream of the interface x = 0, the
acoustic field is dominated by the incident wave, modu-
lated by the reflected wave. The latter propagates upstream
of the interface as a specular reflection. Fig.6 presents the
instantaneous pressure and velocity profiles along an axial
line at center of the 6th channel, showing the continuity of
the physical quantities on both interfaces x = 0 and x = L.

The Fig.7 presents the modulus of the complex-valued
modal coefficients of the acoustic fields. The blue and red
bars denote cut-on and cut-off modes respectively. They
indicate that only the modes of order s = 0 and q = 0 are cut-
on and that therefore the reflected and transmitted fields
only contain the incident mode order n = 3. The other
modes are cut off, attenuated exponentially on both sides of
the interfaces, they do not participate in acoustic radiation.
However taking the evanescent modes into account is very
important to ensure the continuity of the acoustic field at
the interfaces and to accurately calculate the amplitudes of
the cut-on modes.

Figure 5: Typical instantaneous acoustic pressure field.
Incident mode n = 3.
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Figure 6: Instantaneous acoustic pressure (a), and velocity
(b) profiles from Fig.5. z = 6(a+ b) + a/2.
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Figure 7: Modulus of the modal coefficients from the test
case in Fig.5

3.1 Effect of frequency

The effect of frequency on the acoustic field is discussed in
this section and the reflected Pr and transmitted Pt acous-
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(a) (b) (c)

Figure 8: Instantaneous acoustic pressure fields for various frequencies. (a) f = 2500 Hz. (b) f = 3225 Hz. (c) f = 4000
Hz. Incident mode n = 2, b = 0.05m, a = 0.028m.

tic powers are plotted as function of frequency in Fig.9 for
the incident mode n = 2. The Fig.8 shows the instanta-
neous sound pressure fields for three different frequencies.
When the incident wave propagates through a channel, the
reflected and transmitted modes of order 2 (for s = 0) are
always cut-on. The cut-off frequency is defined as the min-
imum frequency fc below which only the mode s = 0
is cut-on. For the configuration studied, this cut-off fre-
quency is 3683 Hz.

In low frequency for f < fc (Figs. 8b and 8a), the
transmitted power is maximum at resonance frequencies
while the reflected power is extremely low.
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Figure 9: Variations of the transmitted Pt and reflected Pr
acoustic powers the frequency

Acoustic resonance are expected a priori when the
length of the channels L is a multiple of the half wave-
length λ/2. But for open pipes of transverse dimension
much smaller than the wavelength, an effective length
larger than the true length must be considered. The res-
onant frequencies are obtained as

fnr =
nrc0
2Le

with
Le = L+ Lcorr

where Lcorr accounts for the end corrections, which corre-
spond to equivalent reflecting points just outside the chan-
nels [10].

When the frequency exceeds the cutoff frequency fc, a
second mode becomes cut-on, as illustrated in Fig.8c. The
interference pattern becomes more complex upstream of
the channels, and the acoustic energy is distributed differ-
ently between the upstream and downstream fields.

3.2 Effect of Thickness

One of the most important aspects in this study is the in-
fluence of the wall thickness b on sound transmission. The
Fig.10 shows the instantaneous acoustic pressure fields for
various wall thicknesses.

Fig.10a confirms that a small thickness generally yields
only small reflections. As thickness increases, the reflec-
tion becomes more important as shown in Fig. 10b. In
the case of very thick walls Fig.10c the incident wave is
strongly reflected by the front surfaces, causing more in-
terference than in other cases.

4. CONCLUSION

An analytical model of sound transmission through a pe-
riodic row of thick-walled channels has been proposed in
this paper in order to model the propagation of noise in
some parts of ventilation ducts used in electrical machines.
The mode-matching technique allowed us to compute the
modal amplitudes of the transmission and reflection coef-
ficients. The matching equations based on the continuity
of the acoustic pressure and axial velocity were written at
both channel ends. An iterative method has been proposed
to take into account the multiple reflections at these ends.
The convergence of the calculation was reached after few
iterations.

The results have shown that the distribution of the
acoustic power is highly dependent on the frequency. The
incident wave is completely transmitted when its frequency
is equal to a resonant frequency of the channels.

A parametric study on the influence of wall thickness
on propagation of the acoustic waves has shown that the
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(a) (b) (c)

Figure 10: Instantaneous acoustic pressure fields for various thickness values . (a) b = 0.02 m. (b) b = 0.035 m. (c)
b = 0.06 m. Incident mode n = 3, f = 2800 Hz.

reflected field upstream of the channels increases with wall
thickness.
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