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Abstract

The reduction of the noise generated by traction motors used in railway applications
has become a very important criterion during their design phase. The overall noise comes
from three main sources, of vibrational, aerodynamic and magnetic natures. Among these
contributions, aerodynamic noise is dominant at high rotation speeds. It is generated by
the ventilation system of the motor. The use of numerical simulations to predict this
noise can be very expensive and time-consuming when several geometrical parameters
need to be tested. Analytical methods are suitable at the early design stage, due to their
low computational time. This work is dealing with the analytical modelling of sound
generation and propagation inside the ventilation systems integrated in electric motors. In
the first step of this work, the geometry of each motor is divided into several subdomains,
in which the sound field can be expressed as a sum of orthogonal modes. The analytical
solution in each subdomain requires the determination of the modal amplitudes of the
different acoustic fields. The use of the mode-matching technique allows one to calculate
these coefficients by imposing the continuity of the physical quantities at each interface
between two subdomains with different geometrical properties. A two-dimensional mode-
matching technique is first applied to the sound generation and propagation in the fixed
part of a totally-enclosed motor. The latter mainly consists of guide vanes and cooling
channels. The equivalent dipoles are used in this work to model the sound generation by
the impingement of the impeller wakes on the guide vanes. Then, the sound propagation
in this coupled system is reproduced by the use of two transmission models which take
into account the influence of the wall-thickness. An iterative method is used in order to
take into account the multiple reflections of the acoustic waves between the guide vanes
and the cooling channels. The mode-matching technique is then extended to significantly
more complicated architectures in order to investigate how the sound can propagate inside
the ventilation system of an open motor. The results obtained by the analytical models
have been validated by comparison with the finite element method. A good agreement
between the two methods was found. The diffraction of acoustic waves by periodic rows
of rotating channels is addressed in the last part of this work in order to investigate how
sound can be transmitted through the rotating parts of traction motors. These analytical
models are used for parametric studies to predict the acoustic resonances that can take
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place in the ventilation systems integrated in traction motors.

Keywords: Aeroacoustics, acoustic resonance, electric motors, sound propagation, waveg-
uides, Mode-matching method.
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Résumé

La réduction du bruit des moteurs électriques de traction ferroviaire est devenue un critère
très important lors de leur phase de conception. Le bruit global rayonné par ces moteurs
est de natures vibratoire, magnétique et aérodynamique. Parmi ces contributions, le bruit
aérodynamique est dominant aux vitesses élevées. Il est généré par le système de venti-
lation du moteur. L’utilisation des simulations numériques pour prédire ce bruit est très
couteuse dans la phase de conception du moteur, où plusieurs paramètres géométriques
doivent être testés. Les méthodes analytiques sont avantageuses lors de cette phase de
conception en raison de leur faible coût de calcul. Ce travail a pour but de modéliser
la génération et la propagation du bruit à l’intérieur des systèmes de refroidissement des
moteurs électriques, en utilisant une approche analytique, basée sur la technique de rac-
cordement modal. Dans la première étape de cette étude, la géométrie de chaque moteur
est décomposée en plusieurs sous-domaines de géométrie simplifiée dans lesquels l’équation
de Helmholtz est séparable. Cette étape de modélisation permet de trouver une solution
analytique exprimée sous forme d’une somme de modes orthogonaux. La solution analy-
tique dans chaque élément géométrique nécessite la détermination des coefficients modaux
des différents champs acoustiques. L’utilisation de la méthode de raccordement modal
permet de calculer ces derniers en écrivant la continuité des grandeurs physiques à chaque
interface entre deux milieux de propriétés géométriques différentes. Cette méthode est
d’abord appliquée dans un cadre bidimensionnel à la génération et à la propagation du
bruit à l’intérieur de la partie fixe des moteurs fermés. Cette dernière est composée prin-
cipalement d’une grille d’aubes et de canaux de refroidissement. L’utilisation de dipôles
équivalents a permis de modéliser la génération de bruit par l’impact des sillages du venti-
lateur sur la grille d’aubes. La propagation du bruit dans ce système couplé est reproduite
par l’utilisation de deux modèles de transmission qui prennent en compte l’influence de
l’épaisseur des parois. Une méthode itérative est utilisée par la suite afin de prendre en
compte les réflexions multiples des ondes acoustiques entre la grille d’aubes et les canaux
de refroidissement. La technique de raccordement modal est ensuite étendue à des ar-
chitectures beaucoup plus complexes pour étudier la propagation du son à l’intérieur du
système de ventilation d’un moteur ouvert. Les résultats obtenus par les différents mod-
èles analytiques sont comparés par la suite à des calculs par la méthode des éléments finis
pour validation. La diffraction des ondes acoustiques par des réseaux de canaux tour-
nants a été abordée dans la dernière partie de ce travail, afin de simuler la transmission

iii
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du bruit à travers les parties tournantes des moteurs. Ces modèles analytiques sont util-
isés pour des études paramétriques afin de prédire les résonances acoustiques qui peuvent
se produire dans les systèmes de ventilation des moteurs.

Mots-clés: Résonance acoustique, moteurs électriques, propagation acoustique, aéro-
acoustique, Méthode de raccordement modal.
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Introduction

General context
During the last years the noise generated by traction motors used in railway applications
has become a very big environmental issue that needs to be reduced at the early design
stage. The overall noise comes from three main sources, of mechanical, aerodynamic and
magnetic natures (see Figure 1). During the acceleration phase, the overall noise is dom-
inated by the magnetic contribution, which is related to the vibrations induced by the
electromagnetic forces. On the other hand, at high rotational speeds the aerodynamic
noise becomes the dominant contribution.This noise is generated by the ventilation sys-
tem of the motor. The use of the latter is essential to maintain the motor components at
allowable operating temperatures. It evacuates some of the unwanted heat produced by
the electrical components of the motor, such as the windings. Various kinds of cooling

Figure 1: Noise sources of a traction motor.

systems are commonly used in practical applications. However, the most used are self-
ventilated motors due to their small size. The typical configuration of a self-ventilated
motor is illustrated in Figure 2. It is composed of various components such as a radial
impeller, rotor, stator, housing, shaft, and windings. As can be seen, the cooling fan is
mounted on the motor shaft. It rotates in the same direction and at the same rotational
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Figure 2: Typical elements of a self-ventilated motor used in railway applications.

speed as the motor. This cooling architecture allows the motor size to be reduced, by
integrating directly the cooling fan inside the motor, and avoids using ventilation systems
of large dimensions. On the other hand, the cooling process is not well optimized, since
the flow provided by the fan depends mainly on the rotational speed of the motor. Con-
sequently, the latter is poorly cooled at low rotational speeds, and sufficiently cooled at
high rotational speeds. Therefore, in order to ensure the necessary airflow required for
the cooling process, the motor speed must be sufficiently high. Two kinds of architectures
of self-ventilated motors can be found in most practical applications:

(a) (b)

Figure 3: (a) Totally-enclosed motor. (b) Open motor.

• Totally-enclosed motors (Figure 3a): in these architectures the motor compo-
nents are not in direct contact with the cooling air provided by the fan, in order
to protect them from ferrous metals and dust. They consist mainly of internal and
external circuits separated by a rigid wall. In the external circuit, the air passes
only around the motor frame. This circuit is mainly composed of a radial impeller,
guide vanes and the cooling channels. In contrast, the hottest parts of the motor
are cooled by the air circulating in the inner circuit. The heat absorbed by the air
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is then evacuated by conduction through the walls separating the two circuits, and
then by convection between the walls and the air of the external circuit.

• Open motors (see Figure 3b): when the motor power increases, the temperature
of the hottest parts of the motor becomes very high, and the cooling technique used
in totally-enclosed motors becomes inefficient. Another way to improve the cooling
process is to use the open architectures to allow the air to be in direct contact with
the hottest parts of the motor. However, the air inside these ventilations systems
passes through three different circuits: the ventilating holes integrated in the stator
core, the ventilating channels integrated in the rotor core, and the air gap.

However, reducing the cooling system noise without affecting the aerodynamic and
thermal performance of the motor is one of the main goals of motor designers. The
thermal performance can be improved by increasing the airflow in the ventilation system.
Unfortunately, the aerodynamic noise also increases rapidly with the latter. It should be
kept in mind that the latter can be controlled by either reducing the acoustic sources
generated in the motor, by improving its aerodynamic performance, or by limiting the
transmission of acoustic waves outside the motor. In such complex configurations, the
aerodynamic noise is generated by the cooling fan [61, 47] and by the interaction of
turbulent flows with obstacles [68, 69, 73]. Among these contributions, the noise generated
by the cooling fan is dominant. Many techniques of noise reduction in similar centrifugal
fans (see Figure 4) have been already reported in the literature [49, 48, 78, 101, 102,
77]. These practical recommendations are very useful when the fan noise is radiated in
conditions assimilated to free field. In the case of a traction motor, a part of the noise

Figure 4: Typical configuration of a radial impeller integrated in traction motors

generated by the cooling fan is directly radiated outside the motor, and another part is
transmitted through all components of the ventilation system, giving rise to a complicated
confined acoustic field (see Figure 5). The fan noise can therefore be amplified when the
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Figure 5: An example of propagation of acoustic waves inside the ventilation system integrated
in a totally-enclosed motor (this configuration will be addressed in Chapter 1). Instantaneous
acoustic potential field.

resonant frequencies of the ventilation system are excited by the blade passing frequency
harmonics. To avoid that, the resonant frequencies must be identified during the design
stage, in order to give the correct dimensions of the ventilation system.

The use of numerical simulations to predict the aerodynamic noise becomes more and
more affordable in industrial context, especially with the growing use of the LBM (Lattice
Boltzmann Method) [64, 21, 82]. Yet they can be expensive or not applicable when
repeated computations must be performed, typically to investigate variable configurations
involving numerous parameters. The key issue is that all geometrical details, needed for
the simulations, are often not available at the early design stage. In contrast, analytical
approaches are well suited and attractive at that stage, because they rely on a simplified
geometry and perform with very low computational times. In a complicate architecture
various analytical models of noise propagation must be set up as a successive combination
of sub-models. The analytical solution of the problem is not known in the whole domain,
but it can be defined in sub-domains with simplified geometry. More than a possible
drawback, this has the advantage of highlighting the acoustic properties of each sub-
domain separately. Many works on sound transmission in ducts with discontinuities have
been reported in the literature [97, 98, 23, 93, 3, 7, 8, 16, 56]. The simplest model is the
one-dimensional model which is valid at relatively low frequencies, when only plane waves
can propagate inside a duct. This model can be used, for instance, to characterise the
performance of mufflers used in automotive engines [76, 66, 75, 32, 74]. It was extended
to arbitrary frequency by the use of the mode-matching technique [3, 7]. This technique
is used to determine the modal amplitudes of the different acoustic fields generated by the
diffraction of an incident wave at an interface separating two sub-domains with different
properties. It is applied to electromagnetic [72] and acoustic waves [90, 59, 91, 19, 81, 45]
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in the frequency domain.
A key feature of all the configurations investigated in this work is that they contain

a radial impeller. The transmission of acoustic waves through the impeller blades in a
similar case, with sources located outside the impeller and sound transmission upstream
towards the inlet, has been already investigated by Roger and Ingenito [90, 59, 60], based
on three successive sub-models. The first one, was developed by Roger [90] for the scat-
tering of a converging spiral wave by the trailing edges of the impeller blades by the
use of the mode-matching technique. Then, the propagation in the inter-blades channels
was addressed by Ingenito et al [59] using a slowly varying bent-duct approach [20]. Fi-
nally, the diffraction of the acoustic waves propagating in the inter-blade channels by the
leading-edges of impeller blades was investigated again by the mode-matching method.
These different sub-models can be used as guidelines in this study for the cooling fans
integrated in traction motors.

Objectives
The purpose of the present work is to provide a pre-design calculation tool with very low
computational time, to be able to perform several parametric studies. This tool will be
used in the early design stage to optimize the aeroacoustic performance of the ventilation
systems integrated in traction motors used in railway applications. The methodology used
in this work consists in decomposing the different architectures presented previously into
generic components addressed separately.

The first part of this study (Chapter 1) is devoted to the sound generation and prop-
agation inside the stationary part of the ventilation system integrated in totally-enclosed
motors, using a two dimensional approach based on the mode-matching method. Two
kinds of configurations are investigated in this chapter. The first one is assumed to be
perfectly periodic in the azimuthal direction, and the second one is truncated.

The mode-matching technique is then applied in Chapter 2 to the sound propagation
in the stationary part of an open motor.

The effects of the relative motion between a stator and a rotor on the sound propaga-
tion mechanism are investigated in Chapter 3, in order to understand how sound can be
transmitted through the rotating parts of traction motors.

The last part of this work (Appendix C) deals with the aeraulic performance of self-
ventilated motors, keeping in mind that the study is aimed at proposing a method for
globally reducing noise and losses.

Curved walls and continuously varying cross-sections of some sub-systems could be ad-
dressed, using the multimodal analysis [70, 42, 40, 81, 4, 44]. This has not been considered
in the present work.
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Chapter 1

Analytical modelling of sound
propagation in a totally-enclosed
motor

1.1 Introduction
This chapter is devoted to sound propagation inside the ventilation system integrated
in a totally enclosed motor. A typical configuration of the latter is shown in Figure
1.1. It consists of a radial impeller, guide vanes and cooling channels. A part of the
noise generated by the cooling fan is radiated from the motor inlet, and another part
is transmitted through the guide vanes and the cooling channels. A poorly designed
ventilation system can amplify the sound generated by the fan, when the blade passing
frequency harmonics coincide with its resonance frequencies. To avoid this problem, the
resonance frequencies of the ventilation system must be identified during the design stage.
Analytical methods are suitable at this stage, due to their low computational time. In

Figure 1.1: Typical configuration of a totally-enclosed motor used in train
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contrast, the geometry must be simplified to be able to solve the problem mathematically.
The methodology used in this work consists in decomposing the geometry into generic
components addressed separately. In the present context, only the system consisting of
guide vanes and cooling channels is considered (see Figure 1.2). Two mechanisms are
investigated in this chapter. The first one, is the transmission of oblique plane waves
generated by the radial impeller through a system consisting of guide vanes and cooling
channels, and the second one is the sound generation by the impingement of the impeller
wakes on the guide vanes.

1.2 Problem description
As a first step, the dimensional analysis is used in this section to identify the most impor-
tant parameters, which may have a significant influence on the acoustic response of the
ventilation system. The analytical modelling of sound propagation in such a complex ge-
ometry requires some simplifications. The typical configuration of the ventilation system
integrated in a totally enclosed motor is shown in Figure 1.2. It consists of V1 guide vanes
and V2 cooling channels with circular cross-section rc, separated by a certain distance d.
The two annular ducts located upstream the guide vanes and downstream the cooling

Figure 1.2: Typical configuration of the ventilation system used in a totally enclosed motor

channels are assumed to be semi-infinite. Therefore, the acoustic waves reflected by the
ends of the geometry will not be considered in the present work. In railway applications,
traction motors must rotate in both directions to allow trains to go back and forth. To
maintain aerodynamic performance for any direction of rotation, designers need to use
an impeller with purely radial blades and guide vanes with zero stagger angle and cam-
ber. This simplify drastically the geometry of the guide-vanes. Furthermore, the vanes
must have a certain thickness in order to be able to support the mechanical forces of the
motor. This, should be included in the present analysis. At most frequencies of interest,
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the annulus-thickness, the height of vanes and the channel cross-section are smaller than
acoustic wavelengths rc/λ < h/λ << 1. Up to a certain frequency, no radial higher-order
mode can propagate in the ventilation system. The scattering of acoustic waves occurs
only in the azimuthal direction of the geometry (θ), which may justify the use of a two
dimensional approach to investigate primary technological effects. For this an unwrapped
cylindrical cut of the ventilation system is described in Cartesian coordinates (see Figure
1.3b).

(a) (b)

Figure 1.3: (a) Typical configuration of the ventilation system used in traction motors , (b)
Unwrapped representation of a cylindrical cut at r0

The geometry can now be considered as two periodic rows of thick-walled channels
separated by a distance d. The vanes and channels walls have respectively thicknesses b1

and b2 and are assumed to be perfectly rigid. The inter-vane channels and the cooling
channels widths are respectively given by a1 = 2πr0/V1 − b1 and a2 = 2πr0/V2 − b2.
In practice, these parameters must be evaluated from the dimensions of the realistic
configuration. For that, it is more convenient to use the ratios a1/H1 and a2/H2 to
describe the vanes and channels widths, where H1 and H2 are given by H1 = 2πr0/V1

and H2 = 2πr0/V2. These ratios vary from 0 when the channels are fully closed to 1
when fully open. The relationship between transverse dimensions of the two-dimensional
geometry (Figure 1.3b) and those of the three-dimensional configuration (Figure 1.2) is
given by a2/H2 = r2

cV2/(r2
2 − r2

1).
In most practical applications, the flow inside the ventilation system has a low Mach

number (M0 < 0.1), and its effects on sound propagation are neglected in this investiga-
tion. Moreover, the effect of the latter is generally ignored in the case of a multimodal
propagation of acoustic waves in the presence of a step discontinuity, because there is no
simple way to take it into account.

The acoustic waves generated by the radial impeller propagate in the plenum towards
the guide vanes. Each wave is considered as an oblique plane wave propagating with
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an angle θi defined by its modal order n and its angular frequency ω. These waves are
scattered by the guide vanes, generating upstream and downstream acoustic fields. A part
of the acoustic waves is transmitted through a row of cooling channels. These waves are
partially reflected by the latter, generating an upstream field. Back-and-forth acoustic
waves develop between the guide vanes and the cooling channels as shown in Figure 1.4.

Figure 1.4: Two-dimensional unwrapped representation of the scattering of an acoustic wave
by a system composed of two periodic rows of thick-walled channels

The response of this coupled system to any acoustic excitation may depend only on
non-dimensional parameters :

P(r,t)

Pi
= F

(
a1

H1
,
a2

H2
,
d

L1
,
L1

a1
,
L2

a2
,
L2

a2
, V1, V2,

αi
ki
, k0h

)
(1.1)

where P(r,t) represents the acoustic power of the reflected (Pr) or the transmitted field
(Pt), and Pi is the incident acoustic power.

The most straightforward way to study the propagation of sound in such a complex
geometry is to split the system into two main subsystems addressed separately. They
correspond respectively to the guide vanes and the cooling channels. The transmission
problem can therefore be studied using two independent transmission sub-models. The
outputs of each model are used as inputs of the other one. The consideration of the
multiple reflections of the acoustic waves generated in the space between the two sub-
systems can be achieved iteratively.

Before investigating the sound propagation in this coupled system, it is appropriate
to examine the response of a single isolated subsystem to an oblique plane wave. This
subsystem can be either the guide vanes or the cooling channels. Since the shapes of
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guide vanes and cooling channels are not considered in the two-dimensional configuration
(Figure 1.3b), only one transmission model needs to be developed to investigate the
scattering of any incident wave. This will be presented in details in the next section.

1.3 Scattering of an oblique plane wave
This section is restricted to the diffraction of an oblique plane wave by a single periodic
row of thick-walled channels. The acoustic response of this problem can be obtained by
using the mode-matching method. The latter is usually applied to deal with problems
of transmission of waves at an interface separating two mediums with different physical
or geometrical properties, which includes electromagnetic [72, 6, 55, 100] and acoustic
waves [90, 59, 91, 92, 18, 17, 58, 62]. It is applied in the frequency domain on the
Helmholtz equation. It allows calculating the modal amplitudes of the different acoustic
fields generated by the diffraction. This technique is usable when the geometry can be
considered as the junction of several subdomains. The geometry investigated in this
section is depicted in Figure 1.5. The channel walls have a thickness b and are assumed to
be perfectly rigid. The channel width is a = 2πr0/V − b, V being the number of channels.

Figure 1.5: Two-dimensional unwrapped representation of the scattering of an acoustic wave
through a row of thick-walled channels. Incident wave (red), waves generated by the diffraction
of the incident wave (blue).

The incident wave of potential φi is scattered at the interface x = x0 and generates
reflected waves φr propagating upstream of the interface and transmitted waves φd into
the channels. The latter propagate downstream to the open ends of channels x = xL,
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generating a reflected field φu in the channels and a transmitted downstream field φt.
The mode matching technique can be used in four successive steps:

• Dividing the geometry into subdomains in which the Helmholtz equation is separa-
ble.

• Describing the sound field as a sum of orthogonal modes in each subdomain.

• Matching the acoustic fields at each interface using the continuity of pressure and
axial velocity.

• Solving the matching equations by matrix inversion to get the modal modal ampli-
tudes of the different acoustic fields.

1.3.1 Acoustic Potentials
The mathematical expressions of the different acoustic fields in each subdomain are ob-
tained by solving the Helmholtz equation in a two-dimensional Cartesian coordinate sys-
tem. All the acoustic fields are described by their acoustic potentials. A time harmonic
factor e−iωt is implicitly assumed throughout this work. The Helmholtz equation is given
by:

∂2φ(x, z)
∂x2 + ∂2φ(x, z)

∂z2 + k2
0φ(x, z) = 0 (1.2)

where k0 = ω/c0 is the wavenumber, ω the angular frequency and c0 denotes the sound
speed. The analytical solution of the above equation can be found using the separation of
variables. The acoustic pressure and the axial velocity are related to the acoustic potential
by the following equations:


p(x, z) = iωρ0φ(x, z)

v(x, z) · ex = ∂φ(x, z)
∂x

(1.3a)

(1.3b)

The incident wave φi is considered as an oblique plane wave emitted at the position
xi, and propagates upstream the interface x0 with a propagation angle θi. Because of the
2π-periodicity in θ, the perimeter of the cylindrical cut must be a multiple of the acoustic
wavelength projected on the z direction 2πr0 = nλz, where λz = 2π/αi, and n being
the number of azimuthal lobes (n ∈ Z) (see Figure 1.6). The azimuthal wave number is
calculated by αi = n/r0. The acoustic potential of the incident waves is given by

φi(x, z) = Aieiαizeik+
i (x−xi) (1.4)

with
αi = k sin(θi) = n

r0
, k+

i =
√
k2

0 − α2
i
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Figure 1.6: Number of azimuthal lobes

For a given frequency, the axial wave number k+
i can be real or pure imaginary. This cor-

responds respectively to cut-on and cut-off waves. The acoustic fields generated upstream
and downstream the channels can be expressed as

φr(x, z) =
+∞∑
s=−∞

Rseiαszeik−s (x−x0) (1.5)

φt(x, z) =
+∞∑
s=−∞

Tseiαszeik+
s (x−xL) (1.6)

with
αs = n+ sV

r0
, k±s = ±

√
k2

0 − α2
s

In each channel, the acoustic field must satisfy the Helmholtz equation with the rigid-
wall boundary condition on z = 0 and z = a. Since the incident wave φi propagates with
an angle θi, the channels will not be excited in the same way. A phase-shift between the
adjacent channels must be taken into account. The acoustic potentials of the downstream
φ

(m)
d and the upstream φ(m)

u propagating waves in the mth channel are given by:

φ
(m)
d (x, z) =

+∞∑
q=0

D0
qeimn2π/V cos

(
αq

[
z −m2πr0

V

] )
eik+

q (x−x0) (1.7)

φ(m)
u (x, z) =

+∞∑
q=0

U0
q eimn2π/V cos

(
αq

[
z −m2πr0

V

] )
eik−q (x−xL) (1.8)

with
αq = q

π

a
, k±q = ±

√
k2

0 − α2
q

The factor eimn2π/V accounts for the phase-shift between adjacent channels.
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1.3.2 Matching equations
The modal coefficients involved in Equations 1.5, 1.7, 1.8 and 1.6 represent the only
unknowns of the problem. They need to be determined by using the mode-matching
method. The number of equations needed to solve this problem is equal to 2V + 2. Since
the channels are phase-shifted by a factor eimn2π/V , the matching equations need to be
written for only the reference channel m = 0 to reduce the number of unknowns. Then,
the modal amplitudes in the adjacent channels are computed by Dm

q = D0
qeimn2π/V and

Um
q = U0

q eimn2π/V . In the reference channel, the model can be reduced to a transmission
problem with a step discontinuity as shown in Figure 1.7.

Figure 1.7: Reference channel

The matching equations are obtained by imposing the continuity of the acoustic pres-
sure and the axial velocity on both interfaces of the channels x = x0 and x = xL. To
account for the wall-thickness, an additional equation is introduced in order satisfy the
rigid-wall boundary condition on the front face and the back face of the wall. This con-
dition corresponds to a vanishing normal velocity v.n = v.ex = 0.

1.3.2.1 Channel inlet (x = x0)

At the inlet interface (see Figure 1.8), the matching equations are written as


pi(x0, z) + pr(x0, z) = p

(0)
d (x0, z) + p(0)

u (x0, z) , 0 ≤ z ≤ a

vi(x0, z) · ex + vr(x0, z) · ex = v
(0)
d (x0, z) · ex + v(0)

u (x0, z) · ex , 0 ≤ z ≤ a

vi(x0, z) · ex + vr(x0, z) · ex = 0 , a < z ≤ H

(1.9a)
(1.9b)
(1.9c)

After replacing the expressions of acoustic pressure and axial velocity in Eq 1.9a and
Eq 1.9b, we obtain:

Aieiαizeik+
i Li +

+∞∑
s=−∞

Rseiαsz =
+∞∑
q=0

(
D0
q + U0

q e−ik−q L
)

cos(αqz)

Aik
+
i eiαizeik+

i Li +
+∞∑
s=−∞

Rsk
−
s eiαsz =

+∞∑
q=0

(
k+
q D

0
q + k−q U

0
q e−ik−q L

)
cos(αqz)

(1.10a)

(1.10b)

The next step is to perform a modal projection of Equations 1.10a and 1.10b to
eliminate the z variation. These equations are reduced by using the orthogonality of the

13
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Figure 1.8: Acoustic potentials generated by the scattering of the incident wave at the inlet
interface x = x0.

eigenfunctions. The orthogonality relation is given by∫ a

0
Ψβ(z)Ψ∗β′(z)dz = 0, if β 6= β′ (1.11)

where Ψ∗β′(z) is the complex conjugate of the eigenfunction Ψβ(z).
The use of the two sets of eigenfunctions for the modal projections is necessary in the

case of a step discontinuity [53, 88, 3]. The acoustic pressure equation 1.10a must be
projected on the basis related to the reference channel cos (αµz).
∫ a

0
{pi(x0, z) + pr(x0, z)} cos (αµz) dz =

∫ a

0

{
p

(0)
d (x0, z) + p(0)

u (x0, z)
}

cos (αµz) dz (1.12)

where αµ = µπ

a
In contrast, the velocity equation 1.10b needs to be projected on the eigenfunction

related to the unbounded medium e−iανz

∫ a

0
{vi(x0, z) · ex + vr(x0, z) · ex} e−iανzdz =

∫ a

0

{
v

(0)
d (x0, z) · ex + v(0)

u (x0, z) · ex
}

e−iανzdz
(1.13)

where αν = ν 2π
H

To obtain the relationship between the continuity of the axial velocity and the rigid-
wall boundary condition, Equation 1.9c should be written in a different form
∫ H

0
{vi(x0, z) · ex + vr(x0, z) · ex} e−iανzdz =

∫ a

0
{vi(x0, z) · ex + vr(x0, z) · ex} e−iανzdz

(1.14)
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Combining Equations 1.13 and 1.14, we get
∫ H

0
{vi(x0, z) · ex + vr(x0, z) · ex} e−iανzdz =

∫ a

0

{
v

(0)
d (x0, z) · ex + v(0)

u (x0, z) · ex
}

e−iανzdz
(1.15)

Using this new velocity equation, the rigid-wall boundary condition is implicitly taken
into account in the mathematical formulation of the problem.

After accounting for the orthogonality of the eigenfunctions, the matching equations
become: 

Aieik+
i LiΛµi +

+∞∑
s=−∞

RsΛµs =
(
D0
µ + U0

µe−ik−µ L
) a

2(1 + δµ0)

Aik
+
i eik+

i LiHδν0 +Rνk
−
ν H =

+∞∑
q=0

(
D0
q − U0

q e−ik−q L
)
k+
q ϕνq

(1.16a)

(1.16b)

The projection integrals Λµi, Λµs and ϕνq are calculated analytically:

Λµi =
∫ a

0
eiαiz cos(αµz)dz =


iαi [1− (−1)µe−iαia]

α2
i − α2

µ

, if αµ 6= αi

a

2(1 + δµ0) , if αµ = αi

(1.17)

Λµs =
∫ a

0
eiαsz cos(αµz)dz =


iαs [1− (−1)µe−iαsa]

α2
s − α2

µ

, if αµ 6= αs

a

2(1 + δµ0) , if αµ = αs

(1.18)

ϕνq =
∫ a

0
cos(αqz)e−iανzdz =


iαν [(−1)qe−iανa − 1]

α2
ν − α2

q

, if αq 6= αν

a

2(1 + δq0) , if αq = αν

(1.19)

1.3.2.2 Outlet interface (x = xL)

The matching equations at the channel outlet x = xL (see Figure 1.9) are derived in the
same manner as for the interface x0:

p
(0)
d (xL, z) + p(0)

u (xL, z) = pt(xL, z) , 0 ≤ z ≤ a

v
(0)
d (xL, z) · ex + v(0)

u (xL, z) · ex = vt(xL, z) · ex , 0 ≤ z ≤ a

vt(xL, z) · ex = 0 , a ≤ z ≤ H

(1.20a)
(1.20b)
(1.20c)

After replacing the expressions of acoustic pressure and axial velocity in Equations 1.20a
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Figure 1.9: Acoustic potentials generated by the scattering of the incident wave at the inlet
interface x = xL.

and 1.20b, one obtains:


+∞∑
q=0

(
D0
qeik+

q L + U0
q

)
cos(αqz) =

+∞∑
s=−∞

Tseik+
s z

+∞∑
q=0

(
k+
q D

0
qeik+

q L + k−q U
0
q

)
cos(αqz) =

+∞∑
s=−∞

Tsk
+
s eiαsz

(1.21a)

(1.21b)

As before, the matching equations must be projected on the two sets of eigenfunctions.
For that, Equations 1.21a and 1.21b are respectively projected on cos(αµz) and e−iανz.


∫ a

0

{
p

(0)
d (xL, z) + p(0)

u (xL, z)
}

cos(αµz)dz =
∫ a

0
pt(xL, z) cos(αµz)dz∫ a

0

{
v

(0)
d (xL, z) · ex + v(0)

u (xL, z) · ex
}

e−iανzdz =
∫ H

0

{
v

(0)
t (xL, z) · ex

}
e−iανzdz

(1.22a)

(1.22b)

After taking into account the rigid wall boundary condition in the velocity equation,
and accounting for the orthogonality of the modal basis, the matching equations become:

(
D0
µeik+

µ L + U0
µ

) a
2(1 + δµ0) =

+∞∑
s=−∞

TsΛµs

+∞∑
q=0

(
D0
qk

+
q eik+

q L + U0
q k
−
q

)
ϕνq = Tνk

+
ν H

(1.23a)

(1.23b)
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1.3.3 Solving procedure
The system of linear equations defined by Equations 1.16a, 1.16b, 1.23a and 1.23b can be
solved by using either a direct method or an iterative procedure. The main steps of these
methods are discussed in the following sub-sections.
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1.3.3.1 Direct method

The most straightforward way to solve this system of linear equations, is to use a direct
matrix inversion. For that, Equations 1.16a, 1.16b, 1.23a and 1.23b are written in a
matrix form: 

A11 A12 A13 0

A21 A22 A23 0

0 A32 A33 A34

0 A42 A43 A44


︸ ︷︷ ︸

A



R

D

U

T


︸ ︷︷ ︸

X

=



H1

H2

0

0


︸ ︷︷ ︸

H

(1.24)

where X represents the modal amplitude vector. The matrix A terms are given by

A11 = diag (Hk−ν )

A12 = −k+
q ϕνq

A13 = −k−q e−ik−q Lϕνq

A21 = Λµs

A22 = −diag
(
a

2 [1 + δµ0]
)

A23 = −diag
(

e−ik−q La

2 [1 + δµ0]
)

, A32 = eik+
q Lk+

q ϕνq

, A33 = k−q ϕνq

, A34 = −diag (Hk+
ν )

, A42 = diag
(

eik+
q L
a

2 [1 + δµ0]
)

, A43 = diag
(
a

2 [1 + δµ0]
)

, A44 = −Λµs

and the vector H terms are given by

H1 = −Aik+
i eik+

i LiH,

H2 = −Aieik+
i LiΛµi

As can be seen form Equation 3.18, the modal coefficient vector X can be easily
obtained by a direct matrix inversion X = A−1H.

Before solving the system of linear equations, a modal truncation of the infinite series
must performed to obtain a finite number of modes. The latter varies from −NS to NS

in the unbounded mediums, and form 0 to NQ − 1 inside the channels. The literature on
propagation problems in duct discontinuities suggests to take more modes in the wider
duct to ensure the convergence of calculations [88]. It is recommended to keep the ratio
NQ/(2NS + 1) ≈ a/H to satisfy the edge condition.

It should be kept in mind that the truncated matrix is always square even if the
number of modes selected in each subdomain is different, because of the use of the two
eigenfunctions in the modal projections.
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1.3.3.2 Iterative method

Another way of solving the system of linear equations is to use an iterative procedure.
The multiple reflections inside the channels make the use of this method more physical
than the direct method. Combining Equations 1.16a, 1.16b, 1.23a and 1.23b yield:



R = (I − ϕΛs)−1
[
A(ϕΛi − I)− 2ϕU

]

D = 1
a/2(1 + δµ0)

(
Aieik+

µ LiΛi +
+∞∑
s=−∞

RsΛs − U0
µe−ik−µ L

)

U = (ϕΛs − I)−1(ϕΛi + I)D

T = 1
H

+∞∑
q=0

(
U0
q −D0

qeik+
q L
) k−q
k+
ν

ϕνq

(1.25a)

(1.25b)

(1.25c)

(1.25d)

where

A = Aieik+
i Li ,

U = U0e−ik−q L,

D = D0e−ik+
q L,

Λs = 1
a/2(1 + δµ0)Λµs,

Λi = 1
a/2(1 + δµ0)Λµi,

ϕ = 1
H

k+
q

k−ν
ϕνq = 1

H

k−q
k+
ν

ϕνq

As can be seen from Equations 1.25a and 1.25b, the determination of R and D requires
prior knowledge of the vector U . The index of iterations used in this solving procedure is
noted γ. In the first iteration, the reflected field inside the channels is assumed to be zero
U0(γ=0)
q = 0. Equations 1.25a and 1.25b are used to determine the reflection coefficient

R(γ=1)
s and the transmission coefficient D0(γ=1)

q . The latter is used in Equations 1.25c
and 1.25d to compute the new values of U0(γ=1)

q and T (γ=1)
s . Equations 1.25a and 1.25c

are solved again using the new value of U0(γ=1)
q as input. The procedure is repeated till

convergence. The results are supposed to be converged when the relative variation of
the modal amplitudes between two successive iterations is less than ε, where ε ≈ 0. The
different steps of the iterative method are shown in Figure 1.10.

It should be noted that the use of the this technique can involve some problems of
convergence when the incident wave is cut-off. In order to avoid that, the direct method
is selected in this work.
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Figure 1.10: Iterative procedure algorithm
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1.3.4 Numerical validation
1.3.4.1 Two-dimensional finite element method

In order to test the validity and the accuracy of the analytical model, a comparison with
the finite element method has been performed. This method is based on discretising
the geometry into small elements in which the solution of the Helmholtz equation is
approximated. Consider a test case with V = 10 channels of length L/H = 3.98 (L =
0.5m) and width a/H = 0.6, placed at a radius r0 = 0.2 m, as shown in Figure 1.11.

Figure 1.11: Two-dimensional finite element mesh showing the different regions used in the
simulation. Dashed lines indicate the interfaces between the physical domain and the PML
regions. The rigid-wall boundary condition is applied on the blue rectangles. Periodic boundary
condition is applied on the red lines.

As can be seen the simulation domain is divided into three different subdomains :

1. The physical domain: represents the simulation domain in which the solution of the
problem is found. The acoustic field must satisfy the classical Helmholtz equation.

2. A perfectly matched layer: placed downstream the cooling channels to attenuate the
acoustic waves coming from the physical domain and avoid their reflection (see Fig-
ure 1.12a). The attenuation effects are introduced by applying a complex coordinate
transformation on the x direction [13, 26, 11, 22, 14]:

x̃(x) = x− i
ω

∫ x

xin
σ(s)ds (1.26)

3. An active perfectly matched layer: in which the incident wave is imposed. This
layer has the particularity to attenuate the acoustic waves in only one direction of
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propagation as shown in Figure 1.12b. The acoustic field in this region is expressed
as a sum of an incident field pi and an attenuated reflected field p− pi, where pi is
imposed using the analytical expression given in section 1.3.

(a) (b)

Figure 1.12: (a) Attenuation of an acoustic wave in the perfectly matched layer. (b) Active
perfectly matched layer. Incident wave (red), Attenuated field (blue)

In this work, the finite element simulation was performed by using the open source
solver FreeFem++ [51]. The use of the latter requires the implementation of the variational
formulation of the Helmholtz equation, given by:

x

Ωs

(
∂φ

∂x

∂q

∂x
+ ∂φ

∂y

∂q

∂y
− φqk2

0

)
dxdy

︸ ︷︷ ︸
Acoustic field in

the physical domain

+
x

Ωipml

(
∂φi
∂x

∂q

∂x
+ ∂φi
∂y

∂q

∂y
− φiqk2

0

)
dxdy

︸ ︷︷ ︸
Incident field in

the Active PML domain

+
x

Ωipml

(
1
γix

∂ (φ− φi)
∂x

∂q

∂x
+ γix

∂ (φ− φi)
∂y

∂q

∂y
− (φ− φi) qk2

0γ
i
x

)
dxdy

︸ ︷︷ ︸
The reflected field in

the active PML domain

+
x

Ωopml

(
1
γox

∂φ

∂x

∂q

∂x
+ γox

∂φ

∂y

∂q

∂y
− φqk2

0γ
o
x

)
dxdy

︸ ︷︷ ︸
Acoustic field

in the PML domain

= 0 (1.27)

where q represents the test function, and γix and γox are given by

γix = 1− i
ω
σi(x) (1.28)

γox = 1− i
ω
σo(x) (1.29)

where σi and σo are the absorption functions. They are given by

σi(x) = σ′(x− xin)2 (1.30)
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σo(x) = σ′(x− xout)2 (1.31)

It should be kept in mind that the absorption function depends on the frequency and the
size of the PML domains (x− xin and x− xout). An optimal value valid in a large range
of frequencies is given by [14]: σ′/c0 = 100.

It may be recalled that the number of elements needed depends on the maximum fre-
quency of interest and the polynomial approximation. Using higher order approximations
(P2 elements in this work) requires only 10 points per wavelength.

The instantaneous acoustic potential fields obtained by the finite element method and
the mode-matching method are shown in Figures 1.13a and 1.13b respectively, for the
incident mode n = 2 at the frequency f = 2700Hz. Upstream of the interface x = x0,
the acoustic field is dominated by the incident wave and modulated by the reflected wave.
Figure 1.14 shows the comparison between the acoustic potential profiles along different
lines defined upstream, through and downstream the channels (See Figure 1.13). The
potential profiles obtained by the two methods are in a good agreement. The effect of
the perfectly matched layers can be seen in Figure 1.14a. The potential profile calculated
by the finite element method is attenuated exponentially from the PML interface located
downstream the channels (x/L > 3). However, for the active PML region (x/L < 0.4), the
amplitude does not decay to zero because of the presence of the incident wave. Figure 1.15

(a) (b)

Figure 1.13: Real part of acoustic potential. (a) Finite element method , (b) Mode-matching
method. Interfaces between the physical domain and the PML regions ( ).

presents the modulus of the complex-valued modal coefficients of the different acoustic
fields, obtained by the mode-matching method. The blue and red bars denote cut-on and
cut-off modes respectively. They indicate that only the modes of order n + sV = [2,−8]
and q = [0, 1] are cut-on. The other modes are cut-off, attenuated exponentially on
both sides of the interfaces, they do not participate in the acoustic radiation. However
taking the evanescent modes into account is very important to ensure the continuity of
the acoustic field at the interfaces and to accurately calculate the amplitudes of the cut-on
modes.
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Figure 1.14: Instantaneous acoustic potential profiles extracted at (a) z/H = 5 , (b) x/L = 0.8
, (c) x/L = 2.6, calculated by the mode-matching method ( ), and the finite element method
( ). Interfaces between the physical domain and the PML regions ( ).
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Figure 1.15: Modulus of the modal coefficients from the test case in Figure 1.13b. Cut-on
modes (bars ), cut-off modes (bars ).

1.3.4.2 Three-dimensional finite element method

In order to evaluate the limitations of the two-dimensional approach, a comparison with a
three-dimensional simulation has been performed by applying the finite element method
to the realistic configuration of the cooling channels (see Figure 1.16). The configuration
investigated in this section consists of V = 19 channels with a circular cross-section
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2rc = 0.03m and a length L = 0.35m. The inner and outer radii of the annular duct are
given by r1 = 0.13m and r2 = 0.17m.

Figure 1.16: Three-dimensional finite element mesh showing the different regions defined in
the simulation domain.

As before, the geometry is divided into three different regions corresponding to the
physical domain and the perfectly matched layers. The variational formulation (3D) of
the Helmholtz equation implemented in FreeFem++ is given by:

y

Ωipml

(
∂φ3D

i

∂x

∂q

∂x
+ ∂φ3D

i

∂y

∂q

∂y
+ ∂φ3D

i

∂z

∂q

∂z
− φ3D

i qk2
0

)
dxdydz

︸ ︷︷ ︸
Incident field in

the Active PML domain

+
y

Ωipml

 1
γix

∂
(
φ− φ3D

i

)
∂x

∂q

∂x
+ γix

∂
(
φ− φ3D

i

)
∂y

∂q

∂y
+ γix

∂
(
φ− φ3D

i

)
∂z

∂q

∂z
−
(
φ− φ3D

i

)
qk2

0γ
i
x

 dxdydz

︸ ︷︷ ︸
The reflected field in

the active PML domain

+
y

Ωphy

(
∂φ

∂x

∂q

∂x
+ ∂φ

∂y

∂q

∂y
+ ∂φ

∂z

∂q

∂z
− φqk2

0

)
dxdydz

︸ ︷︷ ︸
Acoustic field in

the physical domain

+
y

Ωopml

(
1
γox

∂φ

∂x

∂q

∂x
+ γox

∂φ

∂y

∂q

∂y
+ γox

∂φ

∂z

∂q

∂z
− φqk2

0γ
o
x

)
dxdydz

︸ ︷︷ ︸
Acoustic field

in the PML domain

= 0 (1.32)

The incident wave is imposed in the active PML region. The analytical expression of
the latter in cylindrical coordinates, is given by

φ3D
i (r, θ, x) = An0fn(r)einθeik+

n0x , k+
n0 =

√
k2

0 −K2
n0 (1.33)
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where r =
√
z2 + y2, θ = arctan (z/y), and fnj(r) represents the function describing the

propagation in the radial direction. An0 is the modal amplitude of the incident wave, and
Kn0 is the eigenvalue of the first radial mode.

(a) (b)

Figure 1.17: (a) Typical configuration of the cooling channels used in traction motors, (b)
Instantaneous acoustic potential field calculated by the finite element method

A mesh of about 5× 105 tetrahedral elements was used in this simulation (see Figure
1.16). Figure 1.17b shows an instantaneous acoustic potential field calculated by the
finite element method for the incident mode n = 3. The physical domain is limited by
the plane surfaces S1 and S2 as shown in Figure 1.17a. The comparison between the
two dimensional mode-matching technique and the finite element method (3D) has been
performed on the modal acoustic power. The associated acoustic powers P3D

r and P3D
t

are evaluated by integrating the acoustic intensity over the areas of cross-sections S1 and
S2 in Figure 1.17a respectively :

P3D
r =

x

S1

1
2Re

〈
p(xS1 , y, z) · v∗(xS1 , y, z) · ex

〉
dydz− P3D

i (1.34)

P3D
t =

x

S2

1
2Re

〈
p(xS2 , y, z) · v∗(xS2 , y, z) · ex

〉
dydz (1.35)

where v∗.ex is the complex conjugate of the axial velocity.
The acoustic power of the incident wave can be calculated analytically as

P3D
i = k0ρc0πr

2
2k

+
n0|An0|2 (1.36)

In the analytical model, the acoustic powers of the transmitted and reflected fields
(P2D

t and P2D
r ) are evaluated from their modal coefficients:

P2D
r = k0ρc0πr0

+∞∑
s=−∞

k−s |Rs|2, if (k−s )2 > 0 (1.37)
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P2D
t = k0ρc0πr0

+∞∑
s=−∞

k+
s |Ts|2, if (k+

s )2 > 0 (1.38)

The acoustic power of the incident wave is given by

P2D
i = k0ρc0πr0k

+
i |An|2, if (k+

i )2 > 0 (1.39)

The frequency is scaled by introducing the Helmholtz number k0h, where h = r2−r1 is
the thickness of the annular duct (see Figure 1.17a). The transmitted and reflected powers
calculated by the mode-matching method and the finite element method are normalized
by dividing them by the incident power. Figures 1.18a and 1.18b show respectively the
variations of the transmitted and reflected powers obtained by the mode-matching method
and the finite element method as functions of the Helmholtz number. Comparing the
transmitted powers shows a good agreement of the results obtained by the two methods,
up to relatively high frequencies k0h ≈ 4.2. This confirms that the two-dimensional
analytical model can be used with confidence for parametric studies. When the Helmholtz
number exceeds k0h > 4.2, the analytical model breaks down and overestimates the
reflected power. This could be attributed to the three-dimensional effects. In this specific
test-case, the first radial higher-order mode becomes cut-on at k0h = 3.25. Up to this
frequency, no radial mode can propagate upstream and downstream the channels. The
effect of the latter becomes more significant when the frequency exceeds k0h > 4.2, and
the use of the two-dimensional approach could not be justified.
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Figure 1.18: Variation of transmitted (a) and reflected (b) powers as functions of the
Helmholtz number; Mode-matching technique ( ), Finite element method 3D ( ).

It should be noted here that the computational time of the finite element simulation
for 300 frequency steps is about 39 hours on a personal computer with single core, whereas
the analytical model computational time is less than 5 seconds.
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1.3.5 Resonant frequencies
One of the most important aspects in this work, is the prediction of the resonance frequen-
cies of the cooling channels. These frequencies are characterized by a strong amplification
of the sound amplitude inside the channels. It may be observed from Figure 1.18 that
the transmission peaks are harmonically dependent and they appear at the resonance
frequencies of the channels. Figures 1.19a and 1.19b show respectively the instantaneous
acoustic potential fields at k0h = 1.56 and k0h = 1.74. As can be seen from Figure 1.19b,
the acoustic potential inside the channels was amplified comparing to the first frequency
(Figure 1.19a). The incident wave is almost totally transmitted downstream the channels.
It may be recalled that acoustic resonances are expected a priori when the length of the
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Figure 1.19: Instantaneous acoustic potential fields for two different frequencies from Figure
1.18. (a) k0h = 1.56 , (b) k0h = 1.74. a/H = 0.3562, V = 19, r0 = 0.15 m

channels L is a multiple of the half wavelength λ/2. But for open pipes of transverse
dimension much smaller than the wavelength, an effective length larger than the true
length must be considered. The resonant frequencies are obtained by

fr = nrc0

2(L+ δL) (1.40)

where nr ∈ Z represents the harmonics of the fundamental frequency, and δL accounts
for the end corrections, which correspond to equivalent reflecting points just outside the
channels [5, 66, 15, 10] (see Figure 1.20). The latter depends on the transverse dimensions
of channels. It is given, for instance, by [66]:

δL = b/2 + 0.85a (1.41)
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Figure 1.20: Illustration of the end corrections.

1.3.6 Influence of the number of modes
The number of modes is a very important parameter, which has a significant influence
on the accuracy of the results. As mentioned earlier, several evanescent modes must be
taken into account in addition to the cut-on modes in order to ensure the continuity of the
acoustic field at both interfaces of the channels. The desired precision can be obtained by
increasing the number of modes. The value of the latter should not be excessive, because
of the computational time and the condition number κ of the matrix A. These increase
with the number of modes NS as shown in Figures 1.21a and 1.21b. For large values of κ
the system of linear equations is said to be ill-conditioned. The matrix inversion will not
be computed with good accuracy. There is an optimal value for the number of modes,
which depends on the frequency and the transverse dimensions of the geometry.
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Figure 1.21: (a) Variation of the computational time against the number of modes. (b)
Condition number as a function of the number of modes. k0a = 3.76 , V = 10, a/H = 0.4,
L/a = 6.6315, r0 = 0.2.
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The simplest way to determine the optimal value of the number of modes needed in a
simulation, is to perform several calculations, by increasing incrementally the number of
modes. The minimum value of NS is obtained when no variation between two successive
calculations is observed. Figures 1.22a and 1.22b show respectively the variations of the
transmitted and reflected powers as functions of the number of modes. As can be seen,
the acoustic powers reach fixed values after NS = 20.
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Figure 1.22: Variation of acoustic powers against the number of modes. (a) Transmitted
power. (b) Reflected power. k0a = 3.76 , V = 10, a/H = 0.4, L/a = 6.6315, r0 = 0.2.
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1.4 Coupled system

1.4.1 Coupling strategy
This section presents the methodology used to deal with the problem of sound transmission
through a system consisting of two periodic rows of thick-walled channels, separated by
a distance d. The principle of superposition is used in this section in order to describe
the sound field as a linear combination of modes in each region of the system. The
scattering of each of these acoustic modes can be investigated by the use of the mode-
matching technique. For that, the analytical model presented in the previous section will
be applied to both subsystems, by taking the outputs of one subsystem as the input of
the other one. The coupling strategy can therefore be divided into three successive steps.
An illustration of the different steps is shown in Figures 3.12, 1.24 and 1.25.

1.4.1.1 Step 1 - Scattering of the incident wave φi by the guide vanes

In the first step, an incident wave denoted by φi is scattered by the guide vanes, generating
four acoustic fields, as shown in Figure 3.12. The acoustic potential of the different fields
are given by:

φi(x, z, t) = Aneiαizeik+
i (x−x0), αi = k sin(θi) = n

r0
, k+

i =
√
k2

0 − α2
i (1.42)

φ(1)
r,1(x, z)
φ

(1)
t,1 (x, z)

 =
+∞∑
s=−∞

R(1)
s

T (1)
s

 eiαsz

eik(1)−
s (x−x1)

eik(1)+
s (x−x2)

 (1.43)

with
αs = n+ sV1

r0
, k(1)±

s = ±
√
k2

0 − α2
s

φ(1)
d,1(x, z)
φ

(1)
u,1(x, z)

 =
+∞∑
q=0

D(1)
q

U (1)
q

 eim1H1αi cos
(
αq [z −m1H1]

)eik(1)+
q (x−x1)

eik(1)−
q (x−x2)

 (1.44)

where
αq = q

π

a1
, k(1)±

q = ±
√
k2

0 − α2
q

In this analysis the superscript (1) refers to the acoustic field produced by the guide
vanes and the subscript 1 represents the index of iteration. The use of the analytical
model developed in the previous section 1.3 allows to determine the modal amplitudes of
the different fields.

1.4.1.2 Step 2 - Scattering of φ(1)
t by the cooling channels

The downstream acoustic waves generated by the guide vanes in the first step φ
(1)
t are

transmitted through the cooling channels, generating four new acoustic fields, denoted by
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Figure 1.23: Scattering of the incident wave φi by the guide vanes in the first step.

φ(2)
r , φ(2)

d , φ(2)
u and φ

(2)
t as depicted in Figure 1.24. To solve this problem, the acoustic

excitation φ(1)
t must be expanded into a sum of incident waves having different propagation

angles. Each of these waves is characterized by its modal amplitude T (1)
s and its modal

order ns1 = n + s1V1. The expression of a single excitation at the inlet interface of the
cooling channels x = x2, can be written as

φ(1)
s (x3, z) = T (1)

s eiαszeik(1)+
s de−iωt (1.45)

The scattering of each incident excitation φ
(1)
t can be investigated by the use of the

analytical model developed in section 1.3. After applying this model to all the incident
excitations, the sound field can be constructed by the superposition of all the acoustic
modes generated at this step.φ(2)

r,2(x, z)
φ

(2)
t,2 (x, z)

 =
+∞∑
s=−∞

+∞∑
ν=−∞

R(2)
sν

T (2)
sν

 eiαsνz

eik(2)+
sν (x−x3)

eik(2)−
sν (x−x4)

 (1.46)

with
αsν = αs + νV2

r0
, k(2)±

sν = ±
√
k2

0 − α2
sν

The downstream and upstream acoustic waves in the mth
2 channel are given by

φ(2)
d,2(x, z)
φ

(2)
u,2(x, z)

 =
+∞∑
s=−∞

+∞∑
µ=0

D(2)
sµ

U (2)
sµ

 eim2αsH2 cos
(
αµ [z −m2H2]

)eik(2)+
µ (x−x3)

eik(2)−
µ (x−x4)

 (1.47)
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Figure 1.24: Scattering of the transmitted modes φ(1)
t by the cooling channels in the second

step.

with
αµ = µ

π

a2
, k(2)±

µ = ±
√
k2

0 − α2
µ

1.4.1.3 Step 3 - Scattering of φ(2)
r by the guide vanes

The last step of the methodology deals with the diffraction of the waves reflected back
towards the guide vanes (see Figure 1.25). In the same way, the acoustic field reflected
by the cooling channels is expanded in a series of oblique plane waves having various
propagation angles. The expression of a single excitation at the outlet interface of the

Figure 1.25: Scattering of the reflected field φ(2)
r by the guide vanes in the third step.
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guide vanes x = x2, is given by

φ(2)
sν (x2, z) = R(2)

sν eiαsνze−ik(2)−
sν d (1.48)

After superposing all possible solutions, we obtainφ(1)
r,3(x, z)
φ

(1)
t,3 (x, z)

 =
+∞∑
s=−∞

+∞∑
ν=−∞

+∞∑
l=−∞

R(1)
sνl

T
(1)
sνl

 eiαsνlz

eik(1)+
sνl

(x−x1)

eik(1)−
sνl

(x−x2)

 (1.49)

with
αsνl = αsν + lV1

r0
, k

(1)±
sνl = ±

√
k2

0 − α2
sνl ,

φ(1)
d,3(x, z)
φ

(1)
u,3(x, z)

 =
+∞∑
s=−∞

+∞∑
ν=−∞

+∞∑
q=0

D(1)
sνq

U (1)
sνq

 eim1H1αsν cos
(
αq [z −m1H1]

)eik(1)+
q (x−x1)

eik(1)−
q (x−x2)


(1.50)

In the following, the second and the third steps must be repeated alternately until
convergence, by taking the output of one subsystem as the input of the other one.

All the solutions must be superposed to get the total acoustic field in each subdomain:

φ
(1,2)
ξ (x, z) =

imax∑
γ=1

φ
(1,2)
ξ,γ (x, z), ξ = {r, t, d, u} , γ =

1, 3, 5, ....imax − 1, if φ(1,2) = φ(1)

2, 4, 6, ....imax, if φ(1,2) = φ(2)

imax being the maximum number of iterations.
It is clear to see that the use of this procedure requires the storage of a large number

of modes at each frequency, in order to be able to describe the acoustic field in each
subdomain of the geometry.

1.4.2 Solving procedure
It should be kept in mind that the use of iterative procedure can be prohibitive when
the number of iterations increases, due to the important number of modes produced at
each iteration. In practice, only few modes have a significant contribution in the sound
transmission mechanism. Each acoustic mode generated in the space located between the
two subsystems is characterized by its decay rate τs:

τ±s = |eik±s d| (1.51)

where the superscripts + and − denote respectively the propagation in positive and
negative x directions. The acoustic modes can therefore be classified by their decay rates
(see Figure 1.26):
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• τs = 1: They represent the cut-on modes. Their amplitudes oscillate without being
attenuated according to the distance between the two subsystems.

• τs ≈ 0: They represent the cut-off modes having amplitudes completely attenuated
before reaching the interface of the second subsystem. This can be expected when
the distance between the two subsystems is large enough.

• 0 < τs < 1: The amplitudes of the cut-off modes are not completely attenuated
before reaching the interface of the second subsystem. This occurs when the distance
between the guide vanes and the cooling channels is small.

It is plain to see that the cut-off modes strongly attenuated in the region between the
two subsystems (τs ≈ 0) have no contribution in the transmission mechanism, and they
can be neglected in the coupling procedure. This property allows to reduce drastically
the number of modes used at each iteration.
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Figure 1.26: Variation of the decay rates as a function of x

1.4.3 Numerical validation
1.4.3.1 Two-dimensional finite element method

In this section the analytical model is applied to a configuration consisting of V1 = 9 guide
vanes and V2 = 19 cooling channels, separated by a distance d/L1 = 1.5. Table 1.1 lists
the test-case parameters.
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k0a1 a1/H1 a2/H2 r1 (m) r2 (m) L1/a1 L2/a2 d/L1 n
5.22 0.9 0.3563 0.13 0.17 1.0616 19.774 1.5 3

Table 1.1: Test-case parameters

To check the convergence of the calculation, the acoustic powers are plotted as func-
tions of the number of iterations in Figure 1.27. The error associated with the iterative
procedure and the filtering of acoustic modes can be written as

∆P = 1− |Pt|+ |Pr||Pi|
(1.52)

Care needs to be taken when calculating the acoustic powers after using the iterative
procedure. The acoustic powers of the different fields should not be evaluated by the
superposition of the modal acoustic powers of all the modes generated after γ iterations.
They may be calculated by integrating the acoustic intensity over segments defined up-
stream the guide vanes and downstream the cooling channels. As can be seen from Figure
1.27, the convergence is reached after only 8 iterations.

Figure 1.27: Convergence study. Error ∆P ( #), Normalized transmitted power |Pt/Pi|
( ), normalized reflected power |Pr/Pi| ( ).

Figures 1.28a and 1.28b show respectively the real parts of the acoustic potential fields
obtained by the mode-matching technique and the finite element method for an incident
mode n = 3 at a frequency k0a1 = 5.22.

Figure 1.29 compares the acoustic potential profiles extracted along different lines de-
fined upstream, through and downstream the coupled system. Quantitatively and quali-
tatively, a good agreement is obtained between the two results.
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(a)

(b)

Figure 1.28: Instantaneous acoustic potential fields obtained by the mode-matching technique
(a) and the finite element method (b).

1.4.3.2 Three-dimensional finite element method

As what has been discussed in section 1.3, the comparison between the results obtained
by the analytical model and the finite element method applied to the realistic geometry,
allows to evaluate the limitations of the two dimensional approach. For that, the finite
element method is applied to a configuration with the same parameters listed in Table
1.1. It should be mentioned that in this specific test-case the ratio a2/H2 = 0.3563 cor-
responds to cooling channels with a diameter 2rd = 3 cm. The simulation domain is
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Figure 1.29: Instantaneous acoustic potential profiles extracted at three different lines (a)
z/H2 = 10 , (b) x/L2 = 0.8571 , (c) x/L2 = 2.9523, calculated by the mode-matching method
( ), and the finite element method ( ). Interfaces between the physical domain and the
PML regions ( ).

truncated by adding two perfectly matched layers upstream the guide vanes and down-
stream the cooling channels (see Figure 1.30a). The acoustic potential field obtained by
the finite element method is shown in Figure 1.30b. As before, in order to evaluate the
acoustic powers, two cross-sections must be defined upstream and downstream the sys-
tem, as shown in Figure 1.30a. After integrating the acoustic intensity over S1 and S2, the

(a) (b)

Figure 1.30: (a) Typical configuration of the ventilation system used in traction motors, (b)
Instantaneous acoustic potential field obtained by the finite element method. f = 3000 Hz,
n = 3

reflected and transmitted powers obtained by the two methods are compared in Figures
1.31a and 1.31b respectively. Up to relatively high frequencies (k0h < 4.2), the results
obtained by the two methods are in good agreement. When the frequency increases, the
difference between the two results becomes significant. As previously explained, this can
be attributed to the propagation of higher-order radial modes beyond a certain frequency.
It should be noted that the transmission and reflection peaks at k0h ≈ 1.57 are not physi-
cal. Some convergence problems involved in the iterative procedure can be observed when
the frequency of an evanescent mode is close to its cut-off frequency.

In this specific test case, the numerical results were obtained by FreeFem++ after about
40 hours of calculation on a personal computer, while the analytical model takes only a
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Figure 1.31: Transmitted (a) and reflected (b) acoustic powers obtained by the mode matching
technique ( ), finite element method 2D ( #) and finite element method 3D ( ).

few minutes to get the results. In the following, the sensitivity of the coupled system to
geometrical parameters will be investigated in details.

1.4.4 Parametric studies
1.4.4.1 Effect of guide vanes

In the section 1.3, the resonance frequencies of the cooling channels have been well pre-
dicted by the analytical model without taking into account the presence of the guide
vanes. It is of interest to examine the influence of the latter on sound transmission, by
comparing the configuration of the ventilation system given in the test-case (Table 1.1)
with a configuration without guide vanes and a configuration without the cooling chan-
nels. For that, the reflected and transmitted powers calculated for each geometry are
plotted as functions of the Helmholtz number k0a1 in Figure 1.32.

It is clear to see that the guide vanes have a significant influence when k0a1 < 4.
Basically, the effect of guide vanes is less marked at relatively high frequencies k0a1 >

4. All transmission peaks are associated with the resonant frequencies of the cooling
channels. When the frequency is less than k0a1 < 4, the height of transmission peaks is
less important comparing with the configuration without the guide vanes. Two important
frequencies need to be investigated in this section.

The first one corresponds to a strong attenuation of the transmitted power at k0a1 =
3.5. The instantaneous acoustic potential fields for a configuration with and without the
guide vanes are respectively shown in Figures 1.33b and 1.33b at the same frequency
(k0a1 = 3.5). As can be seen from Figure 1.33b, this attenuation is related to a strong
reflection of the incident wave by the guide vanes, involving low transmission to the cooling
channels.

The second one corresponds to a transmission peak at k0a1 = 3, which is not harmon-
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Figure 1.32: Reflected (a) and transmitted (b) acoustic powers as functions of frequency. Con-
figuration composed of V1 = 9 guide vanes and V2 = 19 cooling channels ( ), configuration
without cooling channels ( #), configuration without guide vanes ( ). n = 3, d = 0.15 m,
L1 = 0.1 m, L2 = 0.35 m

(a) (b)

Figure 1.33: Instantaneous acoustic potential fields calculated by the mode-matching tech-
nique. (a) Configuration without the guide vanes. (b) Configuration consisting of guide vanes
and cooling channels. k0a1 = 3.5, n = 3.

ically dependant to the resonance frequencies of the cooling channels. To understand the
origin of this peak, it is necessary to visualise the acoustic potential field at this frequency.
A comparison between the acoustic potential fields of a configuration with and without
the guide vanes is shown in Figure 1.34. Figure 1.34b shows an amplification of the
acoustic potential in the space between the two subsystems, due to an acoustic resonance
caused by the back-and-forth waves. This resonance is responsible for the transmission
peak at this frequency. The influence of the distance between the two subsystems and of
the wall-thickness of the cooling channels will be highlighted in the following subsections.
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(a) (b)

Figure 1.34: Instantaneous acoustic potential fields calculated by the mode-matching tech-
nique. Configuration without guide vanes. (b) configuration consisting of guide vanes and
cooling channels. k0a1 = 3, n = 3.

1.4.4.2 Effect of distance d

In the previous analysis, it has been observed that the acoustic response of the cooling
channels is strongly affected by the presence of the guide vanes. In order to investigate
the effect of the distance between the two subsystems, three configurations with different
distances d have been tested d/L1 = 1, d/L1 = 1.5 and d/L1 = 2.5. The comparison of
transmitted powers obtained for the three configurations is shown in Figure 1.35. As can
be seen, there is not much difference between the three configurations at relatively high
frequencies k0a1 > 4. All transmission peaks correspond to the resonance frequencies of
the channels. The difference can be observed in a low frequency range, when k0a1 < 4. It
is clear to see that the frequency of the peak associated with the acoustic resonance in the
space between the two subsystems is shifted in the three configurations. The instantaneous
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Figure 1.35: (a) Variation of transmitted powers as a function of frequency for three different
distances, d/L1 = 1 ( #), d/L1 = 1.5 ( ), d/L1 = 2.5 ( ). (b) variation of transmitted
power with distance d. V1 = 9 guide vanes and V2 = 19 cooling channels. n = 3, L1 = 0.1 m,
L2 = 0.35 m

acoustic potential maps of the different configurations at the same frequency k0a1 = 3
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are shown in Figure 1.36. Among these configurations, the resonance occurs only in the
second one (see Figure 1.36c). To better understand how the amplitude of this peak
varies with distance, several calculations have been performed by varying the distance d
from d/L1 = 0.3 to d/L1 = 5. Figure 1.35b shows the variation of the transmitted power
as a function of the distance d. It is observed from Figure 1.35b that the power varies
markedly with d. It varies sinusoidally between Pt/Pi = 0.3 and Pt/Pi = 0.95. This
confirms that the resonance caused by the back-and-forth waves in the space between the
two subsystems depends directly on the distance d.

(a) (b)

(c) (d)

Figure 1.36: Instantaneous acoustic potential fields obtained by the mode matching technique
for four different distances. (a) d/L1 = 0.5, (b) d/L1 = 1, (c) d/L1 = 1.5, (d) d/L1 = 2.5.
k0a1 = 3, n = 3.
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1.4.4.3 Effect of thickness

To get further understanding of the interactions between the two subsystems, a com-
parative study was performed for different wall-thicknesses of the cooling channels. The
variation of transmitted power as a function of frequency is shown in Figure 1.37a for
three different values of a2/H2.
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Figure 1.37: (a) Variation of transmitted powers as a function of frequency for three different
thicknesses, a2/H2 = 0.9 (dashed line), a2/H2 = 0.5 (plain line) and a2/H2 = 0.1 (symbols). (b)
variation of transmitted powers with the channel width, configuration composed of guide vanes
and cooling channels (plain line), configuration without guide vanes (dashed line). k0a1 = 3,
n = 3

Comparing the results, it is clear to see that the resonant frequencies are shifted
comparing to the case a2/H2 = 0.5. This can be explained by the variation of the end
corrections of the cooling ducts which depend on a2. Moreover, the transmission peak at
k0a1 = 3 is maximum in the configuration with the ratio a2/H2 = 0.5. In Figure 1.37b, the
channel width a2/H2 is increased incrementally from 0 to 1, to show the variation of the
transmitted power for a configuration with and without the guide-vanes. As expected, in
the absence of guide vanes, the transmitted power increases with the channel width a2/H2.
The maximum of transmitted power is obtained for small wall-thicknesses a2/H2 → 1.
In contrast, the acoustic response of the system is not the same in the presence of guide
vanes. The maximum value of the transmitted power is reached at a2/H2 = 0.45 because
of the resonance between the two subsystems (see Figure 1.38c), then it decreases when
a2/H2 → 1. This decrease in transmitted power is due to the fact that the interactions
between the two subsystems are less significant. The sound field is slightly reflected by
the channels, involving low interactions between the two subsystems (see Figures 1.38a
and 1.38b). For large values of thickness a2/H2 → 0, the reflection of the acoustic waves
by the walls of the channels becomes dominant (see Figure 1.38d). There is a small range
of thickness values in which an acoustic resonance between the two subsystems can be
observed. This region is characterized by the maximum values of the transmitted power
in Figure 1.37b.
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(a) (b)

(c) (d)

Figure 1.38: Instantaneous acoustic potential fields obtained by the mode-matching technique
for four different wall-thicknesses. (a) a2/H2 = 0.9, (b) a2/H2 = 0.6, (c) a2/H2 = 0.4, (d)
a2/H2 = 0.1. k0a1 = 3, n = 3.
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1.5 Sound propagation inside a truncated motor
The configuration of the ventilation system investigated in the previous sections was
assumed to be perfectly periodic in the azimuthal direction θ, which is not always true
in some practical applications. The shape and size of the motor must be adapted to the
space allocated for the motor in the train. In certain applications, the motors need to be
truncated in order to facilitate their integration into the bogie. This may have a significant
influence on the acoustic response of the ventilation system. A typical configuration of a
truncated motor is illustrated in Figure 1.39. It can be divided into two separated blocks
consisting of guide vanes and cooling channels as depicted in Figure 1.40a. As can be
seen, two rigid walls are located at the ends of each block of the ventilation system, which
prevents the propagation of sound between the two blocks.

Figure 1.39: Typical configuration of the ventilation system of a truncated motor.

Since they are similar, the transmission problem needs to be investigated for a single
block of the ventilation system. For this, a cylindrical cut at a radius r0 for a single block
is depicted in Figure 1.40b. As in the previous sections, the block is divided into two rows
of thick-walled channels separated by a distance d. In contrast, a rigid-wall boundary
condition must be imposed on z = 0 and z = Hb instead of a 2π-periodicity condition.

1.5.1 Mathematical formulation
As what has discussed earlier, the acoustic potentials have to be defined in each region
of the geometry. The incident excitation is considered as a wave propagating upstream
the guide vanes in the positive direction of x. The analytical expression of the latter
is obtained by solving the Helmholtz equation with the rigid wall boundary condition
applied to the walls located at the ends of the block z = 0 and z = Hb (see Figure 1.41).
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(a) (b)

Figure 1.40: (a) Typical configuration of the ventilation system of a truncated motor, (b)
Unwrapped representation of a cylindrical cut of a single block of the ventilation system at r0.

Figure 1.41: Unwrapped representation of a cylindrical cut at r0

This excitation is given by

φi(x, z) = An cos (αiz) eik+
i x (1.53)

where
αi = n

π

Hb

The mathematical property of the cosine function allows the eigenfunction cos(αiz) to be
decomposed into a sum of two exponential functions

cos (αiz) = eiαiz + e−iαiz

2 (1.54)

46



Chapter 1. Analytical modelling of sound propagation in a totally-enclosed motor

The incident wave φi can therefore be expressed as a sum of two periodic waves with
opposite propagation angles, as depicted in Figure 1.42

φi(x, z) = φi+(x, z) + φi−(x, z) (1.55)

where φi+ and φi− represent respectively waves travelling in the positive and negative z
directions. They are given by:

φi+(x, z) = An
2 eiαizeik+

i x (1.56)

φi−(x, z) = An
2 e−iαizeik+

i x (1.57)

Figure 1.42: Decomposition of the incident wave

For example, Figure 1.43 shows the instantaneous acoustic potential fields of the dif-
ferent acoustic waves φi, φi+ and φi−. Figure 1.43a is obtained after superposing Figures
1.43b and 1.43b.

(a) (b) (c)

Figure 1.43: Instantaneous acoustic potential fields. (a) φi, (b) φ+
i , (c) φ

−
i .

47



Chapter 1. Analytical modelling of sound propagation in a totally-enclosed motor

After using this decomposition, the problem reduces to two diffraction sub-problems
that can be studied independently. The scattering of each of these waves (φi+ or φi−)
by the channels can be investigated in the same way as in Section 1.3. Within the
framework of linear acoustics, the response of the system to the excitation φi is obtained
by superposing the acoustic fields generated by the diffraction of φi+ and φi−. Four
acoustic fields are produced by the diffraction of φi. The reflected φr and transmitted
fields φt read

φr(x, z) = φr+(x, z) + φr−(x, z) =
+∞∑
s=−∞

(
Rs+eiαs+zeik−s+x +Rs−eiαs−zeik−s−x

)
(1.58)

φt(x, z) = φt+(x, z) + φt−(x, z) =
+∞∑
s=−∞

(
Ts+eiαs+zeik+

s+ (x−L) + Ts−eiαs−zeik+
s− (x−L)

)
(1.59)

where
αs± = ±αi + 2π

H
, k−s± = −

√
k2 − α2

s± , k+
s± =

√
k2 − α2

s±

To ensure the symmetry of the geometry, the first and the last channels must be offset
by a height of b/2 from the walls z = 0 and z = Hb (see Figure 1.41). The downstream and
upstream acoustic potentials φ(m)

d and φ(m)
u in the mth channel can therefore be written

as

φ
(m)
d (x, z) = φ

(m)
d+ (x, z) + φ

(m)
u− (x, z)

=
+∞∑
q=0

(
D0
q+eimαiH +D0

q−e−imαiH
)

cos
(
αq
[
z −mH − b

2
])

eik+
q x

(1.60)

φ(m)
u (x, z) = φ+(m)

u (x, z) + φ−(m)
u (x, z)

=
+∞∑
q=0

(
U0
q+eimαiH + U0

q−e−imαiH
)

cos
(
αq
[
z −mH − b

2
])

eik−q (x−L) (1.61)

The coefficients denoted by Rs+ , Ts+ , Dq+ and Uq+ represent the modal amplitudes
of various acoustic fields generated by the scattering of φi+ , and the coefficients Rs− ,
Ts− , Dq− and Uq− are the modal amplitudes of the fields produced by the scattering
of φi−. These coefficients are determined by the use of the mode-matching method, by
imposing the continuity of the acoustic pressure and the axial velocity at the inlet and
outlet interfaces of the channels. The matching equations describing the diffraction of φi+
and φi− must be formulated independently.
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1.5.2 Results
The analytical model is applied in this section to a configuration consisting of V = 10
channels. As explained previously, the incident wave should be divided into two oblique
plane waves of the same amplitude An/2, and propagate with opposite angles of propa-
gation. The parameters of the test case are listed in Table 1.2.

V L (m) Hb (m) f (Hz) n a/H An

10 0.5 1.257 2500 7 0.6 1

Table 1.2: Test-case parameters

Figures 1.44a and 1.44b show respectively the instantaneous acoustic potential fields
obtained by the scattering of φi− and φi+, using the mode-matching method.

(a) (b)

Figure 1.44: Instantaneous acoustic potential fields obtained by the mode-matching technique.
(a) scattering of φi−, (b) scattering of φi+. V = 10, L = 0.5m, Hb = 1.257m, f = 2700Hz, n = 7,
a/H = 0.6.

The instantaneous sound field obtained after the superposition of these two maps
is shown in Figure 1.45a. In order to assess the relevance of the analytical model, a
qualitative comparison with the finite element method was carried out. Figure 1.45b
shows the acoustic potential field obtained by the finite element method. As can be seen,
the results obtained by the methods are in a good agreement.

1.5.2.1 Effect of walls

In order to quantify the effect of the walls situated at the bottom and at the top of the
system, a comparison between two different configurations is presented in this section.
The first one corresponds to a configuration connected to two unbounded mediums (Sec-
tion 1.3), and the second one corresponds to a configuration connected to two bounded
domains. The same dimensions are used for the two configurations (See Table 1.3).
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(a) (b)

Figure 1.45: Instantaneous acoustic potential fields obtained by mode-matching method
(Scattering of φi+ and φi−) (a) and the finite element method (b). V = 10, L = 0.5m, Hb =
1.257m, f = 2700Hz, n = 7, a/H = 0.6.

V L (m) Hb (m) f (Hz) n a/H An

10 0.5 1.257 3300 6 0.6 1

Table 1.3: Test-case parameters

A comparison between the acoustic potential fields of the two configurations is shown in
Figure 1.46. The acoustic powers (|Pd|+|Pu|) inside each channel are shown in Figure 1.47
for the two configurations. In the first case (Figure 1.46a) the channels are periodically
excited by the incident wave. The acoustic potential inside the channels remains the same,
but phase-shifted by a factor eimn/r0H . The acoustic power inside channels is the same
(see Figure 1.47a). In contrast, in the second configuration 1.46b, the acoustic potential
inside each channel is different. Furthermore, no acoustic wave is transmitted in the third
and the seventh channels (m = 2 and m = 7) as shown in Figure 1.47b.

(a) (b)

Figure 1.46: Instantaneous acoustic potential fields obtained for a periodic configuration (a),
and a truncated configuration (b). V = 10, L = 0.5m, Hb = 1.257m, f = 3300Hz, n = 6,
a/H = 0.6.
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Figure 1.47: Acoustic powers inside each channel calculated for a periodic configuration (a)
and a truncated configuration (b).

1.5.3 Coupled system
After studying the scattering of acoustic waves by a single row of channels connected to two
bounded mediums, the transmission of sound through a complete block of the ventilation
system, composed mainly of guide vanes and cooling channels can be investigated using
an iterative procedure, as explained in Section 1.4. The simulation parameters are listed
below in Table 1.4

V1 V2 L1 (m) L2 (m) Hb (m) d (m) f (Hz) n An

9 19 0.1 0.35 0.9424 0.15 3000 4 1

Table 1.4: Test-case parameters

Figure 1.48 shows the instantaneous acoustic potential fields calculated by the mode-
matching method and the finite element method for an incidence wave n = 4 at the
frequency f = 3000Hz.

(a) (b)

Figure 1.48: Instantaneous acoustic potential fields obtained by the mode-matching method
(a), and the finite element method (b). n = 4, f = 3000 Hz, V1 = 9, V2 = 19
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1.6 Sound generation
The present section is devoted to the sound generation mechanism. The impingement of
the impeller wakes on the guide-vanes (see Figure 1.49) generates a noise at the blade
passing frequency and its harmonics. The use of fans with uneven blade-spacing allows to
reduce the annoyance related to this noise. But it induces new frequencies which are mul-
tiple of the rotational frequency. This noise is transmitted through all components of the
ventilation system and it can be amplified by the presence of the cooling channels. This
occurs when the rotational frequency harmonics coincide with the resonance frequencies
of the cooling channels. The present work is based on the work of Roger & Bouley [92, 18].

Figure 1.49: Impingement of impeller wakes on the guide vanes

The complete analytical modelling of the sound generation requires the description of the
wake velocity deficit induced by the rotating blades of the impeller. In such a complex
geometry, this parameter is not known and it needs to be extracted from an unsteady
RANS simulation. Note here that the influence of this parameter is beyond the scope of
this study. The aim is not to predict the absolute amplitude of the acoustic waves gen-
erated by the ventilation system, but to develop an analytical model to estimate relative
variations, in order to optimise a cooling fan system. Furthermore, the model developed
by Bouley et al [19] to predict the noise generated by the impingement of vortical waves
on the guide vanes requires the definition of a mean flow. The hydrodynamic waves are
convected by the flow. Roger et al [92, 18] suggest an alternative approach to describe
the response to a hydrodynamic disturbance as a diffraction problem of equivalent dipoles
placed very close to the leading edge of each vane as shown in figure 1.50. The use of this
approach avoids the need for a mean-flow description, but it requires the description of
the equivalent acoustic excitation φdip. The latter is reproduced by the superposition of
identical dipoles placed very close to the guide vanes. This excitation can be written as
a sum of oblique plane waves having various propagation angles. The incident field φdip

can be written as [18] :

φdip(x, z) = V1

+∞∑
s=−∞

αs
4πr0ks

eiαszeiks(x−xi) , ks =
√
k2
n − α2

s , kn = nΩ
c0

(1.62)
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Figure 1.50: two-dimensional unwrapped representation. Propagation of waves generated by
the diffraction of equivalent dipoles by the guide vanes

where n is the order of the rotational frequency harmonics.
In practice the amplitude of the equivalent dipoles must be calibrated by the compari-

son with a reference solution [18]. It depends on the amplitude of the hydrodynamic waves
φn ∼ wn. The scattering of this excitation can be achieved by using the mode-matching
technique [18, 19].

1.6.1 Blade modulation technique
The blade modulation technique consists in giving an irregular spacing of the impeller
blades (see Figures 1.51). This technique is very useful for reducing the tonal annoyance
of a given fan by modifying the noise spectrum and distributing the sound energy to
rotational frequency harmonics [39, 35, 41, 67, 89].

(a) (b)

Figure 1.51: (a) Radial impeller with regular blade spacing. (b) Radial impeller with irregular
blade spacing.

The blade modulation effects have to be considered in a mathematical formulation
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of the hydrodynamic excitation. This was investigated, for instance, by Roger [89] who
demonstrated that the mathematical expression of the hydrodynamic excitation is written
as:

wn = ΩΠ−n(ξ)F(nΩ) (1.63)

where F(nΩ) is the Fourier transform of the velocity disturbance, and Πn(ξ) is an inter-
ference function, given by:

Πn(ξ) =
B−1∑
j=0

ein(2πj/B+ξj) (1.64)

(a) (b)

Figure 1.52: (a) Interference function for a fan with regular blade spacing ξj = 0. (b)
Interference function for a fan with irregular blade spacing ξj 6= 0

The modulus of the interference function may have a value between 0 and the number
of blades B. The influence of modulation angles on the interference function is illustrated
in Figure 1.52 for a 11-bladed impeller. It shows clearly that

• For an equally spaced impeller ξ = 0 (Figure 1.52a), Πn is equal to B if n = mB

and 0 if n 6= mB, where m is any integer.

• With unequal spacing of the fan blades (Figure 1.52b) the interference is not com-
pletely constructive when n = mB and it is not completely destructive when
n 6= mB. Therefore, compared to a fan with regular blade spacing, a decrease
of the peak levels at multiples of the blade-passing frequency is expected, with
regeneration of harmonics of the rotational frequency.

In the following, the interference function is used in order to select the most annoying
harmonics to be studied.

1.6.2 Results
The analytical model is applied in this section to a ventilation system composed of 11-
bladed impeller with circumferentially unsymmetrical blade-spacing, 8 guide vanes and
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12 cooling channels. The test-case parameters are listed in Table 1.5.

V1 V2 L1 (m) L2 (m) r0 (m) B d (m)
8 12 0.1 0.39 0.15 11 0.1

Table 1.5: Test-case parameters

The modulation angles ξ are given in Table 1.6.

j 0 1 2 3 4 5 6 7 8 9 10
ξ(j) 3◦ 2◦ 1◦ −5◦ 2◦ 3◦ −4◦ 5◦ −1◦ −6◦ 7◦

Table 1.6: Modulation angles

The interference function for different values of n is shown in figure 1.53a. The dom-
inant harmonics are n = 11, 15, 18, 26, 29. Each mode generates acoustic waves at
the frequency fn = nΩ/2π. Figure 1.53b shows the variation of the transmitted powers
as a function of rotational speed. It is found that all the dominant harmonics have no
contribution in acoustic radiation when the fan speed is less than 1400rpm. Indeed, the
acoustic waves generated by the ventilation system at this rotational speed are cut-off.
These modes can be transmitted when the fan speed increases.

(a) (b)

Figure 1.53: (a) Interference function. (b) Variation of transmitted acoustic powers as func-
tions of fan speed

1.6.2.1 Influence of channel length

One of the most important aspects in this study, is the influence of the length of the
cooling channels on sound transmission. The transmitted acoustic powers are plotted
as functions of fan speed in Figure 1.54 for n = 18. Figures 1.55a and 1.55b show the
instantaneous acoustic pressure fields for two different lengths of channels at 4200 rpm.
The transmission peaks in Figure 1.54 are due to the acoustic resonances of the cooling
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Figure 1.54: Variation of transmitted power as a function of rotational speed for two different
lengths of channels. L2 = 0.32m ( ), L2 = 0.39m ( ). n = 18, L1 = 0.1 m, d = 0.1 m.

channels. These frequencies are characterised by a strong amplification of sound inside
the cooling channels as shown in Figure 1.55a. It is therefore important to use channels
having a length different from 0.39m at this rotational speed. The resonant frequencies
of the channels must be different from the rotational frequency harmonics.

(a) (b)

Figure 1.55: Instantaneous acoustic potential fields obtained for two different lengths. (a)
L2 = 0.39m, (b) L2 = 0.32m. n = 18, r0 = 0.15m, V1 = 8, V2 = 12, Ω = 441.91 rad/s
(4220rpm).

1.6.2.2 Effect of distance

Figure 1.57 shows the acoustic potential fields for 2 different configurations. The reference
configuration in Figure 1.56 corresponds to the case without the cooling channels. The
ventilation system emits upstream and downstream propagating waves. Figures 1.57a and
1.57b represent two configurations with different distances between the guide vanes and
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Figure 1.56: Instantaneous acoustic potential field for a configuration without cooling chan-
nels. L1 = 0.1 m, n = 18, Ω = 441.91 rad/s

the cooling channels. Figure 1.57a shows that the acoustic field upstream the guide vanes
has been amplified compared with the reference (Figure 1.56). This amplification is due to
a constructive interference between the acoustic waves generated by the wake-interaction
mechanism and those reflected by the cooling channels. Constructive interference occurs
when two waves are in phase and propagate at the same frequency. The amplitude of
the acoustic field is equal to the sum of the amplitudes of the two waves. In contrast,
destructive interference occurs when the two waves are out of phase. This case is shown in
Figure 1.57b. When the distance between the two subsystems changes, the acoustic waves
reflected by the cooling channels are phase-shifted. The low amplitude of the acoustic
field upstream the guide vanes is due to the superposition of the maximum amplitude
of the first wave with the low amplitude of the second one. It should be noted that the

(a) (b)

Figure 1.57: Instantaneous acoustic potential fields. (a) d = 0.07m, (b) d = 0.15m. L1 = 0.1m,
L2 = 0.33m, n = 18, V1 = 8, V2 = 12, Ω = 441.91 rad/s.

same interferences can be observed in the space between the guide vanes and the channels,
because of the multiple reflections of the acoustic waves as discussed in Section 1.4.
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1.6.2.3 Effect of the number of vanes

The influence of the number of vanes on sound generation is discussed in this section for
n = 18. Figure 1.58 shows the instantaneous acoustic pressure fields for three different
numbers of vanes at the rotation speed 4200 rpm. In the first case (Figure 1.58a), the
configuration is composed of V1 = 5, it generates two propagative modes, given by:
ns = n+sV1 = 18+s5 = [3,−2] . The acoustic field is dominated by the mode ns = 3 and
modulated by the mode ns = −2. In the second case, for the configuration with V1 = 13
vanes (Figure 1.58b), the modes generated by the system are cut-off, their amplitudes are
attenuated exponentially from the interfaces. The sound can only propagate inside the
inter-vane channels and the cooling channels. These acoustic modes can be considered
as trapped modes [38, 34]. They do not contribute to the acoustic radiation. The last
configuration with V1 = 16 vanes is shown in Figure 1.58c, the ventilation system emits
only one cut-on mode (ns = 2). Among these configurations, the second one (V1 = 13) is
quieter, because the acoustic waves generated at this frequency are cut-off.

(a) (b)

(c)

Figure 1.58: Instantaneous acoustic potential fields for different numbers of vanes, and with
excitation by the mode 18. (a) V1 = 5, (b) V1 = 13, (c) V1 = 16. n = 18, V2 = 12, L1 = 0.1m,
L2 = 0.33m, r0 = 0.15m, d = 0.1m.
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1.7 Conclusion
In this chapter, an analytical model of sound transmission through a system consisting of
two periodic rows of thick-walled channels has been developed. The aim of this model is
to investigate how the sound is transmitted through components of the ventilation system
integrated in totally enclosed traction motors, in order to improve their design and reduce
the aerodynamic noise. The first part of this work was devoted to the diffraction of an
oblique plane wave by a periodic row of thick-walled channels using the mode-matching
method. Then, this model was applied to the guide vanes and to the cooling channels
to predict the sound propagation in this complex geometry. An iterative procedure was
used to take into account the multiple diffractions of the acoustic waves between the two
subsystems. At most frequencies of interest, the comparisons between the results obtained
by the analytical model and the finite element method were in good agreement. The effect
of various parameters such as the channel length, the wall-thickness and the distance
between the guide-vanes and the cooling channels has been investigated in this chapter.
The results obtained have shown that the acoustic response of the cooling channels is
strongly affected by the presence of guide vanes. Acoustic resonances can take place in
the space between the guide vanes and cooling channels due to the back-and-forth waves
propagating in this space. These frequencies can be modulated by changing the distance
between the two subsystems.
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Chapter 2

Analytical modelling of sound
propagation inside an open motor

2.1 Introduction
The previous chapter has dealt with sound generation and propagation inside the venti-
lation systems integrated in totally-enclosed motors, using a two-dimensional approach
based on the mode-matching technique. The use of the latter was justified by the simplic-
ity of the geometry. As previously mentioned, the performance of totally-enclosed motors
is limited by their thermal performance, since the air passes only through the motor frame.
In the case of an open motor, the air has a direct contact with the hottest parts of the
motor such as the windings. The cooling process is more efficient in this case. A typical
configuration of an open motor is illustrated by meridian and axial cuts in Figure 2.1.
As can be seen, it is typically composed of various elements such as the flow deflector,
windings, motor housing, motor shaft, stator cooling channels, rotor cooling channels, air
gap, radial impeller and rigid bars placed at the air outlet of the motor. It should be
kept in mind, that the stator and the rotor ventilation ducts are purely axial and they
are respectively integrated in the stator and rotor cores. The noise generated by the ra-
dial impeller and the rotating parts is transmitted through all components of the motor.
Therefore, investigating the propagation of acoustic waves inside this configuration using
an analytical approach is much more complicated than in the case of a totally-enclosed
motor. Thus, a two-dimensional approach cannot be selected to investigate how the
sound can propagate inside this system, due to its large transverse dimensions compared
to acoustic wavelengths, and also because of the radial dependencies between its different
components. For this, a three-dimensional approach is used in this chapter to deal with
this problem.
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(a) (b)

Figure 2.1: A typical configuration of the ventilation system integrated in an open motor.
Rotating part of the motor (yellow). Air flow (blue) (a) Meridian cut. (b) Axial cut. 1
Deflector, 2 Stator ducts, 3 End-windings, 4 Rotor stator gap, 5 Rotor ducts, 6 Radial
impeller, 7 Motor outlet, 8 Motor shaft, 9 motor housing.

2.2 Geometrical approximations
In the first step of the present analysis, the geometry of the motor must be simplified for
mathematical tractability. This step allows one to associate the realistic configuration of
the ventilation system with a simplified configuration consisting only of generic elements
of different transverse dimensions, in which the sound field can be expressed as a sum of
orthogonal modes. On the other hand, the geometrical simplifications should not be too
excessive in order to maintain the main parameters of the realistic configuration which can
have a non-negligible influence on its acoustic response. For that, a meridian cut of the
geometry suggested in this work is illustrated in Figure 2.2b. Comparing with the realistic

(a) Realistic configuration (b) Simplified configuration

Figure 2.2: Meridian cut of a typical configuration of an open motor of traction. (a) Realistic
configuration. (b) Simplified configuration. 1 Deflector, 2 Stator ducts, 3 End-windings,
4 Rotor stator air gap, 5 Rotor ducts, 6 Radial impeller, 7 Motor outlet, 8 Motor
shaft, 9 Casing.

configuration (Figure 2.2a), it is obvious to see that all the curved parts of the ventilation
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system have been neglected. Note here that the influence of this parameter is beyond
the scope of this study. However, taking into account the effects due to the variation of
the duct cross-section or curvature requires a numerical or semi-analytical description of
the sound field in the different regions where the curvature is strong, such as the finite
element method or the multimodal method [81, 42, 40, 70]. A strong variation of the duct
cross-section or curvature involves a coupling between the acoustic modes, and the use
of the slowly varying approach [86, 80, 20, 60, 45] does not allow to take these coupling
effects into account. Furthermore, the geometry of the stator end-winding is considerably
complex (see Figure 2.3a), and it cannot be investigated analytically. In practice, the
stator end-windings can be considered as either a rigid part when the space between two
conductors is tool small, or a porous region, when this space becomes significant. In a fist
approximation, only the rigid part is considered in this work (see Figure 2.3b).

(a) (b)

Figure 2.3: Geometrical approximation of the end windings. (a) Realistic configuration. (b)
Simplified configuration.

Various kinds of stator channels are commonly used in open motors: circular, rect-
angular and flat-oval cross-sections. However, the analytical solution of the Helmholtz
equation is known only in the case of a duct of circular or rectangular cross-section [66].
In contrast, in the case of a waveguide of flat-oval cross-section, the Helmholtz equation is
not separable, and the eigenfunctions need to be determined numerically. This was inves-
tigated, for instance, by Cummings et al [31, 24, 30]. Furthermore, the cooling channels
are generally connected to two annular ducts. Thus, all acoustic fields must be described
in the same coordinate system in order determine the matching equations. For the three
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cases mentioned here, a coordinate transformation is necessary to deal with this problem
[94, 79, 54]. It is assumed here for simplicity that the stator channels have the same
cross-section illustrated in Figure 2.3. It turns out that the influence of the channel cross-
section becomes significant at relatively high frequencies, when several acoustic modes are
cut-on. At most frequencies of interest, only plane waves can propagate inside the cool-
ing channels. However, the use of the mode-matching technique in this problem requires
a three-dimensional description of the sound field. For that, a multimodal propagation
of sound inside the channels should be considered in the analytical formulation of the
problem. The next step is to divide the simplified configuration into four interconnected
blocks addressed separately as shown in figure 2.4.

Figure 2.4: Dividing the simplified configuration into four interconnected blocks

As can be seen, the propagation of noise inside an open motor can be studied by using
four propagation sub-models. Each model requires specific development:

1. Radial impeller: As what has been discussed in Chapter 1, the transmission of
acoustic waves through a radial impeller is achieved by the use of three different
sub-models.

2. Stationary part: this model deals with the propagation of the acoustic waves gener-
ated by the radial impeller and the rotor ducts in the stationary part of the motor.
This model is presented in detail in the next section. The associated area is featured
in blue in Figure 2.4.

3. Outlet guide vane: the diffraction of spiral waves generated by the radial impeller
by the rigid bars located at the motor outlet (yellow area in Figure 2.4). The math-
ematical formulation of this problem is presented in the last part of this chapter.

4. Rotor ducts: diffraction of oblique plane waves by a periodic row of rotating channels
(red area in Figure 2.4). This will be investigated in the next chapter.

The present chapter deals only with the propagation of sound in the stationary part
of the motor.
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2.3 Sound propagation in the stationary part of the
motor

After splitting the complete configuration of the ventilation system into several generic
elements, only its stationary part is studied in this section. The latter is illustrated
in Figure 2.5. As can be seen, it is directly connected to the radial impeller and the
rotor cooling channels, by means of three annular ducts, denoted by (F ), (Rd1) and
(Rd2). It is worth noting that the motor shaft and the rotor core without the ventilating
holes are axisymmetric. The propagation of sound inside this system is not affected
by their rotation, because slip boundary conditions are assumed on all rigid surfaces in
the formulation. Therefore, they can be considered fixed in this analysis, and included
in the unmoving part of the ventilation system. Not here that in this specific part of
the motor, the acoustic waves come from the radial impeller, and from both sides the
rotor cooling channels (see Figure 2.5). However, the sound can be either generated or
reflected by these components of the ventilation system. In the three cases, the acoustic

Figure 2.5: Diagram indicating the different subdomains of the fixed part of the motor.
Incident waves (→). Interfaces between the different sub-domains ( ). Black dashed lines
( ) indicate the interfaces between the stationary part and the rotating parts of the motor.

excitation can be considered as a helical wave propagating in the negative or positive x
direction towards the stationary part of the motor. It is therefore important to consider
the three incident waves together in the mathematical formulation of the problem. For
practical purpose, these three incident waves φ(Rd1)

i , φ(Rd2)
i and φ

(F )
i cannot be studied
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simultaneously. For this, the diffraction of each of these waves can simply be addressed
by setting the amplitude of the other two to zero.

2.3.1 Helmholtz equation
The geometry shown in Figure 2.5 can be divided into 15 subdomains denoted by (Rd1),
(R1), (A1), (S1), (T ), (B), (E), (Sd), (S2), (A2), (R2), (Rd2), (W ) and (F ), in which the
sound field can be expressed as a sum of orthogonal modes. These subdomains mainly
consist of 14 straight annular ducts and a periodic row of cooling channels as illustrated
in Figures 2.6a and 2.6b respectively.

(a)

(b)

Figure 2.6: Subdomains of the fixed part of an open motor. (a) Annular duct. (b) Periodic
row of cooling channels.

For the same reasons mentioned previously, all acoustic fields must be expressed in
terms of their acoustic potentials. They must satisfy the Helmholtz equation in a cylin-
drical coordinate system:

∂2φ

∂r2 + 1
r2
∂2φ

∂θ2 + ∂2φ

∂x2 + ∂φ

∂r
+ k2

0φ = 0 (2.1)

A general solution of the above equation can be found by separation of variables [84, 87].
The particular solutions of this equation are then obtained by applying the appropriate
boundary conditions on the azimuthal and radial directions of each of these geometries
(see Figure 2.6).

In the case of a duct of annular cross-section (see Figures 2.6a and 2.7a), a rigid-wall
boundary condition must be imposed on the inner and outer radii of the duct. Moreover,
since the latter is axisymmetric, a periodic boundary condition should be applied on its
azimuthal direction. The acoustic potential inside an annular duct, can be expressed as

φ(r, θ, x, t) =
+∞∑

n=−∞

+∞∑
j=0

(
B+
njeik+

nj(x−x0) +B−njeik−nj(x−xL)
)
fnj(r)einθe−iωt (2.2)
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(a)
(b)

Figure 2.7: Cross sections of an annular duct (a) and an annular sector duct (b)

where n ∈ Z and j ∈ N are respectively the azimuthal and radial mode indices, and fnj(r)
represent the radial shape functions, which are linear combinations of Bessel functions of
the first and the second kinds. They are given by [87]:

fnj(r) = Nnj {cos (τnj) Jn(Knjr)− sin (τnj)Yn(Knjr)} , τnj = arctan
(
J ′n(Knj)
Y ′n(Knj)

)
(2.3)

The normalization constant Nnj is given by [87, 88]

Nnj =
1
2

√
2πKnjr2( 1− n2/(K2

njr
2
2)

J ′n(Knjr2)2 + Y ′n(Knjr2)2 −
1− n2/(K2

njr
2
1)

J ′n(Knjr1)2 + Y ′n(Knjr1)2

)1/2 , if n ∈ R, j ≥ 0

(2.4)
For a plane wave n = 0, j = 0, the normalization constant becomes:

N00 =
√

2√
1− r1/r2

(2.5)

Note here that the radial shape functions are orthogonal according to the integral∫ r2

r1
fnj(r)f ∗n′j′(r)rdr = roδj′j, j′ ∈ N, n′ ∈ R (2.6)

where f ∗n′j′(r) is the complex conjugate of the eigenfunction fnj(r).
For an annular sector duct (see Figures 2.6b and 2.7b), the rigid-wall boundary con-

dition should be imposed on the inner and the outer radii of the duct (r1 and r2), and on
the walls of channel separators (on θ = 0 and θ = θa). The sound field can be expressed
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as

φ(r, θ, x, t) =
+∞∑
q=0

+∞∑
j=0

(
B+
njeik+

nj(x−x0) +B−njeik−nj(x−xL)
)
fnj(r) cos (nθ) e−iωt (2.7)

with
n = q

π

θa

2.3.1.1 Determination of eigenvalues Knj

The use of Equations 2.2 and 2.7 requires the determination of the radial wavenumbers
Knj. They represent the eigenvalues of the problem. These depend only on the azimuthal
index n and the radial dimensions of the duct. Note here that Knj takes only discrete
values (real and positive), and they must satisfy the following equation

J ′n(Kr2)Y ′n(Kr1)− J ′n(Kr1)Y ′n(Kr2) = 0 (2.8)

The left-hand side of Equation 2.8 as a function of K for the azimuthal index n = 1
is illustrated in Figure 2.8. The eigenvalues of the problem can directly be extracted

0 50 100 150
-0.5

0

0.5

Figure 2.8: Determination of the eigenvalues. n = 1, r1/r2 = 0.3.

graphically from Figure 2.8 by pointing the zeros, and numbered by the index j ∈ N.
From a practical point of view, it is not convenient to use this graphical method, especially
when multiple calculations need to be performed. The most straightforward way to find
them, is to use a numerical procedure. However, this non-linear equation can be solved,
for instance, by the Newton-Raphson method [85]. It is interesting to note that when the
radial index j → ∞, the eigenvalues Knj can be approximated empirically by the use of
the following equation [2]:

Knj = 1
r1

(
σ3 + σ4

σ3
+ σ1 − σ2

4
σ3

3
+ σ2 − 4σ4σ1 + 2σ3

4
σ5

3

)
(2.9)
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where

σ1 = (σ5 + 46σ5 − 63)(σ3
0 − 1)

6(4σ0)3(σ0 − 1) , σ2 = (σ3
5 + 185σ2

5 − 2053σ5 + 1899)(σ5
0 − 1)

5(4A)5(σ0 − 1)

σ3 = jπ

σ0 − 1 , σ4 = σ5 + 3
8A , σ5 = 4n2 , σ0 = r2

r1

In order to evaluate the validity of the empirical formula, a comparison between the
eigenvalues Knj calculated by the two methods (numerical and empirical) is illustrated in
Figure 2.9. The index j is increased incrementally from 0 to 40. As can be seen, Equation
2.9 is only valid for large values of j. The difference between the two methods can be
seen to be significant for large values of the azimuthal order n (see Figure 2.9a), and for
low values of r1/r2 (see Figure 2.9b).
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Figure 2.9: Variation of the radial wave numbers Knj obtained by the numerical and empirical
methods with the radial index j. (a) influence of azimuthal order n for r1/r2 = 0.3: n = 10
numerical ( ), n = 10 empirical ( ), n = 30 numerical ( ), n = 30 empirical ( ).
(b) Influence of r1/r2, for n = 20: r1/r2 = 0.3 numerical ( ), r1/r2 = 0.3 empirical ( ),
r1/r2 = 0.7 numerical ( ), r1/r2 = 0.7 empirical ( ).

It should be kept in mind that the numerical calculation of the radial wavenumbersKnj

can become prohibitive for large values of the azimuthal index n. The two calculation
techniques can therefore be combined to reduce the computational time, by using the
numerical method for low values of j and the empirical formula for large values of j.

2.3.2 Acoustic potentials
The sound field generated by impingement of vortical waves on the impeller blades or
on the rotor channels can be expanded into a sum of helical waves. The mathematical
expressions of the incident excitations emitted by the rotor channels at the axial positions
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x0 (left-hand side) and x11 (right-hand side) are written as

φ
(Rd1)
i (r, θ, x, t) = A

(Rd1)
nj f

(Rd)
nj (r)eik−nj(x−x0)einθe−iωt , x1 ≤ x ≤ x0 , r1 ≤ x ≤ rRd (2.10)

φ
(Rd2)
i (r, θ, x, t) = A

(Rd2)
nj f

(Rd)
nj (r)eik+

nj(x−x11)einθe−iωt , x11 ≤ x ≤ x9, r1 ≤ x ≤ rRd (2.11)

where
k±nj = ±

√
k2

0 −K2
nj

The acoustic potential of a single acoustic excitation generated by the radial impeller
is expressed as

φ
(F )
i (r, θ, x, t) = A

(F )
nj f

(F )
nj (r)eik−nj(x−x12)einθe−iωt (2.12)

where
k−nj = −

√
k2

0 −K2
nj

The scattering of each of these incident waves by the different discontinuities of the
geometry produces 26 acoustic fields, as illustrated in Figure 2.10. It should be noted
that the azimuthal index n of each incident wave is not scattered by the annular ducts
because of their assumed axisymmetry. However, the sound field is only scattered in the
radial direction. On the other hand, the presence of the stator cooling channels modifies
the acoustic response of the system in both the radial and azimuthal directions. The
azimuthal acoustic modes produced upstream and downstream the cooling channels are
of orders ns = n + sV . These are transmitted through all annular ducts of the system.
It is therefore important to account for these modes in mathematical expressions of the
different acoustic potentials.

• The acoustic field φ(Rd)
u propagating in the sub-domain (Rd1) (x1 ≤ x ≤ x0 and

r1 ≤ x ≤ rRd) is expressed as

φ(Rd)
u (r, θ, x) =

+∞∑
s=−∞

+∞∑
γ=0

U (Rd)
nsγ f

(Rd)
nsγ (r)eik+

nsγ(x−x1)einsθe−iωt (2.13)

where
k+
nsγ =

√
k2

0 −K2
nsγ

• The acoustic potentials of the downstream φ
(G)
d and upstream φ(G)

u waves propa-
gating in the air gap (G) (x1 ≤ x ≤ x9 and rg1 ≤ r ≤ rg2) can be written as

φ(G)
d (r, θ, x)
φ(G)
u (r, θ, x)

 =
+∞∑
s=−∞

+∞∑
g=0

D(G)
nsg

U (G)
nsg

 f (G)
nsg (r)einsθ

eik−nsg(x−x9)

eik+
nsg(x−x1)

 , x1 ≤ x ≤ x9

rg1 ≤ r ≤ rg2

(2.14)
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Figure 2.10: Acoustic potentials of the multiple waves generated in the fixed part of the motor.
Incident waves (→), generated waves (→), Interfaces between the different sub-domains ( ).
Black dashed lines ( ) indicate the interfaces between the stationary part and the rotating
parts of the ventilation system.

where
k±nsg = ±

√
k2

0 −K2
nsg

• The acoustic fields φ(R1)
d and φ(R1)

u propagating in the region limited by the end-
windings and the motor shaft (R1) (x2 ≤ x ≤ x1 and r1 ≤ r ≤ rR) readφ(R1)

d (r, θ, x)
φ(R1)
u (r, θ, x)

 =
+∞∑
s=−∞

+∞∑
ξ=0

D(R1)
nsξ

U
(R1)
nsξ

 f (R1)
nsξ

(r)einsθ

eik−
nsξ

(x−x1)

eik+
nsξ

(x−x2)

 , x2 ≤ x ≤ x1

r1 ≤ r ≤ rR
(2.15)

where
k±nsξ = ±

√
k2

0 −K2
nsξ

• The transmitted φ
(A1)
t and reflected φ(A1)

r acoustic fields propagating in the space
between the end-windings and the deflector (x3 ≤ x ≤ x2 and r1 ≤ r ≤ r2) are
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expressed asφ(A1)
t (r, θ, x, t)
φ(A1)
r (r, θ, x, t)

 =
+∞∑
s=−∞

+∞∑
β=0

T (A1)
nsβ

R
(A1)
nsβ

 f (A1)
nsβ

(r)
eik−

nsβ
(x−x2)

eik+
nsβ

(x−z3)

 einsθe−iωt (2.16)

where
k±nsβ = ±

√
k2

0 −K2
nsβ

• The acoustic potentials of the downstream φ
(T )
d and upstream φ(T )

u propagating
waves in the region (T ) (x4 ≤ x ≤ x3 and rd2 ≤ r ≤ rw3) can be expressed as:

φ(T )
d (r, θ, x, t)
φ(T )
u (r, θ, x, t)

 =
+∞∑
s=−∞

+∞∑
µ=0

D(T )
nsµ

U (T )
nsµ

 f (T )
nsµ(r)

eik−nsµ(x−z3)

eik+
nsµ(x−z4)

 einsθe−iωt (2.17)

where
k±nsµ = ±

√
k2

0 −K2
nsµ

• The acoustic potentials of the downstream φ
(B)
d and upstream φ(B)

u propagating
waves in the region (B) (x4 ≤ x ≤ x3 and rw2 ≤ r ≤ rd1) are given by:

φ(B)
d (r, θ, x, t)
φ(B)
u (r, θ, x, t)

 =
+∞∑
s=−∞

+∞∑
ν=0

D(B)
nsν

U (B)
nsν

 f (B)
nsν (r)

eik−nsν(x−x2)

eik+
nsν(x−x3)

 einsθe−iωt (2.18)

where
k±nsν = ±

√
k2

0 −K2
nsν

• The acoustic potential transmitted outside the ventilation system φ
(E)
t (x ≤ x4,

re1 ≤ r ≤ re2) reads

φ
(E)
t (r, θ, x, t) =

+∞∑
m=0

T (E)
nm f

(E)
nm (r)eik−nm(x−x5)einθe−iωt (2.19)

where
k−nsm = −

√
k2

0 −K2
nsm

• The upstream φ(S1)
r and downstream φ(S1)

u waves propagating in the region (S1)
(x2 ≤ x ≤ x5, rS ≤ r ≤ r2) can be expressed as:

φ(S1)
r (r, θ, x, t)
φ(S1)
u (r, θ, x, t)

 =
+∞∑
s=−∞

+∞∑
η=0

R(S1)
nsη

U (S1)
nsη

 f (S1)
nsη (r)

eik−nsη(x−x5)

eik+
nsη(x−x2)

 einsθe−iωt (2.20)

where
k±nsη = ±

√
k2

0 −K2
nsη
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• The downstream φ
(Sd)
d and upstream φ(Sd)

u acoustic potentials propagating in the
mth channel (x5 ≤ x ≤ x6, rSd1 ≤ r ≤ rSd2) are given by:

φ(Sd)
d (r, θ, x)
φ(Sd)
u (r, θ, x)

 =
+∞∑
s=−∞

+∞∑
q=0

+∞∑
p=0

D(Sd)
nqp

U (Sd)
nqp

 eins2πm/V f (Sd)
nsp (r)

eik+
nqp(x−x5)

eik−nqp(x−x6)


× cos

(
nq

[
θ − 2πm

V

])
(2.21)

with
k±nqp = ±

√
k2

0 −K2
nqp

Note here that the phase-shift between the adjacent channels eins2πm/V is imposed
by the propagation angle of each mode ns = n + sV propagating upstream and
downstream of the channels. This can be written as

eins2πm/V = ein2πm/V���
�:1

eis2πm (2.22)

Therefore, the first sum can be ignored, and Equation 2.21 becomes

φ(Sd)
d (r, θ, x)
φ(Sd)
u (r, θ, x)

 =
+∞∑
q=0

+∞∑
p=0

D(Sd)
nqp

U (Sd)
nqp

 ein2πm/V f (Sd)
nsp (r)

eik+
nqp(x−x5)

eik−nqp(x−x6)


× cos

(
nq

[
θ − 2πm

V

])
(2.23)

• The acoustic potential of the acoustic fields φ(S2)
r and φ(S2)

u propagating in the sub-
domain (S2) (x6 ≤ x ≤ x7, rS ≤ r ≤ rS2) are written as

φ(S2)
t (r, θ, x, t)
φ(S2)
u (r, θ, x, t)

 =
+∞∑
s=−∞

+∞∑
η=0

T (S2)
nsη

U (S2)
nsη

 f (S1)
nsη (r)

eik+
nsη(x−x6)

eik−nsη(x−x7)

 einsθe−iωt (2.24)

with
k±nsη = ±

√
k2

0 −K2
nsη

• The acoustic waves transmitted and reflected (φ(A2)
t and φ(A2)

r ) in the space between
located between the end-windings and the fan inlet (x7 ≤ x ≤ x8, r1 ≤ r ≤ r2) read

φ(A2)
t (r, θ, x, t)
φ(A2)
r (r, θ, x, t)

 =
+∞∑
s=−∞

+∞∑
β=0

T (A2)
nsβ

R
(A2)
nsβ

 f (A1)
nsβ

(r)
eik+

nsβ
(x−x7)

eik−
nsβ

(x−x8)

 einsθe−iωt (2.25)

with
k±nsβ = ±

√
k2

0 −K2
nsβ

• The downstream φ
(R2)
d and upstream φ(R2)

u propagating fields in the region (R2)
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(x7 ≤ x ≤ x8 and r1 ≤ r ≤ r2) are expressed as:
φ(R2)

d (r, θ, x, t)
φ(R2)
u (r, θ, x, t)

 =
+∞∑
s=−∞

+∞∑
ξ=0

D(R2)
nsξ

U
(R2)
nsξ

 f (R1)
nsξ

(r)
eik+

nsξ
(x−x10)

eik−
nsξ

(x−x7)

 einsθe−iωt (2.26)

where
k±nsξ = ±

√
k2

0 −K2
nsξ

• The acoustic potentials of the different fields (φ(W )
t and φ(W )

r ) propagating inside
the cavity located at x8 ≤ x ≤ x10 and rf2 ≤ r ≤ rf3 are given by:

φ(W )
t (r, θ, x, t)
φ(W )
r (r, θ, x, t)

 =
+∞∑
s=−∞

+∞∑
w=0

T (W )
nsw

R(W )
nsw

 f (W )
nsw (r)

 eik+
nsw(x−x8)

eik−nsw(x−x11)

 einsθe−iωt (2.27)

where
k±nsw = ±

√
k2

0 −K2
nsw

• The sound field transmitted into the radial impeller φ(F )
t (x8 ≤ x ≤ x12 and rf0 ≤

r ≤ rf1) is written as:

φ
(F )
t (r, θ, x, t) =

+∞∑
ns=−∞

+∞∑
α=0

T (F )
nsαf

(F )
nsα(r)eik+

nsα(x−x8)einsθe−iωt (2.28)

where
k+
nsα =

√
k2

0 −K2
nsα

• The acoustic field φ(Rd)
t transmitted into the sub-domain (Rd2) (x11 ≤ x ≤ x9 and

r1 ≤ r ≤ rRd) reads:

φ
(Rd)
t (r, θ, x, t) =

+∞∑
ns=−∞

+∞∑
γ=0

T (Rd)
nsγ f

(Rd)
nsγ (r)eik−nsγ(x−x9)einsθe−iωt (2.29)

where
k−nsγ = −

√
k2

0 −K2
nsγ

The radial shape functions f (ϑ)
ς% (r) of the different fields are given by

f (ϑ)
ς% (r) = Nτ% {cos (τς%) Jn(Kς%r)− sin (τς%)Yn(Kς%r)} , τς% = arctan

(
J ′ς(Kς%)
Y ′ς (Kς%)

)
(2.30)

where ς = {ns, nq}, % = {ξ, g, γ, β, α, η, p, w, ν, µ}, and Nς% is a normalisation constant,
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given by

Nς% =
1
2

√
2πKς%ro( 1− ς2/(K2

ς%r
2
o)

J ′ς(Kς%ro)2 + Y ′ς (Kς%ro)2 −
1− ς2/(K2

ς%r
2
i )

J ′ς(Kς%ri)2 + Y ′ς (Kς%ri)2

)1/2 , if ς ∈ R, % ≥ 0

(2.31)
For a plane wave ς = 0, % = 0, the normalization constant becomes:

N00 =
√

2√
1− ri/ro

(2.32)

where ri = {r1, rg1, rw2, rd2, rf0, rf2, rS, rSd1 , re1} and ro = {rR, rg2, rd1, rw3, rf1, rf3, r2, rSd2 , re2}.
The orthogonality the radial eigenfunctions is written as∫ ro

ri
f (ϑ)
ς% (r)f ∗(ϑ)

ς′%′ (r)rdr = roδ%′%, %′ ∈ N, ς ′ ∈ R (2.33)

where f ∗(ϑ)
ς′ (r) is complex conjugate of the eigenfunction f (ϑ)

ς (r).
In this section, the acoustic fields have been expressed only in the different sub-domains

of geometry. To obtain a solution of the problem in the whole computational domain, it
is necessary to join the different solutions found in each sub-domain. The relationship be-
tween the different acoustic fields can be obtained by using the mode-matching technique.
This will be presented in details in the next section.

2.3.3 Mode-matching technique
The modal amplitudes of the different acoustic fields are the only unknowns in this prob-
lem. In order to determine them, the mode-matching technique must be applied at each
interface separating two or more subdomains with different transverse dimensions. As
mentioned before, the matching equations are derived from the continuity of the acous-
tic pressure and the axial velocity at each interface defined in Figure 2.10. However, two
kinds of interfaces are investigated in the following sub-sections. The first one corresponds
to an interface separating three annular ducts with different radial dimensions. This kind
of interface is located at the positions x1, x2, x3, x4, x7, x8 and x9. However, in or-
der to avoid heavy mathematical developments, the different steps of the mode-matching
method will be explained in detail for only the interface x1. Then, the diffraction of sound
at the other interfaces can be studied in the same manner. The second kind of interface
studied in this section corresponds to the interfaces x5 and x6, which are located between
an annular duct and a row of thick-walled channels.
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2.3.3.1 Matching equations at the interface x = x1

The interface x1 is a junction of three subdomains denoted by (Rd1), (R1) and (G). As
can be seen from Figure 2.11, the subdomain on the left-hand side (R1) is connected
to the subdomain (Rd1) at r1 < r < rRd , and also connected to the subdomain (G) at
rg1 < r < rRg2

. At both interfaces, the continuity of the acoustic pressure and the axial

Figure 2.11: Acoustic fields generated at the interface x1

velocity must be satisfied. In addition, the rigid-wall boundary condition must be imposed
on the front side of the walls located at r1 < r < rRg1

and rg2 < r < rR, which corresponds
to a vanishing normal velocity v · n = v · ex = 0. In the following, the acoustic pressure
and the axial velocity are gathered in a vector denoted by Ξ

Ξ(ϑ)
l (r, θ, x) =

 p
(ϑ)
l (r, θ, x)

v
(ϑ)
l (r, θ, x) · ex


where l = {i, u, d, r, t} , ϑ = {Rd1, Rd2, R1, R2, S1, S2, A1, A2, G,W, F,E, T,B, Sd}

The matching equations at the interface x1 read


Ξ(Rd)

i + Ξ(Rd)
u = Ξ(R1)

d + Ξ(R1)
u , x = x1, ∀θ, r ∈ [r1; rRd ]

Ξ(G)
u + Ξ(G)

d = Ξ(R1)
d + Ξ(R1)

u , x = x1, ∀θ, r ∈ [rg1 ; rg2 ]
v

(R1)
d · ex + v(R1)

u · ex = 0, x = x1, ∀θ, r ∈ ]rRd ; rg1 [ ∪ ]rg2 ; rR]

(2.34a)
(2.34b)
(2.34c)

After replacing the expressions of the acoustic pressure and the axial velocity in Equa-
tion 2.34a, one obtains

A
(Rd1)
nj e−ik−njLP1f

(Rd)
nj (r)einθ +

+∞∑
s=−∞

+∞∑
γ=0

U (Rd)
nsγ f

(Rd)
nsγ (r)einsθ

=
+∞∑
s=−∞

+∞∑
ξ=0

(
D

(R1)
nsξ

+ U
(R1)
nsξ

eik+
nsξ

LR1
)
f

(R1)
nsξ

(r)einsθ (2.35)
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k−njA
(Rd1)
nj e−ik−njLP1f

(Rd)
nj (r)einθ +

+∞∑
s=−∞

+∞∑
γ=0

k−nsγU
(Rd)
nsγ f

(Rd)
nsγ (r)einsθ

=
+∞∑
s=−∞

+∞∑
ξ=0

(
k−nsξD

(R1)
nsξ

+ k+
nsξ
U

(R1)
nsξ

eik+
nsξ

LR1
)
f

(R1)
nsξ

(r)einsθ (2.36)

In the same way, substituting the expressions of the acoustic pressure and the axial
velocity in Equation 2.34b yields

+∞∑
s=−∞

+∞∑
g=0

(
U (G)
nsg + U (G)

nsg e−ik−nsgLG
)
f (G)
nsg (r)einsθ

=
+∞∑
s=−∞

+∞∑
ξ=0

(
D

(R1)
nsξ

+ U
(R1)
nsξ

eik+
nsξ

LR1
)
f

(R1)
nsξ

(r)einsθ (2.37)

+∞∑
s=−∞

+∞∑
g=0

(
k+
nsgU

(G)
nsg + k−nsgD

(G)
nsge

−ik−nsgLG
)
f (G)
nsg (r)einsθ

=
+∞∑
s=−∞

+∞∑
ξ=0

(
k−nsξD

(R1)
nsξ

+ k+
nsξ
U

(R1)
nsξ

eik+
nsξ

LR1
)
f

(R1)
nsξ

(r)einsθ (2.38)

The next step is to perform modal projections of Equations 2.35, 2.36, 2.37 and 2.38 using
the orthogonality of the acoustic modes. As what has been discussed in Chapter 1, the
pressure equations must be projected on the eigenfunctions related to the smaller ducts
(Rd) and (G), while the velocity equations should be projected on the modal basis of the
sound field propagating in the wider duct (R1).

Equations 2.35 and 2.37 are respectively projected on the eigenfunctions f ∗(Rd)
n′sγ
′ (r)e−in′sθ

and f ∗(G)
n′sg
′ (r)e−in′sθ

∫ 2π

0

∫ rRd

r1

(
p

(Rd)
i + p(Rd)

u

)
f
∗(Rd)
n′sγ
′ (r)e−in′sθrdrdθ

=
∫ 2π

0

∫ rRd

r1

(
p(R1)
u + p

(R1)
d

)
f
∗(Rd)
n′sγ
′ (r)e−in′sθrdrdθ (2.39)

∫ 2π

0

∫ rg2

rg1

(
p

(G)
d + p(G)

u

)
f
∗(G)
n′sg
′ (r)e−in′sθrdrdθ

=
∫ 2π

0

∫ rg2

rg1

(
p

(R1)
d + p(R2)

u

)
f
∗(G)
n′sg
′ (r)e−in′sθrdrdθ (2.40)

where n′s = n + s′V , s′ ∈ Z, g′ ∈ N, γ′ ∈ N. f ∗(Rd)
n′sγ
′ (r)e−in′sθ and f ∗(G)

n′sg
′ (r)e−in′sθ represent

respectively the complex conjugates of the eigenfunctions f (Rd)
nsγ (r)einsθ and f (G)

nsg (r)einsθ.
In the same way, the projection of Equations 2.36 and 2.38 on the bases f ∗(R1)

n′sξ
′ (r)e−in′sθ
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leads to
∫ 2π

0

∫ rRd

r1

(
v

(Rd)
i · ex + v(Rd)

u · ex
)
f
∗(R1)
n′sξ
′ (r)e−in′sθrdrdθ

=
∫ 2π

0

∫ rRd

r1

(
v

(R1)
d · ex + v(R1)

u · ex
)
f
∗(R1)
n′sξ
′ (r)e−in′sθrdrdθ (2.41)

∫ 2π

0

∫ rg2

rg1

(
v(G)
u · ex + v

(G)
d · ex

)
f
∗(A)
n′sξ
′ (r)e−in′sθrdrdθ

=
∫ 2π

0

∫ rg2

rg1

(
v

(R1)
d · ex + v(R1)

u · ex
)
f
∗(R1)
n′sξ
′ (r)e−in′sθrdrdθ (2.42)

where ξ′ ∈ N, and f
∗(R1)
n′sξ
′ (r)e−in′sθ being the complex conjugate of the eigenfunction

f
(R1)
nsξ

(r)einsθ.
On the other hand, the rigid-wall boundary condition (Equation 2.95d), is equivalent

to
∫ 2π

0

∫ rR

r1

(
v

(R1)
d · ex + v(R1)

u · ex
)
f
∗(R1)
n′sξ
′ (r)e−in′sθrdrdθ

=
∫ 2π

0

∫ rRd

r1

(
v

(R1)
d · ex + v(R1)

u · ex
)
f
∗(R1)
n′sξ
′ (r)e−in′sθrdrdθ

+
∫ 2π

0

∫ rg2

rg1

(
v

(R1)
d · ex + v(R1)

u · ex
)
f
∗(R1)
n′sξ
′ (r)e−in′sθrdrdθ (2.43)

Thus, combining Equation 2.43 with Equations 2.41 and 2.42, we get

∫ 2π

0

∫ rRd

r1

(
v

(Rd)
i · ex + v(Rd)

u · ex
)
f
∗(R1)
n′sξ
′ (r)e−in′sθrdrdθ

+
∫ 2π

0

∫ rg2

rg1

(
v(G)
u · ex + v

(G)
d · ex

)
f
∗(A)
n′sξ
′ (r)e−in′sθrdrdθ

=
∫ 2π

0

∫ rR

r1

(
v

(R1)
d · ex + v(R1)

u · ex
)
f
∗(R1)
n′sξ
′ (r)e−in′sθrdrdθ (2.44)

After accounting for the orthogonality of the different modal bases, the matching
equations become

k−njA
(Rd1)
nj e−ik−njLp1Fn′sξ′nj +

+∞∑
s=−∞

+∞∑
γ=0

k+
nsγU

(Rd)
nsγ Fn

′
sξ
′

nsγ δss′

+
+∞∑
s=−∞

+∞∑
g=0

(
k+
nsgU

(G)
nsg +k−nsgD

(G)
nsge

−ik−nsgLG
)
Wn′sξ

′

nsg δss′

= k−n′sξ′D
(R1)
n′sξ
′ r2
R + k+

n′sξ
′U

(R1)
n′sξ
′ e

ik+
n′sξ′

LR1r2
R

(2.45)
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A
(Rd1)
nj e−ik−njLp1δγ′jr

2
Rd

+U (Rd)
n′sγ
′ r2
Rd

=
+∞∑
s=−∞

+∞∑
ξ=0

(
D

(R1)
nsξ

+ U
(R1)
nsξ

eik+
nsξ

LR1
)
Fn′sγ′[T ]
nsξ

δss′
(2.46)

U
(G)
n′sg
′r2
g2 +D

(G)
n′sg
′e
−ik−

n′sg′
LG
r2
g2 =

+∞∑
s=−∞

+∞∑
ξ=0

(
D

(R1)
nsξ

+ U
(R1)
nsξ

eik+
nsξ

LR1
)
Wn′sg

′[T ]
nsξ

δss′ (2.47)

where Fn′sξ′nj , Fn′sξ′nsγ , F
n′sγ
′[T ]

nsξ
, Wn′sξ

′
nsg and Wn′sg

′[T ]
nsξ

represent the projection matrices. They
are defined as

Fn′sξ′nj =
∫ rRd

r1
f
∗(R1)
n′sξ
′ (r)f (Rd)

nj (r)rdr ,Fn′sξ′nsγ =
∫ rRd

r1
f
∗(R1)
n′sξ
′ (r)f (Rd)

nsγ (r)rdr

Fn′sγ′[T ]
nsξ

=
∫ rRd

r1
f
∗(Rd)
n′sγ
′ (r)f (R1)

nsξ
(r)rdr

Wn′sξ
′

nsg =
∫ rg2

rg1

f
∗(R1)
n′sξ
′ (r)f (G)

nsg (r)rdr ,Wn′sg
′[T ]

nsξ
=
∫ rg2

rg1

f
∗(G)
n′sg
′ (r)f (R1)

nsξ
(r)rdr

The matrices Fn′sγ′[T ]
nsξ

andWn′sg
′[T ]

nsξ
are respectively the transpose of the matrices Fn′sξ′nsγ

and Wn′sξ
′

nsg . It is important to note that the projection integrals of the radial eigen-
functions are significantly more complex than the azimuthal functions. They cannot be
integrated analytically. In this work, these integrals are evaluated numerically, by using
the Trapezoidal method [85].

2.3.3.2 Matching equations at the interface x = x2

The interface x2 separates three different subdomains ((R1), (A1) and (S1)) as shown
in Figure 2.12. The modal amplitudes of the acoustic fields φ(R1)

u , φ(A1)
t and φ(S1)

u are
determined at this interface.

The matching equations are derived in the same manner as for the interface x1.


Ξ(R1)
d + Ξ(R1)

u = Ξ(A1)
t + Ξ(A1)

r , x = x2, ∀θ, r ∈ [r1; rR]
Ξ(S1)

u + Ξ(S1)
r = Ξ(A1)

t + Ξ(A1)
r , x = x2, ∀θ, r ∈ [rS; r2]

v
(A1)
t · ex + v(A1)

r · ex = 0, x = x2, ∀θ, r ∈ ]rR; rS[

(2.48a)
(2.48b)
(2.48c)

In the same way, these equations should be projected on the three sets of eigenfunc-
tions. After accounting for the orthogonality of the modal bases and the rigid wall-
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Figure 2.12: Acoustic fields generated at the interface x2. Matching interface ( ).

boundary condition, this system becomes

+∞∑
s=−∞

+∞∑
ξ=0

(
k+
nsξ
U

(R1)
nsξ

+ k−nsξD
(R1)
nsξ

e−ik−
nsξ

LR1
)
Kn′sβ′nsξ

δs′s

+
+∞∑
s=−∞

+∞∑
η=0

(
k+
nsηU

(S1)
nsη + k−nsηR

(S1)
nsη e−ik−nsηLS1

)
X n′sβ

′

nsη δs′s

= k−n′sβ′T
(A1)
n′sβ
′ r2

2 + k+
n′sβ
′R

(A1)
n′sβ
′e

ik+
n′sβ′

d1
r2

2

(2.49)

U
(R1)
n′sξ
′ r2
R +D

(R1)
n′sξ
′ e
−ik−

n′sξ′
LR1r2

R =
+∞∑
s=−∞

+∞∑
β=0

(
T

(A1)
nsβ

+R
(A1)
nsβ

eik+
nsβ

d1
)
Kn′sξ′[T ]
nsβ

δs′s (2.50)

U
(S1)
n′sη
′ r2

2 +R
(S1)
n′sη
′e
−ik−

n′sη′
LS1r2

2 =
+∞∑
s=−∞

+∞∑
β=0

(
T

(A1)
nsβ

+R
(A1)
nsβ

eik+
nsβ

d1
)
X n′sη

′[T ]
nsβ

δs′s (2.51)

where

Kn′sβ′nsξ
=
∫ rR

r1
f
∗(A)
n′sβ
′ (r)f (R1)

nsξ
(r)rdr ,Kn′sξ′[T ]

nsβ
=
∫ rR

r1
f
∗(R1)
n′sξ
′ (r)f (A)

nsβ
(r)rdr
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X n′sβ
′

nsη =
∫ r2

rS
f
∗(A)
n′sβ
′ (r)f (S1)

nsη (r)rdr ,X n′sη
′[T ]

nsβ
=
∫ r2

rS
f
∗(S1)
n′sη
′ (r)f (A)

nsβ
(r)rdr

2.3.3.3 Matching equations at the interface x = x3

The acoustic field φ(A1)
t transmitted in the space (A1) is diffracted by the flow deflector,

which is located at the interface x3 (see Figure 2.13). The matching equations at this

Figure 2.13: Acoustic fields generated at the interface x3. Matching interface ( ).

interface can be expressed as


Ξ(A1)
t + Ξ(A1)

r = Ξ(T)
d + Ξ(T)

u , x = x3, ∀θ, r ∈ [rw2; rd1 ]
Ξ(A1)

t + Ξ(A1)
r = Ξ(B)

d + Ξ(B)
u , x = x3, ∀θ, r ∈ [rd2 ; rw3 ]

v
(A1)
t · ex + v(A1)

r · ex = 0, x = x3, ∀θ, r ∈ ]r1; rw2 [ ∪ ]rd1 ; rd2 [ ∪ ]rw2 ; r2]

(2.52a)
(2.52b)
(2.52c)

Using the same procedure as for the interfaces x1 and x2, one obtains

k−n′sβ′T
(A)
n′sβ
′e
−ik−

n′sβ′
d1
r2

2 + k+
n′sβ
′R

(A)
n′sβ
′r2

2

=
+∞∑
s=−∞

+∞∑
µ=0

(
k−nsµD

(T )
nsµ+ k+

nsµU
(T )
nsµeik+

nsµLD
)
Qn′sβ′nsµ δss′

+
+∞∑
s=−∞

+∞∑
ν=0

(
k−nsµD

(B)
nsµ + k+

nsνU
(B)
nsν eik+

nsνLD
)
Yn′sβ′nsν δss′

(2.53)
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+∞∑
s=−∞

+∞∑
β=0

(
T

(A)
nsβ

e−ik−
nsβ

d1 +R
(A)
nsβ

)
Qn′sµ′[T ]
nsβ

δss′ = D
(T )
n′sµ
′r2
w3 + U

(T )
n′sµ
′e

ik+
n′sµ′

LD
r2
w3 (2.54)

+∞∑
s=−∞

+∞∑
β=0

(
T

(A)
nsβ

e−ik−
nsβ

d1 +R
(A)
nsβ

)
Yn′sν′[T ]
nsβ

δss′ = D
(B)
n′sν
′r2
d1 + U

(B)
n′sν
′e

ik+
n′sν′

LD
r2
d1 (2.55)

where

Qn′sβ′nsµ =
∫ rw3

rd2

f
∗(A)
n′sβ
′ (r)f (T )

nsµ(r)rdr ,Qn′sµ′[T ]
nsβ

=
∫ rw3

d2
f
∗(T )
n′sµ
′ (r)f (A)

nsβ
(r)rdr

Yn′sβ′nsν =
∫ rd1

rw2

f
∗(A)
n′sβ
′ (r)f (B)

nsν (r)rdr ,Yn′sν′[T ]
nsβ

=
∫ rd1

w2
f
∗(B)
n′sν
′ (r)f (A)

nsβ
(r)rdr

2.3.3.4 Matching equations at the interface x = x4

The different acoustic fields transmitted (φ(B)
d and φ(T )

d ) into the subdomains (B) and (T )
are scattered at the interface x4, generating transmitted and reflected acoustic fields (see
Figure 2.14).

Figure 2.14: Scattering of the sound field at the matching interface x4
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The matching equations can be written as


Ξ(T)
d + Ξ(T)

u = Ξ(E)
t , x = x4, ∀θ, r ∈ [rw2; rd1 ]

Ξ(B)
d + Ξ(B)

u = Ξ(E)
t , x = x4, ∀θ, r ∈ [rd2 ; rw3 ]

v
(E)
t · ex = 0, x = x4, ∀θ, r ∈ ]re1 ; rw2 [ ∪ ]rd1 ; rd2 [ ∪ ]rw2 ; re2 ]

(2.56a)
(2.56b)
(2.56c)

The projection of these equations on the different modal bases gives

+∞∑
s=−∞

+∞∑
µ=0

(
k−nsµD

(T )
nsµe−ik−nsµLD + k+

nsµU
(T )
nsµ

)
An′sm′nsµ δss′

+
+∞∑
s=−∞

+∞∑
ν=0

(
k−nsνD

(B)
nsνe

−ik−nsνLD + k+
nsνU

(B)
nsν

)
Gn′sm′nsν δss′ = T

(E)
n′sm

′r2
e2

(2.57)

D
(T )
n′sµ
′e
−ik−

n′sµ′
LD
r2
w3 + U

(T )
n′sµ
′r2
w3 =

+∞∑
s=−∞

+∞∑
m=0

T (E)
nsmAn

′
sµ
′[T ]

nsm δss′ (2.58)

D
(B)
n′sν
′e
−ik−

n′sν′
LD
r2
d1 + U

(B)
n′sν
′r2
d1 =

+∞∑
s=−∞

+∞∑
m=0

T (E)
nsmGn

′
sν
′[T ]

nsm δss′ (2.59)

where

Qn′sβ′nsµ =
∫ rw3

rd2

f
∗(A)
n′sβ
′ (r)f (T )

nsµ(r)rdr ,Qn′sµ′[T ]
nsβ

=
∫ rw3

d2
f
∗(T )
n′sµ
′ (r)f (A)

nsβ
(r)rdr

Yn′sβ′nsν =
∫ rd1

rw2

f
∗(A)
n′sβ
′ (r)f (B)

nsν (r)rdr ,Yn′sν′[T ]
nsβ

=
∫ rd1

w2
f
∗(B)
n′sν
′ (r)f (A)

nsβ
(r)rdr

2.3.3.5 Channel inlet x = x5

Sound transmission through the stator channels can be investigated in the same way as
for the previous interfaces. The only difference is that the sound field is scattered in both
azimuthal and radial directions, because of the presence of the stator ventilating holes (see
Figure 2.15). The diffraction of a helical wave by three-dimensional rigid flat plates of zero
thickness has been already reported by Ingenito et al [59] and Bouley et al [17], by using
the mode-matching technique. However, in the case of an open motor, the ventilating holes
are integrated in the stator core. The front face and the back face of the walls may have a
significant influence on the sound propagation. Therefore, the cooling channels cannot be
considered as flat plates in this analysis. In the following, the mode-matching method will
be extended to the transmission of helical waves through a periodic row of thick-walled
channels. As mentioned in Chapter ??, the cooling channels are periodically excited by
the incident waves, therefore, the matching equations need only to be formulated for the
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(a) (b)

Figure 2.15: Scattering of the sound field at the matching interface x5. (a) Meridian cut, (b)
cylindrical cut

reference channel m = 0. For this, the continuity of pressure and axial velocity must be
imposed at the channel cross-section (0 < θ < θa and rSd1 < r < rSd2). The rigid-wall
boundary condition corresponding to a vanishing normal velocity v.n = v.ex = 0 must
imposed on the front face of the channel walls.


Ξ(S1)

u + Ξ(S1)
r = Ξ(Sd)

d + Ξ(Sd)
u , x = x5, θ ∈ [0; θa] , r ∈ [rSd1 ; rSd2 ]

v(S1)
u · ex + v(S1)

r · ex = 0, x = x5, θ ∈
[
θa;

2π
V

]
, r ∈ ]rS; rSd1 [ ∪ ]rSd2 ; r2[

(2.60a)

(2.60b)

The modal projection must be carried out using the two modal bases, associated with
the waves propagating in the annular duct and in the reference channel. The projection
of the pressure equation on the eigenfunctions related to the reference channel leads to

∫ θa

0

∫ rSd2

rSd1

(
p(S1)
u + p(S1)

r

)
f

(Sd)
n′qp
′ (r) cos

(
n′qθ

)
rdrdθ

=
∫ θa

0

∫ rSd2

rSd1

(
p

(Sd)
d + p(Sd)

u

)
f

(Sd)
n′qp
′ (r) cos

(
n′qθ

)
rdrdθ (2.61)

Projection of the velocity equation on the eigenfunctions related to the annular duct
yields

∫ θa

0

∫ rSd2

rSd1

(
v(S1)
u · ex + v(S1)

r · ex
)
f

(S1)
n′sη
′ (r)e−in′sθrdrdθ

=
∫ θa

0

∫ rSd2

rSd1

(
v

(Sd)
d · ex + v(Sd)

u · ex
)
f

(S1)
n′sη
′ (r)e−in′sθrdrdθ (2.62)
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The rigid-wall boundary condition (Equation 2.60b) is equivalent to

∫ 2π/V

0

∫ r2

rS

(
v(S1)
u · ex + v(S1)

r · ex
)
f
∗(S1)
n′sη
′ (r)e−in′sθrdrdθ

=
∫ θa

0

∫ rSd2

rSd1

(
v(S1)
u · ex + v(S1)

r · ex
)
f
∗(S1)
n′sη
′ (r)e−in′sθrdrdθ (2.63)

Combining Equations 2.62 and 2.63 one gets

∫ 2π/2

0

∫ r2

rS

(
v(S1)
u · ex + v(S1)

r · ex
)
f

(S1)
n′sη
′ (r)e−in′sθrdrdθ

=
∫ θa

0

∫ rSd2

rSd1

(
v

(Sd)
d · ex + v(Sd)

u · ex
)
f

(S1)
n′sη
′ (r)e−in′sθrdrdθ (2.64)

Equations 2.64 and 2.61 are reduced by using the orthogonality of radial and azimuthal
modes. After accounting for the orthogonality, the matching equations become

+∞∑
s=−∞

+∞∑
η=0

(
U (S1)
nsη eik+

nsηLS1 +R(S1)
nsη

)
Λq′nsΥ

n′qp
′

nsη

=
(
D

(Sd)
n′qp
′ + U

(Sd)
n′qp
′ e
−ik−

n′qp′
Ld
)
θa
2 r

2
3 (1 + δq′0)

(2.65)

2π
V
r2

2k
+
n′sη
′U

(S1)
n′sη
′ eik+

nsηLS1 + 2π
V
r2

2k
−
n′sη
′R

(S1)
n′sη
′

=
+∞∑
q=0

+∞∑
p=0

(
D(Sd)
nqp + U (Sd)

nqp e−ik−nqqLSd
)
ϕn′sqΥ

n′sη
′[T ]

nqp

(2.66)

The projection matrices Λq′,s and ϕs′,q are evalutaed analytically:

Λq′s =
∫ θa

0
einsθ cos(n′qθ)dθ =


ins

[
1− (−1)q′e−insθa

]
n2
s − n′2q

, if nq′ 6= ns

a

2(1 + δq′0) , if n′q = ns

(2.67)

ϕs′q =
∫ θa

0
cos(nqθ)e−in′sθdθ =


in′s

[
(−1)qe−in′sθa + 1

]
n′2s − n2

q

, if nq 6= n′s

a

2(1 + δq0) , if nq = n′s

(2.68)

The projection integrals of the radial eigenfunctions Υnsη
n′qp
′ and Υnqp[T ]

n′sη
′ are evaluated
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numerically.

Υn′qp
′

nsη =
∫ rSd2

rSd1

f (S1)
nsη (r)f ∗(Sd)

n′qp
′ (r)rdr ,Υn′sη

′[T ]
nqp =

∫ rSd2

rSd1

f (Sd)
nqp (r)f ∗(S1)

n′sη
′ (r)rdr

2.3.3.6 Channel outlet x = x6

As before, the continuity of acoustic pressure and axial velocity must be imposed on the
channel cross-section (0 < θ < θa and rSd1 < r < rSd2) (see Figure 2.16). The rigid-

(a) (b)

Figure 2.16: Scattering of the sound field at the matching interface x6. (a) Meridian cut, (b)
Unwrapped representation of a cylindrical cut at r = (rSd1 + rSd2)/2

wall boundary condition is imposed on the front face of the channel walls. the matching
equations read


Ξ(Sd)

d + Ξ(Sd)
u = Ξ(S2)

t + Ξ(S2)
u , x = x6, θ ∈ [0; θa] , r ∈ [rSd1 ; rSd2 ]

v
(S2)
t · ex + v(S2)

u · ex = 0, x = x6, θ ∈
[
θa;

2π
V

]
, r ∈ ]rS; rSd1 [ ∪ ]rSd2 ; r2[

(2.69a)

(2.69b)

As before, the matching equations can be reduced by using the orthogonality of the
radial and azimuthal eigenfunctions. After accounting for the orthogonality, we get

(
D

(Sd)
n′qp
′e

ik+
n′qp′

LSd + U
(Sd)
n′qp
′

)
θa
2 r

2
Sd2

(1 + δq′0)

=
+∞∑
s=−∞

+∞∑
η=0

(
U (S2)
nsη e−ik−nsηLS2 + T

(S2)
n′sη
′

)
Λq′nsΥ

n′qp
′

nsη

(2.70)
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+∞∑
q=0

+∞∑
p=0

(
D(Sd)
nqp eik+

nqqLSd + U (Sd)
nqp

)
ϕn′sqΥ

n′sη
′[T ]

nqp

=2π
V
r2

2k
+
n′sη
′T

(S2)
n′sη
′ + 2π

V
r2

2k
−
n′sη
′U

(S2)
n′sη
′ e−ik−nsηLS2

(2.71)

2.3.3.7 Matching equations at the interface x = x7

The matching equations at the interface x7 (see Figure 2.17) can be expressed as

Figure 2.17: Scattering of the sound field at the matching interface x7


Ξ(R2)

d + Ξ(R2)
u = Ξ(A2)

t + Ξ(A2)
r , x = x7, ∀θ, r ∈ [r1; rR]

Ξ(S2)
t + Ξ(S2)

u = Ξ(A2)
t + Ξ(A2)

r , x = x7, ∀θ, r ∈ [rS; r2]
v

(A2)
t · ex + v(A2)

r · ex = 0, x = x7, ∀θ, r ∈ ]rR; rS[

(2.72a)
(2.72b)
(2.72c)

In the same way, these equations should be projected on the three sets of eigen-
functions. After accounting for the orthogonality of the modal bases and the rigid wall
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boundary condition, this system becomes

+∞∑
s=−∞

+∞∑
ξ=0

(
k−nsξU

(R2)
nsξ

+ k+
nsξ
D

(R2)
nsξ

eik+
nsξ

LR2
)
Kn′sβ′nsξ

δs′s

+
+∞∑
s=−∞

+∞∑
η=0

(
k−nsηU

(S2)
nsη + k+

nsηT
(S2)
nsη eik+

nsηLS2
)
X n′sβ

′

nsη δs′s

= k+
n′sβ
′T

(A2)
n′sβ
′ r2

2 + k−n′sβ′R
(A2)
n′sβ
′e
−ik−

n′sβ′
d2
r2

2

(2.73)

U
(R2)
n′sξ
′ r2
R +D

(R2)
n′sξ
′ e

ik+
n′sξ′

LR2r2
R =

+∞∑
s=−∞

+∞∑
β=0

(
T

(A2)
nsβ

+R
(A2)
nsβ

e−ik−
nsβ

d2
)
Kn′sξ′[T ]
nsβ

δs′s (2.74)

U
(S2)
n′sη
′ r2

2 + T
(S2)
n′sη
′ e

ik+
n′sη′

LS2r2
2 =

+∞∑
s=−∞

+∞∑
β=0

(
T

(A2)
nsβ

+R
(A2)
nsβ

e−ik−
nsβ

d2
)
X n′sη

′[T ]
nsβ

δs′s (2.75)

2.3.3.8 Matching equations at the interface x = x8

Figure 2.18: Scattering of the sound field at the matching interface x8

The continuity of the sound field at the interface x8 (see Figure 2.18) can be written
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as


Ξ(A2)
t + Ξ(A2)

r = Ξ(W)
t + Ξ(W)

r , x = x8, ∀θ, r ∈ [rf2 ; rf3 ]
Ξ(A2)

t + Ξ(A2)
r = Ξ(F)

t + Ξ(F)
i , x = x8, ∀θ, r ∈ [rf0 ; rf1 ]

v
(A1)
t · ex + v(A1)

r · ex = 0, x = x8, ∀θ, r ∈ ]r1; rf0 [ ∪ ]rf1 ; rf2 [ ∪ ]rf3 ; r2]

(2.76a)
(2.76b)
(2.76c)

The system of equations obtained after projecting Equations 2.76a, 2.76b and 2.76c
on the different eigenfunctions, is given by:

k+
n′sβ
′T

(A2)
n′sβ
′ e

ik+
n′sβ′

d2
r2

2 + k−n′sβ′R
(A2)
n′sβ
′r2

2

=
+∞∑
s=−∞

+∞∑
µ=0

(
k+
nswT

(W )
nsw + k−nswR

(W )
nswe−ik−nswLW

)
Bn′sβ′nsw δs′s

+
+∞∑
s=−∞

+∞∑
ν=0

k+
nsαT

(F )
nsµOn

′
sβ
′

nsα δss′ + k−njA
(F )
nj eik−njLFOn′sβ′nj δss′

(2.77)

+∞∑
s=−∞

+∞∑
β=0

(
T

(A2)
nsβ

eik+
nsβ

d2 +R
(A2)
nsβ

)
Bn′sw′[T ]
nsβ

δs′s = T
(W )
n′sw

′r2
f3 +R

(W )
n′sw

′e
−ik−

n′sw′
LW
r2
f3 (2.78)

+∞∑
s=−∞

+∞∑
β=0

(
T

(A2)
nsβ

eik+
nsβ

d2 +R
(A2)
nsβ

)
On′sα′[T ]
nsβ

δs′s = T
(F )
n′sν
′r2
f1 + A

(F )
nj e−ik−njLF r2

f1δs′0 (2.79)

where

Bn′sβ′nsw =
∫ rf3

rf2

f
∗(A)
n′sβ
′ (r)f (W )

nsw (r)rdr ,Bn′sw′[T ]
nsβ

=
∫ rf3

rf2

f
∗(T )
n′sµ
′ (r)f (A)

nsw(r)rdr

On′sβ′nsα =
∫ rf1

rf0

f
∗(A)
n′sβ
′ (r)f (F )

nsα(r)rdr ,On′sα′[T ]
nsβ

=
∫ rf1

f0
f
∗(F )
n′sα
′ (r)f (A)

nsβ
(r)rdr,

On′sβ′nj =
∫ rf1

rf0

f
∗(A)
n′sβ
′ (r)f (F )

nj (r)rdr

2.3.3.9 Matching equations at the interface x = x10

The interface x10 consists only of a rigid wall (see Figure 2.19). Only one equation is
required to determine the amplitude of the reflected field φ(W )

r . The hard-wall boundary
condition is imposed at right wall of the motor x10. This condition corresponds to a
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Figure 2.19: Scattering of the sound field at the matching interface x10

vanishing normal velocity.

v
(W )
t · ex + v(W )

r · ex = 0, x = x10, ∀θ, r ∈ [rf2 ; rf3 ] (2.80)

Multiplying this equation by f (W )
n′sw

′(r)e−ins′θ and integrating over the cross-section of
the wall, yields

k+
n′sw

′T
(W )
n′sw

′e
ik+
n′sw′

LW
r2
f3 + k−n′sw′R

(W )
n′sw

′r2
f3 = 0 (2.81)

2.3.3.10 Matching equations at the interface x = x9

The modal coefficients of the acoustic fields φ(G)
d , φ(R2)

d and φ(Rd)
t are determined at the

interface x9 (see Figure 2.20). The matching equations can be expressed as

Figure 2.20: Scattering of the sound field at the matching interface x9
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
Ξ(Rd2)

i + Ξ(Rd)
t = Ξ(R2)

d + Ξ(R2)
u , x = x9, ∀θ, r ∈ [r1; rRd ]

Ξ(G)
u + Ξ(G)

d = Ξ(R2)
d + Ξ(R2)

u , x = x9, ∀θ, r ∈ [rg1 ; rg2 ]
v

(R2)
d · ex + v(R2)

u · ex = 0, x = x9, ∀θ, r ∈ ]rRd ; rg1 [ ∪ ]rg2 ; rR]

(2.82a)
(2.82b)
(2.82c)

After projecting the above equations on the different modal bases and accounting for
their orthogonality, one obtains

k+
njA

(Rd2)
nj eik+

njLp2Fn′sξ′nj +
+∞∑
s=−∞

+∞∑
γ=0

k−nsγT
(Rd)
nsγ Fn

′
sξ
′

nsγ δss′

+
+∞∑
s=−∞

+∞∑
g=0

(
k−nsgD

(G)
nsg +k+

nsgU
(G)
nsg eik+

nsgLG
)
Wn′sξ

′

nsg δss′

= k+
n′sξ
′D

(R2)
n′sξ
′ r2
R + k+

n′sξ
′U

(R2)
n′sξ
′ e
−ik−

n′sξ′
LR2r2

R

(2.83)

A
(Rd2)
nj eik+

njLp2δγ′jr
2
Rd

+ U
(Rd)
n′sγ
′ r2
Rd

=
+∞∑
s=−∞

+∞∑
ξ=0

(
D

(R2)
nsξ

+ U
(R2)
nsξ

e−ik−
nsξ

LR2
)
Fn′sγ′[T ]
nsξ

δss′

(2.84)

D
(G)
n′sg
′r2
g2 + U

(G)
n′sg
′e

ik+
n′sg′

LG
r2
g2 =

+∞∑
s=−∞

+∞∑
ξ=0

(
D

(R2)
nsξ

+ U
(R2)
nsξ

e−ik−
nsξ

LR2
)
Wn′sg

′[T ]
nsξ

δss′ (2.85)
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2.3.4 Solving procedure
The system of linear equations obtained after the projection of the matching equations
can be solved either by a direct method or an iterative method. In the direct method, the
26 matching equations are written in a matrix form MX = N , where X represents the
modal coefficients vector. The determination of the latter is achieved by a direct matrix
inversion X = M−1N . It should be kept in mind that the use of this technique can lead
to some problems related to the conditioning of the global matrix M when the number
of modes increases. In order to avoid this problem, the two solving procedures are used
in this section. In the first step, the system composed of 26 equations is divided into
two sub-systems consisting of 14 and 12 equations CX1 = V and HX2 = S, in which
the direct method can be applied. These sets of equations correspond respectively to the
blocks 1 and 2 of the stationary part of the ventilation system (see Figure 2.10). The
iterative method can finally be used to couple the two sub-systems of linear equations, by
taking the outputs of one block as inputs for the other one.

2.3.4.1 System of linear equations related to the block 1

The block 1 in Figure 2.10 contains all the interfaces located in the left-hand side of the
fixed part: x1, x2, x3, x4 and x5. The matrix C, the vector S and the modal amplitudes
vector X1 are built up from Equations 2.45, 2.46, 2.47, 2.49, 2.50, 2.51, 2.53, 2.54, 2.55,
2.57, 2.58, 2.59, 2.65 and 2.66.

CX1 = V (2.86)

with

C =



C1
1 C2

1 C3
1 C4

1 0 0 0 0 0 0 0 0 0 0
C1

2 0 C3
2 C4

2 0 0 0 0 0 0 0 0 0 0
0 C2

3 C3
3 C4

3 0 0 0 0 0 0 0 0 0 0
0 0 C3

4 C4
4 C5

4 C6
4 C7

4 C8
4 0 0 0 0 0 0

0 0 C3
5 C4

5 0 0 C7
5 C8

5 0 0 0 0 0 0
0 0 0 0 C5

6 C6
6 C7

6 C8
6 0 0 0 0 0 0

0 0 0 0 0 0 C7
7 C8

7 C9
7 C10

7 C11
7 C12

7 0 0
0 0 0 0 0 0 C7

8 C8
8 C9

8 C10
8 0 0 0 0

0 0 0 0 0 0 C7
9 C8

9 0 0 C11
9 C12

9 0 0
0 0 0 0 0 0 0 0 C9

10 C10
10 C11

10 C12
10 C13

10 0
0 0 0 0 0 0 0 0 C9

11 C10
11 0 0 C13

11 0
0 0 0 0 0 0 0 0 0 0 C11

12 C12
12 C13

12 0
0 0 0 0 C5

13 C6
13 0 0 0 0 0 0 0 C14

13

0 0 0 0 C5
14 C6

14 0 0 0 0 0 0 0 C14
14


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X1 =
{
URd ,UG,DR1 ,UR1 ,US1 ,RS1 ,TA1 ,RA1 ,DT ,UT ,DB,UB,TE,DSd

}
V = {V1,V2,0,0,0,0,0,0,0,0,0,0,V13,V14}

The matrix C and the vector V terms are given in Appendix A.1. Thus, the modal
amplitudes vector is found by a direct matrix inversion X1 = C−1V .

2.3.4.2 System of linear equations related to the block 2

The second block in Figure 2.10 corresponds to all the interfaces located in the right side
of the ventilation system : x6, x7, x8, x9 and x10. In the same way, Equations 2.70, 2.71,
2.73, 2.74, 2.75, 2.77, 2.78, 2.79, 2.81, 2.83, 2.84 and 2.85 are written in a matrix form

HX2 = S (2.87)

with

H =



H1
1 H2

1 H3
1 H4

1 0 0 0 0 0 0 0 0
H1

2 0 H3
2 H4

2 0 0 0 0 0 0 0 0
0 H2

3 H3
3 H4

3 0 0 0 0 0 0 0 0
0 0 H3

4 H4
4 H5

4 H6
4 H7

4 H8
4 0 0 0 0

0 0 H3
5 H4

5 0 0 H7
5 H8

5 0 0 0 0
0 0 0 0 H5

6 H6
6 H7

6 H8
6 0 0 0 0

0 0 0 0 0 0 H7
7 H8

7 H9
7 H10

7 H11
7 0

0 0 0 0 0 0 H7
8 H8

8 H9
8 H10

8 0 0
0 0 0 0 0 0 H7

9 H8
9 0 0 H11

9 0
0 0 0 0 0 0 0 0 H9

10 H10
10 0 0

0 0 0 0 H5
11 H6

11 0 0 0 0 0 H12
11

0 0 0 0 H5
12 H6

12 0 0 0 0 0 H12
12



X2 =
{
URd2 ,DG,DR2 ,UR2 ,US2 ,T S2 ,TA2 ,RA2 ,TW ,RW ,T F ,USd

}

S = {S1,S2,0,0,0,0,0,0,0,0,S11,S12}

The matrix H and the vector S terms are given in Appendix A.2. The modal coeffi-
cients vector X2 is obtained by a direct matrix inversion X2 = H−1S.

2.3.4.3 Coupling strategy

The next step consists in coupling the two sub-systems of linear equations 2.86 and 2.87
together to determine the modal amplitudes of the different acoustic fields. It is clear
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that the solving of Equation 2.86 requires prior knowledge of the modal coefficients UG

and USd stored in vector V , and solving Equation 2.87 also requires prior knowledge of
the coefficients DG and DSd stored in the vector S. To solve this problem, it is necessary
to use an iterative procedure to account for the multiple reflections of the acoustic waves
in the air gap and inside the stator cooling channels. For the initialization step of the
iterative procedure g = 0 , the modal amplitudes of the acoustic waves propagating
inside the stator cooling channels and the air gap are considered to be zero (USd(g=0) =
UG(g=0) = DSd(g=0) = D(g=0)

G = 0). Therefore, solving Equation 2.86 allows one to
determine the modal amplitudes of the fields DSd(g=0) and D

(g=0)
G . These are used in

Equation 2.87 to compute the new values of USd(g=1) and U(g=1)
G . This procedure must

be repeated until convergence.
It is important to note here that the matrices C and H depend only on the trans-

verse dimensions of the geometry, the number of stator ducts and the modal order of
the incident wave n. In practice, these matrices must be calculated only once, when
several frequencies or lengths need to be tested. Therefore, a parametric study on the
transverse dimensions is more expensive than a parametric study on the longitudinal di-
mensions. This augmentation in computational time is explained by the fact that the
radial wavenumbers and the modal projections are computed each time the transverse
dimensions change. Furthermore, the size of the matrices increases drastically with the
number of modes. In order to optimize the memory storage, the matrices C and H can be
declared as sparse matrices in the MATLAB code, using the intrinsic function "sparse()".

2.3.4.4 Number of modes

As what has been discussed in Chapter 1, the infinite sets of linear equations must be
truncated in order to have a finite number of modes. The latter depends on both radial
and azimuthal dimensions of each subsystem. The numbers of radial modes needed in
each subdomain are given by

Nξ ≈
rR − r1

rRd − r1
Nγ + 1, Ng ≈

rg2 − rg1

rRd − r1
Nγ + 1, Nβ ≈

r2 − r1

rRd − r1
Nγ + 1

Nm ≈
re2 − re1
rRd − r1

Nγ + 1, Nw ≈
rf2 − rf3

rRd − r1
Nγ + 1, Nα ≈

r2 − r1

rRd − r1
Nγ + 1

Nα ≈
rf0 − rf1

rRd − r1
Nγ + 1, Nν ≈

rw2 − rd1

rRd − r1
Nγ + 1, Nµ ≈

rd2 − rw3

rRd − r1
Nγ + 1

The number of azimuthal modes required inside stator channels, is given by

Nq ≈
θa

2π/V (2Ns + 1)
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2.3.5 Numerical validation
In order to assess the relevance of the analytical model, a comparison with the finite
element method has been performed. As a first step, both methods are applied to a
simplified configuration of an open motor for mathematical validation. Consider a test-
case of a ventilation system consisting of 18 stator cooling channels. The transverse and
the longitudinal dimensions of the ventilation system are listed in Table 2.1. In this test-
case, an incident mode of order (n = 2, j = 0) and amplitude A(F )

nj = 1 is imposed in
the annular duct located upstream the radial impeller (F ) at a frequency f = 3500 Hz.
Note here that the incident waves generated by the rotor ducts are not considered in this
specific test-case (A(Rd1)

nj = A
(Rd2)
nj = 0 and A(F )

nj = 1).

r1 rRd
rg1 rg2 rR rS rw2 rd1 rd2 rw3 re1 re2

0.065 0.09 0.14 0.145 0.16 0.21 0.18 0.20 0.22 0.25 0.10 0.30
r2 rf0 rf1 rf2 rf3 rSd1 rSd2 V θaV/2π
0.28 0.09 0.13 0.145 0.24 0.245 0.265 18 0.7
LP1 LP2 d1 d2 LS1 LS2 LSd

LD LW LF LG LE
0.03 0.03 0.1 0.1 0.15 0.15 0.35 0.05 0.07 0.095 0.38 0.15

Table 2.1: Dimensions of the ventilation system used in the test case.

(a) (b)

Figure 2.21: (a) Different regions of the finite element simulation, (b) Finite element mesh

For the same reasons mentioned in Chapter 1, the computational domain used in the
finite element method needs to be divided into 5 different regions, as illustrated in Figure
2.21a:

• The physical domain Ωphy, in which the solution of the problem must be found.

• Three perfectly matched layers (PML) denoted by Ω1
pml, Ω2

pml and Ω3
pml to absorb all

the acoustic waves coming from the physical domain Ωphy and avoid their reflection.

• An active perfectly matched layer Ω4
pml in which the incident wave must be imposed

without being attenuated.
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The variational formulation of the Helmholtz equation is described in a three-dimensional
cartesian coordinate system (see Appendix B). As before, the problem is solved by using
the open source solver FreeFem++. It is important to note that the corresponding finite
element mesh is composed of about 8.105 tetrahedral elements, as illustrated in Figure
2.21b. At this frequency, the use of a second-order interpolation is necessary to obtain
the desired precision. The acoustic potential field calculated by the finite element method
is shown in Figure 2.22. This was obtained after about 20 minutes of calculation on a

Figure 2.22: Acoustic potential field obtained by the finite element method. f = 3500 Hz,
n=2, j=0

personal computer with a single core. Before comparing the results obtained by the two
methods, a convergence study on the number of iterations has been carried out, by esti-
mating that the results of the analytical model are converged when the relative variation
of the modal amplitudes between two successive iterations is less than εmax ≈ 10−3. The
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0.05

0.1
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0.2
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0.3

0.35

(a)

0 10 20 30 40 50

0

0.1

0.2

0.3

0.4

0.5

0.6

(b)

Figure 2.23: Modal amplitudes of the upstream and downstream propagating acoustic modes
in the air gap (a) and inside the stator cooling channels (b) as functions of the number of
iterations.

variations of the modal amplitudes of the downstream and upstream propagating waves
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in the air gap and inside the stator channels as functions of the number of iterations are
shown in Figure 2.23. It is found that the convergence is reached after only 30 iterations.
The instantaneous acoustic potential fields obtained by the mode-matching technique and
the finite element method are first illustrated by a meridian cut at a constant angle (θ = 0
in the upper region r/r2 > 0 and θ = π in the lower region r/r2 < 0) in Figures 2.24a
and 2.24b respectively. Qualitatively, a very good agreement is found between the two

(a)

(b)

Figure 2.24: Meridian cut of the instantaneous acoustic potential field at θ = 0. Mode-
matching technique (a). Finite element method (b). Physical domain limits ( ) . n = 2,
f = 3500.

results. This meridian cut shows clearly the radial variations of the sound field in the
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ventilation system, due to the propagation of several radial higher-order modes generated
by the diffraction of the incident wave. On the other hand, a continuity of the sound field
is observed at all the interfaces located between the different sub-domains defined in the
analytical model (see Figure 2.24a). Note here that the use of a large number of cut-off
modes is necessary to ensure this continuity. Figure 2.25 shows axial cuts of the instanta-
neous acoustic potential fields obtained by the mode-matching technique (Figures 2.25a,
2.25b and 2.25c) and the finite element method (Figures 2.25d, 2.25e and 2.25f) at three

(a) (b) (c)

(d) (e) (f)

Figure 2.25: Instantaneous acoustic potential fields obtained by the mode-matching technique
(a-b-c) and the finite element method (d-e-f). Axial cut at x = 0 (a-d), axial cut at x =
(x2 + x3)/2 (b-e), axial cut at x = (x7 + x8)/2 (c-f). f = 3500 Hz, n = 2.

different axial positions x = (x2 + x3)/2 (Figures 2.25a and 2.25d), x = −0.05m (Figures
2.25a and 2.25d) and x = (x7 + x8)/2 (Figures 2.25a and 2.25d). There is obviously
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a perfect agreement between the results obtained by the two methods. The moduli of
the complex-valued modal coefficients of the different acoustic fields illustrated in Figures
2.25a, 2.25b and 2.25c are shown in Figure 2.26. Figures 2.26e and 2.26f indicate that

(a) (b)

(c) (d)

(e) (f)

Figure 2.26: Modal amplitudes of the different acoustic fields. (a) R(S1)
sη , (b) U (S1)

sη , (c) D(Sd)
qp ,

(d) U (Sd)
qp , (e) T (S2)

sη , (f) U (S2)
sη , Cut-off modes (bars ), Cut-on modes (bars ).
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upstream of the stator channels (see Figure 2.25c), the sound field is dominated by the
modes (2, 0), (2, 1), and slightly modulated by the mode (−16, 0). Note here that the 16
azimuthal lobes of the latter are rotating clockwise. However, this mode is generated by
the diffraction of the azimuthal mode n = 2 by the stator channels, as expected from the
equation ns = n + sV = 2 + s18 = −16. The effect of the latter seems to be significant
downstream of the stator channels (see Figures 2.26a and 2.26b). Typically, the acoustic
field is dominated by the mode (−16, 0) near the outer wall of the duct, and by the modes
(2, 0) and (2, 1) near the inner wall of the duct (see Figures 2.25a and 2.25d).

It may be observed from Figures 2.25b and 2.25e that the sound field distribution
inside the stator channels is not homogeneous. This is explained by the propagation of
two cut-on modes (0, 0) and (1, 0) inside each channel, as indicated in Figures 2.26c and
2.26d. In the same way, to illustrate the variation of the acoustic field in the azimuthal
direction, cylindrical cuts have been made at three different radii. These have been taken
at the center of the stator channels r = 0.5(rSd1 + rSd2), the air gap r = 0.5(rg1 + rg2) and
the rotor annular duct r = 0.5(r1+rRd). Their unwrapped representations are respectively
illustrated in Figures 2.27a, 2.27b and 2.27c. As can be seen, the mode ns = −16 can
only propagate in the region located near the outer wall of the duct (see Figure 2.27a),
and only the mode ns = 2 can be transmitted into the air gap (Figure 2.27b) and the
rotor (Figure 2.27c).

(a) (b) (c)

Figure 2.27: Instantaneous acoustic potential fields obtained by the mode-matching method
for three cylindrical cuts. r = (rSd2 + rSd1)/2 (a), r = (rg2 + rg1)/2 (b), r = (r1 + rRd)/2 (c).
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2.3.5.1 Comparison with a realistic configuration

The finite element method is applied in this section to a realistic configuration of an
open motor, in order to evaluate the limitations of the analytical model. In fact, one of
the advantages of the finite element method is to provide a solution of the problem in a
complex geometry, by taking into account the influence of various parameters neglected in
the simplified configuration, such as the curvature and the end-windings. It is important
to note that only the effect of curvature is investigated in this work. In fact, the end-
windings are still assumed to be perfectly rigid, and the influence of their real geometry
on sound propagation is beyond the scope of this study. The geometry investigated in this

(1) (2) (3)
(4)

Figure 2.28: Meridian cut of the realistic configuration, showing the different regions of the
finite element simulation

work is shown in Figure 2.28. Both methods are applied in this section to the diffraction
of an incident mode of order (2, 0) and of amplitude A(F )

nj = 0. The dimensions of the
ventilation system are given in Table 2.2. In the finite element method, the incident mode
was imposed in the active perfectly matched layer (see Figure 2.28).

r1 rRd
rg1 rg2 rR rS rw2 rd1 rd2 rw3 re1 re2

0.065 0.09 0.14 0.145 0.16 0.21 0.18 0.20 0.22 0.25 0.10 0.30
r2 rf0 rf1 rf2 rf3 rSd1 rSd2 V θaV/2π
0.28 0.09 0.13 0.145 0.24 0.245 0.265 18 0.7
LP1 LP2 d1 d2 LS1 LS2 LSd

LD LW LF LG LE
0.08 0.08 0.075 0.05 0.075 0.075 0.30 0.05 0.05 0.15 0.35 0.15

Table 2.2: Dimensions of the ventilation system used in the test case

The instantaneous acoustic potential fields obtained by the two methods are illustrated
in Figure 2.29 by a meridian cut at a constant azimuthal angle (θ = 0 when r/r2 > 0
and θ = π when r/r2 < 0) for three different frequencies f = 1000 Hz (Figures 2.29b
and 2.29a), f = 2000 Hz (Figures 2.29d and 2.29c) and f = 3000 Hz (Figures 2.29f and
2.29e).
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(a) (b)

(c) (d)

(e) (f)

Figure 2.29: Instantaneous acoustic potential fields obtained by the finite element method
applied to a realistic configuration (a-c-e), and the mode-matching method (b-d-f), at three
different frequencies. f = 1000 Hz (a-b), f = 2000 Hz (c-d), f = 3000 Hz (e-f). n = 2, j = 0,
A

(F )
nj = 1, A(R1)

nj = 0, A(R2)
nj = 0.

It can be noticed from Figure 2.29 that the results obtained by two methods agree
well at particularly low and medium frequencies of interest. This can be explained by
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the fact that the acoustic wavelengths are large enough with respect to the characteristic
dimensions of the curved parts of the ventilation system in these frequency ranges. The
sound waves are eventually not affected by the variation of the duct cross-section. This
can readily be seen at the first frequency (f = 1000Hz) in Figures 2.29a and 2.29b. It is
obvious that the acoustic response of the two configurations is almost the same. In fact,
when the frequency increases, the acoustic response of each of these configurations remains
nearly the same with a slight difference near the motor shaft, as illustrated in Figures 2.29c
and 2.29d. However, the difference between the two configurations seems to be significant
at relatively high frequencies, as shown in Figures 2.29e and 2.29f. The wave motion in
the right part of the domain appears as dominantly axial in the numerical solution and
dominantly radial in the analytical one. The effects due to the axial variation of the duct
cross-section become too important and they cannot be neglected in the analysis.

It is interesting to note that the analytical model can obviously be improved by using
the multimodal method [81, 42, 40, 43, 70, 71] to account for the variation of the duct
cross-section. This method makes it possible to account for the coupling between the
different acoustic modes propagating in the ventilation system. Its implementation could
be considered for a future extension of the work but it is beyond the scope of the present
study.

2.3.6 Parametric studies
2.3.6.1 Effect of frequency

One of the most important aspects in the present investigation is the influence of frequency
on the acoustic response of the ventilation system. The analytical model is applied in this
section to the same configuration investigated in Section 2.3.5 (see Table 2.1), by imposing
an incident mode of azimuthal and radial orders (n = 4, j = 0) in the annular duct located
upstream the radial impeller (sub-domain (F )). The variations of the different acoustic
powers as functions of frequency are shown in Figure 2.30. The acoustic powers have been
evaluated analytically as follows



P(F )
i = −πk0r

2
f1Z0A

(F )
nj |kn,j|2 , k−nj ∈ IR

P(F )
t = πk0r

2
f1Z0

+∞∑
s=−∞

+∞∑
α=0

Tnsα
∣∣∣k−nsα∣∣∣2 , k+

nsα ∈ IR

P(Rd)
u = −πk0r

2
Rd
Z0

+∞∑
s=−∞

+∞∑
γ=0

Tnsγ
∣∣∣k−nsγ∣∣∣2 , k+

nsγ ∈ IR

P(Rd)
t = πk0r

2
Rd
Z0

+∞∑
s=−∞

+∞∑
γ=0

Unsγ
∣∣∣k−nsγ∣∣∣2 , k+

nsγ ∈ IR

P(E)
t = −πk0r

2
e2Z0

+∞∑
s=−∞

+∞∑
m=0

Tnsm
∣∣∣k−nsm∣∣∣2 , k−nsm ∈ IR

(2.88a)

(2.88b)

(2.88c)

(2.88d)

(2.88e)
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Computing a complete spectrum with 500 frequencies using the analytical model takes
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Figure 2.30: Variations of acoustic powers as functions of frequency. (a) P(Rd1)
u /P(F )

i . (b)
P(Rd2)
t /P(F )

i . (c) P(E)
t /P(F )

i . (d) P(F )
t /P(F )

i . n = 4, f1 = 2306Hz, f2 = 2348Hz, f3 = 2504Hz,
f4 = 2636Hz, f5 = 2660Hz, f6 = 2816Hz.

about 9 minutes on a personal computer. In this specific test case, the time required to
calculate the radial wavenumbers and the projection integrals of the radial eigenfunctions
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is about 20 seconds. Using the iterative procedure at each frequency of the spectrum
to calculate the modal coefficients takes on average only 1 seconds. As can be seen
from Figure 2.30, the acoustic power distribution depends strongly on the excitation
frequency. It is found that no acoustic wave can be transmitted to the rotor cooling
channels (P(Rd)

u = P(Rd)
t = 0) when the excitation frequency is lower than 2797 Hz (see

Figures 2.30b and 2.30a). This frequency limit represents the cut-off frequency of the

(a) (b)

(c) (d)

(e) (f)

Figure 2.31: Acoustic potential modulus |φ| at 6 different frequencies form Figure 2.30. (a)
f1 = 2306 Hz, (b) f2 = 2348 Hz, (c) f3 = 2504 Hz, (d) f4 = 2636 Hz, (e) f5 = 2660 Hz, (f)
f6 = 2816 Hz. n = 4, A(F )

nj = 1, AR1)
nj = 0, A(R2)

nj = 0.
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mode (n = 4, j = 0) in the sub-domains located upstream and downstream the rotor
channels ((Rd1) and (Rd2)). It is defined by f(4,0) = K

(Rd)
40 c0/2π = 2797 Hz. For certain

frequencies below this value, the sound can only be transmitted through the air gap
and the stator cooling channels. Note here that this mode becomes cut-on when the
frequency increases. In the following, considerable attention is paid to the variation of
the acoustic power emitted outside the ventilation system P(E)

t . The aim is to predict
the resonance frequencies of the ventilation system. To better understand the origin of
the transmission peaks P(E)

t in Figure 2.30c, it is important to visualize the sound field
at different frequencies of the spectrum. It should be emphasized here that the real
part of the instantaneous acoustic potential field is not the best indicator for observing
interference between sound waves. In such a complex geometry, multiple interferences may
appear in different regions of the ventilation system, requiring visualization of the sound
field over a complete time period. For this, it is more convenient to use the modulus of the
acoustic potential field (absolute value) instead of its real part for comparison purposes.
Figure 2.31 shows the modulus of the acoustic potential fields (amplitudes) for 6 different
frequencies extracted from Figure 2.30. The first frequency (Figure 2.31a) corresponds
to the first transmission peak f1 in Figure 2.30. It is clear to see that the amplitude of
the acoustic field was amplified in the region located below the end windings. The same
behaviour is observed at the second frequency f2 = 2366 Hz (see Figure 2.31a), which
corresponds to the second transmission peak. In both cases, the peak levels are maximum,
and therefore the incident wave is almost totally transmitted outside the motor.

However, other constructive interferences between acoustic waves can be observed in
the stator core as shown in Figures 2.31d and 2.31e. These correspond respectively to the
transmission peaks at f4 = 2636Hz and f5 = 2660Hz in Figure 2.30c. On the other hand,
the interferences are less marked for the frequencies in which the transmitted power P(E)

t

is very low, as shown in Figures 2.31c and 2.31f. At these frequencies (f3 and f6), the
incident wave is almost totally reflected back to the cooling fan, as shown in the Figure
2.30d. This analysis confirms that acoustic resonances involve high transmission levels.
These frequencies should not coincide with the characteristic frequencies of the cooling
fan in order to improve the acoustic performance of the ventilation system of the motor.

2.3.6.2 Influence of channel length

A large number of geometrical parameters could be examined to find the most suitable
dimensions of the ventilation system to reduce its overall noise. Such a configuration pos-
sesses 33 geometrical parameters that can be used for parametric studies. Each parameter
has a more or less significant influence on the acoustic response of the system. In this
section, only the influence of the length of the stator ventilating holes is discussed. For
this, two configurations with different channel lengths are compared in the rest of this sec-
tion. Both configurations have the same transverse dimensions, given in Table 2.1. Their
longitudinal dimensions are listed in Table 2.3. Note here that changing the length of the

105



Chapter 2. Analytical modelling of sound propagation inside an open motor

LP1 LP2 d1 d2 LS1 LS2 LSd
LD LW LF LG LE

Config 1 0.03 0.03 0.1 0.1 0.15 0.15 0.33 0.05 0.07 0.095 0.38 0.15
Config 2 0.03 0.03 0.1 0.1 0.15 0.15 0.39 0.05 0.07 0.095 0.38 0.15

Table 2.3: Different lengths used in the two configurations (meter)

channels without affecting other parameters of the ventilation system leads to a change in
the size of the motor. The comparison between the two configurations has been performed
on the acoustic power transmitted outside the ventilation system P(E)

t . Figure 2.30 shows
the variations of the transmitted powers obtained for the two configurations as functions
of frequency. As expected, a significant difference is found between the results obtained
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Figure 2.32: Variation of acoustic powers as functions of frequency. LSd = 0.33m ( ),
LSd = 0.39m ( ). n = 4, f1 = 2262 Hz, f2 = 2454 Hz, f3 = 2480 Hz.

in the two configurations. All transmission peaks appear at different frequencies in the
two spectra. This may be attributed to the modification of the resonance frequencies of
the two configurations. In fact, these frequencies are directly affected by the dimensions
of the ventilation system. A qualitative comparison between the moduli of the acoustic
potential fields obtained for the two configurations at three different frequencies denoted
f1, f2 and f3 in the spectra is shown in Figure 2.33.

At the first frequency f = f1, an important transmission peak appears in the first
configuration (see Figure 2.32), which is mainly caused by the amplification of sound in
the system, as illustrated in Figure 2.33a. This peak disappears in the second configura-
tion, because no constructive interference between the acoustic waves can take place in
the cooling system at this frequency (see Figure 2.33b). The second frequency f = f2

corresponds to the resonance frequency of the cooling channels used in the second con-
figuration (see Figure 2.33d). A strong amplification of sound can clearly be observed
inside the channels, which is responsible for the transmission peak at the frequency f2. It
should be noted that the same behavior is observed in the first configuration when it is
excited by the frequency f = f3 (see Figure 2.33e).

This section has shown that the acoustic response of the stationary part of the ven-
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(a) (b)

(c) (d)

(e) (f)

Figure 2.33: Acoustic potential modulus |φ|. (a) LSd = 0.39 m, f = f1. (b) LSd = 0.33 m,
f = f1. (c) LSd = 0.39 m, f = f2. (d) LSd = 0.33 m, f = f2. (e) LSd = 0.39 m, f = f3. (f)
LSd = 0.33 m, f = f3. n = 4.

tilation system is strongly affected by the variation of the channel length. Consequently,
the resonance frequencies can be shifted by decreasing or increasing this parameter. In
contrast, in most practical applications the size of the motor cannot change too much
because of its allocated space in the train. For this reason, when the length of the sta-
tor channels changes, other parameters of the ventilation system must be modified to
maintain the same motor size.
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2.3.6.3 Scattering of evanescent waves

In the previous sections, the acoustic response of the ventilation system to an incident
excitation generated by the fan has been presented. Up to now, all incident modes consid-
ered in this work have been assumed to be cut-on. In practice, the sound field generated
by a ducted fan is composed of both cut-on and cut-off modes. It is instructive to examine
how evanescent waves can excite the stationary part of the ventilation system. In the fol-
lowing, particular attention will be paid to cut-off modes. It should be recalled here that
the tonal noise generated by a ducted fan can be controlled by generating higher order
modes at the blade passing frequency and its first harmonics. The aim is to generate
only cut-off modes at these frequencies. In fact, when an acoustic mode of order (n, j)
is generated at a frequency below its cut-off frequency f < fcutoff , its amplitude decays
exponentially along the distance, with a decay rate defined by

τnj = exp
(
−
√
K2
nj − k2

0∆x
)
, ∆x = |x− x12| (2.89)

where x12 corresponds to the axial position of the leading edges of the fan blades (see
Figure 2.10). Equation 2.89 shows clearly that the amplitude of the decaying field goes
to zero when the axial distance ∆x is large enough. In practical applications, the duct
in which the incident wave is generated is not semi-infinite. More precisely, in the case
of an open motor, this duct is connected to another duct of larger transverse dimensions.
To explain the propagation mechanism of a cut-off mode generated by an upstream fan
through the ventilation system, a comparison between two configurations with different
distances between the impeller leading edge and the discontinuity interface LF = x12−x8

has been carried out. Both configurations have the same dimensions listed in Table 2.1,
except for the distance between the two interfaces LF . In the first configuration, the
impeller blades are placed at a distance of LF = 0.08 m from the discontinuity interface
x8, whereas the second configuration has a smaller distance given by LF = 0.01 m. It
should be noted here that the second configuration is more realistic than the first one
(LF ≈ 0). First of all, an incident mode of order (8, 0) is imposed in the annular duct
located upstream of the radial impeller at a frequency f = 2000Hz. The cut-off frequency
of the latter is given by f (F )

(8,0) = K
(F )
(8,0)c0/2π = 3886.8 Hz (K(F )

(8,0) = 71.82). The variation
of the amplitude of the incident wave with distance is shown in Figure 2.34. A meridian
cut of the instantaneous acoustic potential fields, corresponding to the two configurations
are illustrated in Figure 2.35. As can be seen, in the first configuration (Figure 2.35a), no
acoustic wave can propagate inside the ventilation system. This is due to the fact that
the amplitude of the incident wave decays completely along the axis before reaching the
discontinuity interface x8, as indicated in Figure 2.34. In contrast, when the distance LF
is relatively small as in the second configuration (Figure 2.35b), the incident wave can
be transmitted into the ventilation system. Figure 2.34 shows clearly that the amplitude
of the incident wave does not decay to zero at the interface x8. It reaches about 54% of
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Figure 2.34: Variation of amplitude factor τnj with distance |x − x12| ( ). Discontinuity
interface ( ).

(a) (b)

Figure 2.35: Instantaneous acoustic potential fields obtained by the mode-matching technique
applied to the diffraction of an evanescent wave emitted at two different positions. (a) LF =
0.08m, (b) LF = 0.01m. f = 2000 Hz, n = 8, A(F )

nj = 1, A(R1)
nj = 0, A(R2)

nj = 0

its maximum value. Axial cuts of the acoustic potential fields (φ(A2)
t + φ(A2)

r ) and their
associated modal amplitudes are illustrated in Figure 2.36 at two different positions x = x8

and x = (x7 + x8)/2. At the interface x8 (Figure 2.36a), a strong variation of the sound
field is observed in the radial direction. Basically, the sound field remains concentrated at
the junction interface located between the two ducts. This is explained by the presence
of a large number of cut-off modes at this interface with relatively high amplitudes, as
indicated in Figure 2.36c. The amplitude of these modes decreases rapidly with distance,
as shown in Figure 2.36b. It is found that only the mode of order (8, 0) is cut-on at
this frequency. This propagates outwards in the radial direction to the stator block
before being diffracted by the different components of the ventilation system, and then
transmitted outside the ventilation system. To give a more comprehensive interpretation
of the sound propagation mechanism in this specific case, an axial cut of the acoustic
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(a) (b)

(c) (d)

Figure 2.36: Instantaneous acoustic potential fields obtained by the mode-matching technique.
(a) Axial cut at x8 = 0.585 m. (b) Axial cut at (x7 + x8)/2 = 0.535 m. (c) Modal amplitudes
|R(A2)

nsβ
|. (d) Modal amplitudes |T (A2)

nsβ
|. Cut-off modes (bars ), Cut-on modes (bars ).

LF = 0.01 m, f = 2000 Hz, n = 8, A(F )
nj = 1

potential field was made at a position located between the end-windings and the flow
deflector x = (x3 + x2)/2 (see Figure 2.37a). The corresponding modal amplitudes are
shown in Figures 2.37b and 2.37b. They indicate that only the mode of order (8, 0) was
transmitted downstream the cooling channels. It may be observed from Figure 2.37a, that
the acoustic field is highly concentrated near the outer wall of the annular duct. This is
the so-called the skin effect [25]. It appears when the azimuthal modal order is sufficiently
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(a)

(b) (c)

Figure 2.37: Instantaneous acoustic potential fields obtained by the mode-matching technique.
(b) Axial cut at (x2 + x3)/2 = −0.215 m. (c) Modal amplitudes |R(A1)

nsβ
|. (d) Modal amplitudes

|T (A1)
nsβ
|. Cut-off modes (bars ), Cut-on modes (bars ). LF = 0.01 m, f = 2000 Hz,

n = 8, A(F )
nj = 1

high. As can be seen from Figure 2.37a, the sound field can be divided into two main
regions, separated by a radius rc called the caustic radius [25]. The sound field varies only
in the outer annulus rc ≤ r ≤ r2, and decays to zero in the inlet annulus r1 ≤ r < rc.
Hence, the wave is only reflected by the outer wall of the duct. Figure 2.38 shows the
variation of the radial shape function of the mode (8, 0) as a function of radius. As can be
seen, it decays rapidly when r decreases. This may explain why the sound field is almost
zero in the region near the motor shaft ( r1 < r < rc).

In fact, the basic reason why sound cannot be transmitted through the air gap and
rotor channels is that their external radii are lower than the caustic radius rRd < rg2 < rc

of the mode (8, 0). Note here that the influence of the distance LF becomes less important
when the mode (8, 0) is generated at a frequency very close to its cut-off frequency (k0 ≈
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Figure 2.38: Variation of radial shape function with radius. (n = 8, j = 0)

Knj). The attenuation becomes very slow and the decaying amplitude goes to zero for
very long distances. The acoustic potential fields obtained for the two configurations
studied previously at a frequency slightly lower than the cut-off frequency of the mode
(8, 0) f = 3885 Hz are shown in Figure 2.39. As can be seen, the same behavior is
observed in both configurations.

(a) (b)

Figure 2.39: Instantaneous acoustic potential fields obtained by the mode-matching technique
applied to the diffraction of an evanescent wave emitted at two different positions. (a) LF = 0.01
m, (b) LF = 0.08 m. f = 3885 Hz, n = 8, A(F )

nj = 1, A(R1)
nj = 0, A(R2)

nj = 0

It should be emphasized that the cut-off modes with relatively high azimuthal orders
cannot be transmitted through the components of the ventilation system even if the
distance LF is too small. This is due to the fact that the cut-off frequency increases
with the modal order. In practical application, care should be taken when choosing the
dimensions of the cooling fan, in order to avoid generating acoustic modes able to be
transmitted into the ventilation system. It is worth noting that the same analysis can be
applied to the rotor cooling channels and the rotor slots.
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2.4 Air outlet
The last part of this chapter addresses the downstream transmission of impeller noise
through the rigid bars located at the motor outlet. The typical representation of the
latter is illustrated in Figure 2.40a. Up to now, only the noise transmitted into the
stationary part of the ventilation system has been investigated (see Section 2.3.3). In
reality, a part of impeller noise can propagate radially from the impeller trailing-edge
towards the air outlet of the motor, as illustrated in Figure 2.40b. However, the sound
field emitted downstream the radial impeller can be expanded into a sum of diverging
spinning modes having various propagation angles. Each incident mode of order n is
scattered by the rigid bars into several spinning modes of orders ns = n+ sV . In the rest
of this section, a three-dimensional mode-matching technique is applied to the diffraction
of a single spiral wave by the rigid bars.

(a) (b)

Figure 2.40: (a) Typical configuration of an open motor. (b) Typical configuration of the rigid
bars located at the air outlet of the motor. (c) Downstream propagation of the noise generated
by the radial impeller.

2.4.1 Acoustic potentials
As a first step, the geometry is divided into three different sub-domains, corresponding
to the upstream and the downstream annular volumes and the inter-bars channels, as
depicted in Figure 2.41. Four acoustic fields are generated by the impingement of the
incident wave on the rigid bars. Without further change of notation, the same indices
considered for the case of a single row of channels (see Chapter 1) are used in this section.
The mathematical expressions of the different acoustic fields can readily be found by
solving the Helmholtz equation in cylindrical coordinates with the appropriate boundary
conditions. The only difference compared to the problems investigated so far, is the
direction of propagation of the different acoustic fields. In this specific problem, the
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(a) (b)

Figure 2.41: Different acoustic fields generated by the diffraction of the incident wave. (a)
Axial cut. (b) Unwrapped representation of a cylindrical cut at r = r1

rigid wall boundary condition must be applied on the azimuthal θ and axial x directions.
Therefore, the radial direction represents the main direction of propagation of the different
acoustic fields. These fields can be described in each sub-domain by a sum of converging or
diverging spiral modes. The incident wave φi is considered as a single diverging spinning
mode traveling form the impeller trailing-edge r = r0 to the inlet interface of the rigid
bars r = r1. It can be expressed as

φi(r, θ, x) = AnjH
(1)
n (Kjr) cos (kjx) einθ, kj = j

π

ha + hb
, Kj =

√
k2 − k2

j

(2.90)
where Kj and kj represent respectively the radial and the axial wave numbers, and H(1)

n

is the Hankel function of the first kind (H(1)
n (Kjr) = Jn(Kjr) + iYn(Kjr)). It should

be recalled here that this function is typically used to describe the radial propagation of
diverging waves, as in the case of the incident wave.

The reflected field φr is considered as a converging spiral wave emitted at the in-
let interface of the rigid bars r1. The radial propagation of this wave can be described
by the Hankel function of the second kind H(2)

ns (Ktr) = Jns(Ktr) − iYns(Ktr). In con-
trast, this function has no physical meaning for small arguments Ktr. It becomes in-
finite (H(2)

ns (Ktr) → ∞) when Ktr → 0 because of the Bessel function of the sec-
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ond kind (Yns(Ktr) → ∞). Furthermore, the phase velocity of each converging mode
vph = k0r0c0/ns varies with the radius r, and the mode is cut-on only if this velocity
is supersonic vph > c0. In fact, when the propagation radius decreases the local phase
velocity also decreases, and it can reach a subsonic value vph ≤ c0. If this condition is
fulfilled, the mode becomes cut-off, and it cannot be transmitted to the annular volume
located bellow the cut-off radius. Therefore, the converging mode is totally reflected back
towards the rigid bars as illustrated in Figure 2.42. Consequently, a standing wave is

Figure 2.42: Radial mode reversal

established between the cut-off radius and the inlet interface of the rigid bars, due to the
interference between the two waves. In this condition, it is more convenient to use the
Bessel function of the first kind Jns(Ktr) rather than the Hankel function of the second
kind H(2)

ns (Ktr) to account for the radial reversal of converging modes. The condition that
can be used to switch from the Hankel function of the second kind to the Bessel function
of the first kind is deduced from the phase velocity of each mode ns. It is given by

vph
c0

= kr0

ns
≤ 1 (2.91)

The reflected field can therefore be expressed as

φr(r, θ, x) =
+∞∑
s=−∞

+∞∑
t=0

RnstΦns (Ktr) cos (ktx) einsθ (2.92)

where
ns = n+ sV , kt = t

π

ha + hb
, Kt =

√
k2 − k2

t
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Φns(Ktr) =

Jns(Ktr) , if kr0/ns ≤ 1
H(2)
ns (Ktr) , if kr0/ns > 1

The mathematical expressions of the downstream φ
(m)
d and upstream φ(m)

u acoustic
fields in the mth inter-bar channel are given by:

φ(m)
d (r, θ, x)
φ(m)
u (r, θ, x)

 =
+∞∑
q=0

+∞∑
p=0

Dm
qp

Um
qp

H(1)
nq (Kpr)

Φnq (Kpr)

 cos
(
kp

[
x− hb

2

])
cos

(
nq
[
θ − 2πm

V

])

(2.93)
with

nq = q
V

2
θa + θb
θa

, kp = p
π

ha
, Kp =

√
k2 − k2

p , Dm
q = D0

qeim2πn/V , Um
q = U0

q eim2πn/V

Φnq(Kpr) =

Jnq(Kpr) , if kr1/nq ≤ 1
H(2)
nq (Kpr) , if kr1/nq > 1

The transmitted acoustic field is considered as a diverging wave emitted at the outlet
interface of the rigid bars r = r2. It can be expressed as

φt(r, θ, x) =
+∞∑
s=−∞

+∞∑
t=0

TnstH
(1)
ns (Ktr) cos (ktx) einsθ (2.94)

2.4.2 Matching equations
The mode-matching method is used in this section to calculate the modal coefficients of
the different acoustic fields. In this particular configuration, the different sub-domains
are joined at different radial positions. However, the matching equations can be obtained,
by imposing the continuity of acoustic pressure and radial velocity at the interfaces r1

and r2. Moreover, the rigid-wall boundary condition corresponding to a vanishing normal
velocity v · n = v · er = 0 must be imposed on the front face and the back face of the
rigid bars. As mentioned earlier, the inter-bar channels are excited periodically by the
incident wave, therefore the matching equations need to be written for only the reference
channel m = 0. The acoustic pressure and the radial velocity are gathered into a vector
Γ, defined by

Γζ(r, θ, x) =
 p(r, θ, x)
v(r, θ, x) · er

 , ζ = {i, r, t, u, d}
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The matching equations result as



Γi + Γu = Γd + Γu, r = r1, θ ∈ [0; θa] , x ∈ [hb/2;hb/2 + ha]
(vi + vr) · er = 0, r = r2, θ ∈ [θa; 2π/V ] , x ∈ ]0;hb/2[ ∪ ]ha;ha + hb/2[

Γu + Γd = Γt, r = r2, θ ∈ [0; θa] , x ∈ [hb/2;hb/2 + ha]
vt · er = 0, r = r2, θ ∈ [θa; 2π/V ] , x ∈ ]0;hb/2[ ∪ ]ha;ha + hb/2[

(2.95a)
(2.95b)
(2.95c)
(2.95d)

2.4.2.1 Inlet interface r = r1

The continuity of acoustic pressure at the interface r = r1 yields :

AnjH
(1)
n (Kjr1) cos (kjx) einθ +

+∞∑
s=−∞

+∞∑
t=0

RnstH
(2)
ns (Ktr1) cos (ktx) einsθ

=
+∞∑
q=0

+∞∑
p=0

[
D0
qpH

(1)
nq (Kpr1) + U0

qpH
(2)
nq (Kpr1)

]
cos

(
kp

[
x− hb

2

])
cos (nqθ) (2.96)

The continuity of the radial velocity gives:

AnjH
(1)′
n (Kjr1) cos (kjx) einθ +

+∞∑
s=−∞

+∞∑
t=0

RnstH
(2)′
ns (Ktr1) cos (ktx) einsθ

=
+∞∑
q=0

+∞∑
p=0

[
D0
qpH

(1)′
nq (Kpr1) + U0

qpH
(2)′
nq (Kpr1)

]
cos

(
kp

[
x− hb

2

])
cos (nqθ) (2.97)

Equations 2.96 and 2.97 must be projected on the two sets of eigenfunctions. The
projection of the pressure equation on the transverse modes of inter-bar channels is written
as

∫ ha+hb/2

hb/2

∫ θa

0
(pi + pr) cos

(
n′p

[
z − hb

2

])
cos

(
n′qθ

)
dzdθ

=
∫ ha+hb/2

hb/2

∫ θa

0
(pd + pd) cos

(
n′p

[
z − hb

2

])
cos

(
n′qθ

)
dzdθ (2.98)

where
n′p = p′

π

ha
, n′q = q′

B

2
θa + θb
θa

The projection of the radial velocity equation on the transveres modes of the annular
volume, is written as

∫ ha+hb

0

∫ θa+θb

0
(vi · er + vr · er) cos (n′tz) e−in′sθdzdθ

=
∫ ha+hb/2

hb/2

∫ θa

0
(vd · er + vu · er) cos (n′tz) e−in′sθdzdθ (2.99)
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where
n′t = t′

π

ha + hb
, n′s = n+ s′V

Using the orthogonality of the different modal bases, the matching equations become:

AnjH
(1)
n (Kjr1)Λ(θ)

q′nΛ(z)
p′j +

+∞∑
s=−∞

+∞∑
t=0

RnstH
(2)
ns (Ktr1) Λ(θ)

q′sΛ
(z)
p′,t

=
[
D0
q′p′H

(1)
n′q

(Kp′r1) + U0
q′p′H

(2)
n′q

(Kp′r1)
]
θa
2 (1 + δq′0) ha2 (1 + δp′,0)

(2.100)

[
AnjH

(1)′
n (Kjr1) δs′0δjt′ +Rn′st

′H
(2)′
n′s

(Kt′r1)
]

(θa + θb)
ha + hb

2 (1 + δt′0)

=
+∞∑
q=0

+∞∑
p=0

[
D0
qpH

(1)′
nq (Kpr1) + U0

qpH
(2)′
nq (Kpr1)ϕ(θ)

s′qϕ
(z)
t′p

] (2.101)

where the matrices Λ(z)
p′j , Λ(z)

p′t and ϕ
(z)
t′p represent the projection integrals of the axial eigen-

functions
Λ(z)
p′j =

∫ ha+hb/2

hb/2
cos

(
k′p

[
x− hb

2

])
cos (kjx) dx

Λ(z)
p′t =

∫ ha+hb/2

hb/2
cos

(
k′p

[
x− hb

2

])
cos (ktx) dx

ϕ
(z)
t′p =

∫ ha+hb/2

hb/2
cos (k′tx) cos

(
kp

[
x− hb

2

])
dx

and Λ(θ)
q′n, Λ(θ)

q′s and ϕ
(θ)
s′q are the projection integrals of the azimuthal eigenfunctions

Λ(θ)
q′n =

∫ θa

0
cos

(
n′qθ

)
einθdθ

Λ(θ)
q′s =

∫ θa

0
cos

(
n′qθ

)
einsθdθ

ϕ
(θ)
s′q =

∫ θa

0
e−in′sθ cos (nqθ) dθ

2.4.2.2 Channel outlet r = r2

The matching equations at the outlet interface r2 are derived in the same way as for the
inlet interface. The continuity equations of acoustic pressure and radial vecolity at the
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outlet interface of the bars r = r2 read

+∞∑
q=0

+∞∑
p=0

[
D0
qpH

(1)
nq (Kpr2) + U0

qpH
(2)
nq (Kpr2)

]
cos

(
kp

[
x− hb

2

])
cos (nqθ)

=
+∞∑
s=−∞

+∞∑
t=0

TnstH
(1)
ns (Ktr2) cos (ktx) einsθ (2.102)

+∞∑
q=0

+∞∑
p=0

[
D0
qpH

(1)′
nq (Kpr2) + U0

qpH
(2)′
nq (Kpr2)

]
cos

(
kp

[
x− hb

2

])
cos (nqθ)

=
+∞∑
s=−∞

+∞∑
t=0

TnstH
(1)′
ns (Ktr2) cos (ktx) einsθ (2.103)

After projecting Equations 2.102 and 2.103 on the two sets of eigenfunctions, and
accounting for their orthogonality, we obtain

[
D0
q′p′H

(1)
n′q

(Kp′r2) + U0
q′p′H

(2)
n′q

(Kp′r2)
]
θa
2 (1 + δq′0) ha2 (1 + δp′0)

=
+∞∑
s=−∞

+∞∑
t=0

TnstH
(1)
ns (Ktr2) Λ(θ)

q′sΛ
(z)
p′t

(2.104)

+∞∑
q=0

+∞∑
p=0

[
D0
qpH

(1)′
nq (Kpr2) + U0

qp H
(2)′
nq (Kpr2)

]
ϕ

(θ)
s′,qϕ

(z)
t′p

=Tn′st′H
(1)′
n′s

(Kt′r2) (θa + θb)
ha + hb

2 (1 + δt′0)
(2.105)

2.4.2.3 Solving procedure

As explained previously, these matching equations are solved by a direct matrix inversion.
The matrix form of Equations 2.100, 2.101, 2.104 and 2.105 is given by:



E1
p F1

p X1
p 0

E1
v F1

v X1
v 0

0 F2
p X2

p E2
p

0 F2
v X2

v E2
v





R

D0

U0

T





H1
p

H1
v

0

0

 (2.106)
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with

E1
p(β, α) = Φns (Ktr1) Λ(θ)

q′sΛ
(z)
p′t

F1
p(β, β) = −H(1)

n′q
(Kp′r1) θa2 (1 + δq′0) ha2 (1− δp′0)

X1
p(β, β) = −Φn′q (Kp′r1) θa2 (1 + δq′0) ha2 (1− δp′0)

H1
p(β,1) = −An,jH(1)

n (Kjr1) Λ(θ)
q′nΛ(z)

p′j

E1
v(α, α) = Φ′n′s (Kt′r1) (θa + θb)

ha + hb
2 (1 + δt′0)

F1
v(α, β) = −H(1)′

nq (Kpr1)ϕ(θ)
s′qϕ

(z)
t′p

X1
v(α, β) = −Φ′nq (Kpr1)ϕ(θ)

s′qϕ
(z)
t′p

H1
v(α,1) = −An,jH(1)′

n (Kjr1) δs′0δjt′ (θa + θb)
ha + hb

2 (1 + δt′0)

F2
p(β, β) = H

(1)
n′q

(Kp′r2) θa2 (1 + δq′0) ha2 (1− δp′0)

X2
p(β, β) = Φn′q (Kp′r2) θa2 (1 + δq′0) ha2 (1− δp′0)

E2
p(β, α) = −H(1)

ns (Ktr2) Λ(θ)
q′sΛ

(z)
p′t

F2
v(α, β) = H(1)′

nq (Kpr2)ϕ(θ)
s′qϕ

(z)
t′p

X2
v(α, β) = Φ′nq (Kpr2)ϕ(θ)

s′qϕ
(z)
t′p

E2
v(α, α) = −H(1)′

n′s
(Kt′r2) (θa + θb)

ha + hb
2 (1 + δt′0)

where
α = (s, t) , β = (q, p)

2.4.3 Results
2.4.3.1 Sample results

Sample results are presented in this section for the diffraction of a single incident mode
of order (n = 5, j = 2) by V = 13 rigid bars. The parameters used in the test-case
are listed in Table 2.4. The instantaneous acoustic potential field obtained by the mode-

r0 r1 r2 V H hb/(hb + ha) θbV/2π Anj f n j
0.10 0.25 0.30 13 0.4 0.2 0.2 1 4000 5 2

Table 2.4: Test case parameters. Diffraction of a spiral wave by the rigid bars

matching method is illustrated in Figure 2.43 by an axial cut at x = (ha + hb)/2 (Figure
2.43a) and a cut at a constant azimuthal angle at θ = θa/2 (Figure 2.43b). These figures
confirm that the incident wave is scattered in both directions of propagation (azimuthal
and axial). Figure 2.43a shows a typical diverging spiral wave front composed mainly of
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Figure 2.43: Instantaneous acoustic potential field obtained by the mode-matching technique
(a) Axial cut at x = H/2. (b) Cut at a constant azimuthal angle θ = θa/2. f = 4000Hz, n = 3,
j = 2, V = 13

5 lobes and rotating in the counter-clockwise direction. This field is modulated by the
presence of several axial and azimuthal modes generated by the diffraction. The effect
of the rigid-wall boundary condition applied to the parallel discs can be seen in Figure
2.43b.

2.4.3.2 Effect of thickness

To further investigate the influence of the bar thickness on sound transmission at the
motor air outlet, a comparative study between four configurations with different bar
thicknesses has been carried out. Note here that the step discontinuity in the axial
direction is ignored in this section hb = 0, in order to quantify only the influence of the
thickness of bar separators θb. In this case, the diffraction of the incident wave occurs
only in the azimuthal direction. The thickness values of the different configurations are
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given in Table 2.5. The impeller trailing edge, the inlet and the outlet interfaces of the

Configuration 1 2 3 4
θaV/2π 0 0.2 0.5 0.8

Table 2.5: Thickness values of the different configurations

rigid bars are respectively located at the radii r0 = 0.1m, r1 = 0.25m and r2 = 0.3m.
The instantaneous acoustic potential fields obtained for the diffraction of a single incident

(a) (b)

(c) (d)

Figure 2.44: Instantaneous acoustic potential field for four thickness values. (a) θbV/2π = 0,
(b) θbV/2π = 0.2, (c) θbV/2π = 0.5, (d) θbV/2π = 0.9. f = 2500 Hz, j = 0, n = 3

diverging mode of order (3, 0), at the frequency f = 2500 Hz are shown in Figure 2.44
for the different configurations. Figures 2.44a and 2.44b clearly confirm that small wall-
thicknesses generally yield only small reflections. In both configurations, the incident wave
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is almost totally transmitted downstream the rigid bars. As can be seen, the transmitted
acoustic field is typically dominated by the mode (3, 0) and slightly modulated by other
modes generated by the diffraction (ns, 0). The effect of these, is less marked in the
first configuration (Figure 2.44a), compared to the second one (Figure 2.44a). However,
the effect of the rigid bars seems to be significant when the wall-thickness increases, as
illustrated in Figures 2.44c and 2.44d. It can readily be seen from Figure 2.44c that
upstream of the rigid bars, the interference between the incident and reflected fields
becomes more complex, due to the increased bar thickness. Furthermore, it is found
that the transmitted field is no longer dominated by the mode (3, 0). It is dominated
by the mode (−10, 0) generated by the combination ns = n + sV = 3 + (−1)13 = −10,
where the 10 azimuthal lobes are rotating in clockwise direction. In the case of very
thick bars (Figure 2.44d), the incident wave is strongly reflected back towards the radial
impeller, causing more interference between the different acoustic waves, compared to the
other configurations. Consequently, this involves a low noise transmission to the external
environment.

Acoustically, the most straightforward way to reduce the transmission of motor noise to
the external environment, is to use the last configuration (see Figure 2.44d). In contrast,
the aerodynamic performance of the ventilation system must also be considered. It is
worth noting that this configuration would not be encountered in practice because of its
unacceptable flow blockage effect.

2.5 Conclusion
Three-dimensional analytical models based on the mode-matching method have been
proposed in this chapter in order to investigate how sound can propagate in the stationary
part of the ventilation system integrated in an open motor. The aim was to predict
acoustic resonances in the ventilation system, in order to avoid them during the design
stage. In the first step, the realistic configuration of the motor was substituted by a
simplified configuration, composed only of several interconnected generic elements. Then,
the acoustic field was expressed in each element as a sum of orthogonal modes. The modal
amplitudes of the different acoustic fields have been determined by the use of the mode-
matching method. The system of linear equations obtained by matching equations has
been divided into two subsystems because of the important number of unknowns. Each
subsystem has been solved by direct matrix inversion. Then, an iterative procedure was
employed to couple the two subsystems. The results obtained by the analytical model
have been validated by comparison with the finite element method. In the first step,
both methods were applied to a simplified configuration of an open motor, specifically for
mathematical validation purposes. A very good agreement was found between the results
obtained by the two methods. Following this successful validation, the finite element
method was then applied to the realistic configuration of an open motor, including all
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the curvatures present in the stationary part of the motor. The comparison of the results
obtained by the two methods indicated a good agreement particularly at low and medium
frequencies of interest. However, the difference between the two results seems to be
significant at relatively high frequencies.

Throughout this chapter, various parametric studies were conducted, highlighting the
fact that the acoustic resonances are not only caused by the stator cooling channels.
The results obtained by this model have indicated that acoustic resonances can occur
at different locations in the ventilation system. However this confirms that the use of a
model encompassing all motor components is necessary to accurately predict the resonant
frequencies of the ventilation system.

124





Chapter 3

Sound transmission through periodic
rows of rotating channels

3.1 Introduction
The present chapter is dealing with sound transmission through two rotating rows of
thick-walled channels. As what has been already discussed in the previous chapters,
all ventilation systems integrated in electrical machines possess both a stationary part
and a rotating part. The latter can either be the cooling fan and/or the ventilating
holes integrated in the rotor core. So far in this work, only the propagation of acoustic
waves inside the stationary part of the two types of motors has been addressed. In
reality, the effects due to rotation have a considerable influence on the propagation of
sound waves in the ventilation system, and they cannot be neglected in the analysis.
Analytical modelling of sound transmission through systems consisting of both rotating
and stationary parts is of considerable practical interest. In an industrial context, this
can be seen, for instance, as a rotor/stator stage of a turbomachine [99, 50, 36] or a
system composed of the two parts such as a traction motor used in railway applications.
However, the use of numerical methods to take into account rotational effects requires
the use of both fixed and moving meshes [36, 52, 96]. Each mesh represents a separate
computational subdomain in which the wave equation must be satisfied. The transmission
of acoustic waves between the fixed and moving meshes is then achieved by performing a
simple interpolation between the grids of these meshes. On the other hand, the acoustic
power of the scattered field is distributed not only over several modes but also over several
frequencies [50]. Consequently, this requires solving the wave equation in the time domain
and not in the frequency domain.

In this chapter, an analytical model based on a two-dimensional mode-matching tech-
nique is proposed to deal with this problem. Two kinds of coupled systems are inves-
tigated, mainly composed of two periodic rows of thick-walled channels. In the first
configuration, one row rotates at constant rotational speed denoted Ω, and the other row
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is considered fixed. The second configuration corresponds to two rows of channels rotat-
ing with different rotational speeds. This last configuration can be used to give a first
understanding of the propagation mechanism inside new technology motors, known as
autonomous motors, where the radial impeller does not rotate in the same direction and
at the same rotational speed as the motor.

3.2 Scattering of an oblique plane wave by the rotor
channels

As explained in Chapter 1, the coupled system can be divided into two sub-systems
addressed separately. This section addresses only the diffraction of a single oblique plane
wave by a single row of rotating channels, in order to investigate how the sound can
be transmitted through the cooling channels integrated in the rotor core. The typical
configuration of the latter is shown in Figure 3.1. It consists of V channels of circular
cross-section and length L. Since the radial dimensions of this geometry are smaller than
acoustic wavelengths rRd − r1 << λ, the problem can simply be addressed by using a
two-dimensional approach. For that, an unwrapped representation of a cylindrical cut of

Figure 3.1: Typical configuration of the ventilating holes (cooling channels) integrated in the
rotor core.

the rotor ducts at r = r0 is described in a two-dimensional Cartesian coordinates system,
as sketched in Figure 3.2b. The channels have a width denoted by a, and separated by
rigid walls of thickness b. In this analysis, the cooling channels are rotating counter-
clockwise at a constant rotational speed denoted by Ω. This effect can be reproduced by
a translational motion of the channels in the direction of increasing z at the speed Ωr0

(see Figure 3.2b). An incident wave φ(a)
i composed of n azimuthal lobes, propagates in

the positive x direction towards the channels with a certain angle θi. The scattering of
this wave by the channels generates four acoustic fields denoted by φ(a)

r , φ(a)
d , φ(a)

u and
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(a) (b)

Figure 3.2: (a) Axial cut representation of the rotor channels. (b) Unwrapped representation
of a cylindrical cut at r = r0

φ
(a)
t at different frequencies, where the superscript (a) refers to the waves expressed in the

stationary reference frame (observer at rest). The downstream and upstream propagating
acoustic fields inside the cooling channels φ(a)

d and φ(a)
u propagate at a relative frequency

given by ωr = ω0 − nΩ. On the other hand, the frequency of each reflected φ(a)
r and

transmitted φ(a)
t acoustic mode is modulated by the rotation of the channels. However,

each mode of order ns = n+sV propagates at a modulated frequency given ωs = n+sV Ω.
It is important to note that it will be more practical to express the different acoustic fields
in the stationary reference frame, in the case where the rotor channels must be coupled
with a stationary part such as the stator channels. But, since the different fields are not at
the same frequency, the matching equations cannot be formulated in this reference frame.
The procedure adopted in this work to deal with this problem, can be divided into three
successive steps:

1. Express the incident wave in the reference frame related to the cooling channels by
changing the frequency ω → ωr.

2. Writing the matching equations in the relative frame of reference at the same fre-
quency ωr, by imposing the continuity of physical quantities at both ends of chan-
nels. This allows to determine the modal coefficients of the different fields.

3. Express all acoustic fields in the reference frame related to an observer at rest, by
performing a change of coordinates and frequencies.
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3.2.1 Acoustic potentials in the relative reference frame (ob-
server attached to the channels)

As a first step, the incident excitation needs to be expressed in the reference frame attached
to the rotating channels φ(a)

i → φ
(r)
i , by modifying its angular frequency ω → ωr = ω−nΩ.

The scattering of φ(r)
i generates four acoustic fields denoted by φ(r)

r , φ(r)
d , φ(r)

u and φ
(r)
t ,

where the superscript (r) denotes wave expressed in the relative reference frame (observer
attached to the rotating channels). Note here that all the acoustic fields generated in
this reference frame propagate at the same angular frequency ωr (see Figure 3.3). In

Figure 3.3: Two-dimensional unwrapped representation of the scattering of an incident wave
by a row of rotating channels described in the relative reference frame. Grazing flow (blue)

addition, an observer moving with the rotor channels would observe a grazing flow in the
unbounded domains located upstream and downstream of channels, which moves in the
opposite direction of rotation (see Figure 3.3). Therefore, the incident φ(r)

i , reflected φ(r)
r

and transmitted φ(r)
t fields must satisfy the convected Helmholtz equation with a uniform

flow in the direction of decreasing z. It is given by

(1−M2
z )∂

2φ

∂z2 + ∂φ

∂x
− 2ikrM2

z

∂φ

∂z
+ k2

rφ = 0, kr = k0 −
nΩ
c0

(3.1)

where Mz = −Ωr0/c0 is the tangential Mach number of the flow, and kr is the acoustic
wavenumber expressed in the relative reference frame.

The acoustic pressure of the upstream and downstream acoustic fields can be deduced
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from their acoustic potentials:

p(r)(x, z, t) = −ρ
(
∂φ(r)(x, z, t)

∂t
− Ωr0

∂φ(r)(x, z, t)
∂z

)
= ic0ρ (kr −Mzα)φ(r)(x, z, t)

= ic0ρ

(
kr + Ωr0

c0
α

)
φ(r)(x, z, t), if x < 0 or x > L

(3.2)

The axial velocity is calculated by

v(x, z, t) · ex = ∂φ(x, z, t)
∂z

= ik±φ(x, z, t)
(3.3)

The acoustic potential of the incident wave φ(r)
i expressed in the frame of reference

attached to the cooling channels reads

φ
(r)
i (x, z, t) = Aneik(r)+

i (x−xi)eiαize−iωrt, k
(r)+
i =

√
k2
r − (1−M2

z )α2
i + 2krMzαi (3.4)

The reflected φ(r)
r and transmitted φ(r)

t fields are given by
φ(r)

r (x, z, t)
φ

(r)
t (x, z, t)

 =
+∞∑
s=−∞

Rs

Ts

eik(r)+
s (x−x0)

eik(r)−
s (x−xL)

 eiαize−iωrt (3.5)

with
k(r)±
s = ±

√
k2
r − (1−M2

z )α2
s + 2krMzαs

The upstream φ(r)
u and downstream φ

(r)
d fields in the mth channel must satisfy the

Helmholtz equation without grazing flow. They are given by:φ(r)
d (x, z, t)
φ(r)
u (x, z, t)

 =
+∞∑
q=0

D0
q

U0
q

 eimn2π/V

eik(r)+
q (x−x0)

eik(r)−
q (x−xL)

 cos
(
αq

[
z −m2πr0

V

])
e−iωrt (3.6)

with
k(r)±
q = ±

√
k2
r − α2

q

The acoustic pressure inside the channels can be obtained by

p(r)(x, z, t) = −ρ∂φ
(r)(x, z, t)
∂t

, if x0 ≤ x ≤ xL (3.7)

3.2.2 Matching equations
In the next step, it is necessary to match the different fields expressed in the relative
reference frame at both ends of the channels, in order to determine their modal ampli-
tudes. As mentioned earlier, the matching conditions are derived form the conservation of
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physical quantities on each interface separating two sub-domains with different physical
or geometrical properties, as illustrated in Figure 3.4. It is important to note that these
conditions do not reduce to the continuity of the acoustic pressure and the axial velocity,
because of the presence of the grazing flow in the azimuthal direction. Ingenito et al
[59, 58] have demonstrated that only the acoustic pressure and the normal displacement
are continuous at the junction interface:

p2(x0, z) = p1(x0, z)

v2(x0, z) · ex = v1 · ex
(

1− Ωr0αs
ωs

)

These have been used to address the problem of sound transmission through the inter-
blade channels of a centrifugal fan, by considering the impeller inlet as a cascade of
semi-infinite channels. However, in the literature, these matching conditions are typically
applied on the surface of liners in the presence of a grazing flow [9].

Figure 3.4: Unwrapped representation of a cylindrical cut at r0

In the following, the continuity of the acoustic pressure and the normal displacement
are written at both interfaces x = x0 and x = xL (see figure 3.3).

3.2.2.1 Channel inlet x = x0

The continuity of the acoustic pressure at the inlet interface gives

Aneiαizeik+
i Li

(
kr + Ωr0

c0
αi

)
+

+∞∑
s=−∞

Rseiαsz
(
kr + Ωr0

c0
αs

)

=
+∞∑
q=0

(
D0
q + U0

q e−ik−q L
)

cos(αqz), x = x0, 0 ≤ z ≤ a (3.8)
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The continuity of the normal displacement is written as

Ank
(r)+
i eiαizeik(r)+

i Li

(
1− Ωr0

ω
αi

)
+

+∞∑
s=−∞

Rsk
(r)−
s eiαsz

(
1− Ωr0

ωs
αs

)

=
+∞∑
q=0

(
k(r)+
q D0

q + k(r)−
q U0

q e−ik(r)−
q L

)
cos(αqz), x = x0, 0 ≤ z ≤ a (3.9)

The rigid wall boundary condition must be applied on the front face of the channel
separators. This corresponds to a vanishing axial velocity

Ank
(r)+
i eiαizeik(r)+

i Li
+∞∑
s=−∞

Rsk
(r)−
s eiαsz = 0, x = x0, a ≤ z ≤ H (3.10)

The projection of Equation 3.8 on the eigenfunction related the reference channel
cos(αµz), gives

Aneik(r)+
i LiΛµi

(
kr + Ωr0

c0
αi

)
+

+∞∑
s=−∞

RsΛµs

(
kr + Ωr0

c0
αs

)

=
(
D0
µ + U0

µe−ik(r)−
µ L

)
a

2(1 + δµ0)
(3.11)

After projecting Equation 3.9 on the eigenfunction of the unbounded medium e−iανz,
and taking into account the rigid wall boundary condition, one obtains

Ank
(r)+
i eik(r)+

i Li

(
1− Ωr0

ω
αi

)
H+Rνk

(r)−
ν

(
1− Ωr0

ων
αν

)
H

=
+∞∑
q=0

(
D0
qk

(r)+
q + k(r)−

q U0
q e−ik(r)−

q L
)
ϕνq

(3.12)

3.2.2.2 Channel outlet x = xL

The continuity of the acoustic pressure at the outlet interface, gives

+∞∑
q=0

(
D0
qeik(r)+

q L + U0
q

)
cos(αqz) =

+∞∑
s=−∞

Tseiαsz
(
kr + Ωr0

c0
αs

)
, x = xL, 0 ≤ z ≤ a

(3.13)
The continuity of the normal displacement is written as

+∞∑
q=0

(
k(r)+
q D0

qeik(r)+
q L + k(r)−

q U0
q

)
cos(αqz)

=
+∞∑
s=−∞

Tsk
(r)+
s eiαsz

(
1− Ωr0

ωs
αs

)
, x = xL, 0 ≤ z ≤ a (3.14)
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The rigid wall boundary condition imposed on the back face of the channel separators
is written as

+∞∑
s=−∞

Tsk
(r)+
s eiαsz = 0, x = xL, a ≤ z ≤ H (3.15)

In the same way, Equations 3.13 and 3.14 are respectively projected on the eigenfunc-
tions of the reference channel cos(αµz) and the unbounded domain e−iανz

(
D0
µeik(r)+

µ L + U0
µ

)
a

2(1 + δµ0) =
+∞∑
s=−∞

TsΛµs

(
kr + Ωr0

c0
αs

)
(3.16)

+∞∑
q=0

(
k(r)+
q D0

qeik(r)
q L + k(r)−

q U0
q

)
ϕνq = Tνk

(r)−
ν

(
1− Ωr0

ων
αν

)
H (3.17)

As before, Equations 3.11, 3.12, 3.16 and 3.17 are truncated and solved by direct
matrix inversion. Their matrix form can be written as

A11 A11 A11 0

A21 A22 A23 0

0 A32 A33 A34

0 A42 A43 A44


︸ ︷︷ ︸

A


R
D
U
T


︸ ︷︷ ︸

X

=


H1

H2

0
0


︸ ︷︷ ︸

H

(3.18)

where X represents the modal amplitude vector. The matrix A terms are given by

A11(ν, ν) = diag
{
Hk(r)−

ν

(
1− Ωr0

ων
αν

)}
,

A12(ν, q) = −k(r)+
q ϕνq,

A13(ν, q) = −k(r)−
q e−ik(r)−

q Lϕνq,

A21(µ, s) = Λµs

(
kr + Ωr0

c0
αs

)
,

A22(µ, µ) = −diag
{
a

2(1 + δµ0)
}
,

A23(µ, µ) = −diag
{

e−ik−q La

2(1 + δµ0)
}
,

A32(ν, q) = eik+
q Lk+

q ϕνq,

A33(ν, q) = k−q ϕνq,

A34(ν, ν) = −diag
{
Hk+

ν

(
1− Ωr0

ων
αν

)}
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A42(µ, µ) = diag
{

eik+
q L
a

2(1 + δµ0)
}
,

A43(µ, µ) = diag
{
a

2(1 + δµ0)
}
,

A44(µ, s) = −Λµs

(
kr + Ωr0

c0
αs

)

The vector H terms are given by

H1(µ, µ) = −AnHk+
i eik+

i Li

(
1− Ωr0

ω
αi

)
,

H2(µ, µ) = −Aneik+
i LiΛµi

(
kr + Ωr0

c0
αi

)

3.2.3 Scattered field in the stationary reference frame (observer
at rest)

Once the modal amplitudes of the different acoustic fields have been determined in the
relative frame of reference, it is necessary to describe their acoustic potentials in the
reference frame attached to an observer at rest. Up to now, the incident wave is scattered
into several modes propagating at the same frequency, which corresponds to that of the
different waves propagating inside the channels ωr. However, to describe the different
acoustic fields in the stationary reference frame, it is necessary to take into account
the frequency scattering. It should be recalled here that the frequency of each mode

Figure 3.5: Two-dimensional unwrapped representation of the scattering of an incident wave
by a row of rotating channels described in the stationary reference frame.

propagating upstream or downstream the channels is modulated by an amount defined
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by its modal order and the rotational speed of the channels ωs = ω + sV Ω (see Figure
3.5). This effect becomes more pronounced when the modal order increases. On the
other hand, the reflected φ(a)

r and transmitted φ(a)
t acoustic potentials are solutions of the

Helmholtz equation at rest. They are given byφ(a)
r (x, z, t)
φ

(a)
t (x, z, t)

 =
+∞∑
s=−∞

Rs

Ts

eik+(a)
s (x−x0)

eik−(a)
s (x−xL)

 eiαsze−iωst (3.19)

where
k(a)±
s = ±

√(
ωs
c0

)2
− α2

s

In the same way, the acoustic potentials of the upstream φ(a)
u and downstream φ

(a)
d

propagating waves inside each channel, must satisfy the Helmholtz equation at rest. Note
here that the their azimuthal function must be shifted of an amount of Ωr0t at each time
step due to the relative motion of the channels in the stationary reference frame. The
expressions of the different fields propagating inside the mth channel, readφ(a)

d (x, z, t)
φ(a)
u (x, z, t)

 =
+∞∑
q=0

D0
q

U0
q

 eimαiH

eik(r)+
q (x−x0)

eik(r)−
q (x−xL)

 cos
(
αq

[
z −m2πr0

V
− Ωr0t

])
e−iωrt

(3.20)

3.2.4 Results
3.2.4.1 Sample results

The mode-matching technique is applied in this section to the diffraction of an incident
oblique plane wave composed of n = 4 azimuthal lobes by a periodic row of V = 9 rotating
channels of length L = 0.2m and relative width a/H = 0.6. In this specific test case, the
channels rotate clockwise (negative z direction) with a negative tangential Mach number
Mz = Ωr0/c0 = −0.5. The test case parameters are listed in Table 3.1. In the following, it

r0 (m) V L (m) a/H f (Hz) Ω (rad/s) n An

0.2 9 0.2 0.6 2000 -850 4 1

Table 3.1: Test-case parameters

is instructive to compare the results obtained for this specific test-case with and without
channel rotation. Figure 3.6 shows the normalized acoustic pressure fields obtained by the
diffraction of the incident wave in the presence (Figure 3.6a) and the absence (Figure 3.6b)
of rotation. It can readily be seen that the acoustic response of both configurations is not
the same. To get further understanding of the origin of this difference, the moduli of the
complex-valued modal coefficients of the various acoustic fields obtained with and without
channel rotation are compared in Figure 3.7. As can be seen, without channel rotation
Mz = 0, only one cut-on mode can be transmitted into the channels (see Figures 3.7b and
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(a) (b)

Figure 3.6: Instantaneous acoustic pressure fields obtained by the mode-matching method.
(a) Mz = 0.5, (b) Mz = 0. r0 = 0.2, V = 9, L = 0.2m, a/H = 0.6, f = 2000Hz, n = 4, An = 1.

3.7d). All higher order modes q > 0 are cut-off. Their amplitudes decay exponentially
from both ends of the channels. The cut-off frequencies of these modes ωcq>0 = qπc0/a

are higher than the excitation frequency ωr = ω = 12570 rad/s (ωcq>0 > ωr). In contrast,
when the channels rotate in the negative z direction with a negative tangential Mach
number Mz = −0.5, two cut-on modes (q = 0 and q = 1) are transmitted into the
channels (see Figures 3.7a and 3.7c). This is attributed to the increase in the frequency
of the different acoustic waves propagating inside the channels. In fact, the frequency in
the relative reference frame varies from ωr = 12570 rad/s (fr = 2000Hz) without rotation
to ωr = ω + nΩ = 15970 rad/s (fr = 2544Hz) with rotation. Additionally, the cut-off
frequency of the first higher order mode propagating inside the channels (q = 1) is given
by ωcq=1 = 12750 rad/s (fc = 2029Hz). The latter is lower than the relative frequency
(ωcq=1 < ωr), and hence, it becomes cut-on. Figures 3.7f and 3.7h indicate that without
rotation, the reflected and transmitted fields are dominated by the modes ns = 4 and −5.
These modes are respectively rotating counter-clockwise and clockwise. All other modes
generated upstream and downstream the channels are cut-off. However, in the case of
rotating channels (see Figures 3.7e and 3.7g), three cut-on modes are generated by the
diffraction ns = 4, −5 and −14. This is attributed to the variation of the frequency of
each mode produced upstream and downstream the system. It should be reminded here,
that only the mode ns = 4 has the same frequency as the incident wave. The other modes
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.7: Modulus of the modal coefficients of the different acoustic fields generated by the
diffraction of the incident wave. Mz = 0.5 (a-c-e-g),Mz = 0 (b-d-f-h), Cut-off modes (bars ),
Cut-on modes (bars ).
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may have higher or lower frequencies. Additionally, these modes do not propagate with
the same angle θs in the two configurations, even if they possess the same modal order.
In fact, the propagation angle of each mode depends on its modal order ns = n+ sV and
its frequency:

Θs = arcsin
(

αs
k0 + sV Ω

)
(3.21)

The variation of the angle of propagation of each mode ns is illustrated in Figure 3.8 for
three different rotational speeds Mz = 0, Mz = −0.5 and Mz = −0.7. The real part

-40 -30 -20 -10 0 10
- /2

- /4

0

/4

/2

Figure 3.8: Variation of the angle of propagation as a function of the azimuthal order for
three different rotational speeds. Mz = 0 ( 5 ), Mz = −0.5 ( + ), Mz = −0.7 ( # ). V = 9,
n = 4, f = 2000Hz, r0 = 0.2m.

of the propagation angle of an oblique wave varies from −π/2 to π/2. These two limits
corresponds respectively to the cut-off conditions of the co-rotating (when rotating in
the same direction as the channels) and counter-rotating modes (when rotating in the
opposite direction of the channels). The propagation angles become complex numbers if
the cut-off condition is fulfilled. Figure 3.8 indicates that the propagation angles of the
co-rotating modes ns < 0 decrease with rotational speed.

3.2.4.2 Acoustic powers

In this section a considerable attention is paid to the modal acoustic powers of the re-
flected and transmitted fields. It should be reminded here that in the absence of rotation,
the incident power can be distributed only on cut-on modes, which all propagate at the
same frequency. The problem in this case is said to be monochromatic. The reflected
and transmitted acoustic powers obtained for this test-case without rotation are respec-
tively given by Pr/Pi = 0.5024 and Pt/Pi = 0.4976. These have been obtained by the
superposition of the modal acoustic powers of the different cut-on modes generated by
the diffraction. In the presence of rotation, the reflected and transmitted powers are not
only distributed over several modes but also over various frequencies. The acoustic power
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associated with each mode of order ns can be evaluated in the two reference frames as
follows [46]:

Relative reference frame
P

(r)
r,s = ωrρπr0k

(r)−
s |Rs|2, if (k(r)−

s )2 > 0
P(r)
t,s = ωrρπr0k

(r)+
s |Ts|2, if (k(r)+

s )2 > 0
(3.22)

Stationary reference frame
P

(a)
r,s = ωsρπr0k

(a)−
s |Rs|2, if (k(a)−

s )2 > 0
P(a)
t,s = ωsρπr0k

(a)+
s |Ts|2, if (k(a)+

s )2 > 0
(3.23)

Figure 3.9 illustrates the spectra of the transmitted and reflected powers obtained for
a tangential Mach number Mz = −0.5. The angular frequency ωs is scaled by dividing it
by the radian frequency of the incident wave ω. As can be seen, the acoustic powers are

0

0.05

0.1

0.15

0.2

0.25

0.5 1 1.5 2 2.5

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5 1 1.5 2 2.5

(b)

Figure 3.9: Modal acoustic powers as functions of frequency in the stationary frame. (a)
Reflected power. (b) Transmitted power

distributed only over three frequencies, corresponding to the frequencies of the azimuthal
modes ns = 4,−5,−14. It is observed from Figure 3.9a that the reflected power is
dominated by the frequency of the incident excitation ωs/ω = 1. The contribution of
the other frequencies (ωs/ω = 1.61 and ωs/ω = 2.22) is less important. However, these
frequencies contribute significantly in the transmitted power (see Figure 3.9b). It is
important to note that the sum of the different modal acoustic powers is higher than the
incident power, which means that the acoustic power is not conserved in the stationary
frame. This was pointed out by Hanson [50] in a similar study of rotor-stator interaction
noise in turbofan engines. The total acoustic power in the stationary reference frame is
increased by the motion of the channels.

3.2.4.3 Resonant frequencies of the rotor channels

In order to get further understanding of the influence of the channel rotation on the
acoustic resonances of the rotor ventilating holes, a comparison between three different
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rotational speeds has been carried out. The configuration investigated in this section
consists of 17 cooling channels of length L = 0.4m and relative width a/H = 0.3. The
channels are placed at a radius r0 = 0.2m. The mode-matching technique is applied to the
diffraction of an incident mode of order n = 4 by the rotating channels at three different
tangential Mach numbers Mz = 0, Mz = 0.2 and Mz = 0.3. The comparison has been
made on the acoustic powers evaluated upstream and downstream the channels. These
are respectively plotted as functions of the Helmholtz number k0a, corresponding to the
excitation frequency (of the incident wave) in Figures 3.10a and 3.10b. As explained
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Figure 3.10: Variations of reflected (a) and transmitted (b) acoustic powers as functions of
the Helmholtz number. Mz = 0 ( ) Mz = 0.2 ( ), Mz = 0.3 ( ),

previously, the transmission peaks, correspond to the resonant frequencies of the cooling
channels. Comparing the different spectra, it is observed that the resonant frequencies
are shifted compared to the case without rotation Mz = 0. As previously explained, this
is due to the fact that the frequency of the acoustic waves propagating inside the channels
is shifted by an amount of nΩ. It is obvious that the resonant frequencies in the reference
frame attached to the channels are the same. They depend only on the length and width
of the channels (L and a) in the absence of mean flow. Therefore, the mathematical
expression of these frequencies in the reference frame attached to an observer at rest is
written as

ωnr = 2π nrc0

2(L+ δL) + nΩ (3.24)

where nr and δL are respectively the resonant mode and the end-corrections (see Section
1.4).
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3.3 Diffraction of sound by a system composed of a
rotor and a stator

This section is dealing with the problem of sound propagation in a system consisting
of both a stationary and a rotating parts. The aim is to understand how the acoustic
waves are scattered by the ventilating holes integrated in the rotor and the stator cores
(Figure 3.11a). As already mentioned, the rotor and the stator channels are connected by
means of several interconnected annular ducts (see Chapter 2). Therefore, the problem
of propagation inside this configuration have to be formulated in a three-dimensional
context, due to the variations of the sound field in both azimuthal and radial directions.
It should be kept in mind that the azimuthal orders of the different acoustic fields are
not modified by the fact that the rotor and stator radii are different. Thus, the various
frequencies induced by the interaction between stator and rotor ducts will not be affected
by the annular character of the geometry. For a first insight into the underlying physics,

(a) (b)

Figure 3.11: (a) Typical configuration of the ventilating holes integrated in the rotor and
stator cores. (b) Unwrapped representation of a simplified cut at common radius r = r0

it is assumed here for simplicity that the rotor and the stator channels are located at the
same radial position. The system can be considered as two periodic rows of thick-walled
channels separated by a distance denoted d. The first row is rotating in the clockwise
direction, and the second row is considered fixed. The unwrapped representation of a
cylindrical cut of this system at a radius r0 is illustrated in Figure 3.11b. The configuration
must be considered as an exercise, aimed at emphasizing on basic features.

In the following considerable attention will be paid to the propagation of the multiple
frequencies generated by the rotor channels in this coupled system.
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3.3.1 Coupling strategy
The methodology used in this section is based on the different steps presented in Chapter
1 (see Section 1.4), to deal with the problem of transmission of an oblique plane wave
through a system consisting of two periodic rows of channels. The main difficulty of
this problem is how to handle the propagation of several frequencies in this system. The
coupling strategy can be divided into three successive steps.

3.3.1.1 Scattering of the incident wave φi by the rotor channels (First step)

In the first step, the incident wave φi is scattered by the rotating channels, generating
four acoustic fields, as shown in Figure 3.12.

Figure 3.12: Scattering of the incident wave φi by the rotor channels.

The incident wave is considered as an oblique plane wave emitted at the interface x0,
and propagating in the positive x direction with an angular frequency denoted ω. The
acoustic potential of the latter is given by

φi(x, z, t) = Aneiαizeiki(x−x0)e−iωt, αi = k sin(θi) = n

r0
, k+

i =
√
k2 − α2

i (3.25)

The acoustic potentials of the different acoustic fields generated upstream and down-
stream the rotating channels are expressed asφ(1)

r,1(x, z, t)
φ

(1)
t,1 (x, z, t)

 =
+∞∑
s=−∞

R(1)
s

T (1)
s

 eiαsz

eik(1)−
s (x−x1)

eik(1)+
s (x−x2)

 e−iωst (3.26)

with
αs = n+ sV1

r0
, k(1)±

s = ±
√(

ωs
c0

)2
− α2

s
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The downstream and upstream propagating waves in the mth
1 channel are given by

φ(1)
d,1(x, z, t)
φ

(1)
u,1(x, z, t)

 =
+∞∑
q=0

D(1)
q

U (1)
q

 eim1H1αi cos
(
αq [z −m1H1 − Ωr0t]

)eik(1)+
q (x−x1)

eik(1)−
q (x−x2)

 e−iωrt

(3.27)
where

αq = q
π

a1
, k(1)±

q = ±
√
k2

0 − α2
q

In this analysis the superscript (1) refers to the acoustic field produced by the rotor
channels and the subscript 1 represents the index of iteration (step). The use of the ana-
lytical model developed in the previous section, allows to determine the modal amplitudes
of the different fields.

3.3.1.2 Scattering of φ(1)
t,1 by the stator channels (Second step)

The downstream acoustic waves generated by the rotor ducts φ(1)
t,1 are transmitted through

the stator channels, generating four new acoustic fields, denoted by φ(2)
r,2 , φ

(2)
d,2, φ

(2)
u,2 and

φ
(2)
t,2 as illustrated in Figure 3.13. The transmitted field φ

(1)
t,1 must be expanded into a

Figure 3.13: Scattering of the transmitted modes φ(1)
t,1 by the cooling channels in the second

step.

sum of incident excitations having various propagation angles. Each of these waves is
characterized by its modal amplitude T (1)

s , its modal order ns = n + sV1 and its angular
frequency ωs = ω+sV1Ω. The expression of a single excitation φ(1)

t,1,s of order ns = n+sV1

at the inlet interface of the stator channels x = x3, can be written as

φ
(1)
t,1,s(x3, z, t) = T (1)

s eiαszeik(1)+
s de−iωst (3.28)
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It is worth noting that each excitation φ(1)
t,1,s of order ns is scattered by the stator channels

into several azimuthal modes of orders nsν = ns + νV2. These propagate at the frequency
imposed by the incident excitations ωs.

The modal amplitudes of the different fields generated by each excitation can be
obtained by the use of the same model developed in Section 3.2 by setting the rotational
frequency to zero. After applying this model to all the incident excitations, the sound
field can be constructed by the superposition of all the acoustic modes generated at this
step: φ(2)

r,2(x, z, t)
φ

(2)
t,2 (x, z, t)

 =
+∞∑
s=−∞

+∞∑
ν=−∞

R(2)
sν

T (2)
sν

 eiαsνz

eik(2)+
sν (x−x3)

eik(2)−
sν (x−x4)

 e−iωst (3.29)

with
αsν = αs + νV2

r0
, k(2)±

sν = ±
√(

ωs
c0

)2
− α2

sν

The downstream and upstream acoustic fields in the mth
2 channel are given by

φ(2)
d,2(x, z, t)
φ

(2)
u,2(x, z, t)

 =
+∞∑
s=−∞

+∞∑
µ=0

D(2)
sµ

U (2)
sµ

 eim2αsH2 cos
(
αµ [z −m2H2]

)eik(2)+
µ (x−x3)

eik(2)−
µ (x−x4)

 e−iωst

(3.30)
with

αµ = µ
π

a2
, k(2)±

µ = ±
√(

ωs
c0

)2
− α2

µ

3.3.1.3 Scattering of φ(2)
r by the rotor channels (Third step)

The last step of this methodology deals with the diffraction of the waves reflected back
towards the rotor channels (see Figure 3.14). In the same way, the acoustic field reflected
by the stator channels is expanded in a series of oblique plane waves having various
propagation angles. The expression of a single excitation at the outlet interface of the
rotor channels x = x2, is given by

φ
(2)
r,2,sν(x2, z, t) = R(2)

sν eiαsνze−ik(2)−
sν de−iωst (3.31)

The model presented in the previous section is again used in the opposite direction of
x to determine the modal coefficients of the different fields.

After superposing all possible solutions, one obtainsφ(1)
r,3(x, z, t)
φ

(1)
t,3 (x, z, t)

 =
+∞∑
s=−∞

+∞∑
ν=−∞

+∞∑
l=−∞

R(1)
sνl

T
(1)
sνl

 eiαsνlz

eik(1)+
sνl

(x−x1)

eik(1)−
sνl

(x−x2)

 e−iωslt (3.32)

with
αsνl = αsν + lV1

r0
, k

(1)±
sνl = ±

√(
ωsl
c0

)2
− α2

sνl , ωsl = ωs + lV1Ω

It should be emphasized here that the rotor channels are excited by several frequencies
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Figure 3.14: Scattering of the reflected field φ(r)
r,2 by the rotor channels.

at this step. The different fields propagating inside the rotor channels, read

φ(1)
d,3(x, z, t)
φ

(1)
u,3(x, z, t)

 =
+∞∑
s=−∞

+∞∑
ν=−∞

+∞∑
q=0

D(1)
sνq

U (1)
sνq

eik(1)+
qν (x−x1)

eik(1)−
qν (x−x2)


× eim1H1αsν cos

(
αq [z −m1H1 − Ωr0t]

)
e−iωνt (3.33)

where

k(1)±
qν = ±

√(
ων
c0

)2
− αq , ων = ωs − αsνr0Ω = ω − (n+ νV2r0)Ω (3.34)

In the following, the second and the third steps must be repeated alternately until
convergence, by taking the output of one subsystem as the input of the other one.

All the solutions must be superposed to get the total acoustic field in each subdomain:

φ
(1,2)
ξ (x, z, t) =

imax∑
γ=1

φ
(1,2)
ξ,γ (x, z, t), ξ = {r, t, d, u} , γ =

1, 3, 5, ....imax − 1, if φ(1,2) = φ(1)

2, 4, 6, ....imax, if φ(1,2) = φ(2)

where imax is the maximum number of iterations.

3.3.2 Results
In this section the mode-matching technique is applied to a configuration consisting of
V1 = 9 rotor channels and V2 = 15 stator channels, separated by a distance d/L1 = 0.5.
The test case parameters are listed in Table 3.2. The channels rotate in the opposite
direction of z with a negative Mach number Mz = −0.231. The analytical model is

144



Chapter 3. Sound transmission through periodic rows of rotating channels

k0a1 a1/H1 a2/H2 r0 (m) L1/a1 L2/a2 d/L1 Mz n
5.22 0.7 0.6 0.15 2.7284 5.3052 0.5 −0.231 3

Table 3.2: Test-case parameters

applied to the diffraction of an incident wave composed of n = 3 azimuthal lobes. In
order to examine the effects due to the rotation of the rotor channels, a comparison
between the instantaneous acoustic pressure fields obtained with (Mz = −0.231) and
without (Mz = 0) channel rotation is shown in Figure 3.15. Figure 3.15a indicates that

(a)

(b)

Figure 3.15: Instantaneous acoustic pressure field obtained by the mode-matching technique.
(a) Mz = 0, (b) Mz = −0.231. k0a1 = 5.22, a1/H1 = 0.7, a2/H2 = 0.6, r0 = 0.15m, L1/a1 =
2.7284, L2/a2 = 5.3052, d/L1 = 0.5, n = 3
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without rotation, the incident wave is scattered into several modes propagating at the
same angular frequency ω. As can be seen the sound field transmitted through the
rotor channels is dominated by the mode ns = −6 and slightly modulated by the mode
ns = 3. These are scattered by the stator channels without generating other azimuthal
modes. As can be seen only plane waves can propagate inside the stator channels. The
cut-off frequency of the first higher order mode is higher than the excitation frequency.
However, the acoustic response of the system is strongly modified in the presence of
rotation (see Figure 3.15b). The interferences between the different acoustic fields are
more complex compared to the case without channel rotation. This may be attributed
to the propagation of several higher order modes at different frequencies induced by the
rotor channels. However, the acoustic field transmitted downstream the stator channels
is no longer dominated by the mode ns = −6. Additionally, the sound field inside the
stator channels is not homogeneous, which confirms the presence of more than one cut-
on mode inside each channel. In fact, the higher order modes can be excited by the
different frequencies generated by the rotor scattering ωs, which are typically higher than
the frequency of the incident wave ω. Therefore, if the proper condition is fulfilled, the
mode becomes cut-on.

It is important to note that the scattering of the frequency of the incident wave by the
rotor channels can lead to unexpected resonances in some practical applications. For that,
care should be taken when choosing the dimensions of the cooling channels integrated in
the rotor and the stator cores in order to avoid these frequencies.

3.4 Diffraction of an oblique plane wave by two pe-
riodic rows of rotating channels

The last problem addressed in this chapter deals with the transmission of acoustic waves
through a system composed of two rotating sub-systems. In practice, this kind of systems
can be found in some parts of the ventilation systems integrated in non self-ventilated
motors. It should be recalled here that in a self-ventilated motor, the cooling fan (radial
impeller) and the rotor core are both mounted on the motor shaft. Consequently, these
rotating parts of the motor may rotate in the same direction and at the same rotational
speed as the motor. However, for high speed-motors with more than 6000 revolutions
per minute (rpm), the noise generated by the cooling fan increases rapidly. To avoid
this problem, designers need to use another cooling technique, known as the autonomous
ventilation. In these architectures, the cooling fan is no longer mounted on the motor
shaft, but powered by another small electrical motor. The speed and direction of rotation
of the cooling fan can thus be controlled independently of the motor shaft. This allows
the fan speed to be reduced at high rotational speeds of the motor, and also avoids using
impellers with poorly efficient radial blades. However, since the motor must rotate in
both directions of rotation, the cooling fan and the rotor channels can rotate in the same
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direction or in opposite directions and at different rotational speeds, as depicted in Figure
3.16a. As what has been already discussed, the transmission of an acoustic wave through
the radial impeller, requires the use of three different sub-models [58, 90, 59]. Note here
that the effect of the geometry of the radial impeller on the propagation of acoustic waves
is not considered in this analysis. The system investigated in this work consists of two rows
of rotating channels separated by a certain distance in a two-dimensional representation,
as depicted in Figure 3.16b. The first and the second sub-systems correspond respectively
to the cooling fan and the rotor cooling channels, and their tangential Mach numbers are
given by Mz1 = Ω1r0/c0 and Mz2 = Ω2r0/c0.

(a) (b)

Figure 3.16: Typical configuration of the rotor ducts and the cooling fan integrated in open
motor (autonomous ventilation).

The same methodology as presented previously is used in this section. In the following
only the mathematical expressions of the different fields produced at each step of the
methodology are given.

3.4.1 Acoustic potentials
3.4.1.1 Sound fields generated in the first step

As before, in the first step, an incident oblique plane wave is scattered by the first sub-
system. The acoustic potentials of the different acoustic fields generated by the diffraction
are given by φ(1)

r,1(x, z, t)
φ

(1)
t,1 (x, z, t)

 =
+∞∑
s=−∞

R(1)
s

T (1)
s

 eiαsz

eik(1)−
s (x−x1)

eik(1)+
s (x−x2)

 e−iωst (3.35)
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with
k(1)±
s = ±

√(
ωs
c0

)2
− α2

s , ωs = ω + sΩ1V1

φ(1)
d,1(x, z, t)
φ

(1)
u,1(x, z, t)

 =
+∞∑
q=0

D(1)
q

U (1)
q

 eim1H1αi cos
(
αq [z −m1H1 − Ω1r0t]

)eik(1)+
q (x−x1)

eik(1)−
q (x−x2)

 e−iωrt

(3.36)

k(1)±
q = ±

√(
ωr
c0

)2
− α2

q , ωr = ω − nΩ1

3.4.1.2 Sound fields generated in the second step

As explained in the previous section, the modes T (1)
s,1 transmitted downstream the first

sub-system propagate with different frequencies ωs. Each of these is scattered into new
frequencies induced by the other sub-system. These depend on the rotational speeds of
the two sub-systems ωsν = ωs + νV2Ω2. The acoustic fields generated at this step readφ(2)

r,2(x, z, t)
φ

(2)
t,2 (x, z, t)

 =
+∞∑
s=−∞

+∞∑
ν=−∞

R(2)
sν

T (2)
sν

 eiαsνz

eik(2)+
sν (x−x3)

eik(2)−
sν (x−x4)

 e−iωsνt (3.37)

with
k(2)±
sν = ±

√(
ωsν
c0

)2
− α2

sν

The downstream and upstream acoustic fields in the mth
2 channel are given by

φ(2)
d,2(x, z, t)
φ

(2)
u,2(x, z, t)

 =
+∞∑
s=−∞

+∞∑
µ=0

D(2)
sµ

U (2)
sµ

 eim2αsH2

eik(2)+
µs (x−x3)

eik(2)−
µs (x−x4)


× cos

(
αµ [z −m2H2 − Ω2r0t]

)
e−i(ωs−αsr0Ω2)t

(3.38)

where

k(2)±
µ,s = ±

√√√√(ωs − αsr0Ω2

c0

)2

− α2
µ

3.4.1.3 Sound fields generated in the third step

The field reflected by the second sub-system propagates in the negative x direction towards
the other one. After superposing all possible solutions, the different fields can be written
as φ(1)

r,3(x, z, t)
φ

(1)
t,3 (x, z, t)

 =
+∞∑
s=−∞

+∞∑
ν=−∞

+∞∑
l=−∞

R(1)
sνl

T
(1)
sνl

 eiαsνlz

eik(1)+
sνl

(x−x1)

eik(1)−
sνl

(x−x2)

 e−iωsνlt (3.39)
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with
k

(1)±
sνl = ±

√(
ωsνl
c0

)2
− α2

sνl , ωsνl = ωsν + lV1Ω1

It should be emphasized here that the rotor channels are excited by several frequencies
at this step. The different fields propagating inside the rotor channels, read

φ(1)
d,3(x, z, t)
φ

(1)
u,3(x, z, t)

 =
+∞∑
s=−∞

+∞∑
ν=−∞

+∞∑
q=0

D(1)
sνq

U (1)
sνq

eik(1)+
qν (x−x1)

eik(1)−
qν (x−x2)


× eim1H1αsν cos

(
αq [z −m1H1 − Ω2r0t]

)
e−i(ωsν−αsνr0Ω1)t (3.40)

where

k(1)±
qν = ±

√√√√(ωsν − αsνr0Ω1

c0

)2

− α2
q , (3.41)

As before, the second and the third steps must be repeated alternately until conver-
gence.

3.4.2 Results
In order to quantify the effects due to the rotation of the second sub-system on the sound
propagation mechanism, a comparison between two configurations has been carried out.
Each of these configurations is composed of V1 = 9 fan blades and V2 = 15 rotor channels,
separated by a small distance given by d/L1 = 0.5. The test case parameters used for
the two configurations are listed in Table 3.2. In the first setup, the fan blades (first sub-
system) and the rotor channels (second sub-system) are rotating in the same direction
of rotation, with different rotational speeds, given by Mz1 = −0.231 and Mz2 = −0.277.
In the second one, the direction of rotation of the rotor channels is reversed, with the
same rotational speed Mz2 = +0.277. In this case, the two sub-systems rotate in opposite
directions. The analytical model is applied in this section to the diffraction of an incident
mode of order n = 3. The instantaneous acoustic pressure fields obtained for the two
configurations are illustrated in Figure 3.17. Figure 3.17a indicates clearly that when the
two sub-systems rotate in the same direction, the sound field upstream the fan blades (first
sub-system) is dominated by the incident wave, and slightly modulated by the reflected
field. Furthermore, the acoustic field transmitted downstream the rotor channels (second
sub-system) is dominated by the mode ns = −6 and slightly modulated by the mode
ns = 3. These are generated by the diffraction of the indent mode n = 3 by the fan
blades, as expected by the equation ns = n+ sV1 = 3 + s× 9 = [−6, 3]. They respectively
propagate at the relative frequencies ωs=−1/ω = 1.25 and ωs=0/ω = 1 towards to the
rotor channels. The diffraction of these modes by the latter, generates only cut-on modes
with same modal orders. All the other modes are cut-off, and their cut-off frequencies are
sufficiently large compared to the excitation frequencies imposed by the modes ns = 3
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and ns = −6. In fact, the mode ns = −6 and the rotor channels are rotating in the same
direction. The second lower order mode generated by the scattering of the mode ns = −6
by the rotor channels is nsν = 9. Its cut-off frequency is given by ωc,9/ω = 1.08. Note here
that the frequency of the latter is decreased by the motion of the channels, as confirmed by
the equation ωsν/ω = (ωs+νV2Ω2)/ω = 0.75. However, when the rotor channels rotate in
the opposite direction (see Figure 3.17b), the acoustic field upstream the first sub-system
remains dominated by the incident wave, but modulated by the presence of various modes
generated by the diffraction. Moreover, downstream the second sub-system, the sound

(a)

(b)

Figure 3.17: Instantaneous acoustic pressure fields obtained by the mode-matching technique.
(a) Mz2 = −0.277. (b) Mz2 = +0.277. Mz1 = −0.231, n = 3, V1 = 9, V2 = 15, k0a = 5.22,
r0 = 0.15.

field is composed mainly of the modes −6 and 9. This is explained by the fact that the
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frequency of the mode nsν = 9 is increased by the rotation of the rotor channels. Note
here that this particular mode nsν = 9 is rotating in the opposite direction to the rotor
channels. Therefore, its frequency becomes ωsν/ω = 1.75, which is typically higher than
its cut-off frequency.

3.5 Conclusion
An analytical model based on the mode-matching technique has been presented in this
chapter in order to deal with problems of sound transmission through a system consisting
of two periodic rows of rotating channels. The aim of this model is to investigate how the
sound can be transmitted through the rotating parts of the ventilation system integrated
in open motors. The first part of this chapter was devoted to the diffraction of an oblique
plane wave by a single periodic row of rotating channels by taking into account the
influence of their thicknesses. This model was first applied to a system composed of a
rotating part and a stationary part, and then it was extended to a system consisting of two
rotating parts, having different rotational speeds. An iterative procedure was used to take
into account the multiple diffractions of the acoustic waves between the two subsystems.
The effect of the rotational speed of the two sub-systems and the direction of rotation
has been investigated in this work. The results obtained have shown that the acoustic
response of the coupled system is strongly affected by the rotation of the channels.

Furthermore, it must be kept in mind that in a system coupling two periodic arrays
of bifurcated waveguides, with different speeds, the sound scattering problem is no longer
monochromatic. The interest of the mode-matching technique is that it can be used with
a set of pre-identified frequencies, at the price of an iterative procedure, even if it is
basically solving the Helmholtz equation.
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Conclusions
This work was dealing with the analytical modelling of sound generation and propagation
in ventilation systems integrated in traction motors used in railway applications.

The first part of this study was devoted to the sound transmission through a system
consisting of guide vanes and cooling channels, in order to investigate how acoustic waves
can propagate inside the ventilation system integrated in totally-enclosed motors. This
system was considered as two periodic rows of thick-walled channels separated by a cer-
tain distance. The sound propagation in this configuration is achieved by the use of two
transmission models, based on a two-dimensional mode-matching technique. These mod-
els take into account the influence of wall-thickness on sound transmission. An iterative
method has been used to account for the multiple diffractions of acoustic waves between
the two subsystems. The results obtained by this model have been systematically com-
pared to the finite element method for validation purposes. A very good agreement was
found between the results obtained by the two methods at most frequencies of interest.
Furthermore, this study has shown that the presence of guide vanes in the ventilation
system affects significantly the acoustic response of the cooling channels. The interaction
between back-and-forth acoustic waves propagating in the space between the guide vanes
and cooling channels can lead to acoustic resonances. The sound generation mechanism
resulting from the impingement of the impeller wakes on the guide vanes has been inves-
tigated in this work by the use of the concept of equivalent dipoles. The results obtained
by this analytical model have shown that the cooling channels have a significant influence
on the amplitude of the acoustic field radiated upstream of the guide vanes. This acous-
tic field can either be amplified or completely attenuated when the distance between the
guide vanes and the cooling channels is modified.

In the second part of this work, the mode-matching method was applied to significantly
more complicated architectures to study the propagation of sound inside the stationary
part of the ventilation system integrated in an open motor. The geometry was first
simplified and then divided into 15 interconnected subdomains, mainly composed of 14
annular ducts and a periodic row of cooling channels. Then, the sound field was expressed
as a sum of orthogonal modes in the various subdomains of this configuration. These
subdomains were connected by imposing the continuity of the acoustic pressure and the
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axial velocity at each interface separating two regions with different transverse dimensions.
In order to validate the analytical model, a comparison with the finite element method
was conducted. In the first step, both methods were applied to a simplified configuration
of an open motor for mathematical validation. A very good agreement was found between
the results obtained by the two methods. Then, the finite element method was applied
to the realistic configuration of an open motor, including all the curvatures present in
the stationary part of the motor. The results obtained by two methods agree well at
particularly low and medium frequencies of interest. However, the difference between the
two results seems to be significant at relatively high frequencies. From a certain frequency,
the effects due to the axial variation of the duct cross-section become important and they
cannot be neglected in the analysis. This model was used for parametric studies to predict
the resonant frequencies of the ventilation system. These frequencies were identified by
analysing the variation of the acoustic power transmitted outside the ventilation system.
However, it was observed that acoustic resonances can occur at various locations in the
ventilation system.

The problem of sound transmission through a system consisting of two periodic rows
of rotating channels has been addressed in the last chapter of this work. The main
objective was to investigate how sound can be transmitted through the rotating parts of
the ventilation system integrated in open motors. To achieve this, the mode-matching
method was first applied to the diffraction of an oblique plane wave by a single periodic
row of rotating channels. Initially, this model was applied to a system consisting of
both a rotating part and a stationary part. Subsequently, this model was extended to
consider a system composed of two rotating rows of channels, having different rotational
speeds. In order, to account for the multiple reflections of acoustic waves between the two
subsystems, an iterative procedure was employed in this work. The results obtained have
shown that the acoustic response of the coupled system is strongly affected by the rotation
of the channels. The incident acoustic wave is scattered into several azimuthal modes
propagating at different frequencies. These frequencies are induced by the rotation of the
channels. They mainly depend on the rotational speed of channels and the modal order
of the generated modes. In addition, the resonant frequencies of the rotor channels are
shifted by their rotational motion, which means that rotational effects must necessarily
be taken into account during the motor design stage to correctly predict the resonant
frequencies.

Finally, the aeraulic performance of self-ventilated motors has been addressed in Ap-
pendix C, in order to predict the flow rate inside the ventilation system. The results
obtained for totally-enclosed motors have been validated by comparison with measure-
ments then with numerical simulations based on the Lattice Boltzmann Method (LBM).
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Perspectives
Several perspectives can be suggested in order to improve the different analytical models
developed in the present work. The comparison with the finite element method has
shown that these models are valid up to a certain frequency. These limitations are mainly
attributed to the geometrical approximations considered in this work.

The analytical model proposed in this work to simulate the sound propagation in
the stationary part of an open motor can be improved by introducing the effects due
to the axial variation of the duct cross-section. These can be considered in the analysis
using the multimodal approach [70, 42, 40, 81, 4, 44]. Note here that this semi-analytical
approach takes into account the coupling effects between acoustic modes, offering a more
comprehensive analysis.

Another aspect to be improved in this work concerns the geometry of the end-windings
in the case of an open motor. These have been assumed to be perfectly rigid in this study,
but the influence of this assumption becomes more pronounced as frequency increases,
especially when the space between two conductors is large enough. The analytical model
can be improved by considering the end-windings as a porous region. However, the an-
alytical solution in this particular region of the ventilation system can be obtained by
applying a non-rigid boundary condition on the walls of the duct.

In this study, the noise generation mechanism was investigated using of the equivalent
dipoles [92, 18]. Specifically, this technique has been applied to the noise generation by
the impingement of impeller wakes of the guide vanes, without calibrating the amplitude
of the equivalent dipoles. However, this requires further attention in future research to
obtain more accurate and reliable results.

Furthermore, it is important to note that the different analytical models presented in
this work remain valid up to a certain value of the Mach number. As the Mach number
increases in the ventilation system, its effects on sound propagation become increasingly
significant and cannot be neglected. Consequently, this becomes an essential issue that
requires further investigation in future studies.
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Scattering matrices

The matching equations derived in Section 2.3.4 are solved by a direct matrix inversion.
The system of linear equations has been divided into two subsystems, in which a direct
matrix inversion can be used. The terms of both matrices are given is this section.

A.1 Matrix terms - First block
The matrix form of the matching equations defined for the first block is given by

C =



C1
1 C2

1 C3
1 C4

1 0 0 0 0 0 0 0 0 0 0
C1

2 0 C3
2 C4

2 0 0 0 0 0 0 0 0 0 0
0 C2

3 C3
3 C4

3 0 0 0 0 0 0 0 0 0 0
0 0 C3

4 C4
4 C5

4 C6
4 C7

4 C8
4 0 0 0 0 0 0

0 0 C3
5 C4

5 0 0 C7
5 C8

5 0 0 0 0 0 0
0 0 0 0 C5

6 C6
6 C7

6 C8
6 0 0 0 0 0 0

0 0 0 0 0 0 C7
7 C8

7 C9
7 C10

7 C11
7 C12

7 0 0
0 0 0 0 0 0 C7

8 C8
8 C9

8 C10
8 0 0 0 0

0 0 0 0 0 0 C7
9 C8

9 0 0 C11
9 C12

9 0 0
0 0 0 0 0 0 0 0 C9

10 C10
10 C11

10 C12
10 C13

10 0
0 0 0 0 0 0 0 0 C9

11 C10
11 0 0 C13

11 0
0 0 0 0 0 0 0 0 0 0 C11

12 C12
12 C13

12 0
0 0 0 0 C5

13 C6
13 0 0 0 0 0 0 0 C14

13

0 0 0 0 C5
14 C6

14 0 0 0 0 0 0 0 C14
14



(A.1)

X1 =
{
URd ,UG,DR1 ,UR1 ,US1 ,RS1 ,TA1 ,RA1 ,DT ,UT ,DB,UB,TE,DSd

}
(A.2)
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V = {V1,V2,0,0,0,0,0,0,0,0,0,0,V13,V14} (A.3)

where

C1
1(%ξ′ , %γ) = k+

nsγFn
′
sξ
′

nsγ δs′s

C1
1(%ξ′ , %γ) = k+

nsγFn
′
sξ
′

nsγ δs′s,

C2
1(%ξ′ , %g) = k+

nsgWn′sξ
′

nsg δs′s,

C3
1(%ξ′ , %ξ′) = −diag

(
k−n′sξ′r

2
R

)
,

C4
1(%ξ′ , %ξ′) = −diag

(
k+
n′sξ
′e

ik+
n′sξ′

LR1r2
R

)
C1

2(%γ′ , %γ′) = r2
Rd
In′sγ′ ,

C3
2(%γ′ , %ξ) = −Fn′sγ′[T ]

nsξ
,

C4
2(%γ′ , %ξ) = −eik+

nsξ
LR1Fn′sγ′[T ]

nsξ
δs′s

C2
3(%g′ , %g′) = r2

g2In′sg′ ,

C3
3(%g′ , %ξ) = −Wn′sg

′[T ]
nsξ

,

C4
3(%g′ , %ξ) = −eik+

nsξ
LR1Wn′sg

′[T ]
nsξ

δs′s,

C3
4(%β′ , %ξ) = k−nsξe

−ik−
nsξ

LR1Kn′sβ′nsξ
δs′s,

C4
4(%β′ , %ξ) = k+

nsξ
Kn′sβ′nsξ

δs′s,

C5
4(%β′ , %η) = k+

nsηX n′sβ
′

nsη δs′s,

C6
4(%β′ , %η) = k−nsηe

−ik−nsηLS1X n′sβ
′

nsη δs′s,

C7
4(%β′ , %β′) = −diag

(
k−n′sβ′r

2
2

)
,

C8
4(%β′ , %β′) = −diag

(
k+
n′sβ
′e

ik+
n′sβ′

d1
r2

2

)
,

C3
5(%ξ′ , %ξ′) = diag

(
e−ik−

n′sξ′
LR1r2

R

)
,

C4
5(%ξ′ , %ξ′) = r2

RI
s′ξ′

s′ξ′ ,

C7
5(%ξ′ , %β) = −Kn′sξ′[T ]

nsβ
δs′s,

C8
5(%ξ′ , %β) = −eik+

nsβ
d1Kn′sξ′[T ]

nsβ
δs′s

C5
6(%η′ , %η′) = r2

2Ieta′η′ ,

C6
6(%η′ , %η′) = diag

(
e−ik−

n′sη′
LS1r2

2

)
,

C7
6(%η′ , %β) = −X n′sη

′[T ]
nsβ

δs′s,

C8
6(%η′ , %β) = −eik+

nsβ
d1X n′sη

′[T ]
nsβ

δs′s
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C7
7(%β′ , %β′) = diag

(
k−n′sβ′e

−ik−
n′sβ′

d1
r2

2

)
,

C8
7(%β′ , %β′) = diag

(
k+
n′sβ
′r2

2

)
,

C9
7(%β′ , %µ) = −k−nsµQn

′
sβ
′

nsµ δs′s,

C10
7 (%β′ , %µ) = −k+

nsµeik+
nsµLDQn′sβ′nsµ δs′s,

C11
7 (%β′ , %ν) = −k−nsνYn

′
sβ
′

nsν δs′s,

C12
7 (%β′ , %ν) = −k+

nsνe
ik+
nsνLDYn′sβ′nsν δs′s,

C7
8(%µ′ , %β) = e−ik−

nsβ
d1Qn′sµ′[T ]

nsβ
δs′s,

C8
8(%µ′ , %β) = Qn′sµ′[T ]

nsβ
δs′s,

C9
8(%µ′ , %µ′) = −r2

w3I
s′µ′

s′µ′ ,

C10
8 (%µ′ , %µ′) = −diag

(
eik+

n′sµ′
LD
r2
w3

)
,

C7
9(%ν′ , %β) = e−ik−

nsβ
d1Yn′sν′[T ]

nsβ
δs′s,

C8
9(%ν′ , %β) = Yn′sν′[T ]

nsβ
δs′s,

C11
9 (%ν′ , %ν′) = −diag

(
r2
d1

)
δs′s,

C12
9 (%ν′ , %ν′) = −diag

(
eik+

n′sν′
LD
r2
d1

)
C9

10(%m′ , %µ) = k−nsµe−ik−nsµLDAn′sm′nsµ δs′s,

C10
10(%m′ , %µ) = k+

nsµAn
′
sm
′

nsµ δs′s,

C11
10(%m′ , %ν) = k−nsνe

−ik−nsνLDGn′sm′nsν δs′s,

C12
10(%m′ , %ν) = k+

nsνGn
′
sm
′

nsν δs′s,

C13
10(%m′ , %m′) = −diag

(
k−n′sm′r

2
e2

)
,

C9
11(%µ′ , %µ′) = diag

(
e−ik−

n′sµ′
LD
r2
w3

)
,

C10
11(%µ′ , %µ′) = r2

w3I
s′µ′

s′µ′ ,

C13
11(%µ′ , %m) = −An′sµ′[T ]

nsm δs′s,

C11
12(%ν′ , %ν′) = diag

(
e−ik−

n′sν′
LD
r2
d1

)
,

C12
12(%ν′ , %ν′) = r2

d1I
s′ν′

s′ν′ ,

C13
12(%ν′ , %m) = −Gn′sν′[T ]

nsm δs′s
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C5
13(%η′ , %η′) = diag

(2π
V
r2

2k
+
n′sη
′eik+

nsηLS1

)
,

C6
13(%η′ , %η′) = diag

(2π
V
r2

2k
−
n′sη
′

)
,

C14
13(%η′ , ς) = −k+

n′qp
′ϕn′sqΥ

n′sη
′[T ]

nqp ,

C5
14(ς ′, %η) = eik+

nsηLS1 Λq′nsΥ
n′qp
′

nsη ,

C6
14(ς ′, %η) = Λq′nsΥ

n′qp
′

nsη ,

C14
14(ς ′, ς ′) = −diag

(
θa
2 r

2
Sd2

(1 + δq′0) δp′p
)

V1(%ξ′ , 1) = −A(Rd)
nj k−nje−ik−njLp1Fn′sξ′nj δs′0 −

+∞∑
s=−∞

+∞∑
g=0

k−nsgD
(G)
nsge

−ik−nsgLGWn′sξ
′

nsg δs′s

V2(%γ′ , 1) = −A(Rd)
nj e−ik−njLp1δjγ′δs′0r

2
Rd

V13(%η′ , 1) =
+∞∑
q=0

+∞∑
p=0

U (Sd)
nqp e−ik−nqqLSdϕn′sqΥ

n′sη
′[T ]

nqp

V14(ς, 1) = U
(Sd)
n′qp
′ e
−ik−

n′qp′
Ld θa

2 r
2
Sd2

(1 + δq′0)

A.2 Matrix terms - Second block
The matrix form of the matching equations is given by

HX2 = S (A.4)

where

H =



H1
1 H2

1 H3
1 H4

1 0 0 0 0 0 0 0 0
H1

2 0 H3
2 H4

2 0 0 0 0 0 0 0 0
0 H2

3 H3
3 H4

3 0 0 0 0 0 0 0 0
0 0 H3

4 H4
4 H5

4 H6
4 H7

4 H8
4 0 0 0 0

0 0 H3
5 H4

5 0 0 H7
5 H8

5 0 0 0 0
0 0 0 0 H5

6 H6
6 H7

6 H8
6 0 0 0 0

0 0 0 0 0 0 H7
7 H8

7 H9
7 H10

7 H11
7 0

0 0 0 0 0 0 H7
8 H8

8 H9
8 H10

8 0 0
0 0 0 0 0 0 H7

9 H8
9 0 0 H11

9 0
0 0 0 0 0 0 0 0 H9

10 H10
10 0 0

0 0 0 0 H5
11 H6

11 0 0 0 0 0 H12
11

0 0 0 0 H5
12 H6

12 0 0 0 0 0 H12
12



(A.5)
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X2 =
{
URd2 ,DG,DR2 ,UR2 ,US2 ,T S2 ,TA2 ,RA2 ,TW ,RW ,T F ,USd

}
(A.6)

S = {S1,S2,0,0,0,0,0,0,0,0,S11,S12} (A.7)

where

H1
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′
sξ
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′

nsg δs′s,

H3
1(%ξ′ , %ξ′) = −diag
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′r2
R

)
,

H4
1(%ξ′ , %ξ′) = −diag
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H5
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Finite Element Method

B.1 Variational formulation of the Helmholtz equa-
tion (3D)

The simulation domain is divided into five different regions (see Figure B.1):

• The physical domain: represents the simulation domain in which the solution of the
problem is found.

• Three perfectly matched layers to attenuate the acoustic waves coming from the
physical domain and avoid their reflection.

• An active perfectly matched layer, in which the incident wave (φi = φ
(F )
i ) is imposed.

(1) (2) (3)
(4)

Figure B.1: Different regions defined in the finite element simulation.
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The use of the open source solver FreeFem++ [51] requires the implementation of the
variational formulation of the Helmholtz equation.
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= 0 (B.1)

where φi is the acoustic potential incident wave generated by the fan blades (φ(F )
i ), φ the

acoustic potential, and q is the test function.
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Appendix C

Aeraulic performance of
self-ventilated motors

C.1 Introduction
The last part of this work is devoted to the aeraulic performance of self-ventilated motors.
The aim of this chapter is to provide a calculation tool that can predict the flow rate in
various ventilation systems outlined in the preceding chapters. In practice, the flow rate
can be obtained by analyzing the characteristic curve of the cooling fan and considering the
pressure losses in the ventilation circuits of each motor. The point where these two curves
intersect is known as the operating point of the fan (see Figure C.1). It is important to
note that the fan performance prediction has already been extensively covered by various
authors in the literature using a one-dimensional approach [37, 65]. As such, this chapter

Flow rate

To
ta

l p
re

ss
ur

e

 Operating point

Figure C.1: Illustration of the operating point. The fan characteristic curve is represented in
blue. The resistance curve of the ventilation system is depicted in red.

primarily delves into the discussion of pressure losses in the ventilation systems. The
first part examines the flow resistance of totally-enclosed motors, while the second part
addresses the losses in open motors. The impact of rotor core rotation and the porosity
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of the end-windings are discussed in the final part of this chapter.

C.2 Totally-enclosed motors
The pressure losses in the ventilation circuit of a totally-enclosed motor are mainly at-
tributed to the fan cover, the guide vanes, and the cooling channels. Since these compo-
nents are arranged in series, the total pressure loss of the ventilation system ∆psys can be
evaluated by superimposing the pressure losses of each cooling system component (i).

∆psys =
∑
i

∆pi (C.1)

with
∆pi = 1

2ξiρU
2
i (C.2)

where ξi and Ui represent respectively the loss coefficient and the flow velocity in the
element (i).

By analogy with electrical circuits, Equation C.1 can be expressed as a function of the
total resistance Rsys and the flow rate of the cooling system Qv

∆psys = RsysQ
2
sys (C.3)

with
Rsys =

nmax∑
i=1

ρξi
2A2

i

(C.4)

Qsys = UiAi (C.5)

where Ai and nmax represent respectively the cross-sectional area of each component, and
the maximum number of components in the ventilation system.

C.2.1 Motor resistance
As discussed in Chapter 1, in the case of a truncated motor, the flow is distributed over
its different blocks. This distribution may depend on the flow resistance of each block. If
the motor blocks are identical or similar (see Figures C.2), the flow rate will be uniformly
distributed to each motor block. It is given by

Qblock = Qsys

nblocks
(C.6)

where nblocks is the number of motor blocks.
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In this specific case, the pressure drop of the ventilation system ∆psys becomes:

∆psys =
(
Rgrid + Rblock

n2
blocks

)
Q2

sys (C.7)

where Rgrid and Rblock represent the flow resistance of the fan cover and the resistance of
a single motor block respectively.

(a) 1 block (b) 2 blocks

Figure C.2: Types of motor blocks. (a) Ventilation system composed of a single block. (b)
Truncated ventilation system composed of two blocks.

It should be recalled here that each motor block consists of guide vanes and cooling
channels. Since these two components are arranged in series, the resistance of a single
block Rblock can be expressed as

Rblock = Rvanes +Rducts (C.8)

where Rvanes is the resistance of the guide vanes and Rducts is the resistance of the cooling
channels. Note here that the latter can be deduced from the resistance of a single cooling
channel Rduct

Rducts = Rduct

n2
ducts

(C.9)

The resistance of a single channel can divided into three different resistances:

Rduct = Rin +Rfric +Rout (C.10)

where Rin, Rfric and Rout represent the flow resistances due to channel inlet, friction and
channel outlet respectively.

After substituting the expressions of the different resistances in Equation C.7, we get

∆psys = 1
2ρ
(
ξgrid/A

2
grid + ξvanes/A

2
vanes + (ξin + ξfriq + ξout) /(n2

ductsA
2
duct)

n2
blocks

)
Q2

sys (C.11)

where Agrid, Avanes and Aducts represent respectively the cross-sectional areas of the fan
cover, inter-vanes channels and the cooling channels.
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C.2.2 Loss coefficients
The only unknowns in this problem are the resistance coefficients ξgrid, ξvanes, ξin, ξfriq

and ξout. They can be evaluated empirically from the different formulas existing in the
literature [12, 33, 57, 1].

• The fan cover, placed at the motor inlet, can be considered as a perforated plate,
as illustrated in Figure C.3. The loss coefficient of the latter ξgrid can be calculated
as follows [57]:

Figure C.3: Inlet grid (Idelchik [57])

ξgrid =


ξϕ + ε−Re0 (1.707− f)2 1

f 2 , if Re < 105

(1.707− f)2 1
f 2 , if Re ≥ 105

(C.12)

where f = Aor/A0 is the area ratio. The different values of εRe0 and ξϕ are listed in
Table C.4.

Figure C.4: εRe0 and ξϕ as functions of f (Idelchik [57])
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• The loss coefficient of the guide vanes depends mainly on the angle of attack α0 (see
Figure C.5a) and the vane profile (see Figure C.5b).

(a) (b)

Figure C.5: (a) Angle of attack of the guide vanes. (b) Guide vane shape. (Idelchik [57])

In the case where the angle of attack is not equal to zero (α0 6= 0), the loss coefficient
ξvanes can be calculated as follows:

ξvanes = σ1σ2 (C.13)

where σ1 and σ2 are respectively extracted from Figures C.6a and C.6b. In contrast

(a) σ1 (b) σ2

Figure C.6: Variations of σ1 and σ2 as functions of α0 (Idelchik [57])

when the angle of attack is equal to zero (α0 = 0), the loss coefficient ξvanes can be
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evaluated as follows
ξvanes = β2

(
S1

a0
− 1

)3/4
(C.14)

The different values of β2 are given in table C.1 for 6 different vane profiles.

Profile 1 2 3 4 5 6
β1 2.34 1.77 1.77 1.00 0.87 0.71
β2 1.00 0.76 0.76 0.43 0.37 0.30

Table C.1: Values of β1 and β2 (Idelchik [57])

• the resistance coefficient of a sudden contraction (see Figure C.7a) can be evaluated
as [28]

ξin = 0.5085− 0.1979
(
Aduct

Aupst

)
− 0.3148

(
Aduct

Aupst

)2

(C.15)

where Aupst is the cross-section of the annular sector located upstream the cooling
channels. It is given by

Aupst = ∆θblock/2
nducts

(
r2

2 − r2
1

)
(C.16)

• The friction coefficient ξfric depends on the relative roughness ε, duct cross-section
and on the Reynolds number Re. It can be calculated by [33]

ξfric = L

Dh

0.25
[
log

(
ε

3.7Dh

+ 5.74
R0.9
e

)]−2

(C.17)

where L and Dh are respectively the channel length and the hydraulic diameter.

• The use of diffusers (see Figure C.7b) allows one to minimise significantly the pres-
sure losses in channels with abrupt expansion. The loss coefficient of a diffuser can
be evaluated by using the following formula [57].

ξout = (1 + σ′)
(
ξd + S2

0
S2

2

)
(C.18)

where
σ′ = −0.05 L

Dh

+ 0.5 (C.19)

ξd = 3.2 tan
(
α/2

)5/4(
1− S2

0/S
2
2

)
+ λ

8 sin (α/2)

(
1− S2

0/S
2
2

)
(C.20)

where α denotes the diffuser angle. Note here that this angle should not be excessive
to maintain the maximum efficiency of the diffuser.
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(a) (b)

Figure C.7: (a) Channel inlet, (b) Channel outlet (Idelchik [57]).

C.2.3 Validation
C.2.3.1 Comparison with measurements

In order to assess the validity and relevance of the analytical model, a comparison with
measurements was carried out. The analytical model is applied in this section to the
ventilation system of a truncated motor, consisting of 17 channels with circular cross-
sections and 5 guide vanes. The results obtained from the analytical model were then
compared to the measurements, excluding the cooling fan and fan cover. It should be
important to note, in the absence of the cooling fan, the airflow passes axially through
the guide vanes and cooling channels, resulting in an angle of attack of zero for this specific
test-case. The total pressures obtained from both the analytical model and measurements
are plotted as functions of flow rate in Figure C.8. As can be seen, a very good agreement
is found between the two results.

Figure C.8: Comparison between the total pressures obtained from the analytical model and
measurements.
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C.2.3.2 Comparison with the LBM (Lattice Boltzmann Method)

In order to evaluate the pressure losses in each component of the ventilation system, a
comparative study with numerical simulation results has bee conducted. The numer-
ical simulation was perfumed using the LBM (Lattice Boltzmann Method) applied to
the entire ventilation system configuration. The total pressure was evaluated on axial
planes positioned at various locations within the ventilation system. Figure C.9 shows

Figure C.9: Variation of the total pressure obtained from the Lattice Boltzmann Method in
the ventilation system

the variation of total pressure calculated by the LBM in the ventilation system. Com-
parisons between the results obtained from the two calculation methods are depicted in
Figures C.10 and C.11. These figures clearly indicate a good agreement between the total
pressures predicted by both methods.

Figure C.10: Pressure losses of the ventilation system obtained from the analytical model
and the Lattice Boltzmann Method.
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Figure C.11: Pressure losses of the cooling channels obtained from the analytical model and
the Lattice Boltzmann Method.
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C.3 Open motors
This section focuses on the pressure drop in the ventilation systems integrated in open
motors. It is important to note that this ventilation circuit is significantly more complex
than that of an enclosed motor. The complexity comes from the fact that the air flow
passes through three distinct circuits, corresponding to the rotor, stator, and air gap, as
illustrated in Figure C.12. Additionally, the pressure losses are significantly affected by
the rotation of the rotor cooling channels and the air gap. These additional complexities
require careful consideration in the current investigation. However, calculating the flow
resistance of an open motor requires prior knowledge of the flow rate distribution in each
sub-circuit of the ventilation system. In the case of multiple circuits arranged in parallel,

Figure C.12: Typical configuration of the ventilation circuit integrated in an open motor.

the flow is distributed differently based on the resistance of each circuit. Therefore,
establishing a relationship between the different circuits becomes crucial to determine the
flow distribution inside the ventilation system. The airflow provided by the cooling fan is
divided into three different parts:

• QS: is the flow rate passing through the ventilating holes integrated in the stator
core.

• QD: is the flow rate passing through the rotor channels

• QG: is the flow rate passing through the air gap.

At the motor inlet, the total flow rate Qtot is divided into:

Qtot = QS +QR (C.21)

As these two cooling circuits are in parallel, they may have the same pressure drop.
The relationship between these two circuits is expressed as follows

RSQ2
S = RRQ2

R (C.22)
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A part of the rotor flow passes through the rotor channels and another part passes
through the air gap

QR = QD +QG (C.23)

The pressure losses in these circuits are identical

RR
gap/ductsQ

2
R = RSQ2

D (C.24)

RGQ2
G = RDQ2

D (C.25)

After combining Equations C.24 and C.25, one obtains

RSQ2
S = RR

defQ
2
R +RDR2

D (C.26)

The equations above can be written as

−1 −1 0 0

RSQS −RR
defQR 0 −RDQD

0 1 −1 −1
0 0 RGQG −RDQD




QS

QR

QG

QD

 =


Qtot

0
0
0

 (C.27)

This system of non-linear equations can be solved, for instance, by the Newton-Raphson
method [85]

The next step is to define the different resistances of the ventilation system.

• The resistance of the stator circuit RS is calculated by summing up all the individual
resistances of this circuit. It is expressed as:

RS = RS
def︸ ︷︷ ︸

Deflector

+
(
RS

in +RS
fric +RS

out
n2
S

)
︸ ︷︷ ︸

Stator channels

+ RS
winding︸ ︷︷ ︸

End-winding

(C.28)

where RS
def and RS

winding are respectively the resistances of the flow deflector and the
end-windings. The resistance of the channel inlet, friction and channel outlet are
respectively denoted by RS

in, RS
fric and RS

out. nS is the number of stator channels.

• The resistance of the rotor circuit RD is given by

RR =

 RR
in︸︷︷︸

Channel inlet

+ RR
fric︸ ︷︷ ︸

Friction

+ RR
out︸ ︷︷ ︸

Channel outlet

 /n2
R (C.29)

where nR is the number of rotor channels.
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• The resistance of the air gap circuit RG is given by

RG =

 RG
in︸︷︷︸

Inlet

+ RG
fric︸ ︷︷ ︸

Friction

+ RG
out︸ ︷︷ ︸

Outlet

 (C.30)

C.3.1 Loss coefficients
As mentioned in Section C.2, the only unknown variables in the problem are the loss
coefficients. In the rest of this chapter, a particular emphasis will be placed on the impact
of channel rotation on the pressure losses in the ventilation system. It is important to
note that the loss coefficients presented earlier for the stator circuit are once again applied
in this analysis.

C.3.1.1 Rotor cooling channels

The effects of rotation on the pressure losses have been already investigated by Chong
[28]. The author has demonstrated that the rotation induces an additional flow resistance
to the ventilation system. The pressure loss at the channel inlet can be expressed as the
sum of stationary and rotating losses

∆pin = ∆p0︸︷︷︸
Stationary loss

+ ∆pr︸︷︷︸
Additional loss

(C.31)

where
∆pr = ξr

ρU2

2 (C.32)

The resistance coefficient ξr is given by [28]

ξr = c1

(
Vt
U

)2
+ c2

(
Vt
U

)
(C.33)

Figure C.13: Typical configuration of the rotor channels (Reproduced from Chong [28]).
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The coefficients c1 and c2 depend only on the ratio H/a (see Figure C.13). They are listed
C.2 in Table for four different values [28].

H/a c1 c2
0.50 0.360 0.031
0.60 0.303 0.150
0.71 0.230 0.067
0.75 0.170 0.160

Table C.2: Coefficients c1 et c2 for different values of H/a (Chong [28]).

The friction coefficient fr is also increased by the rotation of the cooling channels. It
can be expressed as [28]

fr = f0c3J
c4Rec5 (C.34)

with
J = Ωd2

ν
(C.35)

where ν is the kinematic viscosity of air. The coefficients c3, c4 and c5 depend on the
Reynolds number and the ratio L/d. They are given in Table C.3.

L/d Re c3 c4 c5
10.6 900 < Re < 9880 0.503 0.16 -0.03
10.6 Re ≥ 9880 0.842 0.023 0.002
31.8 900 < Re < 7000 0.312 0.21 0.01
31.8 Re ≥ 7000 0.783 0.05 -0.01

Table C.3: Coefficients c1 and c2 for different values of H/a and Re (Chong [28]).

C.3.1.2 Air gap

In a similar manner, additional losses must be considered for the air gap. The pressure
loss at the entrance of the air gap is expressed as [28, 29, 27]

∆pin = ∆p0 + ξr
ρU2

2 (C.36)

with
ξr = 0.043

(
Vt
U

)2
(C.37)

The additional friction in the air gap is given by [28]

fr = f0c3J
c4Rec5 (C.38)

where the coefficients c3, c4 and c5 depend on the Reynolds number and the ratio L/d.
They are listed in Table C.4 [28].
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L/d Re c3 c4 c5
10.6 900 < Re < 9880 0.503 0.16 -0.03
10.6 Re ≥ 9880 0.842 0.023 0.002
31.8 900 < Re < 7000 0.312 0.21 0.01
31.8 Re ≥ 7000 0.783 0.05 -0.01

Table C.4: Coefficients c1 et c2 for different values of H/a and Re (Chong [28]).

C.3.1.3 End-windings

Various studies have been reported in the literature to predict the pressure drop of the
stator end-windings using numerical simulations [83, 95, 63]. The straightforward way
for estimating the pressure losses is to consider the geometry of the end-windings as
a porous medium. A.Kholghi et al [63] proposed an empirical model based on RANS
(Reynolds-averaged Navier–Stokes) simulations to calculate the friction coefficient of the
end-windings. This model is used in this work to compute the pressure losses in the
end-windings.

Figure C.14: Typical configuration of the end-windings (Reproduced from Kholghi et al [63])

A.Kholghi et al [63] have shown that the friction coefficient of the stator end-windings
ξwinding can be expressed as follows

ξwinding =
(

1
ReKDa

0.5

)
+ CDh (C.39)

where Da is the Darcy number and ReK the Reynolds number. These are given by

ReK = ρU
√
K

µ
, Da = K

D2
h

where K is the permeability of the windings. It is given by

K = φ12.8D2
h

0.248Dh/a+ 0.0038 (C.40)
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The coefficient C can be extracted from a RANS simulation [63]. It is given by

C = 0.107Dh/a+ 0.0124
φ6.3Dh

(C.41)

The porosity coefficient φ can be calculated for any geometry of the end-windings (see
Figure C.14) by using the following formula [63]:

φ = 0.908 + 0.055 cos(γ) + 0.63 tan(α) + 0.0044N (C.42)

where N represents the number of conductors. The angles γ and α are depicted in Figure
C.14.

The variation of the friction coefficient ξwinding as a function of the winding porosity
is illustrated in Figure C.15. As can be seen, the loss coefficient decreases with porosity.
This indicates that the distance between the conductors of the end-windings plays an
important role in determining the pressure losses.
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Figure C.15: Loss coefficient as a function of the porosity of the end-windings

The different empirical models mentioned earlier are used in the mathematical ex-
pressions of the resistances of the different circuits, to calculate the pressure drop of the
ventilation system integrated in an open motor. By incorporating these models, a com-
plete analysis of the pressure losses in the cooling system can be performed, leading to a
more complete understanding of its aeraulic performance.
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