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A problem of sound propagation in a shallow-water waveguide with a weakly sloping penetrable

bottom is considered. The adiabatic mode parabolic equations are used to approximate the solution

of the three-dimensional (3D) Helmholtz equation by modal decomposition of the acoustic pressure

field. The mode amplitudes satisfy parabolic equations that admit analytical solutions in the special

case of the 3D wedge. Using the analytical formula for modal amplitudes, an explicit and remark-

ably simple expression for the acoustic pressure in the wedge is obtained. The proposed solution is

validated by the comparison with a solution of the 3D penetrable wedge problem obtained using a

fully 3D parabolic equation that includes a leading-order cross term correction.
VC 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4944692]
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I. INTRODUCTION

The problem of sound propagation in a three-

dimensional (3D) penetrable wedge is widely considered a

most representative benchmark for 3D modeling methods in

computational acoustics.1–4 Although the formulation of this

problem is very simple, its solution reveals many interesting

features of 3D sound propagation, such as horizontal refrac-

tion, mode interaction,1,4 second arrival of the pulse signal,5

apex diffraction, etc.6,7 Accurate simulation of all these

effects requires many sophisticated mathematical methods to

be used.6,7

In the past two decades the 3D wedge problem was used

in many papers for the validation of various approaches to

3D propagation modeling.1 An analytical solution to this

problem was derived by Deane and Buckingham8 in the

form of a superposition of image sources. The contribution

of each image was represented in terms of a Bessel function

expansion inside a certain improper integral. The conver-

gence of this series may be very slow when considering

wedges with small apex angles a (the number of image sour-

ces required may be estimated as 2p=a, and the number of

Bessel terms required also grows as a increases). In addition,

in the case of a very small apex angle a, the environment

turns into something very close to the Pekeris waveguide

and, fully exploiting this fact, we should be able to obtain a

very simple analytical solution. This is the primary goal of

the present study.

The paper is organized as follows. First, the problem is

presented in Sec. II. In Sec. III the solution to the 3D

Helmholtz equation in the wedge-shaped two-layer wave-

guide is represented in the form of normal mode expansion.1

Then the adiabatic mode parabolic equations (MPEs)9–12 are

used to obtain the modal amplitudes. It turns out that MPEs

may be easily solved analytically in our case. Thus, in Sec.

IV we obtain an explicit asymptotic solution (for small

angles a) for the problem of propagation in the wedge. Our

solution may be seen as the direct generalization of the

standard Pekeris1 normal mode solution for the slightly tilted

bottom. In Sec. V, we compare our resulting formula with

the solution obtained using a 3D parabolic equation (PE)

based model that includes a leading-order cross term in its

formulation that was developed and validated in previous

work.13 The 3D PE model is first briefly described. It is then

shown that for the particular case of a ¼ 0:5�, the two solu-

tions are in very good agreement up to a propagation dis-

tance of 8 km from the source. Notice that our solution based

on modal decomposition completely neglects physical

effects such as mode interaction10 and diffraction by the

wedge apex.6 However, it takes into account horizontal

refraction effects very accurately and allows to reveal/con-

firm the inaccuracy of the 3D PE computation when cross

terms are neglected.13 Section VI concludes the paper.

II. PROBLEM FORMULATION

We consider a shallow-water waveguide with a tilted

bottom as shown in the Fig. 1. The sea surface and the

a)Portions of this work were presented in “Asymptotic solution for the prob-

lem of acoustic waves propagation in a penetrable truncated wedge,”

Proceedings of the International Conference Days on Diffraction 2013,

Saint-Petersburg, Russia, May 2013, and in “Sound propagation in a 3D

wedge: An explicit asymptotic solution for the case of very small opening

angle,” Proceedings of the 1st International Conference and Exhibition on

Underwater Acoustics, Corfu, Greece, June 2013. The preliminary results

were also reported at these conferences.
b)Also at: Far Eastern Federal University, 8 Suhanova St., Vladivostok,

690950, Russia. Electronic mail: petrov@poi.dvo.ru
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bottom form a wedge with an apex angle denoted a. The

sound speed and density in the lossless water column (upper

layer) are denoted cw and qw, respectively, while the respec-

tive parameters in the halfspace bottom (lower layer) are

denoted cb and qb, respectively. The attenuation in the bot-

tom is denoted bb. The z axis is directed downward (i.e., z is

the depth), and the x,y are the horizontal Cartesian coordi-

nates. In this coordinate system, the bottom relief is

described by fz ¼ hðyÞg with h(y) defined by

hðyÞ ¼ h0 þ h1ðyÞ for h1ðyÞ > �h0

0; otherwise;

�
(1)

where h0 is a constant and h1ðyÞ is given by

h1ðyÞ ¼ tanðaÞy: (2)

A time-harmonic point source of frequency f is located in

the water column at x¼ 0, y¼ 0, z ¼ zs > 0. The water depth

at the source is thus equal to h0 and is constant along the

fy ¼ 0g direction.

We consider the problem of sound propagation in the

wedge-like waveguide described above for the small apex

angle a. The mathematical formulation is given in terms of

the boundary problem in the domain z � 0 for the 3D

Helmholtz equation for the sound pressure P ¼ Pðx; y; zÞ,

PxxþPyyþPzzþ
x2

c2
1þ igbð Þ2P¼�d x;y; z� zsð Þ; (3)

where x ¼ 2pf is the cyclic frequency, c and b denote,

respectively, the sound speed and the attenuation expressed

in dB per wavelength, both defined by their restrictions on

each layer, and where g ¼ 1=ð40p log10eÞ. For instance,

c¼ cw if 0 � z < hðyÞ and c¼ cb if z > hðyÞ. The 3D

Helmholtz equation (3) is complemented with a pressure-

release boundary condition at the sea surface fz ¼ 0g,

Pjz¼0 ¼ 0; (4)

and the usual continuity conditions at the interface fz ¼ hðyÞg
for the sound pressure and the particle velocity

Pjz¼h� ¼ Pjz¼hþ ;

1

qw

@P

@n

����
z¼h�
¼ 1

qb

@P

@n

����
z¼hþ

; (5)

where n denotes a unit normal vector to the interface

fz ¼ hðyÞg and the superscript notations “þ” and “–” signify

above and below the interface, respectively. We also assume

that the standard radiation conditions are fulfilled at R
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
!1 : Note that for a rigorous formula-

tion, it is also important to impose the so-called Meixner

condition6 in the neighbourhood of the apex (this condition

ensures that the energy of the wave field is bounded in the

neighbourhood of the wedge apex).

III. PROBLEM REDUCTION TO THE MPE

The adiabatic MPEs method was first developed by

Collins,9 and was later improved by Abawi et al.10 to

account for the mode interaction. An alternative approach to

the MPE derivation from the Helmholtz equation was pro-

posed by Trofimov11 (see also Petrov et al.12). The deriva-

tions of MPE by Collins9 and Trofimov11 are drastically

different. While the former is based on the operator square

root approximation, the latter is accomplished using the

method of multiple scales. The adiabatic MPE of Collins9

may be converted into that of Trofimov11 via the perturbative

expansion of the mode wavenumbers with respect to the (small)

bottom relief inhomogeneities magnitude.1

For the sake of completeness here, we briefly explain

how to derive adiabatic MPE (in the form of Trofimov11)

from the “horizontal” mode amplitude equations.1,10 It was

shown by Petrov and Petrova14 that for small bottom inhomo-

geneities, i.e., h1 � h0, the solution of the elliptic boundary

value problem based on the 3D Helmholtz equation may be

approximated by the following truncated modal expansion:27

Pðx; y; zÞ �
XNm

j¼1

Ajðx; yÞ/jðzÞ; (6)

where /jðzÞ are the discrete spectrum eigenfunctions satisfy-

ing the following standard spectral problem1 (only the first

Nm modes are taken into account):

d2/j

dz2
þ x2

c2
/j ¼ k2

j /j; z 2�0; h0 [½ �h0;1½;

/jjz¼0 ¼ 0 ;

/jjz¼h�
0
¼ /jjz¼hþ

0
;

1

qw

d/j

dz

����
z¼h�

0

¼ 1

qb

d/j

dz

����
z¼hþ

0

;

/j ! 0 as z!1:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(7)

Here, k2
j ; 1 � j � Nm, denote the real-valued eigenvalues

associated to the discrete eigenfunctions /jðzÞ; 1 � j � Nm,

satisfying k2
1 > k2

2 > 	 	 	 > k2
Nm

. The eigenfunctions /jðzÞ;
1 � j � Nm, satisfy also the orthonormality conditionð1

0

/‘ zð Þ/j zð Þ
q

dz ¼ d‘j; (8)

where q denotes the density defined by its restrictions on

each layer, and d‘j denotes the Kronecker symbol (i.e.,

d‘j ¼ 1 if ‘ ¼ j and d‘j ¼ 0 if ‘ 6¼ j).

FIG. 1. A wedge-like waveguide with apex angle a and the x axis is aligned

along the apex. The point source S is located at x¼ 0, y¼ 0, z¼ zs.
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Let us turn now to the derivation of the system of

coupled partial differential equations satisfied by the modal

amplitudes Ajðx; yÞ; 1 � j � Nm. By first multiplying the

Helmholtz equation (3) by /jðzÞ=q, integrating in depth,

then twice integrating by parts, and using the interface con-

ditions at h0 that have been transferred from the interface

fz ¼ hðyÞg to the horizontal plane fz ¼ h0g [see Eq. (6) of

Ref. 14], we obtain under the usual assumption gb� 1 the

following equality:ð1
0

1

q
Pxx þ Pyy þ k2

j P
� �

/j dzþ 2igbb

x2

c2
b

ð1
h0

P/j

qb

dz

þ h1

Pþzz

qb

� P�zz

qw

� �
/j h0ð Þ þ

1

qw

d/j

dz
h�0ð Þ P�z � Pþz
	 
" #

¼ �d xð Þd yð Þ
/j zsð Þ
qw

; (9)

where P6
z ¼ Pzjz¼h6

0
and P6

zz ¼ Pzzjz¼h6
0

. Introducing the

modal expansion (6) in Eq. (9) and using the orthonor-

mality condition (8) of the eigenfunctions /jðzÞ;
1 � j � Nm, we finally obtain the following system of

coupled elliptic equations for the modal amplitudes

Ajðx; yÞ; 1 � j � Nm:

@2
xAj þ @2

yAj þ k2
jAj þ

XNm

‘¼1

h1Bj‘ þ Qj‘ð ÞA‘

¼ �d xð Þd yð Þ
/j zsð Þ
qw

; (10)

where the coefficients of the coupling matrix1 Bj‘ and Qj‘ are

given by

Bj‘ ¼
1

qb

d2/‘

dz2
hþ0
	 


� 1

qw

d2/‘

dz2
h�0ð Þ

 !
/j h0ð Þ

þ 1

qw

d/j

dz
h�0ð Þ

d/‘

dz
h�0ð Þ �

d/‘

dz
hþ0
	 
� �

;

Qj‘ ¼ 2igbb

x2

c2
b

ð1
h0

/‘ zð Þ/j zð Þ
qb

dz:

Notice that the integral Qj‘ is the sole term responsible for

handling attenuation. Notice also that in the presence of a

continuous spectrum (e.g., for the halfspace problem), parts

of the sums in Eqs. (6) and (10) turn into integrals with

respect to the spectral parameter. It is, however, clear from

the rest of this section, that in the adiabatic case this is irrele-

vant (due to the adiabaticity assumption).

Now we make the standard adiabaticity assump-

tion,1,15,16 i.e., we assume that mode interaction in the

system (10) is negligible, and we can therefore drop all

non-diagonal terms Bj‘ and Qj‘; ‘ 6¼ j. This simplification

usually works well in cases when the media parameters h0,

cw, qw, cb, and qb are chosen in such a way that f is not

close to the cut-off frequency of a certain mode.1 The

uncoupled adiabatic approximation to the system (10) is

written as

@2
xAj þ @2

yAj þ k2
jAj þ h1Bjj þ Qjjð ÞAj

¼ �d xð Þd yð Þ
/j zsð Þ
qw

; (11)

where all equations may now be solved separately.

Finally, for each 1 � j � Nm, near the x axis the solution

of the (two-dimensional) 2D Helmholtz equation (11) may

be approximated by the solution of the standard narrow-

angle PE

2ikj@xAj þ @2
y Aj þ ðh1Bjj þ QjjÞAj ¼ 0; (12)

whereas usually Ajðx; yÞ is a slowly varying in x envelope

function of the modal amplitude Ajðx; yÞ satisfying

Ajðx; yÞ ¼ eikjxAjðx; yÞ :

Note that the derivation of Eq. (12) is a standard procedure

which can be found in many textbooks on wave propagation

(see, e.g., Ref. 1). We set up the Cauchy problem for the

MPEs (12) in the halfspace Xh ¼ fðx; yÞ j x � 0g with the

following Gaussian initial conditions designed to approxi-

mate the field produced by a point source

Ajðx; yÞjx¼0 ¼ �Aj e�k2
j y2

; (13)

where �Aj ¼ /jðzsÞ=ð2
ffiffiffi
p
p

qwÞ (see Appendix B for the deriva-

tion of these expressions).

We emphasize again that the adiabatic MPE (12) is a

slightly simplified version of the classical MPE of Collins.9

More precisely, it is simply a linearization of the latter with

respect to h1ðyÞ (see Refs. 11 and 14). This linearization is

clearly reasonable for small values of h1ðyÞ in the domain of

interest. In this form, Eq. (12) was first obtained by

Trofimov11 by means of the method of multiple scales.

We would like to stress again that there are two crucial

assumptions in our approximation of the solution of Eq. (3)

by the expansion

Pðx; y; zÞ �
XNm

j¼1

eikjxAjðx; yÞ/jðzÞ: (14)

First, we neglect mode coupling [when turning Eq. (10) into

Eq. (11)] and, second, we assume that propagation from the

source at x¼ 0, y¼ 0 to the receiver at x ¼ xr; y ¼ 0 is mostly

paraxial [this fact is used in the transition from Eq. (11) to the

MPEs (12)]. Clearly, both assumptions are valid for suffi-

ciently small values of a, and therefore Eq. (14) is an asymp-

totic solution to the problem of sound propagation in the

wedge. Since our main goal is the computation of the sound

pressure in the water [i.e., for 0 � z � hðyÞ], we may retain

only the guided modes in the expansion (14), i.e., the modes

corresponding to the discrete spectrum of Eq. (7).

IV. EXACT SOLUTION OF THE MPE FOR THE WEDGE
CASE

A. Trapped modes in a two-layer waveguide

In the two-layer waveguide, the spectral problem (7) is

of well-known Pekeris type.1 The discrete spectrum
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wavenumbers kj, 1 � j � Nm, for such a problem can be

determined from the dispersion relation (see, for instance,

Ref. 17)

tan ðjw;jh0Þqwjb;j þ qbjw;j ¼ 0; (15)

where jw;j ¼ ðk2
w � k2

j Þ
1=2

and jb;j ¼ ðk2
j � k2

bÞ
1=2

correspond

to the vertical wavenumbers, respectively, in the water col-

umn and the bottom for the jth mode, with kw ¼ x=cw and

kb ¼ x=cb. The mode functions /jðzÞ; 1 � j � Nm, for the

Pekeris waveguide are written as1

/jðzÞ ¼
C�1

j sin ðjw;jzÞ if z � h0 ;

C�1
j sin ðjw;jh0Þejb;jðh0�zÞ if z > h0;

(

where Cj, 1 � j � Nm, are normalization constants, intro-

duced here so that
Ð h0

0
/2

j ðzÞq�1
w dzþ

Ð1
h0

/2
j ðzÞq�1

b dz ¼ 1;
1 � j � Nm, and are given by

Cj ¼
h0

2qw

� sin jw;jh0ð Þcos jw;jh0ð Þ
2qwjw;j

þ sin2 jw;jh0ð Þ
2qbjb;j

 !1=2

:

B. Formula for the amplitudes

For each 1 � j � Nm, the MPE (12) may be rewritten as

2ikj@xAj þ @2
y Aj þ ðbjyþ ajÞAj ¼ 0; (16)

where bj ¼ tanðaÞBjj, with

Bjj ¼
k2

w

qw

� k2
b

qb

þ k2
j

1

qb

� 1

qw

� �" #
sin2 jw;jh0ð Þ

C2
j

� qb � qwð Þ
j2

w;j cos2 jw;jh0ð Þ
C2

j q
2
w

;

and where

aj ¼ 2igbbk2
b

ð1
h0

/2
j zð Þ
qb

dz ¼ igbbk2
b

qbC2
j jb;j

sin2 jw;jh0ð Þ (17)

is the modal attenuation coefficient for the jth mode (see

Refs. 1 and 12 for more details).

The Cauchy problem for Eq. (16) admits an analytical

solution, which may be written as

Aj x;yð Þ ¼ �Aj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ 2ikjx

s
exp �

ykj�
x2bj

4kj

 !2

1þ 2ikjx

0
BB@

1
CCA


 exp
iajx

2kj
þ ibjyx

2kj
�

ix3b2
j

24k3
j

 !
: (18)

Using the solutions (18) for Ajðx; yÞ and the expansion equa-

tion (14), we may compute the acoustical pressure Pðx; y; zÞ
and the respective transmission losses. Note that Eq. (18)

reduces to the initial condition (13) at x¼ 0.

Although Eq. (16) is identical to the Schr€odinger equa-

tion describing a particle in a constant force field (in a one-

dimensional space), it cannot be found in standard textbooks

on quantum mechanics, and it is difficult to figure out in

which paper it was first derived. For instance, this result fol-

lows directly from the classical work of Wei and Norman,18

and it is also written explicitly in a more general form in the

paper by Prants.19 For the sake of completeness, a derivation

based on the Hausdorff formula is given in Appendix A (it

follows Dattoli et al.20 and Petrov21 closely).

Note that formally h1ðyÞ is not a linear function [as it

follows from Eq. (1)] and we should assume it to be constant

h1 ¼ �h0 for

y < �h0=tan a: (19)

However, the adiabatic MPE approximation (14) itself is

valid only inside a neighbourhood Xc:o: of the source where

the bottom depth satisfies the inequalities

hm
c:o: < hðyÞ < hmþ1

c:o: ;

where hm
c:o: ¼ hm

c:o:ðf ; cw; cb; qw; qbÞ denotes the cut-off depth

of the mth guided mode (in particular, this inequality implies

that our solution should not be used for the case when the

source is located near the cut-off depth). Clearly, this in-

equality is much more restrictive than the condition (19),

and we may consider the potential in Eq. (12) to be linear.

We also point out that in wedge-like waveguide, the mode

coupling effects outside Xc:o: may contribute to the field

inside this domain due to horizontal refraction effects. Thus,

we may expect formula (14) to be valid only inside a subdo-

main of Xc:o: for which this contribution is negligible. The

comparisons presented in Sec. V B will show that all the

approximations we made are reasonable and that the analyti-

cal solution (14) can be sufficiently accurate inside a rela-

tively large domain.

We also note that our solution can be easily extended to

the case when the y axis is not aligned along the wedge apex

(i.e., to the case of a rotated coordinate system). The solution

in Cartesian coordinates {x,y}, where the y axis is aligned at an

angle h to the isobath is derived and discussed in Appendix C.

V. NUMERICAL EXPERIMENTS

A. The 3D parabolic model with a leading-order cross
term correction

We give here a brief description of the fully 3D wide-

angle PE based model that we have used to compute a refer-

ence solution that naturally includes mode coupling effects.

The 3D parabolic model under consideration here can be

used to compute acoustic field in a multilayered waveguide

composed of one water layer and one or several fluid sedi-

ment layers. The geometry of each layer is fully 3D.

Cylindrical coordinates r,h,z are used, where r and h repre-

sent, respectively, the horizontal range and the azimuthal

angle, both related to the Cartesian coordinates from Sec. II

by x ¼ r cos h and y ¼ r sin h, and z represents the depth,

increasing downward. Considering a harmonic point source

of frequency f, located at r¼ 0 and z ¼ zs > 0, and assuming
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only outward propagation in range, the elliptic-type 3D

Helmholtz equation is replaced by the following wide-angle

3D PE:

@rw r;h;zð Þ¼ ik0

Xnp

k¼1

ak;np
X

I þbk;np
X

"

þ
Xmp

k¼1

ak;mp
Y

I þbk;mp
Y�

1

4
XY
#
w r;h;zð Þ; (20)

where the unknown wðr; h; zÞ is the envelope function related

to the acoustic pressure by Pðr; h; zÞ ¼ H
ð1Þ
0 ðk0rÞ 
wðr; h; zÞ,

with H
ð1Þ
0 being the zeroth-order Hankel function of the first

kind, and k0 ¼ 2pf=c0 where c0 is a reference sound speed

(to be selected by the user). In Eq. (20), I denotes the identity

operator, X is the 2D depth operator in the vertical rz-plane,

and Y the azimuthal operator, defined as

X ¼ n2 � 1ð ÞI þ q

k2
0

@z
1

q
@z

� �
; Y ¼ 1

k0rð Þ2
@2

h ;

where nðr; h; zÞ ¼ ðc0=cðr; h; zÞÞð1þ igbÞ denotes the com-

plex (to account for lossy layers) index of refraction. As in

Sec. II, c stands for the sound speed, b is the attenuation

coefficient expressed in decibels per wavelength, while q
denotes the density, constant within each layer. The accuracy

of the solution wðr; h; zÞ approximating the pressure field so-

lution of the 3D Helmholtz equation can be controlled by

selecting a sufficient number of Pad�e terms np and mp,

respectively, in depth and in azimuth. Note that the Pad�e
coefficients in depth, ak;np

; bk;np
; 1 � k � np, and in azi-

muth, ak;mp
; bk;mp

; 1 � k � mp, can be real or complex (to

attenuate Gibb’s oscillations; see, for instance, Refs. 22 and

23). Note also that the fully wide-angle capability of this 3D

PE model is attributed to the presence of the last (cross-mul-

tiplied) operator �ð1=4ÞXY appearing on the right-hand

side of Eq. (20). From a practical point of view, this leading-

order cross term operator has been incorporated (for more

details, see Ref. 13) into an existing numerical code by add-

ing a third step into the original two-step splitting based

method of Ref. 4. The first step (hereafter, step 1) consists in

TABLE I. Horizontal wavenumbers for the normal modes of the discrete

spectrum.

Mode no. 1 2 3 4

kj 0.20724586 0.20030636 0.18771764 0.16819605

FIG. 2. Transmission loss (in dB re

1 m) curves at a receiver depth of 10 m

in the across-slope direction corre-

sponding to various PE solutions

(black curves) and the same MPE solu-

tion (gray curves). The PE solutions

correspond to one 2D computation

(upper subplot) and two distinct 3D

computations carried out, including

(middle subplot) and ignoring (lower

subplot) the leading-order cross cor-

recting term (see discussion in Sec. V).
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the evaluation of the exponential of the first sum on the

right-hand side of Eq. (20), consisting of np rational-linear

terms with operator X . During step 2, the exponential of the

second sum of mp terms depending on Y in Eq. (20) is com-

puted. The additional step 3 introduced in Ref. 13 is required

to evaluate the exponential of the operator �ð1=4ÞXY.

The three-step marching algorithm allows to compute

wðrj þ Dr; h; zÞ from the known function wðrj; h; zÞ.
Note that the use of this 3D PE model as a reference

model is justified by its previous validation on the 3D

Acoustical Society of America (ASA) wedge test case.13 In

our case, the solution of 3D PE was also compared with

the analytical solution of Deane and Buckingham,8 and a

very good agreement was observed. Additionally, our goal

was to show that a very simple analytical solution proposed

in this study can reveal an inaccuracy of the much

more complicated 3D PE model (see the comparison in

Sec. V B).

B. Numerical results

We consider a penetrable wedge-shaped waveguide

with a slope angle a of 0:5�. We assume that the sound speed

and the density in the water column are cw ¼ 1500 m=s and

qw ¼ 1 g=cm3, while the respective parameters in the bottom

are equal to cb ¼ 2000 m=s and qb ¼ 2 g=cm3. We also set

the bottom depth at the source fy ¼ 0; x ¼ 0g to h0 ¼ 90 m

(the source is located at a depth zs of 10 m). The bottom

attenuation is 0.5 dB per wavelength (the water layer is

assumed to be lossless) and the source frequency is

f¼ 50 Hz. In this waveguide, for a water depth of h0, there

are four trapped modes whose horizontal wavenumbers are

given in Table I.

Both 2D and 3D PE computations presented hereafter

were carried out using a range increment Dr of 2.5 m and a

depth increment Dz of 0.25 m, and a reference sound speed

value of 1500 m/s. The PE in-range marching algorithms

were initialized at r¼ 0 using a modal sum that includes

only the propagating modes. The maximum computation

range was 8 km. Note that the 2D PE solution was obtained

by using only step 1 in the marching algorithm (i.e., retain-

ing only the Pad�e sum containing the 2D depth operator X ).

An eighth-order finite-difference azimuthal scheme with

M¼ 3240 mesh points in azimuth was used in step 2. With

the range r increasing, the number of azimuthal points was

also increased in such a way that the arc length increments

Ds ¼ rDh remain <k=6.

We display in Fig. 2 transmission loss-versus-range

curves at a constant depth of 10 m and along the across-slope

direction fy ¼ 0g, corresponding to a wide-angle 2D PE nu-

merical solution (np ¼ 2) and to two distinct wide-angle 3D

PE numerical solutions (np ¼ 3; mp ¼ 1) obtained with and

FIG. 3. (Color online) Transmission loss (horizontal slices at a receiver depth of 10 m) corresponding to 3D PE solution (upper subplot) and MPE solution

(lower subplot). On each subplot, the 90 m isobath is indicated by a white dashed line.
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without step 3. The use of any higher-order approximation in

depth and/or in azimuth did not modify the PE solutions

(results not shown here). Also plotted in each subplot of Fig.

2 is the MPE analytical solution (14) with modal amplitudes

computed using the analytical formula (18). From Fig. 2,

one can notice the remarkable accuracy of the analytical so-

lution. In particular, one can observe that the analytical solu-

tion takes into account the horizontal refraction effects

which cannot be accurately reproduced by the 3D PE com-

putation without cross terms.4 Only the incorporation of a

leading-order cross term (as proposed in Ref. 13) allowed us

to achieve a good agreement between the analytical solution

proposed here and the 3D PE numerical solution.

These comparisons show that the MPEs can handle hori-

zontal refraction in the presence of bottom relief inhomoge-

neities very accurately. However, the mode coupling effects

may cripple the accuracy of the adiabatic MPEs. This can be

observed in our case by comparing the MPE solution with

the 3D PE solution sufficiently far from the 90 m isobath, as

shown in Fig. 3 (horizontal slices of transmission loss fields

at a fixed depth of 10 m) and in Fig. 4 (transmission loss-ver-

sus-azimuth curves at a fixed range of 8 km and a fixed depth

of 10 m, i.e., along the circular arc indicated by a black

dashed line on each subplot of Fig. 3). While the contour

plots in Fig. 3 seem very similar (at least in the far field, i.e.,

sufficiently far from the source), a closer inspection provided

by Fig. 4 shows that the two solutions manifest (at a range

of 8 km and a depth of 10 m) significant discrepancies for

h > 5� and for h < �10�. We can observe also that the inac-

curacy of the MPE solution is more pronounced in the shal-

lower part of the wedge-shaped waveguide. This deterioration

is caused by the cutoff of the fourth mode at y � �1:2 km.

Note that, following the discussion and results of Appendix C,

the inaccuracy of the MPE for large h cannot be attributed to

the poor handling of horizontal refraction effects caused by

the aperture limitation in the MPEs.

We again point out that the adiabatic MPE solution

(14) proposed in this work is an analytical but asymptotic

solution. The domain in the x,y horizontal plane where this

asymptotic solution is sufficiently accurate can be arbitra-

rily large provided that the wedge angle is sufficiently

small. In addition, the analytical solution is very easy to

implement, does not demand large computational resour-

ces, and could thus be useful easily for comparisons with

other more complex general-purpose 3D propagation mod-

els. A simple code that was used to produce the MPE solu-

tion figures of the present work ran in 4 s on an average

personal computer (PC). For comparisons, the algorithm of

Deane and Buckingham8 for our test case took �50 h to con-

verge on the same computer. It is also important to note that

the comparisons presented here are the first validation of the

MPE theory (at least, to our knowledge) in the case of non-

compact bottom inhomogeneities (the comparison in the case

of the seamount was presented in Ref. 12).

VI. CONCLUSION

In this study, a new asymptotic analytical solution for

the problem of wave propagation in a 3D penetrable wedge

with a small apex angle was presented. The solution is based

on the adiabatic MPE theory, and the solution of MPEs was

analytically derived using operator disentanglement identi-

ties. The resulting formula for the acoustical field in the

wedge-shaped waveguide was compared with the numerical

solution of a fully 3D PE based model that includes a

leading-order cross term correction, and a very good agree-

ment was observed in the across-slope direction. Note that

cross terms are introduced in 3D PE models in order to

reduce the phase errors inherent to any 3D PE computation.

The necessity to incorporate cross terms in 3D PE models

had already been demonstrated by Lin et al. a few years ago.26

In their formulation, a series of higher-order cross terms was

incorporated in a split-step Pad�e 3D PE algorithm written in

Cartesian coordinates, and validated on the now very classical

3D ASA wedge benchmark problem. It was shown also very

recently that a leading-order cross term correction can be suffi-

cient to remove phase errors in 3D solutions obtained by 3D

PE computations performed in cylindrical coordinates.13 This

approach was validated on the 3D ASA wedge benchmark.

Note that the wedge angle for that specific test case is

2.86 deg, which is larger than the slope angle (0.5 deg) of the

wedge-like test case considered in the present work. When

comparisons of the adiabatic MPE analytical solution (14)

with 3D PE solutions were initiated, it was unclear whether

any cross term correction was needed or not. Interestingly, the

comparisons shown in this study reveal that, even for a small

wedge angle of 0.5 deg, a leading-order cross term correction

is still required, which confirms the importance (at least, for

benchmark comparisons) of incorporating cross-multiplied op-

erator terms in 3D PE based computations.

Our analytical solution is valid only under the usual

requirement of adiabatic theory, and there always exist some

combinations of waveguide parameters for which it is inap-

plicable (e.g., when the source is located close to the cut-off

depth of a mode). However, the adiabatic MPE analytical

FIG. 4. Transmission loss (in dB re

1 m) curves at a fixed receiver depth of

10 m and a fixed receiver range of

8 km corresponding to the 3DPE solu-

tion (black curve) and the MPE solu-

tion (gray curve).
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solution reported here is interesting for its explicit form; in

particular, it shows what actually happens with normal

modes when the bottom is slightly tilted [the behaviour of

mode amplitudes subjected to horizontal refraction is clear

from Eq. (18)]. By contrast, the existing solution of Deane

and Buckingham,8 although not restricted to the adiabatic

case, has, however, a rather complicated form and provides

no direct understanding of horizontal refraction effects.

Furthermore, it is much more difficult to implement29 and its

computation can be very time consuming (in fact, for any

specific case it is difficult to predict how many terms in the

Bessel series are required to reach the convergence, not to

mention the evaluation of the improper integral8). On the

contrary, our analytical solution is very easy to implement,

and its computation takes only a few seconds.28 Thus, it can

be useful when comparing with more complicated propaga-

tion models. In our opinion, it is also interesting from the

purely academic point of view.

We also note that our approach may be used to obtain

analytical solutions for a wide class of problems where

mode coupling is relatively weak and MPEs admit analytical

solution (see the classical paper of Weinberg and Burridge18

for further details).

Finally, our work presents the first comparison of the ad-

iabatic MPE solution with the results obtained by another

method in the case of sloping bottom. Although the MPEs

were introduced more than 20 years ago, to our knowledge,

no comprehensive study of their validity was reported until

now. Our results show that MPEs correctly handle bottom

relief variations when no cutoff occurs.
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APPENDIX A: DERIVATION OF THE SOLUTION TO
MPES

A very elegant way to derive the analytical formula (18)

is based on the various disentanglement identities from non-

commutative analysis.24

The solution of the MPE (16) satisfying the initial con-

dition Ajðx; yÞjx¼0 ¼ Aj;0ðyÞ can be expressed in the form of

operator exponent

Ajðx; yÞ ¼ eiHjxAj;0ðyÞ; (A1)

where the Hamiltonian Hj ¼ ð1=2kjÞð@2
y þ bjyþ ajÞ. We

recast Eq. (A1) in the form

Ajðx; yÞ ¼ eiajx=ð2kjÞeAþBAj;0ðyÞ:

In order to evaluate this expression, we must disentangle the

operators A ¼ ðix=2kjÞð@2=@y2Þ and B ¼ ðix=2kjÞbjy in the

exponential eAþB. This may be accomplished since A and B
span a nilpotent Lie algebra.24 The latter fact may be easily

proved by explicit verification of the following commutation

relations:

½A;B� ¼ m
ffiffiffi
A
p

;

½½A;B�;B� ¼ m2=2 ;

½A; ½A;B�� ¼ 0 ;

where m ¼ bjðix=ð2kjÞÞ3=2
(all commutators of higher order

vanish).

The exponentials containing the operators that span

nilpotent algebras may be disentangled by the Baker–

Campbell–Hausdorff formula,24 which expresses log ðeXeYÞ
in terms of commutators of X and Y,

log eXeYð Þ ¼ X þ Y þ 1

2
X; Y½ � þ 1

12
X; X; Y½ �½ �

þ 1

12
X; Y½ �; Y½ � þ 	 	 	 : (A2)

We write a simple identity

eAþB ¼ e log ðeAþBe�BÞeB

and apply Eq. (A2) to log ðeAþBe�BÞ (i.e., X ¼ Aþ B;
Y ¼ �B). After some algebra, we arrive at the following im-

portant formula:

eAþB ¼ eA�ðm=2Þ
ffiffiffi
A
p
þðm2=12ÞeB: (A3)

In our case, it is essential to swap the expressions containing

A and B. To do that, we derive here some nice commutation

formulas. More precisely, we prove that if ½A;B� ¼ m
ffiffiffi
A
p

,

then

eAeB ¼ eBeAem
ffiffiffi
A
p
þm2=4: (A4)

The proof consists in the evaluation of

½eA; eB� ¼ e�Ae�BeAeB ¼ e�PeQ;

where we introduced notation Q ¼ log ðeAeBÞ;�P
¼ �log ðeAeBÞ ¼ log ðe�Ae�BÞ : Operators P and Q may be

computed straightforwardly using formula (A2),

Q ¼ Aþ Bþ 1

2
A;B½ � þ 1

12
A; A;B½ �½ � þ 1

12
A;B½ �;B½ �;

P ¼ Bþ Aþ 1

2
B;A½ � þ 1

12
B; B;A½ �½ � þ 1

12
B;A½ �;A½ �:

Now we notice that

½eA; eB� ¼ exp ðlog ðe�PeQÞÞ

and apply Eq. (A2) again, this time to log ðe�PeQÞ. After

some simple transformations, we obtain
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½eA; eB� ¼ em
ffiffiffi
A
p
þm2=4:

It is even easier to show that for operators P and Q satis-

fying relation ½P;Q� ¼ r, we have

ePeQ ¼ eQePer:

This allows us to swap B and
ffiffiffi
A
p

in Eq. (A3). Using this for-

mula and Eq. (A4), we obtain (after two swaps) the final

expression for disentangled exponentials

eAþB ¼ eBþðm2=12Þeðm=2Þ
ffiffiffi
A
p

eA: (A5)

Note that eA is a convolution operator with the Green

function of the free-particle Schr€odinger equation as its

kernel25

eq @2=@y2ð Þg yð Þ ¼
1

2
ffiffiffiffiffiffi
pq
p

ð1
�1

e� y�nð Þ2=4q½ �g nð Þ dn: (A6)

In particular, in the case of a Gaussian function gðyÞ
¼ e�y2=r2

, the integral in Eq. (A6) may be evaluated

explicitly

eq @2=@y2ð Þe�y2=r2¼ 1

2
ffiffiffiffiffiffi
pq
p

ð1
�1

e� y�nð Þ2=4q½ �e�n2=r2

dn

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

r2þ4q

s
e�y2=r2þ4q: (A7)

Also note that
ffiffiffiffi
A
p

is merely a shift operator

eqð@=@yÞgðyÞ ¼ gðyþ qÞ: (A8)

Now we have all the formulas we need for the evalua-

tion of eiHjxAj;0ðyÞ for the Gaussian initial condition

Aj;0ðyÞ ¼ �Aj e�k2
j y2

. First, we use the convenient disentan-

glement identity (A5), next we apply operators on the

right-hand side one by one, using Eqs. (A7) and (A8).

Finally, after some simple transformations, we arrive at

Eq. (A8).

APPENDIX B: DERIVATION OF THE GAUSSIAN
STARTER PARAMETERS

In this appendix, we derive the formulas for the parame-

ters of the Gaussian starter (13) for the MPE (12). Note that

our derivation is similar to the derivation of the classical

Gaussian source for the 2D narrow-angle PE.1 Let

1 � j � Nm. A general form of the Gaussian initial condition

can be written as

Ajðx; yÞjx¼0 ¼ �Aj e�y2=w2
j ; (B1)

where the two parameters Aj and wj are to be determined.

Consider a single-mode partial solution of the homoge-

neous Helmholtz equation1 in a homogeneous medium with

a flat bottom at z¼ h0,

pj x; y; zð Þ ¼
i

4qw

/j zsð ÞH 1ð Þ
0 kjrð Þ/j zð Þ; (B2)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. For this waveguide, the adiabatic MPE

(12) can be written as

2ikj@xAj þ @2
y Aj ¼ 0: (B3)

The solution of Eq. (B3) satisfying the initial condition

(B1) is written as1

Aj x; yð Þ ¼
�Ajffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ix

kjw2
j

s exp � y2

w2
j 1þ 2ix

kjw2
j

 !
0
BB@

1
CCA; (B4)

and the adiabatic MPE approximation for the single-mode

solution denoted �pj thus reads

�pjðx; y; zÞ ¼ Ajðx; yÞeikjx/jðzÞ: (B5)

Parameters wj and �Aj are now determined by matching the

first-order terms of the asymptotic expansions of Eqs. (B5)

and (B2) in the far field. More precisely, we evaluate first

the squared magnitudes of complex quantities (B5) and

(B2), applying the far-field approximation for the Hankel

function in Eq. (B2),

jpj x; y; zð Þj2 �
/j zsð Þ2/j zð Þ2

8pkjq2
wx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y

x

� �2
s :

We also drop higher-order terms in x in the expression of the

squared magnitude of �pj,

j�pj x;y;zð Þj2¼
�A

2

jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4x2

k2
j w4

j

s exp � 2y2

w2
j 1þ 4x2

k2
j w4

j

 !
0
BB@

1
CCA/j zð Þ2

�
kjw

2
j

�A
2

j

2x
exp �

k2
j w2

j

2

y

x

� �2
 !

/j zð Þ2:

We then make power series expansions of the above expres-

sions for j�pjj2 and jpjj2 with respect to y / x about y=x ¼ 0

(thus, taking into account only waves propagating at small

angles with respect to the line y¼ 0). By retaining only terms

up to second order in y / x, we obtain

jpj x; y; zð Þj2 �
/j zsð Þ2/j zð Þ2

8pkjq2
wx

1� 1

2

y

x

� �2
 !

;

j�pj x; y; zð Þj2 �
kjw

2
j

�A
2

j /j zð Þ2

2x
1�

k2
j w2

j

2

y

x

� �2
 !

:

By comparing these two equations, we conclude that a field

matching can be achieved by selecting the following values

for �Aj and wj:

wj ¼
1

kj
; �Aj ¼

/j zsð Þ
2
ffiffiffi
p
p

qw

: (B6)
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APPENDIX C: MPE SOLUTION IN ROTATED
COORDINATES

In this appendix, we briefly discuss what happens if we

write the adiabatic MPE in a horizontal coordinate system

rotated by an angle h about the z axis (i.e., when the y axis is

aligned at an angle h with respect to the wedge apex). In this

case, the adiabatic MPE (12) can be rewritten as

2ikj@xAj þ @2
y Aj þ ðbjyþ djxþ ajÞAj ¼ 0; (C1)

where bj ¼ tanðaÞ cosðhÞBjj; dj ¼ tanðaÞ sinðhÞBjj, and aj is

given by Eq. (17).

The Cauchy problem for Eq. (C1) in the halfspace

x � 0 with initial condition (13) has the following

solution:

Aj x; yð Þ ¼ �Aj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ 2ikjx

s
exp

2iajxþ idjx
2

4kj
þ ibjyx

2kj
�

ix3b2
j

24k3
j

 !
exp �

ykj �
x2bj

4kj

 !2

1þ 2ikjx

0
BB@

1
CCA
: (C2)

Clearly, formula (C2) reduces to Eq. (18) when h¼ 0. It is

easy to see that the derivation Eq. (C2) is accomplished follow-

ing the same steps as described in Appendix A (the additional

term that appears in the first operator exponential does not pro-

duce any problem since it commutes with operators A and B).

It is now natural to obtain a solution of the wedge problem

solving the MPEs (C1) along the fan of rays starting at the

source. More precisely, for each point (x,y) we can compute the

pressure Pðx; y; zÞ using the MPE solution (C2) along the ray

passing through (x,y), i.e., using h ¼ atanðy=xÞ. It turned out,

however, that such a solution did not provide any improvement

in accuracy for large jyj. This indicates that the accuracy of the

adiabatic MPE in our case is not limited by the narrow-angle

approximation made when Eq. (11) is replaced by Eq. (12).

Rather, the limitation is imposed by neglecting mode interac-

tion when coupling terms in Eq. (10) were dropped.
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