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A hybrid method for Computational AeroAcoustics
applied to confined flows

T his PhD work deals with the development of a Computational Aeroacoustics (CAA)
method for industrial applications. The constraints linked to this context impose the choice
of a hybrid method based on the used of commercial computing codes adapted to turbu-
lent low velocity flows. This approach is based on Lighthill’s Acoustic Analogy, and its
application involves two steps. In the first step, the unsteady turbulent flow is computed
to determine acoustic source terms, the latter being then propagated in a second step to
produce the radiated acoustic field. The implementation is a variational formulation of
Lighthill’s Acoustic Analogy with the coupling of Fluent CFD code and Actran/LA acoustic
code. It is well adpated to the industry since complex geometries are easily handled in
both finite volumes (Fluent) and finite elements (Actran/LA) methods.

Two academic configurations are considered. The acoustic radiation produced by two
corotating vortices with and without mean flow is first studied for validation. In particu-
lar, the goal is to show the necessity to take the local mean flow field into account when
computing the source term. A Direct Numerical Simulation (DNS) is therefore performed
within Fluent to yield a reference solution; this also reveals the rotating quadrupole nature
of the acoustic source. The hybrid method is then applied with success: the source terms
are computed from the velocity fields of the DNS, and then propagated to the far field in
the spectral domain within Actran/LA. A second verification, in addition to the compari-
son with DNS results, consists in the analytical reslution of Lighthill’s equation using the
Lighthill’s tensor obtained from the DNS. An other important conclusion of this study is
that the presence of a mean flow field in both the proagation and source regions only acts
on the acoustic waves refraction; however, it is not required to account for itin the source
term determination. The second academic study concerns the handling of outgoing tur-
bulent structures from the computing domain. These indeed produce a spurious dipolar
acoustic radiation, of numeric nature purely, and with levels high enough to perturb the
whole solution. This issue is modeled here with the convection of a perfect vortex through
a virtual boundary. Several spatial filters are tested to smooth source terms down to zero
at the boundary; the optimal filter tuning depends on the size and convection velocity of
the structures to be dissipated.

Finally, a real application is considered, the ducted diaphragm at low Mach number.
A first Large Eddy Simulation (LES) is performed on a reduced geometry consisting of
10% of the total span. In spite of the model limitations, mainly due to the span reduction
preventing a correct three-dimensional development of turbulence, the associated two-
dimensional acoustic computation yields consistent results. The full scale 3D flow field is
then studied, with similarly a LES in which aerodynamic features conform well with the
reference DNS. In order to reduce the acoustic model size, source terms are decimated
through spatial interpolation. After propagation, the acoustic results suffer from this ap-
proximation that would require a more thorough validation.





Vers une méthode hybride de calcul aéroacoustique
appliquée à des écoulements confinés

C e travail de thèse concerne le développement d’une méthode de calcul du bruit aéroa-
coustique pour des applications industrielles. Les contraintes liées à ce contexte imposent
de choisir une méthode hybride basée sur l’utilisation de codes de calcul commerciaux,
adaptée aux écoulements turbulents basse vitesse. Cette approche repose sur l’analogie de
Lighthill, et son application fait intervenir deux étapes. Dans la première, l’écoulement tur-
bulent instationnaire est calculé et permet de déterminer les termes sources acoustiques,
lesquels sont ensuite propagés dans une seconde étape afin d’obtenir le champ acoustique
rayonné. L’implémentation choisie, à savoir le couplage entre les codes Fluent (CFD) et Ac-
tran/LA (acoustique) dans une formulation variationnelle, est particulièrement bien adap-
tée pour l’industrie puisque la complexité des géométries est facilement prise en compte
dans les méthodes aux volumes finis (Fluent) et éléments finis (Actran/LA).

On considère plusieurs configurations académiques. Le rayonnement acoustique de
deux tourbillons corotatifs avec et sans écoulement moyen est d’abord étudié pour valider
la méthode; en particulier, on souhaite démontrer la nécessité de prendre en compte
l’écoulement moyen local dans le calcul du terme source. Pour ce faire, une simulation
numérique directe (DNS) est effectuée avec Fluent pour obtenir une solution de référence,
ce qui met en évidence la nature de quadrupôle tournant de la source acoustique. La méth-
ode hybride est ensuite mise en oeuvre avec succès: les termes sources sont calculés à partir
des champs de vitesse obtenus dans le calcul DNS, puis ils sont propagés en champ lointain
dans le domaine spectral avec Actran/LA. Une deuxième vérification, complémentaire à
la comparaison au calcul direct, consiste à résoudre de manière analytique l’équation de
Lighthill en utilisant le tenseur de Lighthill calculé par DNS. On retrouve par ailleurs que la
présence d’un écoulement moyen à la fois dans les zones de propagation acoustique et de
sources a seulement une influence sur la réfraction des ondes acoustiques; en revanche, il
n’est pas nécessaire d’en tenir compte dans la détermination du terme source. La deuxième
étude académique porte sur la gestion de la sortie de structures turbulentes du domaine
de calcul. Ceci produit un rayonnement dipolaire parasite, d’origine purement numérique,
et dont les niveaux sont suffisamment élevés pour perturber la solution. On choisit ici de
modéliser le problème par la convection d’un tourbillon parfait à travers une frontière fic-
tive. Divers filtres spatiaux sont testés pour ramener les termes sources à zéro à la traversée
de la frontière; le réglage optimal de ces filtres dépend de la taille de la structure à dissiper
ainsi que de sa vitesse de convection.

Enfin, une application réelle est considérée, le diaphragme en conduit à faible nombre
de Mach. Une première simulation des grandes échelles (LES) est effectuée sur un modèle
réduit de la géométrie puisque l’envergure est tronquée à 10% de sa valeur totale. Mal-
gré les limitations de cette approche, en particulier du fait que la trop petite extension
du domaine selon l’envergure empêche un développement tridimensionnel correct de la
turbulence, le calcul acoustique bidimensionnel associé produit des résultats consistants.
Le modèle 3D complet est ensuite étudié, avec, de la même manière, une LES qui met
en évidence des caractéristiques aérodynamiques cette fois tout à fait conformes à la DNS
de référence. Une décimation des termes sources par interpolation spatiale est nécessaire
pour réduire la taille du modèle acoustique 3D; les résultats après propagation souffrent
donc de cette approximation qui nécessite une plus ample validation.
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1.

Introduction

T HIS WORK is oriented toward the development of a Computational AeroAcoustics

methodology applied to internal flows in complex geometries at low Mach numbers. The

context, motivations and objectives of the study are firstly given. A non exhaustive de-

scription of different Computational AeroAcoustics strategies is then proposed, followed

by a discussion on the applicability of these methods in the context of this study. The

organization of the manuscript is finally outlined.

1.1 Context of this study

In the automotive industry, noise comfort is a growing concern to satisfy customer’s

demand. As great progresses have been made in decreasing the noise radiated by the

engine, other types of noise are emerging inside the vehicle: the external aerodynamic

noise at high speeds, the road-tire noise at moderate speeds and the ventilation noise at

low speeds. Ventilation noise is particularly annoying for city driving or when weather

conditions impose severe operating conditions (either fast cooling/heating of the car cabin

or deicing/defogging of the windows).

In the late 90’s, the automotive industry adopted Computational Fluid Dynamics (CFD)

to predict the mean features of the flow field thanks to Reynolds Averaged Navier-Stokes

(RANS) modeling. RANS computations, based on turbulence modeling, enable to tackle

complex problems involving large and detailed geometries. These steady mean flow simu-

lations provide a very useful insight on turbulent flows of practical interest at a relatively

low cost, and enable to significantly reduce development times by simulating the statistical

mean behavior of a turbulent flow instead of measuring it. A new step is being achieved at
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Figure 1.1 – Typical Heating, Ventilating and Air Conditioning module, with main elements marked.

the present time with the standardization of unsteady simulations of fine-scale structures

in the vicinity of a car, thanks to Large Eddy Simulations. Next step is to develop and use

such CFD results to compute the noise generated aerodynamically and radiated in the far

field. Considering the exterior problems such as noise generated by the aerodynamic flow

around a vehicle, the main limitation nowadays is the computing power and time needed

to accurately resolve such a huge flow domain, but some methods have been proposed for

particular elements of the car, such as the side-view mirror84 and the open sunroof88 for

instance. Besides, the aeroacoustic noise generated internally has gained less interest due

to its complexity and to the fact that the industry did not see this issue as a major one in

the past. However, ventilation is a typical example of internal aeroacoustic noise that has

emerged in the car cabin thanks to the decrease of engine and external noise.

A photography of a typical Heating, Ventilating and Air Conditioning (HVAC) module

is presented in Figure 1.1; this is a complex box of 40 to 50 liters internal volume, when

duct are not considered. This product has the following functions: bring the airflow at

specific mass flow and temperature to the desired locations in the car (in front of driver

and passenger, at the feet, in the rear, at the defrost outlets), as specified by the user on

the control board. The mechanism principle is the following: a fan drives the air into a

duct at a very low velocity, most often less than 20 m/s, where it is first dried out and

cooled down through an evaporator; part of the air is then heated through a heater, and

a mixing between warm and cold air provides the desired temperature. The air is finally
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conducted to the desired outlets. The temperature mixing phase in particular involves a

series of obstacles in the airflow, such as flaps, valves and rigid walls; the internal airflow

presents thus a great complexity, and the resulting acoustic field has many origins. Indeed,

apart from the aeroacoustic problem, the physics involve vibro-acoustics, noise of electrical

engines (fan and actuators) and mechanical noise (shifting of the flaps for instance); the

noise may also have its origin in the refrigerant system.

Delphi, as a supplier of thermal comfort products, among others, for the automotive

industry, has to find technical answers to achieve customer’s requirements. All aerodynamic

development is driven by Reynolds Averaged Navier-Stokes simulation, regarding the mass-

flow repartition, temperature mixing as well as pressure drop management. As an example,

temperature and velocity obtained by simulation are presented in Figure 1.2; the system

complexity is clear, even if only a two-dimensional cut view is displayed. The conventional

approach to achieve the acoustic specifications is mainly based on engineering background

and on experimental tests; thus, simple laws relating pressure and mass-flow for instance

give indications on the expected noise. In addition, the analysis of RANS results in terms

of turbulent energy levels enable to localize the most probable acoustic source regions; the

vibration analysis and the acoustic propagation of pure sources finally reveals the acoustic

and structural modes present in the system. However, the market drives a reduction of

vehicles development times, and while the time-consuming and costly experimental work

is becoming hardly adequate, the mean flow field simulations are not accurate enough

to lead the aeroacoustic developments. New methods have to be developed in order to

understand earlier in the development process the physics of sound generation by the

flow. With the increase of computing power, the aeroacoustic simulation starts to become

affordable, even within an industrial context.

Regarding the aeroacoustic problem in an HVAC module, it can be split into three major

parts: the heat exchangers noise, the centrifugal fan noise, and the internal aeroacoustic

noise. To our knowledge, the heat exchangers noise has been little studied; the only avail-

able work60 is experimental and concerns the drying machines industry. The fan noise has

gathered much more attention, with the early developments of similarity laws for centrifu-

gal or axial fans (Neise and Barsikow75, Guédel57) and of formulas for calculation of ro-

tating blade noise (see the review of Farassat39). The most recent developments of Rozen-

berg89 involve the use of CFD steady-state results to feed analytical formulas of fan noise

radiation. The specific problem of centrifugal fan noise has been recently addressed by

different teams, with the commune objective of developing a prediction method based on

the use of acoustic analogies together with Computational Fluid Dynamics (cf. Tournour et

al.106 and Dubief et al.34, and Read et al.87, Caro et al.21 and Sandbodge et al.92).

This study will focus on the third part of the problem, the prediction of aeroacous-

tic noise generation and radiation in a confined flow meeting obstacles. Confined flows

have been studied experimentally by van Herpe et al.111 and numerically by Lafon63 and
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Longatte67 for the case of a two-dimensional duct obstructed by a diaphragm. The pre-

diction method proposed in these works is to solve the Linearized Euler Equations using

a source term defined with stochastic space-time turbulent quantities from a steady-state

CFD simulation: this model is called SNGR (Stochastic Noise Generation & Radiation).

More recently, Gloerfelt et al.54 continued this work from another point of view, with a

Direct Noise Computation. Other researches conducted in the frame of confined subsonic

flows aim at using acoustic analogies; thus Ayar et al.6 apply Ffowcs Williams & Hawk-

ings analogy in a boundary element framework, and Mendonça et al.72 apply Lighthill’s

Acoustic Analogy in a finite element framework; Brotz et al.18 present a first step toward

aeroacoustic prediction consisting in predicting the near-field acoustic spectra computed

directly from CFD; and de Guillebon et al.31 propose an original acoustic model specifically

derived for HVAC systems.

1.2 Objectives of the present study

The general scope of this work is to develop and validate a numerical tool for aeroa-

coustic noise prediction applicable to confined, low Mach number flows (M < 0.1) in

complex geometries, see Figure 1.2; as mentioned previously, the numerical prediction of

heat exchanger noise and centrifugal fan noise is not treated here. Additional constraints

linked to the industrial context where the tool will be used are imposed. Although very

severe, the following criteria have been defined to assess the accuracy and performance of

the simulation method:

? the total simulation time for one prediction should not exceed one week;

? the simulation tools have to be chosen amongst available commercial software;

? the developed method has to be general enough to be directly applicable to any HVAC

geometry without fine tuning;

? in terms of frequency, the computed acoustic spectra should range from 50 Hz to

4000 Hz, where most of the acoustic energy is located for an HVAC system;

? in the comparison of acoustic results to experiments, two accuracy criteria are consid-

ered: the simulated broadband noise should lie within the experimental broadband

envelope within 3 dB, and on an A to B comparison, the shift between calculated

noise levels on two different designs should not exceed 10% of the corresponding

shift in experimental noise levels;

? the computed error should always go in the same sense with respect to experiments;
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? all tonal noise observed by experiment should be captured by simulation and identi-

fied.

At the conclusion of the study, it will be assessed if the previous objectives are realistic

in the present industrial context, taken the difficulties not expected at the beginning. The

missing steps leading to the aeroacoustic prediction for HVAC will also be detailed.

1.3 Different CAA strategies

Computational AeroAcousticss (CAA) generally aims at predicting the sound produced

by a turbulent flow. Implicitly, sound prediction will be used in most cases to reduce the

noise generated by a specific device. The complexity of this problem is linked to the very

wide range of associated issues: turbulence and deterministic phenomena are the starting

point for noise generation; length scales and time scales involved in the fluid and in the

acoustic problems differ from several orders of magnitude, and are difficult to be resolved

in a single computation; the geometries considered can be very complex; additional physi-

cal phenomena can occur, such as shock waves, multiphase flow or vibrating structure.

This complexity can be broken into simpler problems27 easier to address separately. As

such, we may distinguish the following sub-problems:

? the development of accurate and robust computational methods to solve flow equa-

tions (development of Direct Numerical Simulation and Large Eddy Simulation sol-

vers for instance);

? the use of these computations to investigate fundamental mechanisms of sound ge-

neration, in conjunction with experiments (application of Direct Noise Computation

and confrontation to experimental results);

? the use of computation, in conjunction with experiments and theory, to derive simpler

models of turbulence or sound generation processes (development of hybrid methods

of noise computation based on acoustic analogies or specific computational strate-

gies);

? the integration of theory, models and computation into predictive tools that can be

used for engineering design, optimization and noise reduction strategies (choose a

combination of previous items to solve a specific aeroacoustic problem).

This research work stands in the last item. In the following, we present different CAA

strategies and explain in which context they are used. The emphasis is put on the general

spirit and the applicability of each method to our particular aeroacoustic problem. A more

complete review can be found in Colonius and Lele28.
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1.3.1 Direct Noise Computation (DNC)

Direct calculation of noise radiation consists in determining the acoustic field directly

from unsteady compressible fluid mechanics equations. The aerodynamic field and the

acoustic field generated by turbulence are computed simultaneously. In this approach, all

physical phenomenons responsible for noise generation and propagation are taken into

account a priori, as no acoustic model nor simplifying assumptions are used. In particular,

all interactions between the velocity field and acoustic waves (such as refraction effects for

instance) are computed.

In order to obtain an acoustic field clean and directly workable, it is necessary to in-

troduce numerical techniques adapted to acoustic waves in simulations. The computing

algorithm should indeed be able to compute acoustic fluctuations of very small amplitude

with respect to those of the aerodynamic field (usually, acoustic fluctuations are three to

four orders of magnitude lower than aerodynamic fluctuations). Acoustic waves have also

to be propagated on long distances without excessive dissipation, damping or refraction.

In addition, boundary conditions are to be treated cautiously in order to minimize spu-

rious reflections on domain borders and to avoid the generation of non-physical acoustic

waves by the outflow of turbulent structures; indeed, the amplitude of these waves may

be superior to the physical acoustic waves amplitude. The use of sponge zones, where the

mesh is slowly stretched, toward downstream boundaries usually improves the efficiency

of boundary conditions.

Among different Direct Noise Computation methods, we give in the following some key

features and examples for the solving of Navier-Stokes equations by direct methods (Direct

Numerical Simulation or Large Eddy Simulation), in which the pressure field is explicitly

solved.

1.3.1.1 Direct Numerical Simulation (DNS)

Direct Numerical Simulation consists in solving compressible Navier-Stokes equations

for all relevant scales of the true fluid motion. Only first principles are used to derive the

Navier-Stokes equations, and numerical analysis is used to guarantee that the numerical

solution is close enough to the true continuous solution; this is called the verification of

the numerical solution. The validation ensures that all assumptions taken for a problem

(boundary conditions, initial conditions, simplifications) are valid by comparing the results

to a related experiment.

The smallest scale constitutive of the turbulent kinetic energy spectrum is called the

Kolmogorov scale η and is characteristic of the structures dissipating energy. For a ho-

mogeneous and isotropic turbulence, a simple dimensional law (cf. Bailly et al.7) links
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Kolmogorov scale η to the flow integral scale L:

L

η
∼ Re3/4

L where ReL =
u′L

ν

where u′ is a characteristic velocity scale of the flow, ν is the fluid molecular cinematic

viscosity and ReL is the flow Reynolds number. In three dimensions, the number of points

necessary to describe all scales characteristic of turbulence varies as

N ∝ Re9/4
L

The number of time steps nτ necessary to describe the flow links the characteristic time of

the flow t L ∼ L/u′ to the characteristic time of turbulence tη:

nτ =
t L

tη
=

L

u′ tη

Considering that the Courant number limits the time step for a stable computation as

CFL=
c0∆t

∆x
∼

c0 tη
η
∼ O (1) ,

the total computation cost for the turbulent region is proportional to

N × nτ ∝
Re3

L

M

where M = u′/c0 is the characteristic flow Mach number. As the goal is not only to properly

resolve the turbulent region, but also to compute the sound radiated in the far field, the

characteristic acoustic length scale λ is introduced; at low Mach numbers, it is linked to

the integral turbulence scale L as
λ

L
∼

1

M

Thus the computation of one acoustic wavelength in three dimensions increases the esti-

mation for total computational resources to

Ntot ∼
Re3

L

M4 (1.1)

It is clear from Equation (1.1) that flows at high Reynolds number and/or low Mach

number are almost not reachable by DNS. As an illustration, consider that the computing

power available in the mid-80’s allowed to compute turbulent flows with a Reynolds num-

ber of order 103 in the case of channel flow. Nowadays, the computable Reynolds numbers

approach 104. However, flows of interest for aeroacoustic problems have Reynolds numbers
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of at least 106 and will therefore not be affordable before long. For these reasons, Direct

Numerical Simulation of noise is mainly applied on model problems aiming at address-

ing fundamental issues of aeroacoustic theory or providing benchmark solutions (study of

co-rotating vortices74, vortex pairing in mixing layer14).

Among recent attempts to the DNS of sound on real flows, the works of Freund47;48;50

are remarkable, with successful computations of low Reynolds number jets and their ra-

diated noise by DNS; the analysis of the computed acoustic field provided constitute a

valuable insight into the physics involved in jet acoustic radiation.

1.3.1.2 Large Eddy Simulation (LES)

Large Eddy Simulation is a macrosimulation in which only the largest structures of

the flow are calculated, the effect of the smallest scales being modeled. A spatial filter

allows the separation of scales. It is generally considered that the behavior of filtered small

scales is close to isotropy, which justifies the use of a subgrid-scale model. In most cases, a

functional modeling is used where the role of missing scales is modeled (dissipation of the

small structures energy); a structural modeling can also be employed, where the missing

terms are modeled91.

The cost of this method is, as well as for Direct Numerical Simulation, linked to the

smallest resolved scale, which is here the Taylor scale λg . According to Bailly et al.7, the

number of points necessary to describe the Taylor scale is

L

λg
∼ Re1/2

L

In three dimensions, the number of mesh points then varies as

N ∝ Re3/2
L

After introducing the time, the computing cost is proportional to Re2
L/M . Considering the

resolution of one acoustic wave length by Large Eddy Simulation, a dimensional analysis

similar to the DNS case leads to a total number of operations proportional to Re2
L/M

4.

The direct computation of noise using LES is thus more tractable than using DNS,

but the propagation of sound up to the far field is still barely achievable in practical ap-

plications. The elaboration of high-order, low dispersive and low dissipative numerical

schemes8 makes reliable Direct Noise Computations possible, but still at a high cost. The

analysis of these direct computations of sound with causality methods13 provides a valuable

insight into the noise generation mechanisms. Recent developments include the implemen-

tation and validation of solvers in curvilinear coordinates69;70 together with high order nu-

merical schemes, enabling the handling of more complex geometries such as cylinders and

airfoils. Besides, domain decomposition methods are developed107 in order to decrease
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the computational cost of direct aeroacoustic computations; indeed, the equations, grids,

numerical schemes and time steps are adapted to each subregion of interest to meet local

physical requirements.

An important issue linked to the use of LES for aeroacoustic computations is the subgrid

scale modeling and its effect on the radiated noise; in particular, the subgrid scale model

should not produce spurious acoustic radiation by itself (Piomelli et al.83, Séror et al.94;95).

Some studies aim at quantifying and modeling the contribution of the modeled subgrid

scales to the radiated noise (Rubinstein and Zhou90, He et al.58). Bogey and Bailly10–12

chose to explicitly filter the subgrid scales, without any additional turbulent viscosity based

subgrid modeling: a filtering operation applied to fluctuating quantities removes the high

wave numbers close to the grid cutoff.

1.3.2 Hybrid methods of noise computation

Hybrid approaches constitute an alternative to the direct computation of noise; they

consist in two-steps calculations, where the determination of the aerodynamic velocity and

pressure fields is decoupled from the computation of the acoustic waves. It is then possible

to adapt the numerical techniques to the constraints of each computational step. These

hybrid approaches still can lack information on the interactions between the aerodynamic

and acoustic fields; in particular, refraction effects by the mean flow are incompletely, or

even not at all, computed, as well as potential couplings between the aerodynamic and the

acoustic fields. However, these methods are more affordable in terms of computing power

and time. Moreover, they are often the only methods applicable in complex configurations.

The first step is to determine a space-time evolution of a turbulent aerodynamic field

from a solution of Navier-Stokes equations, either by direct calculation, Large Eddy Simu-

lation or unsteady Reynolds Averaged Navier-Stokes. Pressure and/or velocity fluctuations

are used to build the acoustic source terms, which are integrated into a propagation model,

leading to the radiated noise in the far field.

In the following, we give a presentation of some hybrid methods, with examples of

applications and particular features.

1.3.2.1 Lighthill’s Acoustic Analogy

Derivation of Lighthill’s equation

In 1952, Lighthill64 writes his famous paper in which he shows that the two conserva-

tion equations of the flow can be combined to give rise to a conventional wave equation of

the form:

acoustic wave operator = source term.
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From the full Navier-Stokes mass and momentum conservation equations

∂ρ

∂ t
+
∂(ρui)
∂x i

= 0 (1.2)

∂(ρui)
∂ t

+
∂(ρuiu j)

∂x j
= −

∂p

∂x i
+
∂τi j

∂x j
(1.3)

we perform the operation
∂(1.2)
∂ t
−
∂(1.3)
∂x i

to obtain the equation:

∂2ρ

∂ t2 =
∂2

∂x i∂x j
(ρuiu j + pδi j −τi j)

Subtracting c2
0∇

2ρ on both sides of previous equation, where c0 is the mean sound velocity,

we obtain Lighthill’s equation:

∂2ρ

∂ t2 − c2
0∇

2ρ =
∂2Ti j

∂x i∂x j
(1.4)

where Lighthill’s tensor Ti j is defined as

Ti j = ρuiu j + (p− c2
0ρ)δi j −τi j (1.5)

If density ρ0 is uniform and constant, we can re-write Lighthill’s equation in the follow-

ing way:







∂2ρa

∂ t2 − c2
0∇

2ρa =
∂2Ti j

∂x i∂x j

Ti j = ρuiu j +
�

(p− p0)− c2
0(ρ−ρ0)

�

δi j −τi j

(1.6)

with ρa = ρ−ρ0 outside the source region. This formulation allows to show that, outside

the aerodynamic field, Lighthill’s tensor is null: indeed, the fluid velocity ui is then null,

and taken that the fluctuating acoustic density ρ − ρ0 = ρ′ is also ρ′ = p′/c2
0 , Lighthill’s

tensor cancels: Ti j = 0.

In numerous cases, Lighthill’s tensor’s expression can be simplified:

? when Reynolds number is high, the viscous stress tensor τi j is negligible behind

ρuiu j
1;

? when the gas is perfect, then p′ = c2
0ρ
′+

p0

cv
s′;

1This is shown by a dimensional analysis: τi j ∝
µU

D
, thus

ρuiu j

τi j
∝
ρU2

µ
U

D

∝
U D

ν
= Re� 1.
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? when entropy fluctuations can be neglected, s′ = 0 and p′ = c2
0ρ
′.

Lighthill’s tensor is eventually reduced to:

Ti j = ρuiu j. (1.7)

Interpretation

Since it is exactly built on the full fluid mechanics equations without assumptions,

Equation (1.4) is exact. Lighthill gives the following interpretation: it is

the equation of propagation of sound in a uniform medium at rest due to exter-

nally applied fluctuating stresses64.

Lighthill’s tensor Ti j constitutes the external stresses in the form of a quadrupolar source

term. In this brilliant interpretation, two distinct regions are considered: the source region

where sound is generated from the complex and non linear flow field, and the observer

region, which is a uniform medium at rest where the linear density fluctuations constitute

the acoustic field.

The source term contains not only the sound produced by turbulence, but also all

sound–flow interactions, provided that these interactions occur in the source domain. How-

ever, no interactions between the radiated noise (in far field) and the aerodynamic field

can be taken into account. Indeed, density fluctuations in left- and right-hand-side of

Equation (1.6) are supposed independent; in the propagation operator, the acoustic den-

sity fluctuation ρa is considered, while in the source term, density ρ contains both acoustic

and turbulent fluctuations. If the flow Mach number is low, it is relevant to consider an

incompressible source region with constant density ρ0, which simplifies the aerodynamic

problem; in this case, no sound–flow interaction is computed, even in the source region,

but such effects are supposed to be negligible at low Mach numbers.

A number of papers published recently (cf. for instance Tam100;101 or Fedorchenko43)

introduced some confusion regarding the use of Lighthill’s Acoustic Analogy and its effi-

ciency to properly catch effective noise sources. In particular, it was argued that, as turbu-

lence plays no role in the formulation of the analogy100;101, this theory can not give reliable

results. On the contrary, Peake78 and Bogey et al.16 state that turbulence is accounted for

implicitly in the description of the source term, which has to be accurately computed to

provide consistent results. In the present study, with low velocities and internal flow, the

acoustic prediction performed with such an analogy should produce consistent results. In-

deed, as shown in Bogey et al.16, even sound-flow interaction effects can be accounted for

and computed by Lighthill’s Acoustic Analogy provided that the source term contains these

effects; in the case of a low Mach number flow with small sound-flow interaction effects, a

compressible computation of the Lighthill’s tensor on a region including all sound sources

and all sound–flow interactions can give accurate results.
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r= x− y

Observer

Source

V

Figure 1.3 – Notations used for Lighthill’s Acoustic Analogy analogy.

Solution of Lightill’s equation

The analytical solution of Lighthill’s equation is obtained by using Green’s functions, al-

lowing to express the solution of an inhomogeneous wave equation as an integral equation.

This formalism leads to different formulations of Lighthill’s solution, depending on the di-

mension of the problem (two or three dimensions) and solution domain required (time or

spectral). Moreover, the solution can express time or spatial derivatives of the source term

Ti j or of the Green’s function. An exhaustive review of these formulations in free space

is given in Gloerfelt53. We give here the solution given by Lighthill64 (in chapter 2, the

spectral two-dimensional formulation used in this study is also presented):

ρa(x) =
1

4πc2
0

∂2

∂x i∂x j

∫∫∫

V
Ti j

�

y, t −
|x− y|

c0

�

dy

|x− y|
(1.8)

where x is the observer’s location and Ti j is taken at the retarded time t−
|x− y|

c0
; V denotes

the volume of the source region (see Figure 1.3 for notations).

Although these analytical solutions are exact, they are of utility only in free space or in

particular configurations where the Green’s function is exactly known; moreover, Lighthill’s

tensor space-time fluctuations have to be described in the volume containing the sources.

In the absence of computational fluid dynamics results, this is merely impossible. That is

why Lighthill’s analogy has been firstly extensively used to get magnitude orders for the

acoustic power. In his early paper in 195264, Lighthill expresses the first intensity scaling

law for an observer located at the distance x as

ρ′2 '
�

ρ0`

4πx

�2

M8
0

where M0 = U0/c0 is the Mach number of the flow and U0, ` are the typical velocity and

length scale of the flow. This is the so-called 8th power law of Lighthill.
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1.3.2.2 Addition of a mean flow

One flaw of Lighthill’s analogy is that the observer is located in a uniform medium at

rest. Therefore, if a mean flow is present in the observer domain, mean flow effects on the

acoustic propagation, such as convection, refraction, diffusion and diffraction of acoustic

waves, are missed by previous model. Lighthill’s analogy can be re-formulated in order

to bring to light a more general wave operator containing all mean flow effects on the

acoustic propagation. In the consequent equation, mean flow effects in the source region

will be contained in the source term as before, whereas mean flow effects in the observer

region will be accounted for by the propagation operator.

Phillips’ extension to a unidirectional shear flow

Phillips80 proposes in 1960 to take into account a moving medium with a modification

of the propagation operator; he introduces the variable π = ln(p/p0), pressure logarithm,

and writes the following equation for a moving medium:

d2π

d t2 −
∂

∂x i

�

c2 ∂π

∂x i

�

= γ
∂ui

∂x j

∂u j

∂x i
(1.9)

where it is assumed that the flow is cold and that Reynolds number is high enough to

neglect viscous stresses effects.

Considering a two-dimensional unidirectional shear mean flow U(x2), we write

ui = U(x2)δ1i + u′i

and Equation (1.9) writes:

D2π′

Dt2 −
∂

∂x i

�

c2
0

∂π′

∂x i

�

= 2γ
∂u′2
∂x1

dU

d x2
+
�

γ
∂u′i
∂x j

∂u′j
∂x i
− γ

∂u′i
∂x j

∂u′j
∂x i

�

(1.10)

where D/Dt is the derivation operator following the mean flow:

D

Dt
=
∂

∂ t
+ U

∂

∂x1

Equation (1.10) presents the advantage that density ρ is taken out from the source

term. However, the propagation operator does not contain all the interactions of the mean

flow with the acoustic field; indeed, the acoustic source term proportional to the shear

dU/d x2 is linear in fluctuations and thus is associated to the refraction of acoustic waves.
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Lilley’s formulation

Lilley66 (1972) has proposed to derive Equation (1.10) with respect to time, and he has

obtained the following third order differential equation:

d

d t

�

d2π

d t2 −
∂

∂x i

�

c2 ∂π

∂x i

��

+ 2
∂ui

∂x j

∂

∂x i

�

c2 ∂π

∂x i

�

=−2γ
∂ui

∂x j

∂u j

∂xk

∂uk

∂x i

In the case of the two-dimensional unidirectional shear mean flow, simplifications lead to

the total propagation operator:

D

Dt

�

D2π′

Dt2 − c2
0

�

∂2π′

∂x i∂x j

�

�

+ 2c2
0

dU

d x2

∂2π′

∂x1∂x2
=Q(x, t) (1.11)

The source term Q(x, t) in the right-hand-side contains no term linear in fluctuations,

thus all mean flow effects on acoustic waves are included in the left-hand-side propaga-

tion operator. Besides, the third order propagation operator of Lilley’s equation contains

not only acoustic pressure fluctuations, but also pressure fluctuations linked to the aero-

dynamic instabilities of the flow. Solving this differential equation is non trivial, because

the Green’s function in free field is only known for asymptotic developments at high or low

frequencies. Moreover, it is impossible to derive a generalization to any mean flow, making

this analogy useful in a very limited number of cases.

Goldstein: use of a convected wave equation

After Phillips and Lilley, Goldstein55 has written his own theory consisting in a wave

equation convected in the observer medium:

∇2p′−
1

c2
0

D2
∞ p′

Dt2 =
∂2
eTi j

∂x i∂x j
(1.12)

where D∞/Dt is the derivative operator following the mean flow defined as

D∞
Dt
=
∂

∂ t
+ U∞

∂

∂x1
(1.13)

if we consider a mean flow with a constant component U∞ in the first direction x1. Note

that the mean flow is here constant and spatially uniform (it is the mean flow present in

the observer region). The source term eTi j is now defined as

eTi j = ρeuieu j + (p
′− c2

0ρ
′)δi j −τi j and eui = ui −δi1U∞

Although this equation is similar to Lighthill’s Equation (1.6), it differs from it in two

respects. First, it involves a moving-medium wave equation instead of a stationary medium
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wave equation, with the use of time derivative of Equation (1.13) following the mean

flow instead of ∂/∂ t. Second, Lighthill’s stress tensor is expressed in terms of the relative

velocity eui = ui − δi1U∞ instead of the total velocity ui. The recent analogy proposed by

Goldstein56 aims at providing a generalized framework for noise prediction methods in the

form of linearized inhomogeneous Euler equations.

1.3.2.3 Extension to solid surfaces: Curle and Ffowcs Williams & Hawkings devel-

opments

Curle’s analogy

In his second paper in 195465, Lighthill mentions the importance of solid surface on

the generation of sound and suggests that they should be taken into account by a surface

integral, whose physical interpretation is easily verified to be the dipole radiation associated

with the force between the solid boundary and the fluid65. In 1955, Curle30 brings some

formalism to these assumptions by including solid surfaces in the formulation.

Indeed, Curle30, in reference to Stratton99, gives the following solution to the inhomo-

geneous wave Equation (1.6):

ρ−ρ0 =
1

4πc2
0

∫∫∫

V

∂2Ti j

∂ yi∂ y j

dy

|x− y|
+

1

4π

∫∫

S

�

1

r

∂ρ

∂n
+

1

r2

∂r

∂n
ρ+

1

c0r

∂r

∂n

∂ρ

∂ t

�

dS(y) (1.14)

In this equation, all quantities
∂2Ti j

∂ yi∂ y j
,
∂ρ

∂n
, ρ and

∂ρ

∂ t
are taken at the retarded time t−r/c0

where r = |x− y| and n is the normal pointing outward from the fluid. The first integral

is taken over the total volume V external to solid boundaries, and the second integral is

taken over the surface S of the solid boundaries; this last integral represents the effect

upon the hydrodynamic flow itself of the solid boundaries30.

After applying the divergence theorem twice, it appears that Equation (1.14) can be

rewritten in a form similar to the original Lighthill’s solution (1.8):

ρ−ρ0 =
1

4πc2
0

∂2

∂x i∂x j

∫∫∫

V

Ti j(y, t − r/c0)

r
dy−

1

4πc2
0

∂

∂x i

∫∫

S

Pi(y, t − r/c0)
r

dS(y)

(1.15)

where Pi =−n j pi j =−n j(pδi j −τi j).
In Equation (1.15), the surface integral, representing the modification to Lighthill’s

theory, is exactly equivalent to the sound generated in a medium at rest by a distribution of

dipoles of strength Pi per unit area, Pi being the force per unit area exerted on the fluid by

the solid boundaries in the x i direction. Therefore, one can look upon the sound field as the

sum of that generated by a volume distribution of quadrupoles and by a surface distribution

of dipoles.
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Figure 1.4 – Notations used for Ffowcs Williams & Hawkings analogy.

Ffowcs Williams & Hawkings’ analogy

In 1969, Ffowcs Williams & Hawkings44 bring a mathematical correction to previous

Lighthill and Curle formulations thanks to the introduction of generalized functions. In-

deed, they notice that the equations of mass and momentum conservation of fluid, and

thus Equation (1.4) which is a recombination of the previous ones, are valid in the region

exterior to any closed internal surface that may be present; these equations are therefore

valid in the volume outside the surfaces, but are meaningless elsewhere: this is an inhomo-

geneous situation in space. The introduction of generalized functions40 can restore spatial

homogeneity.

In the generalized functions formalism, we can replace the physical surface by a math-

ematical closed surface Σ, partially included in the source volume V ; in order to get the

most general results, we consider a not impenetrable surface Σ. Notations are displayed in

Figure 1.4. By definition, f (x, t) = 0 on the surface, f is positive in the fluid surrounding

the surface and f is negative inside Σ. Moreover, Σ is moving at the velocity uΣ. Thus the

evolution of the surface is given by

∂ f

∂ t
+ uΣ · ∇ f = 0

and the unit normal outward to surface Σ is defined as

∇ f

|∇ f |
= n

The discontinuous variable ρH( f ) is introduced, where H is the Heaviside function



18 Introduction

defined as

H( f ) =

(

1 if f > 0

0 if f < 0

With this definition, the variable ρH( f ) exists in the whole space, and the discontinuity

previously present on the variable ρ is now contained in the function H( f ). This function,

existing only in the framework of generalized functions17;40;41, has the following properties:







∇H( f ) = δ( f )∇ f
∂H( f )
∂ t

= δ( f )
∂ f

∂ t
=−δ( f )uΣj

∂ f

∂x j

The conservation equations can then be multiplied by H( f ) in order to build Lighthill’s

equation based on the generalized fluctuations ρH( f ). For the mass conservation equation

it yields

∂

∂ t
[ρH( f )] +

∂

∂x j
[ρu jH( f )] = (ρ−ρ0)

∂ f
∂ t
δ( f ) +ρu j

∂ f

∂x j
δ( f )

= [ρ(u j − uΣj ) +ρ0uΣj ]
∂ f

∂x j
δ( f )

= [ρ(un− uΣn ) +ρ0uΣn ]δ( f )

(1.16)

where normal velocities are defined as










un = u j

∂ f

∂x j

uΣn = uΣj
∂ f

∂x j

as respectively the local fluid velocity in the direction normal to the surface, and the local

normal velocity of surface Σ. The momentum conservation equation is rewritten as:

∂

∂ t
[ρuiH( f )] +

∂

∂x j
[(ρuiu j + (p− p0)δi j −τi j)H( f )]

= ρu j

∂ f

∂ t
δ( f ) + ((p− p0)δi j −τi j +ρuiu j)

∂ f

∂x j
δ( f )

= [(p− p0)δi j −τi j +ρui(u j − uΣj )]
∂ f

∂x j
δ( f )

= [(p− p0)δi j −τi j +ρui(un− uΣn )]δ( f )

(1.17)

Ffowcs Williams & Hawkings equation is then obtained by forming the equation

∂(1.16)
∂ t
−
∂(1.17)
∂x i

− c2
0

∂2

∂x i∂x j
[(ρ−ρ0)H( f )] :
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¨

∂2

∂ t2 − c2
0

∂2

∂x i∂x j

«

[(ρ−ρ0)H( f )]

=
∂

∂ t
[Qδ( f )]−

∂

∂x i
[Fiδ( f )] +

∂2

∂x i∂x j
[Ti jH( f )]

(1.18)

with























Q = ρ(un− uΣn ) +ρ0uΣn

Fi = (p− p0)δi j −τi j +ρui(un− uΣn )

Ti j = ρuiu j + (p− p0)δi j − c2
0(ρ−ρ0)−τi j

(1.19)

The first source term Q is a monopole and the second term Fi is a dipole. Both are

surface sources: they only act on the surface Σ as indicated by the Dirac delta function

δ( f ); Q is corresponds to the thickness noise, while Fi corresponds to the loading noise. Ti j

is the quadrupolar Lighthill’s stress tensor, as defined previously in (1.5), and the Heaviside

function H( f ) indicates that Ti j only acts throughout the volume outside the surface f = 0.

This last source term is responsible of the flow self noise. Note that in absence of surface,

Equation (1.18) exactly reduces to Lighthill’s Equation (1.4).

Ffowcs Williams & Hawkings equation is often used for complex problems involving ro-

tating surfaces, such as helicopter rotors. Although there is no doubt about the importance

of the quadrupolar source term, this term is often neglected because of the computational

resources necessary to accurately resolve the near field of the blades of a rotating machin-

ery; indeed, it is far more easy to have a description of ρ, ρui and p on a surface than of

Ti j in the whole volume exterior to the surface. Therefore, one can make use of a fictitious

permeable surface in order to include most of the energetic volume source inside the sur-

face, avoiding the costly computation of the volume integral. Such approaches require a

great understanding of the flow field in the vicinity of the solid surface(s) in order to define

the permeable surface and make sure that the volume sources left outside the surface play

a minor role.

A study made by Casper et al.23 shows, using a spectral formulation of Ffowcs Williams

& Hawkings equation applied on a high-lift wing configuration, that the contribution of

volume sources to the total noise is non negligible, and that the only contribution of the

solid surfaces is not enough to predict the far-field radiated noise.

1.3.2.4 Linearized Euler Equations

In most applications, mean flows are more complex than those prescribed in Lilley’s

or Goldstein’s analogies; it is then necessary to define a propagation operator exact for all

kinds of flows. It is the case of Linearized Euler Equations (LEE), that account for all kinds
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of linear interactions between acoustic fluctuations and any aerodynamic mean flow field.

They can be applied in the frame of complex geometries, particularly in the case of internal

flows, because the associated Green’s function does not need to be known. Finally, they

are easy to solve since the differential system is of first order only. As Linearized Euler

Equations support acoustic fluctuations as well as aerodynamic fluctuations originating

from vorticity or entropy. Therefore, instabilities may develop especially in shear zones.

The control of these instabilities is still an open subject.

The derivation of Linearized Euler Equations describe the behavior of small perturba-

tions around a steady mean flow; for this reason, each variable φ is decomposed into a

mean φ0 and a fluctuating quantity φ′. For a perfect gas, these equations write:











































∂ρ′

∂ t
+
∂

∂x j
(ρ′ū j + ρ̄u′j) = 0

∂(ρ̄u′i)

∂ t
+
∂ρ̄ū ju

′
i

∂x j
+
∂p′

∂x i
+ (ρ̄u′j +ρ

′ū j)
∂ūi

∂x j
= 0

∂p′

∂ t
+
∂

∂x j
(p′ū j + γp̄u′j) + (γ− 1)

�

p′
∂ū j

x j
− u′j

∂ p̄

x j

�

= 0

(1.20)

In order to assume noise generation in the equations, and considering isentropic flows,

it is necessary to introduce source terms; moreover, as the noise is exclusively generated

aerodynamically, only the source term associated to the momentum equations is non-zero

in the system (1.20). As shown by Bogey et al.15, in the case of a parallel mean flow

u01 = u01(x2), u02 = 0, it can be written by analogy with Lilley’s equation, exclusively from

the terms nonlinear in turbulent velocity fluctuations:

Si =−ρ0

�∂u′iu
′
j

∂x j
−
∂u′iu

′
j

∂x j

�

(1.21)

Thus, the source terms are only terms of turbulence noise, all the interactions between

the mean aerodynamic field and acoustic waves being contained in the propagation opera-

tor. This method is used the same way as Lighthill’s analogy: the source terms are provided

by a separate CFD computation (either DNS or LES) on a source region, then propagated

with the system of equations (1.20) on the acoustic domain enclosing the source region.

Such computations are presented in Bogey9, applied successively to a mixing layer and to

a high Reynolds number jet (M = 0.9, Re = 6.5× 104). However, the generalization to an

arbitrary mean flow is still to be established.
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1.3.2.5 Wave extrapolation methods

This class of methods does not rely on an acoustic analogy, like the hybrid methods

presented previously, but rather on an extension of the near-field data to the far field. In

practice, these methods are often used when an accurate compressible aerodynamic flow

field description, obtained with DNS or LES, is available in the acoustic near field. A wave

extrapolation method can then be applied to propagate the acoustic waves from the near

field to the far field.

Integral formulations using the Green’s functions formalism take the form of Kirchhoff’s

or Ffowcs Williams & Hawkings’ methods. In Kirchhoff’s method, a control surface enclos-

ing all acoustic sources is defined; inside this surface, the noise sources and the acoustic

near field is computed with CFD, and outside the surface, the acoustic pressure field is

simply described by a wave equation, solved with the use of Green’s functions. The wave

extrapolation method based on Ffowcs Williams & Hawkings’ analogy assumes a porous

surface Σ in the analogy containing all noise sources; this leads to the suppression of the

volume integral, and is very similar to Kirchhoff’s method (see Gloerfelt53 for details on

these methods). Both formulations present a difficulty in the definition of the control (or

porous) surface, the solution being sensitive to the location of this integration surface; this

issue is discussed in Brentner & Farassat17 and in Prieur and Rahier86 for instance. In order

to propagate only the acoustic fluctuations from the Kirchhoff’s surface, De Roeck et al.32

also propose an aerodynamic/acoustic splitting technique to discard aerodynamic fluctua-

tions.

Another approach is proposed by Freund et al.49, with the resolution of a convected

wave equation outside the aerodynamic region:

∆p−
1

c2
0

D2p

Dt2 = 0 where
D

Dt
=
∂

∂ t
+ Ui

∂

∂x i

This method presents the advantage of discarding the problem of the integration surface;

moreover, any mean flow field Ui can be considered in the propagation region. However,

its application requires specific boundary conditions, and the compatibility between both

computations, namely the CFD and the convected wave equation computations, has to be

taken with great care. Finally, the interface between both domains and meshes can create

spurious disturbances.

Linearized Euler Equations can also be applied to propagate the acoustic radiation in

the far field. The same difficulty of domains linking as for the convected wave equation

appears. As all fluctuating quantities are propagated, and not only the pressure, non linear

problems of acoustic propagation are achievable with this method. This strength is however

costly in computing time compared to previous methods of acoustic waves extrapolation.
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1.3.3 Using CAA in complex configurations of internal flows

In complex configurations of internal flows, the first class of methods, namely Direct

Noise Computation, is clearly not applicable, even when choosing a Large Eddy Simula-

tion. Indeed, in addition to their prohibitive computational cost, the optimized high order

finite differences discretization schemes (Bogey et al.10) and boundary conditions (Tam

& Dong102) usually required are not currently developed for complex geometries; these

schemes are designed for cartesian meshes. Recently, extensions have been made to fit

more complex shapes, such as cylinders or airfoils, using curvilinear coordinates (see Mars-

den68), while preserving the accuracy of the schemes. However, these codes are currently

not able to tackle complex geometries of industrial interest. Besides, wave extrapolation

methods are not appropriate for internal acoustic propagation for evident reasons: the

computing time required for free field wave radiation will be lost when surfaces are to be

accounted for; moreover, the development of Green’s function tailored to complex geome-

tries is almost impossible.

Besides, some of the hybrid methods described in previous sections are either not ap-

plicable, or not appropriate for the present study of aeroacoustic noise radiation of internal

low Mach number flows. Indeed, Phillips’ and Lilley’s analogies are defined for particular

unidirectional uniform and shear flows, no expression being derived or even derivable for

ordinary flows. Although Goldstein’s analogy could be consistent, we stress here that in

the context of low Mach number flows, the mean flow effects on the acoustic propagation,

radiation and scattering can be neglected and will be in the remaining of this study.

Lighthill’s equation, where no assumption has been raised, can be implemented in a

finite element framework in order to conform to any geometric complexity, the source

term being described thanks to Computational Fluid Dynamics. We give in chapter 2 the

formalism used in this study, where a variational formulation of Lighthill’s equation, orig-

inally written by Oberai et al.76, is derived. This implementation presents the advantage

of being applicable in an industrial context using free or commercial computing codes; in-

deed, the only requirement for CFD is to perform a Large Eddy Simulation accurately in

any geometry, which is achieved by almost all finite volumes codes having central differ-

encing schemes for spatial discretization; for the acoustic computational step, Free Field

Technologies46 have implemented a variational formulation of Lighthill’s Acoustic Analogy

in its spectral finite elements code Actran/LA20;21;46, see Sandbodge et al.92 for instance

regarding recent applications. Moreover, Lighthill’s Acoustic Analogy only requires an in-

compressible definition of the Lighthill’s source term for low Mach number flows, which

reduces the simulation time.

Another method of practical interest has been recently proposed by Schram et al.93,

combining Curle’s analogy with a Boundary Element Method. This method is similarly

applicable in complex geometries, and noise sources are provided by an incompressible
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Large Eddy Simulation of the low Mach number flow field. We refer the reader to Schram et

al.93 and Martìnez-Lera et al.71 for details on this method.

1.4 Organization of the manuscript

The manuscript is organized so as to reflect the general progression of the work, from

the study of academic cases to validate the methodology to the application to a slice, then

three-dimensional geometry, the main developments of this work being spread in Chap-

ters 3 and 4.

The second chapter handles the theoretical aspects of this work, with detailed devel-

opments of the spectral variational formulation of Lighthill’s Acoustic Analogy. Practical

aspects of the implementation in the finite elements framework are firstly addressed, with

the discretization and boundary conditions problems; the infinite elements, necessary for

free far field radiation in the finite elements context, are in particular specified. In a second

section, the requirements for noise sources description are focused at; Large Eddy Simu-

lation principles are reminded, and some discretization, boundary conditions and solver

specificities in CFD code Fluent are given. In the last section of this chapter, the practical

application of the method is examined, with a detailed description of the steps involved

when applying the method. The potential issues associated with the method are finally

given, and some hints from the literature enable to consider applicable solutions.

The third chapter presents the validation of the method thanks to academic studies. In

particular, the source term definition is studied, in a will to clarify the role of the linear

source terms in Lighthill’s tensor; to this purpose, the system of two corotating vortices

evolving in a medium at rest is studied. The variational formulation of Lighthill’s Acous-

tic Analogy is applied, considering two source terms: a first term obtained using the total

velocities, and the second using the fluctuating velocities; results are validated by compar-

ison to a Direct Numerical Simulation and an analytical resolution of Lighthill’s Acoustic

Analogy. The addition of a mean shear layer enables moreover to study the effects of a

mean flow on the acoustic radiation. The issue of turbulent structures leaving the domain,

creating spurious noise at the boundary, is then considered with the convection of a per-

fect vortex crossing a virtual boundary; spatial filters are developed to alter the spurious

dipolar radiation created at the boundary. Finally, the mesh interpolation, which is a chal-

lenging and crucial issue when applying hybrid methods combining several computational

domains and meshes, is tackled; while a complete study has not been performed, general

rules are developed, which help designing the acoustic mesh knowing the CFD mesh and

the corresponding turbulent aerodynamic flow field.

The last chapter presents the application of the hybrid noise prediction method to a real

case consisting of a straight rectangular duct obstructed by a diaphragm. This case presents

the advantage of being simple to handle numerically, as a cartesian mesh is straightforward,
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but the aerodynamic features are complex enough to consider it as a challenging valida-

tion case. The turbulence and noise are solely created by the geometry changes, namely

successive sharp restriction and expansion, which allows to discard the tricky problems of

turbulent inlet boundary conditions and transition to turbulence at the wall. The study

of a low Mach number flow, with an inlet velocity of 6 m/s, enables to use the conven-

tional approximation for Lighthill’s tensor Ti j ' ρ0uiu j. The diaphragm model is firstly

reduced in the spanwise direction to a slice of 10% of the total span, corresponding to

an extrusion of the two-dimensional model over ten cells. A Large Eddy Simulation is

performed and aerodynamic results are compared to reference results. The limitations of

this case are shown to be linked to the geometry restriction in the third direction, where

turbulent structures do not have enough space to develop. Therefore, the complete three-

dimensional flow field is computed and the hybrid noise predition method is applied. The

aerodynamic flow features are consistent with those found in similar studies; the acoustic

radiation, computed with Actran/LA, is also found to be consistent with both numerical

and experimental reference results.

Conclusions and prospects are drawn in chapter 5. Two annexes close this document;

the first one is dedicated to a two dimensional Large Eddy Simulation on the diaphragm

geometry, showing the inconsistency of such an approach; the second one deals with spatial

filters used to remove grid-to-grid oscillations from the full scale diaphragm computation.



2.

Theoretical foundations

of the computational method

T HIS CHAPTER is dedicated to the detailed presentation of the Computational AeroA-

coustics method used in this work and its implementation. It is a two steps hybrid approach

relying on Lighthill’s Acoustic Analogy64, assuming the decoupling of noise generation and

propagation. The first step consists of an incompressible Large Eddy Simulation of the

turbulent flow field, during which a source term is recorded on a given time interval. In

the second step, a variational formulation of Lighthill’s Acoustic Analogy discretized in the

finite element framework is solved in the Fourier space, providing the radiated noise up

to the free field thanks to the use of infinite elements46. The finite element implementa-

tion allows complex geometries to be studied, and the spectral formulation presents the

advantage of discarding the problem of retarded times, always present when working with

Lighthill’s Acoustic Analogy in time formulations.

A detailed description of Lighthill’s Acoustic Analogy implementation in a spectral fi-

nite element framework is firstly presented; acoustic propagation is also explained in this

particular discretization space, as well as acoustic boundary conditions used in this work,

namely infinite elements and modal duct bases. Then, acoustic sources modeling is intro-

duced with the use of Computational Fluid Dynamics; Large Eddy Simulation is discussed

along with discretization in space and time, boundary conditions and initial conditions. Fi-

nally, an overview of the method is outlined, with a description of all steps involved in the

practical application of Fluent–Actran/LA coupling. Potential issues associated to the com-

putational method are dealt with at the end of the chapter, and some hints being proposed

to overcome the difficulties.
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2.1 Lighthill’s Acoustic Analogy applied in a spectral finite

element framework

2.1.1 Variational formulation of Lighthill’s Acoustic Analogy

The implementation of Lighthill’s Acoustic Analogy was firstly derived by Oberai et

al.76, and further developed and implemented in the finite/infinite elements framework

by Caro et al.20;21; refer also to Actran User’s Guide46 for details on implementation and

discretization. The starting point is Lighthill’s equation:

∂2

∂ t2 (ρ−ρ0)− c2
0

∂2

∂x i∂x i
(ρ−ρ0) =

∂2Ti j

∂x i∂x j
(2.1)

with

Ti j = ρuiu j +δi j
�

(p− p0)− c2
0(ρ−ρ0)

�

−τi j (2.2)

where ρ is the density and ρ0 its reference value in a medium at rest, c0 is the reference

sound velocity, Ti j is Lighthill’s tensor, ui are the components of the fluid velocity, p is the

pressure and τi j is the viscous stress tensor. The strong variational statement associated to

Equation (2.1) is written as:

∫

Ω

�

∂2

∂ t2 (ρ−ρ0)− c2
0

∂2

∂x i∂x i
(ρ−ρ0)−

∂2Ti j

∂x i∂x j

�

δρ dx = 0 ∀δρ (2.3)

where δρ is a test function and Ω designates the computational domain. Following Green’s

theorem, the previous equation is integrated by parts along space derivatives:

∫

Ω

�

∂2

∂ t2 (ρ−ρ0)δρ+ c2
0

∂

∂x i
(ρ−ρ0)

∂δρ

∂x i
+
∂Ti j

∂x j

∂δρ

∂x i

�

dx =
∫
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�

c2
0

∂

∂x i
(ρ−ρ0)ni +

∂Ti j

∂x j
ni

�

δρ dΓ(x) ∀δρ (2.4)

with ni the normal pointing outward of Ω. Replacement of Ti j by its definition using

Equation (2.2) leads to:

∫

Ω

�

∂2

∂ t2 (ρ−ρ0)δρ + c2
0

∂

∂x i
(ρ−ρ0)

∂δρ

∂x i
+
∂Ti j

∂x j

∂δρ
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dx =
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∂

∂x j

�

ρuiu j + (p− p0)δi j −τi j
�

ni δρ dΓ(x) ∀δρ (2.5)

After having defined Σi j as

Σi j = ρuiu j + (p− p0)δi j −τi j , (2.6)
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the equation on the acoustic density fluctuations ρa = ρ−ρ0 is finally derived:

∫

Ω

�

∂2ρa

∂ t2 δρ+ c2
0

∂ρa

∂x i

∂δρ

∂x i

�

dx =−
∫

Ω

∂Ti j

∂x j

∂δρ

∂x i
dx+

∫

Γ

∂Σi j

∂x j
ni δρ dΓ(x) ∀δρ (2.7)

In this formulation, called the variational formulation of Lighthill’s analogy, we gave rise

to two source terms: a volume term and a surface term. Similarly to Ffowcs Williams &

Hawkings’ equation for the terminology, the volume source term is associated to flow self

noise, while the surface source term corresponds to loading noise. Recalling the momen-

tum equation
∂ρui

∂ t
+
∂ρuiu j

∂x j
=−

∂

∂x j
(pδi j −τi j)

we can write

ni

∂Σi j

∂x j
= ni

∂

∂x j

�

ρuiu j + (p− p0)δi j −τi j
�

=−ni

∂

∂ t
(ρui) (2.8)

As a result, if the surface Γ is fixed or vibrating in its own plane, the expression (2.8)

reduces to zero.

In practice, the surface source term can be used in only one circumstance: when the

surface is a fixed virtual surface. Indeed, the spectral formulation is unable to take into

account the displacement of solid surfaces. Besides, in the case of a rotating machine,

where the rotating part is enclosed in a fixed volume, a control surface, also called porous

surface, can be defined, and the source term ∂Σi j/∂x j accounts for the effect of the flow

enclosed inside the control surface on noise generation. In the following of this study, we

only consider fixed solid surfaces without rotating parts, and no porous surface is defined;

the surface source term thus vanishes. Moreover, we adopt the following vector notation

for the volume source term:

Si =
∂Ti j

∂x j
. (2.9)

2.1.2 Spectral formulation

As Actran/LA is written in the frequency domain, Equation (2.7) is transformed to the

spectral space thanks to a conventional Fourier transform. The time Fourier transform of a

signal φ(x, t) is defined as

F [φ(x, t)] = φ̂(x,ω) =

∫ ∞

−∞
φ(x, t)e−iωt dt (2.10)
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where ω = 2π f is the angular pulsation. Adopting the following notations for harmonic

perturbations of any quantity φ

φ(x, t) = eφ(x)eiωt

the spectral equation is written as:

∫

Ω

�

−ω2
eρa δρ+c2

0

∂ eρa

∂x i

∂δρ

∂x i

�

dx =−
∫
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∂ eTi j
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∂δρ

∂x i
dx+

∫

Γ

∂eΣi j

∂x j
ni δρ dΓ(x) ∀δρ (2.11)

As Actran/LA is part of a large family of Actran products, a certain consistency is re-

quired to share common features, such as boundary conditions for instance. In the original

and widely spread Actran software, which is designed to solve acoustic and vibration prob-

lems, a convected wave equation is implemented to enable the resolution of generation and

propagation of acoustic disturbances within a flow; a continuous flow potential model is

derived assuming a non-viscous fluid and a reversible, adiabatic and irrotational flow field.

In this model, flow irrotationality enables to express that the velocity vector v derives from

a potential φ: v = ∇φ. The substitution of this expression into the mass and momentum

conservation equations, and the decomposition of the flow variables into mean (subscript

0) and acoustic variables (subscript a), finally leads to the convected wave equation for the

acoustic velocity potential φa:

∂

∂ t

�

−
ρ0

c2
0

Dφa

Dt

�

+∇ ·
�

ρ0∇φa −
ρ0

c2
0

Dφa

Dt
v0

�

= 0 (2.12)

In absence of mean flow, v0 = 0 and previous equation reduces to a conventional wave

equation for the acoustic velocity potential, equivalent to an acoustic pressure or density

wave equation. Similarly, a convected formulation is written for most boundary conditions,

using also the velocity potential φ. In the following, the mean flow is always zero and only

the non convected formulations are considered. Note that the variable change, from ρa to

φ or eρa to eφ does not mean that an hypothesis has been made on the acoustic variables.

Therefore, the variable of resolution within Actran is the transformed potential eψ de-

fined as

eρa =−
iω eψ

c2
0

and eψ= ρ0
eφ

As a result, the test function is now associated to the variable eψ and is noted δψ.

Making the appropriated changes in Equation (2.11) and dividing by ρ0iω leads to:

∫
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�
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eψδψ−
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(2.13)
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2.1.3 Discretization

In this section we first remind the basic equations of a finite/infinite elements dis-

cretization46. The computational acoustic domain Ω is split into an inner domain, Ωi, and

an outer domain, Ωo, with

Ω = Ωi ∪Ωo

Conventional Galerkin finite elements are used to discretize the inner domain, and infinite

elements are selected for the outer domain, if present; the solving method in this latter

domain is detailed in § 2.1.4.2. In the inner domain, the discretization involves Ne finite

elements noted Ωe:

Ωi =
Ne
⋃

e=1

Ωe

A set of interpolation functions λi(ξ), defined in terms of local coordinates ξ, is used to

interpolate locally any variable eψ based on its nodal values ( eψn)1≤n≤Nn
:

eψ(x) =
Nn
∑

n=1

λn(ξ) eψn (2.14)

where Nn is the number of nodes and λn is the n−th shape function. Note that each shape

function λn is associated to a particular node n, and satisfies λn(ξm) = δnm; the shape

functions exist globally in the finite elements model, but are defined locally within each

finite element. Similarly, the gradient of eψ can be written using the derivatives of the

shape functions:

∇ eψ(x) =
Nn
∑

n=1

∇λn(ξ) eψn (2.15)

In matrix form, Equations (2.14) and (2.15) write

eψ(x) = Λ(ξ) eΨ (2.16)

∇ eψ(x) = B(ξ) eΨ (2.17)

where Λ and B are matrices of size 1 × Nn and Ndim × Nn respectively, Ndim being the

problem dimension; eΨ is the vector of the unknown nodal values of eψ. In Galerkin’s

approach, test functions in Equation (2.13) are chosen in the functional space of shape

functions and coincide with (λn)1≤n≤Nn
at the nodes. Using Equations (2.14) and (2.15),
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the discretization of (2.13) can thus be written as a system of Nn equations:

∑
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∫
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∇eΣi j · nλp dΓe′
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where 1≤ p ≤ Nn. Exchanging the summation on Nn nodes with the integral on each finite

element Ωe brings to:
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∫
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∫

Γe′
∇eΣi j · nλp dΓe′

(2.19)

These Nn equations on the Nn unknown values eψn are finally written in matrix form, best

suited for the finite element resolution:

(−K+ω2M) eΨ = F (2.20)

where the stiffness and mass matrices K and M are defined as the assembly of correspond-

ing element matrices:

K=
∑

e

Ke where Ke =
1

ρ0

∫

Ωe

BT BdΩe (2.21)

M=
∑

e

Me where Me =
1

ρ0c2
0

∫

Ωe

ΛTΛdΩe (2.22)

The vector source term F on the right-hand-side of Equation (2.20) is obtained by as-

sembling the contributions on all finite elements, separating contributions on the volume

(index e) from the contributions on the control surface (index e′):

F=
∑

e

Fe +
∑

e′
Fe′ (2.23)

Element matrices of source terms are given by

Fe
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ρ0ω

∫
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· ∇λi dΩe (2.24)

Fe′

i =−
i

ρ0ω

∫
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∂eΣi j

∂x j
· nλi dΓe′ (2.25)
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Figure 2.1 – Notations for the derivation of the finite/infinite variational formulation.

2.1.4 Boundary conditions

In this section, all variables are supposed to be expressed in the frequency domain;

therefore, the e· notation will be omitted to lighten the equations.

2.1.4.1 Natural boundary condition

In presence of a solid boundary Γ, the surface source term in the variational formu-

lation (2.7) vanishes, according to Equation (2.8). The appropriate boundary condition

which must be satisfied on Γ is
∂p

∂x i
ni =−ρan (2.26)

where an(x,ω) is the prescribed normal surface acceleration on Γ. This corresponds to the

natural boundary condition associated with the weak variational problem.

2.1.4.2 Infinite elements

The use of infinite elements, refer to the works of Astley & Coyette4;5, Van den Nieuwen-

hof & Coyette108;109, and of Astley3 for a recent review on infinite elements, allows to

compute the far field acoustic radiation outside the physical domain, by enforcing the

Sommerfeld radiation condition at large distances from the aeroacoustic sources. Infinite

elements are based on the multipole expansion of the wave equation’s solution; the expan-

sion’s order directly governs the accuracy of the boundary condition. The infinite element

method implemented in Actran is an extension of a variable order Legendre polynomial

formulation whose numerical performance has been extensively studied and assessed4;5.
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Derivation of the variational statement

The free field radiation problem can be described as follows. Considering an un-

bounded region Ωa = {r ∈ ℜ : r > a} enclosing an acoustic source, for instance a radiating

or scattering object or aeroacoustic sources, the complex pressure amplitude p(x) satisfies

the Helmholtz equation (see Figure 2.1 for notations):

∇2p+ k2p = 0 (2.27)

where k = ω/c0 is the wave number. Moreover, in the far field, the Sommerfeld radiation

condition requires that

r
�

∂p

∂r
+ ikp

�

→ 0 when r →∞ (2.28)

where r is a spherical polar radius. At large distances from the source, an approximation

of Equation (2.28) provides the following impedance-type boundary condition:

∂p

∂r
=−ikp+ ε at r = γ (2.29)

where γ is large. A truncated exterior domain Ωγa = Ωa ∩ {r ∈ ℜ : r < γ}, delimited by

the surface Γγ, is thus defined. The variational statement is obtained after multiplying

Helmholtz equation (2.27) by a test function w, integrating over Ωγa and finally integrating

by parts, following the same steps as for the derivation of the variational formulation of

Lighthill’s Acoustic Analogy. Taking Sommerfeld’s condition (2.29) and the natural bound-

ary condition (2.26) into account leads to

∫

Ωγa

(∇p · ∇w− k2pw)dΩγa +

∫

Γγ
(ikpw− εw)dΓγ−

∫

Γ

ρanw dΓ = 0 ∀w (2.30)

As the integration is performed over the finite domain Γγa, the solution p and its gradient

must be square integrable over this region. In the limit γ→∞, this condition is achieved

here by applying the Cauchy Principal Value method while it is also possible to weight the

test functions to make them L2−integrable51. It will be shown later that the chosen trial

and test functions make the left-hand-side of Equation (2.30) well-defined in the Cauchy

principal sense. In addition, for these formulations, the term

∫

Γγ
εw dΓγ (2.31)

vanishes as γ→∞ and will be discarded in the following.

Note that, in the previous developments, the region Ωa is assumed to be a sphere for
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the sake of clarity, but the infinite element methodology has been shown to apply similarly

on more general shapes, such as spheroids or ellipsoids.

Holford expansion

Considering that only outwardly propagating solutions are present in the unbounded

region Ωa, Holford’s expansion theorem114 states that the complex pressure amplitude

p(r,θ ,φ), expressed in the spherical polar coordinates r, θ and φ, can be represented

in this region by a uniformly convergent series of multipole terms of the form

p(r,θ ,φ) = e−ikr
∞
∑

ν=1

Gν(θ ,φ)
(r/a)ν

(2.32)

where Gν(θ ,φ) is a directivity function. The leading term in Equation (2.32) gives the

expected behavior p(r,θ ,φ)∝ e−ikr/r in the far field, while the remaining terms contribute

to the near and intermediate field. In practice, the sum (2.32) is truncated; the number of

retained terms, which will actually be the order of infinite elements, determines the extent

to which the truncated expansion is able to resolve near field effects.

This result has been shown to hold also for spheroidal and ellipsoidal coordinates19,

with substitution of spherical coordinates r, θ and φ by the spheroidal coordinates ρ, ϑ

and ϕ, and the performance of these formulations has been successfully assessed5.

Infinite elements trial solution

The infinite element trial solution ep(x) is defined similarly, taking the form

ep(r,θ ,φ) =
m
∑

µ=1

n
∑

ν=1

qµν Qµν(r,θ ,φ) (2.33)

where qµν and Qµν(r,θ ,φ) are respectively unknown coefficients and known interpolation

functions. The interpolation functions are written as products of radial and transverse

shape functions fν(r/a) and gµ(θ ,φ):

Qµν(r,θ ,φ) = fν(r/a) gµ(θ ,φ)

The summations over ν and µ correspond to discretization in the radial and transverse di-

rections, respectively. The transverse basis functions gµ(θ ,φ) are defined as global shape

functions of a finite element surface discretization of Γγ. The radial basis functions fν(r/a)
are defined as the product of an outwardly propagating wave-like term, e−ikr , and a poly-
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nomial of order n in inverse powers of r/a:

fν(r/a) = e−ik(r−a)×
�

a

r

�

× Fν(a/r) (2.34)

where Fν(a/r) is the shifted Legendre polynomial of order ν − 1.

Test functions

Test functions w are chosen in a form similar to trial functions:

w(r,θ ,φ) =
m
∑

µ=1

n
∑

ν=1

qµν

�

a

r

�2
�

Qµν(r,θ ,φ)
	∗ (2.35)

where ∗ denotes the complex conjugate; this is the Astley-Leis formulation2.

Note that, from the expression of test and trial functions with the canceling factors e+ikr

and e−ikr , the term (2.31) vanishes as γ→∞. Moreover, this conjugated infinite element

formulation assures the well-definition of Equation (2.30) in the Cauchy principal sense as

shown by Astley2.

Matrix expression

The unknown trial coefficient qµν can be renumbered using a single index and placed in

the vector q of length N = m×n. The complete system of linear equations is then obtained

by substituting the expression (2.33) of trial functions into the variational statement (2.30)

and evaluating the resulting expression for the test functions (2.35). In the limit γ→∞,

this gives

Aq= f (2.36)

where the matrix components of A and f are given by















Aαβ = lim
γ→∞

(

∫

Ωγa

�

∇wα · ∇Qβ − k2wαQβ
�

dΩγa + ik

∫

Γγ
wαQβ dΓγ

)

fα =

∫

Γ

ρanwα dΓ where 1≤ α,β ≤ N

2.1.4.3 Modal surfaces

In the diaphragm application case, infinite acoustic ducts have to be modeled at the

upstream and downstream boundary conditions to reflect the testing conditions, namely

anechoic ends. The modal behavior of rectangular hard walled ducts is therefore described

in this section according to their definition and implementation in Actran46, knowing that

the developments for circular, annular or arbitrary cross-sections are similar. The devel-
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opments presented here apply to zero flow case in the axial direction; indeed, for the low

Mach numbers considered in this study, mean flow effects are supposed negligible.

Analytical developments

In Cartesian coordinates, the acoustic wave equation writes

∂2φ

∂x2 +
∂2φ

∂ y2 +
∂2φ

∂z2 + k2φ = 0 (2.37)

where φ is the acoustic velocity potential. The acoustic pressure p is given by

p =−iρ0c0kφ

and the acoustic velocity vector v is

v=∇φ.

A general solution of Equation (2.37) expressed in terms of duct modes is

φ(x , y, z) =
∞
∑

s=0

Cφs φs(x , y)e−iksz (2.38)

where φs(x , y) are the eigenfunctions of the Laplace operator in a cross-section of a duct;

φs(x , y) undergoes the rigid wall boundary condition, namely ∂φs(x , y)/∂n = 0. In these

developments, the duct modes, orthogonal to each other, are normalized according to the

following scalar product
1

S

∫

S

φs(x , y)φ∗r (x , y)dS = δsr (2.39)

where S is the cross-sectional area of the considered duct. Equation (2.38) enables to write

the following expressions for the pressure ps associated to a given duct mode

ps(x , y, z) = C p
s φs(x , y)e−iksz where Cφs =

C p
s

−iρ0c0k

and for the acoustic velocity vsz along the duct axis

vsz =
C p

s ks

ρ0c0k
φs(x , y)e−iksz

For a duct of rectangular cross-section with transverse dimensions a and b, the solution

of Equation (2.37) writes

φ(x , y, z) =
∞
∑

m=0

∞
∑

n=0

cos
�

mπx

a

�

cos
�

nπy

b

�

�

a+mne−ik+zmnz + a−mne−ik−zmnz�
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where m and n denote the modal orders along transverse directions x and y respectively,

and k+zmn and k−zmn are the longitudinal wave numbers. Each mode (m, n) can be examined

through

φmn(x , y, z) = AφmnNmncos(kxm x)cos(kyn y)e−ikzmnz

where Nmn is the normalization factor, and having introduced the notations kxm = mπ/a

and kyn = nπ/b. Similarly, we can write

pmn(x , y, z) = Ap
mnNmncos(kxm x)cos(kyn y)e−ikzmnz where Aφmn =

Ap
mn

−iρ0c0k

Note that these expressions comply with the rigid wall boundary condition at x = 0, x = a,

y = 0 and y = b since

∂φ

∂x

�

�

�

�

x=0

=
∂φ

∂x

�

�

�

�

x=a

=
∂φ

∂ y

�

�

�

�

y=0

=
∂φ

∂ y

�

�

�

�

y=b

= 0

The longitudinal wave numbers k+zmn and k−zmn are obtained using the dispersion relation:

k+zmn =
Æ

k2− (k2
xm+ k2

yn) and k−zmn =−
Æ

k2− (k2
xm+ k2

yn)

which results in mode (m, n) cut-on frequency kco =
p

k2
xm+ k2

yn. The normalization con-

dition (2.39) is rewritten as

1

ab

∫ a

0

∫ b

0

|Nmn|2cos2(kx x)cos2(ky y)dx dy = 1

yielding

Nmn =
2

p

(1+δm0)(1+δn0)
.

Matrix formulation

Considering that modal coupling acts on the boundary Γmod, a new term appears on the

right-hand-side of the variational formulation (2.13):

−
1

ρ0

∫

Γmod

δψni

∂ψ

∂x i
dΓmod (2.40)

Nmod selected modes Φi are used to express the boundary variable ψ on Γmod, with

ψ(x,ω) =
Nmod
∑

i=1

Φi(x,ω)αi
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where αi is the participation factor of i-th mode Φi. After substitution into term (2.40) and

discretization, the contribution of modal components to the discrete right-hand-side vector

F of Equation (2.20) is

Fmod =
∑

e

Fmod,e or Fmod = αD= α
∑

e

De (2.41)

where α is the vector of modal participation factors, and matrix D is built by assembling

the element boundary contributions; matrix components of an element contribution are

expressed as

De
i j =−

1

ρ0

∫ e

Γmod

Ni nk

∂Φ j

∂xk
dΓe

mod (2.42)

Procedure to solve the modal-FE coupling

The coupling between modal components and the Finite Elements (FE) system, the

latter being of the form AΨ = F, see Equation (2.20), is obtained by splitting the solution

vector Ψ into subvectors Ψmod and Ψr related to the number of nodes on the modal basis

and in the remaining of the model, respectively. The right-hand-side vector F and matrix A

are split accordingly:




Ar r Ari

Air Aii





 

Ψr

Ψmod

!

=

 

Fr

Fmod

!

(2.43)

where Fmod = Dα and Ψmod = Φα. The coupled modal-finite element system then writes









Ar r Ari 0

Air Aii D

0 E H

















Ψr

Ψmod

α









=









Fr

0

0









(2.44)

where coupling matrices E and H express the continuity between the modal and finite

element solutions on the modal surface Γmod, expressed for the i-th mode as

∫

Γmod

Φ∗i

 

Ψ−
Nmod
∑

j=1

α jΦ j

!

dΓmod (2.45)

Components of matrices E and H are written

Eik =

∫

Γmod

Φ∗i Nk dΓe
mod and Hi j =−

∫

Γmod

Φ∗iΦ j dΓe
mod (2.46)

with 1 ≤ i, j ≤ Nmod and 1 ≤ k ≤ Nψmod
, ψmod being the number of nodes on the modal

surface.
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2.1.5 Solver

Matrix equations are solved by a linear algebraic solver. The matrices resulting from

space discretization often have a sparse structure, meaning that most of the coefficients

are zero; during a conventional matrix factorization, a large number of these zero ele-

ments become non-zero: this is called fill-in and it increases both memory consumption

and computational time. Therefore, a more efficient solving strategy is the LU-factorization

implemented in linear solvers, where the matrix Z is factorized into the product Z = LU; L

is a lower triangular matrix with ones on the main diagonal and U is upper triangular.

In this procedure, the solution x of the system Zx = b is obtained in two steps; in the

first step, the system Ly = b is solved for y, and in the second step, the system Ux = y is

solved for x.

In this work, the MUMPS (MUltifrontal Massively Parallel Solver) direct linear solver,

developed by CERFACS, ENSEEIHT-IRIT and INRIA24, and implemented within Actran46,

has been used for all acoustic computations.
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2.2 Modeling the noise sources with Computational Fluid

Dynamics

In the two steps hybrid method of noise computation studied in this work, choice has

been made to work with commercial codes for both CFD and acoustic computations, with

the additional constraint of managing a reasonable computing time. Regarding the CFD

computation, this naturally leads to performing a Large Eddy Simulation, available in all

commercial CFD codes nowadays. Basic principles of Large Eddy Simulation will first be

described in § 2.2.1, then the numerical aspects associated to the use of Fluent v6.3.26

code are treated in § 2.2.2.

2.2.1 Large Eddy Simulation

Large Eddy Simulation consists in separating the large flow scales from the smaller and

resolving exactly only the large, the smaller scales being modeled. Therefore, a spatial fil-

tering is defined and applied to Navier-Stokes equations; a closing subgrid-scale modeling

takes the small scales effect into account, their behavior being close to isotropic.

2.2.1.1 Definition of the spatial filtering

The filtered velocity field ûi is obtained by a convolution product in physical space of

the original velocity ui with a filter function G∆:

ûi(x, t) =

∫

D
G∆(x, ~y)ui(x− y, t)dy= G∆ ? ui (2.47)

The integral runs over the whole computational domain D. This filtering operation applies

on all flow field variables. The filter G∆ is usually normalized with

∫

G∆(x,y)dy= 1.

The simplest filtering consists in filtering on the mesh size ∆. The rectangular filter,

also called box-filter or top-hat, is defined as:

G∆(x− y) =

(

1/∆3 if |x i − yi| ≤∆/2, with ∆= (∆x1∆x2∆x3)1/3

0 otherwise.
(2.48)

Gaussian and Fourier are other commonly used filters. With the notations introduced

above, each flow quantity can be decomposed into its filtered, resolved component and
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its non resolved, high frequency component, as

ui = ûi + u′i

Note that in most CFD codes, as is the case within Fluent, the filtering is not applied

explicitly, meaning that there is no effective scales separation. Instead, an implicit filtering

is performed through mesh projection: no structure smaller than the local mesh size can

be represented by the simulation.

2.2.1.2 Filtered Navier-Stokes equations

For incompressible flows, as it will be the case in most applications treated here (but

not necessarily with constant density), we can write the filtered Navier-Stokes momentum

equation as:
∂ρûi

∂ t
+
∂

∂x j
(ρûiû j) =−

∂ p̂

∂x i
+
∂τ̂i j

∂x j
+
∂ t̂ i j

∂x j
(2.49)

where t i j is subgrid-scale (SGS) tensor representing the effects of non resolved scales. t i j

is written as:

t i j = ρûiû j −ρ buiu j = ρûiû j −ρ Û(ûi + u′i)(û j + u′j)

= ρûiû j −ρÔû jûi
︸ ︷︷ ︸

(1)

−ρÔu′iû j −ρÔûiu
′
j

︸ ︷︷ ︸

(2)

−ρÔu′iu
′
j

︸ ︷︷ ︸

(3)

(2.50)

Term (1) is Leonard tensor and is noted Li j; term (2) is the cross-terms tensor, noted

Ci j, and term (3) is the real subgrid constraint. t i j tensor is at this stage considered as

an unknown in Equation (2.49); the closing problem then consists in approaching t i j by a

function of the only resolved, filtered quantities, i.e., a function of the large scales field.

Note that t i j tensor has no physical meaning, and that it is not relied to the mesh, as

no discretization of equations has already been done. Besides, as some authors define the

tensor with an opposite sign (like in Fluent45), it is important to be watchful about this

sign.

In the following, we will only deal with the real subgrid constraint, then:

t i j = ρÔu′iu
′
j (2.51)

2.2.1.3 Closing with a subgrid-scale turbulent viscosity model

In order to solve filtered equations (2.49), it is necessary to define a closing for the

subgrid-scale tensor t i j. In a general way, most subgrid-scale models are built on the eval-

uation of a turbulent viscosity νt ∼ `× u. The only choice of velocity scale u differentiates
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the models, as ` is only linked to the filter width ∆. The purpose of this subgrid model is

to dissipate turbulent kinetic energy, as we do not solve the small scales in the calculation;

the use of a statistic modeling is justified by the quasi-isotropic behavior of the small scales

of motion.

In this modeling, the principle is to express the subgrid-scale tensor t i j with gradients

of the filtered velocity, i.e., with directly solved components of velocity. Thus, t i j is split

into the sum of its deviatoric and its spherical or isotropic part:

t i j = tD
i j + t I

i j with















tD
i j =−ρÔu

′
iu
′
j +

1

3
ρÕu′ku′kδi j

t I
i j =−

1

3
ρÕu′ku′kδi j =−

2

3
ρk̂sgsδi j

with, in the incompressible case,

tD
i j = 2µt ŝ

D
i j where ŝi j = ŝD

i j =
1

2

�

∂ûi

∂x j
+
∂û j

∂x i

�

(2.52)

where ŝi j is the rate-of-strain tensor for the resolved scale. t I
i j represents the opposite of

the residual energy, or subgrid-scale energy k̂sgs; it is the part of turbulent kinetic energy

which is not solved by the mesh. This term is present in order to assure that the relation is

valid when indexes are contracted:

t i j = 2µt ŝi j −
2

3
ρk̂sgsδi j with ρk̂sgs =−

1

2
tkk (2.53)

The filtered Navier-Stokes equation then writes:

∂ρûi

∂ t
+
∂

∂x j
(ρûiû j) =−

∂ p̂?

∂x i
+
∂

∂x j

�

(µ+µt)
∂ûi

∂x j

�

(2.54)

where the pressure term p̂? now contains the isotropic part t I
i j of the subgrid-scale stress

tensor t i j:

p̂? = p̂−
1

3
tkk = p̂+

2

3
ρk̂sgs

2.2.1.4 Smagorinsky subgrid-scale model

Smagorinsky subgrid-scale model96 is the most widely used. A dimensional analysis is

the base of the subgrid-scale turbulent viscosity construction:

νt ∼ `× u∼ `× `
�

�

�

�

∂û1

∂x2

�

�

�

�

∼ `2

�

�

�

�

∂û1

∂x2

�

�

�

�
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By choosing `= Cs∆ for the length and ŝ =
p

2ŝi j ŝi j for the gradients of solved velocity,

the following expression can be derived:

νt = (Cs∆)
2
p

2ŝi j ŝi j where ŝi j =
1

2

�

∂ûi

∂x j
+
∂û j

∂x i

�

(2.55)

Cs is the Smagorinsky constant and ∆ is the characteristic subgrid length. The usual eval-

uation of Smagorinsky constant is Cs ' 0.18, but most computations are now performed

with Cs ' 0.10 that provides best results. A dynamic procedure was later proposed by

Germano et al.52, where the Cs is a space-time function. The presence of walls can be

taken into account with a modification of the constant Cs, thanks to a van Driest damping

function for instance or a two-layers modeling.

A slightly modified version of the Smagorinsky model is applied within Fluent45, with

the Smagorinsky-Lilly subgrid-scale model where the constant is modified in the vicinity of

walls:

νt = L2
s

p

2ŝi j ŝi j where Ls =min(κd, Cs∆)

with κ the von Kármán constant and d the distance to the closest wall. This model was

found to yield best results with the constant Cs ' 0.10.

2.2.2 Numeric aspects within Fluent

2.2.2.1 Finite volume approach

Fluent45 uses a control-volume-based technique to convert a general scalar transport

equation to an algebraic equation. This control volume technique consists of integrating the

transport equation about each control volume, yielding a discrete equation that expresses

the conservation law on a control-volume basis.

2.2.2.2 Solver formulation

Two solver formulations are available within Fluent v6.3.2645: the pressure-based and

the density-based formulation. The pressure-based approach was initially developed for

low Mach number incompressible flows, while the density-based approach was designed

for high speed compressible flows. In both methods the velocity field is obtained from the

momentum equations. In the density-based solver, density is obtained from the continuity

equation while pressure is computed from the equation of state, and continuity, momen-

tum and energy equations are solved simultaneously. In the pressure-based solver, pressure

is obtained by solving a Laplace-like equation, which is derived by manipulation of conti-

nuity and momentum equations; the momentum, pressure and scalar equations are solved

sequentially in that order.
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In this work, the explicit version of the density-based solver has been chosen for simu-

lating the problems developed in Chapter 3 and involving the direct computation of aero-

dynamic noise. This corresponds to a full compressible approach.

For all computations on the diaphragm geometry reported in Chapter 4, the implicit

pressure-based solver has been used. This implicit algorithm used by the pressure-based

solver belongs to the class of projection methods, where the constraint of mass conser-

vation, described in the continuity equation, is achieved by solving a pressure correction

equation. The pressure correction equation is derived from the continuity and momen-

tum equations in such a way that the velocity field, corrected by the pressure, satisfies

the continuity. Since the governing equations are nonlinear, coupled to one another, and

solved sequentially, several iterations are performed until the solution converges, with the

resolution of all equations at each iteration.

2.2.2.3 Space discretization

Second-order upwind scheme

For Direct Numerical Simulation considered in Chapter 3, turbulence modeling is turned

off, and the most accurate space discretization scheme available in Fluent is the second-

order upwind scheme. This scheme is chosen by default for the space discretization of all

flow equations. Second-order upwinding consists in computing the cell faces quantities

using a multidimensional reconstruction approach. A Taylor series expansion of the cell-

centered solution about the cell centroid ensures high order accuracy. With this scheme,

the face value φ f is computed using the following expression:

φ f = φ +∇φ · r

where φ and ∇φ are the cell-centered value and its gradient in the upstream cell, and r is

the displacement vector from the upstream cell centroid to the face centroid.

Central differencing scheme

For the Large Eddy Simulations, high order accurate space discretization is desired.

The highest central differencing available in Fluent is of second order to comply with any

unstructured mesh. The central differencing scheme is applied to the momentum equations

and calculates the face value for a variable φ f as follows:

φ f =
1

2

�

φ0+φ1

�

+
1

2

�

∇φ0 · r0+∇φ1 · r1

�

where indices 0 and 1 refer to the cells that share face f , ∇φ0 and ∇φ1 are the gradients

in cells 0 and 1, respectively, and r is the vector directed from the cell centroid toward
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the face centroid. The numerical procedure stability is ensured by the use of a deferred

approach:

φ f = φ f ,UP
︸︷︷︸

implicit part

+ (φ f ,CD−φ f ,UP)
︸ ︷︷ ︸

explicit part

Here, subscripts UP and CD stand for upwind and central differencing schemes, respec-

tively. As indicated, the upwind part is treated implicitly while the difference between

the central-difference and upwind values is treated explicitly. Provided that the numerical

solution converges, this approach leads to pure second-order differencing.

Note that a bounded version of central differencing is available, designed to discard

numeric instability by limiting the diffusion; this scheme is actually a blending between

the pure central differencing scheme described previously and a first order upwind scheme.

However, the damping introduced can entail physical problems when the erased wiggles

have a physical origin, and are not just spurious numerical errors. A best practice is to resort

to this bounded scheme only when central differencing leads to unphysical instabilities.

2.2.2.4 Time discretization and advancement scheme

Time discretization involves the integration of each term of the differential equations

on a time step ∆t. For any given scalar quantity φ, the equation of time advancement is

written in the following form:
∂φ

∂ t
= F(φ)

where the left-hand-side is relative to time evolution, and the right-hand-side function F

contains space evolution. Time integration of left-hand-side transient term is straightfor-

ward, and, at the first order using a backward differencing scheme, is written:

φn+1−φn

∆t
= F(φ)

A second order discretization is written as follows:

3φn+1− 4φn+φn−1

2∆t
= F(φ)

where subscripts n− 1, n and n+ 1 refer to the values of φ at, respectively, the previous,

the current, and the next time step.

Once the time derivative has been evaluated, the time at which F(φ) is evaluated in

the right hand side have to be chosen. The implicit approach involves evaluating F(φ) at

the future time level, yielding, for the first order integration:

φn+1−φn

∆t
= F(φn+1)
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This involves that φn+1 in a given cell is related to φn+1 in the neighboring cells through

F(φn+1):
φn+1 = φn+∆t F(φn+1)

The resolution of this implicit equation requires an iterative scheme before moving to the

next time step. This implicit, iterative, time advancement is unconditionally stable and

convergence is reached at each time step. A non-iterative time advancement scheme also

exists, in which the division error is made the same order of magnitude as the truncation

error, instead of reducing it to zero. This scheme is computationally less expensive and

allows to keep a good time precision in only one iteration per time step, speeding up the

simulation by up to 200-400 %. Implicit time-stepping at second order has been used for

all diaphragm calculations, see Chapter 4, in conjunction with the implicit pressure-based

solver.

The explicit approach consists in expressing F(φ) at the current time step,

φn+1−φn

∆t
= F(φn)

allowing to make φn+1 explicitly only dependent of the existing solution values φn:

φn+1 = φn+∆t F(φn)

With explicit time-stepping, the time step is driven by the CFL condition and is constant

throughout the domain (global time-stepping), equal to the minimum of all local time steps

in the domain. A 4-step Runge-Kutta scheme is chosen to express the time derivative. In

this work, explicit time-stepping is used in conjunction with the density-based solver for

the validation studies.

2.2.2.5 Outlet boundary conditions

For all direct noise computations, Non Reflecting Boundary Conditions (NRBC) are ap-

plied at the domain boundaries, allowing the pressure waves leaving the computational

domain without creating spurious waves that would disturb the acoustic pressure field. In

addition to the application of NRBC, the mesh is stretched toward the boundaries in order

to dissipate the outgoing waves before they reach the boundaries. The NRBC implemented

within Fluent are based on the characteristic wave relations derived from the Euler equa-

tions, and applied only on pressure-outlet boundary conditions, see Thompson104;105. As

their formulation is one dimensional, they require that the outgoing waves are incident

nearly normally on the border. Moreover, though no warning has been raised regarding

this topic, investigations undertaken in the frame of this study have shown that the junction

of two Non Reflecting Boundary Conditions at corners or discontinuities is highly sensitive,
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as high amplitude pressure waves propagating inside the domain are created at the corner

as soon as it is attained by an outgoing wave. For all these reasons, the use of characteristic

Non Reflecting Boundary Conditions has to be taken with great care. In Chapter 3, where

direct noise computations are undertaken, NRBC are applied on the left and right bound-

aries of the square domain, while a symmetry is set at top and bottom; this avoids the

corner reflections. Note that the domain could be made circular with a unique continuous

NRBC without problems, although this prevents the possibility to build a cartesian mesh in

the whole domain.

The development of more efficient radiation and outflow boundary conditions by Tam

& Webb103, further developed by Tam & Dong102, has enabled the resolution of problems

involving outgoing waves not perpendicular to the boundary, and where non-uniform mean

flows are present. However, these schemes are mainly developed for high order finite

differences codes for direct noise computation, and fall out of the scope of the present

study.

2.2.2.6 Initial conditions

The initial conditions applied at the beginning of an unsteady CFD computation must,

in the best case, represent a guessed solution of the mean flow field. However, it is common

practice, when dealing with jet flows in free field, to initialize the flow field at zero velocity

and ambient pressure/density; indeed, a more advanced initial solution would not gain

computing time, since the turbulent perturbations, generated with the unsteadiness of the

flow, have to cross the whole computational domain before a converged flow field solution

can be found. In confined flow problems though, starting from such a "zero" solution causes

stability and convergence problems: in these problems, the pressure drop between the inlet

and outlet plays a crucial role and must be steadily converged before starting the unsteady

simulation. Therefore, for all computations presented here on the diaphragm geometry,

a first Reynolds Averaged Navier-Stokes k− ε computation has been converged to second

order and is used as an initial condition for the Large Eddy Simulation.
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2.3 Practical application of the method

2.3.1 General overview

The method consists of coupling a CFD code with a finite element acoustic software

where the variational formulation of Lighthill’s Acoustic Analogy is implemented. Here

follow the different steps of a practical computation, provided that a transient solution of

the flow field has already been obtained:

1. An analysis of the flow field allows to determine in which region(s) of the flow acous-

tic source terms will be considered; an acoustic mesh is built on the whole region of

interest for acoustics, with fine elements in the region(s) of source terms and bigger

elements elsewhere;

2. A mesh file containing the coordinates of the nodes where source terms are to be

considered is created;

3. This mesh file is read by the CFD code, presently Fluent v6.3.2645, and the acoustic

nodes are localized in the CFD domain;

4. A database containing the time history of the source term vector S=
�

S1 S2 S3

�t

in three dimensions at each node of the acoustic mesh is created; if the acoustic nodes

are not located at the cell centers of the CFD mesh, where S is actually computed,

then an interpolation is performed to get S at the correct acoustic node locations;

5. A utility program reads the data and transforms the source terms from time to spec-

tral domain; these spectral data, written as the vector

eS=
�

Re( eS1) Im( eS1) Re( eS2) Im( eS2) Re( eS3) Im( eS3)
�t

are stored in a specific exchange format;

6. The acoustic computation is performed within Actran/LA46, with reading of the spec-

tral source terms.

Items 4 and 5, dealing with mesh interpolation and Fourier transform respectively, are

particularly sensitive and are developed in the following sections.

2.3.2 Source interpolation: from the CFD mesh to the acoustic mesh

When applying a hybrid CAA method, the source term information coming from the

CFD code have to be passed to the acoustic code in order to perform the final acoustic

propagation. In addition, the CFD and the acoustic codes do not require the same mesh
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refinement to reach accuracy: usually, one order of magnitude separates both mesh sizes,

the CFD being the finer mesh due to the requirements for accurate turbulence modeling.

While it is not absurd to use all the information available on the source terms for the acous-

tic propagation, this results in a much too big acoustic finite element model for the current

computing resources. Therefore, one has to resort to interpolating the finely defined source

terms on the coarser acoustic mesh. Kaltenbacher et al.62 recently proposed a conservative

interpolation where the source terms are firstly integrated over the whole source region;

after a bilinear interpolation of each CFD source term in the acoustic finite elements us-

ing their shape functions, the result is added to the nodes of the acoustic grid, preserving

the overall sum of the acoustic sources; unfortunately, no validation of this method was

presented.

While a systematic study of interpolation schemes and methods is beyond the scope of

this work, this subject is of primary importance and has to be considered. In academic

studies considered in Chapter 3, as the meshes are quite small, no interpolation is done

between CFD and acoustic meshes: the acoustic nodes are located exactly at the CFD mesh

cell centers. However, this strategy is not achievable in the three-dimensional diaphragm

study of Chapter 4 since it would lead to a finite element model of around 5 millions

nodes. Therefore, a high order non conservative interpolation is applied and described

in § 4.3.4.2.

2.3.3 Transformation in the spectral domain

The transformation from time to domain to spectral domain of a signal φ(t) is per-

formed thanks to a Fourier transform, as defined in Equation (2.10) and expressed here in

terms of frequency f :

φ̂( f ) =F
�

φ(t)
�

=

∫ +∞

−∞
φ(t)e−i2π f tdt (2.56)

Numerical signals are discretized, and a sampling of time signal φ(t) at the time step ∆t

is given by:

φ(tk) = φk with tk = k∆t and 1≤ k ≤ N

N consecutive independent samples are obtained at the sampling frequency fs = 1/∆t; N

is supposed even. The discrete Fourier transform associated to expression (2.56) writes

φ̂( fn) = φ̂n =∆t
N
∑

k=1

φke−i2π fn tk (2.57)

with fn = n∆ f , ∆ f =
1

N∆t
and − N/2≤ n≤ N/2



2.3 Practical application of the method 49

where N∆t = T is the total sampling time. In addition, φ̂−N/2 = φ̂N/2 so that the discrete

Fourier transform maps N complex values φk to φ̂n. The Nyquist-Shannon theorem, also

called sampling theorem, assures a complete representation of the signal if the signal is

band limited and the sampling frequency greater than twice the signal bandwidth; the

critical frequency associated to the signal bandwidth is the Nyquist frequency, given by

fc = 1/(2∆t).
According to Parseval theorem, the total power of the signal is the same in the time and

in the frequency domain, which yields, for continuous signals

∫ +∞

−∞
|φ(t)|2dt =

∫ +∞

−∞
|φ̂( f )|2d f

The Power Spectral Density Sφφ is then obtained from an estimation of the signal mean

squared amplitude for a stationary random evolution:

|u2|=
1

T

∫ +∞

−∞
φ(t)2dt =

1

T

∫ T

0

|φ̂( f )|2d f =

∫ +∞

−∞
Sφφ( f )d f

In discrete form, this is written

∫ +∞

−∞
Sφφ( f )d f '

∆ f

T

N/2
∑

n=−N/2

|φ̂n|2 yielding Sφφ( fn) =
1

T
|φ̂n|2

When working with real signals, as is the case with aerodynamic signals of pressure

or velocity for instance, a one-sided spectrum is defined for positive frequencies, and the

Power Spectral Density (PSD) is given by

Sφφ( fn) =
2

T
|φ̂n|2 with 0≤ n≤ N/2

Actran/LA provides a script called iLA to compute the Fourier transform. In iLA, the

Fourier transform for a real signal is defined using a different convention:

φ̂n,i LA =
2

N

N
∑

k=1

φke−i2π fn tk =
1

T
× φ̂n

Therefore, the PSD of the signal is related to φ̂n,i LA by

Sφφ( fn) = T |φ̂n,i LA|2

Before computing the Fourier transform, the mean value is removed from time signal

φk for detrending, and a Hanning windowing is applied in order to assure that both ends



50 Theoretical foundations of the computational method

of the signal are zero. The final time signal is written

φk, f inal =
�

φk −
1

N

N
∑

j=1

φk

�

×wk with wk =
1

2

�

1− cos
�

2πk

N

��

(2.58)

where wk is the Hanning window. Note that iLA allows to use other types of windowing,

like the triangular or Gaussian windows. Moreover, it is possible to average the transforms

of individual (overlapping) segments of the total signal to increase the accuracy of the

power spectrum.

2.4 Potential issues associated with the method

2.4.1 Accuracy of the computed noise sources

The sensibility of the radiated sound to errors in the source term computation is not

well understood; in particular, errors made due to the subgrid-scale modeling in the eval-

uation of Lighthill’s tensor may be non negligible112. The simplified Lighthill’s tensor, with

constant density, is decomposed for better understanding of this issue:

Ti j = ρ0uiu j = ρ0ûiû j
︸ ︷︷ ︸

T LES
i j

+ρ0(Ôuiu j − ûiû j)
︸ ︷︷ ︸

TSGS
i j

+ρ0(uiu j −Ôuiu j)
︸ ︷︷ ︸

T MSG
i j

(2.59)

where the b· denotes spatial filtering of Large Eddy Simulation. In the above expression, the

first term T LES
i j corresponds to the resolved part of Lighthill’s tensor, while the second term

T SGS
i j is actually the opposite of the subgrid-scale tensor t i j defined in Equation (2.50). The

last term, T MSG
i j , is the high-frequency part of Lighthill’s tensor not resolved by the LES,

and is thus its missing part. Only the first term T LES
i j in Equation (2.59) is directly available

from a Large Eddy Simulation; an evaluation of T SGS
i j is possible only when the subgrid-

scale term is explicitly available from the CFD code. When a high-order selective filtering

is applied10–12, the larger structures well computed by LES are not affected by the subgrid-

scale modeling, and the subgrid term T SGS
i j plays a negligible role. Séror et al.95 performed

a posteriori tests on decaying isotropic turbulence and showed that the contribution to the

radiated sound of the missing part is negligible, while a priori tests proved the importance

of the subgrid-scale contribution.

2.4.2 Spatial truncation of convected noise sources

It is a well-known observation that the spatial truncation of volume source terms in

Lighthill’s analogy, or in Ffowcs Williams & Hawkings’ analogy, creates spurious noise of

dipolar nature. Recently, Casper et al.23 showed that with the study of a vortex convection.
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Several authors then have proposed different strategies to overcome this difficulty, intrin-

sically linked to the application of a hybrid method of noise computation using volume

source terms slowly decaying.

In the case of vortex pairing in an axisymmetric jet having an extended source region,

Mitchell et al.74 propose an original way of avoiding the generation of spurious sound

waves at the truncation boundary. Having noticed that downstream of vortex pairing,

for x > xm, the source terms can be modeled in the spectral space based on their form at

x = xm, they model the behavior of the source terms downstream for x > xm while keeping

the computed source terms for x ≤ xm. However, this artifice is only possible when the

source term is very simple.

Spatial filters have been applied by Oberai et al.76, Pérot79 and more recently by Obrist et

al.77, toward the downstream boundary in order to remove spurious noise, under the form

of linear, exponential and cosine functions, respectively, with a certain success. Wang et

al.113, after showing that the spurious boundary noise is due to the time variation of

Lighthill stress fluxes across the boundary, propose a different approach based on the frozen

eddy assumption. In this correction method, a surface integral is added to the truncated

volume integral; this new surface source term takes into account the Lighthill stress fluxes,

carried by the convecting eddies at a convection velocity Uc, across the outlet boundary.

Such a solution to Lighthill equation (1.4) takes the integral form

ρ(x, t) =
x i x j

4πc4
0 |x|3

¨

∂2

∂ t2

∫∫∫

V
Ti j

�

y, t −
|x|
c0

�

dy+
∂

∂ t

∫∫

S
Uc Ti j

�

y, t −
|x|
c0

�

dy

«

This solution eliminates the spurious noise created at the truncation boundary. This applies

in the limit of the frozen eddy assumption, violated in the case of turbulent flows of prac-

tical interest. Martínez-Lera et al.71 recently proposed a correction to Wang’s formulation,

under the form of a Doppler amplification factor to account for convection effects at the

truncation boundary S .

2.4.3 Mesh interpolation

It has been mentioned in §2.3.1 that noise sources computed within the flow simulation

on the CFD mesh have to be interpolated on the acoustic mesh to be propagated to the

desired locations. Indeed, the constraints are much more severe for the design of the CFD

mesh than for the acoustic mesh, and the characteristic mesh sizes of both meshes differ

by at least one order of magnitude in the source regions. Therefore, in order to keep an

accurate definition of the sources, it is necessary either to refine the acoustic mesh in these

regions to match the CFD mesh size, or to interpolate noise sources on a coarser acoustic

mesh. The first solution is only tractable on small meshes; in real cases, such as for the

diaphragm presented in Chapter 4, keeping the CFD mesh accuracy for the acoustic mesh
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in the source regions would lead to a considerably heavy finite element model of several

millions degrees of freedom. Therefore, an interpolation has to be performed to lighten the

acoustic model; note that this intermediate interpolation operation is only required due to

the limited available computing resources. As the interpolation is currently only supported

at the order 0 within Fluent, meaning that the closest CFD cell to each acoustic node is

considered, an interpolation scheme has to be defined externally.

As shown in previous studies37;68;69, a study on interpolation schemes can be performed

to determine the best scheme for a given application. As expected, high order schemes and

schemes based on Lagrange polynomials give the best results with a reduced interpolation

error. However, they are only useful in a fully Cartesian framework. When working on

non Cartesian meshes, as is the case in the diaphragm study (see Chapter 4), even low

order methods are difficult to handle. Moreover, the interpolation on arbitrary meshes

(tetrahedra, polyhedra) is not much discussed in the literature. Therefore, and only for

the diaphragm case study, the strategy is to record source data on a fully Cartesian mesh

almost coincident with the CFD mesh to retain accuracy, allowing thus the use of high

order interpolation schemes. Due to time constraints, only non conservative interpolation

schemes have been developed in this work. However, conservative procedure would be

more appropriate for energy conservation reasons in future studies.

2.5 Conclusion

In this chapter, the theoretical details of a two steps aeroacoustic calculation have been

presented. The first step involves a fluid calculation performed within Fluent45; an explicit

(compressible) density-based solver is used for the study of academic cases thanks to Di-

rect Numerical Simulations, see Chapter 3, while a pressure-based, incompressible solver

is used for the low Mach number "real life" application dealt with in Chapter 4, namely the

diaphragm problem. The second computational step consists in applying Lighthill’s Acous-

tic Analogy, with the propagation of the volume sources computed in the previous step;

this is performed within Actran/LA46. Major issues associated with this hybrid method are

also discussed.



3.

Assessment of the hybrid method

T HE ASSESSMENT of the numerical strategy is a crucial point since it generally enables

to highlight validity limits. Therefore, it is of major importance to choose problems as

representative as possible of the real application conditions, and in the meantime to set the

conditions at their extrema. In the present work, the first important issue is to validate the

general approach. On the contrary to a Direct Noise Computation, in this two steps method

many numerical details are involved, and working on academic cases is imperative. The

study of the time evolution of two corotating vortices presents several advantages; indeed,

the simplicity and compacity of this two dimensional system makes the achievement of

a DNS reference solution affordable. Moreover, it is easy to discard the issues linked to

the application of this hybrid method: interpolation from the CFD to the acoustic mesh,

handling of outgoing structures from the acoustic domain. The fundamental analysis of

the source term definition can then be led without being disturbed by other issues1.

The second phenomenon considered in this chapter is the handling of outgoing turbu-

lent structures from the acoustic domain. In this case, a perfect vortex is convected out of

the domain and the corresponding acoustic radiation is studied. Spatial filters are defined

to eliminate the spurious noise emitted due to the truncation boundary and their effect is

characterized.

1Note that parts of Chapters 3 and 4 have already been published in Piellard et al.81;82
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V

U∞

(a) Observer in a moving medium.

Observer

Source

V

U∞ = 0

(b) Observer in a medium at rest.

Figure 3.1 – Two configurations for the observer: (a): the ambient medium is in movement or (b):
at rest.

3.1 General validation: corotating vortices study

As illustrated in Figure 3.1, there are two possible configurations for the observer:

either he is located in a mean flow, see Figure 3.1(a), or in a medium at rest like in Fig-

ure 3.1(b).

If the observer is in a moving medium, with the mean velocity U∞, then the acoustic

propagation of sources must take it into account to compute the refraction of acoustic

waves by the mean flow; this is achieved when choosing a convected wave operator. In the

case of Linearized Euler Equations, the mean flow appears in the left-hand-side, i.e., in the

propagation operator; therefore, the source term(s) must only contain non-linear source

terms. Indeed, Bogey et al.15 have shown that the non-linear source term

S f
i =

∂T f
i j

∂x j
=
∂(ρu′iu

′
j)

∂x j
where u′i = ui − ūi (3.1)

must used, while the source term containing linear effects

S t
i =

∂T t
i j

∂x j
=
∂(ρuiu j)

∂x j
(3.2)

produces erroneous results, as the linear terms are present on both sides of the propagation

equation.

On the contrary, if the observer is in a medium at rest, i.e., there is no mean flow in the

observer’s region, the source must contain all linear terms. Moreover, discarding the mean
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flow field in the source term leads to wrong results.

In order to confirm this point, the evolution of two corotating vortices is studied; vor-

tices are firstly placed in a medium at rest, and then in a shear layer. This study presents

the advantage of discarding other issues cited previously. Indeed, the system of vortices

involves no convection out of the computational domain, clearing the spatial truncation is-

sue; moreover, no interpolation is made between CFD and acoustic meshes. The objective

here is to understand the physics underlying in the hybrid method of noise computation;

therefore, Direct Numerical Simulation and Direct Noise Computation will be used, by

means of Fluent, to minimize numerical errors, while incompressible Large Eddy Simula-

tion is the targeted CFD modeling for real applications.

3.1.1 Analytical resolution of Lighthill’s Acoustic Analogy

A two-dimensional spectral solution of Lighthill’s equation has also been developed for

validation. Green’s functions are used to solve Lighthill’s equation, which allows to express

the solution of an inhomogeneous wave equation as an integral. The free-space Green’s

function G(x, t|y,τ) is the response, at position x and time t, to an impulse signal from

y emitted at time τ. It is defined as the physical solution of the inhomogeneous wave

equation
∂2G(x, t|y,τ)

∂x2
i

−
1

c2
0

∂2G(x, t|y,τ)
∂ t2 = δ(x− y)δ(t −τ) (3.3)

where δ is the Dirac generalized function. In the spectral domain, using the convention

defined in Equation (2.10), wave Equation (3.3) becomes the Helmholtz equation

(∇2+ k2) Ĝ(x|y,ω) = δ(x− y) (3.4)

where k = ω/c0 is the wavenumber, and the two-dimensional solution of Equation (3.4)

writes

Ĝ(x|y,ω) =
i

4
H(2)0 (kr) (3.5)

where H(2)0 is the Hankel function of second kind and order 0, and r = |x− y|. Lighthill’s

Equation (2.1) can be written on acoustic pressure fluctuations pa = p − p0 instead of

density fluctuations ρa = ρ−ρ0, yielding

∇2pa −
1

c2
0

∂2pa

∂ t2 =−
∂2Ti j

∂x i∂x j
(3.6)
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In the spectral domain, the inhomogeneous wave Equation (3.6) is transformed into an

inhomogeneous Helmholtz equation:

(∇2+ k2) p̂a(x,ω) =−
∂2 T̂i j(x,ω)

∂x i∂x j
(3.7)

The solutions of Lighthill’s equation expressed as integral formulations are obtained by

convoluting the Green’s function with the source term of Equation (3.6):

pa = c2
0ρa =−G ?

∂2Ti j

∂x i∂x j

Using the two-dimensional spectral expression (3.5) leads to the following solution:

pa(x,ω) =−
i

4

∫∫

S0(y)

H(2)0 (kr)
∂2Ti j(x,ω)

∂ yi∂ y j
dy=−

i

4

∫∫

S0(y)

∂2H(2)0 (kr)
∂ yi∂ y j

Ti j(x,ω) dy

in free space. Analytical developments using the properties of Hankel functions lead even-

tually to the two-dimensional spectral solution of Lighthill’s equation:

pa(x,ω) =−
i

4

∫∫

S0(y)

�

k2
ri r j

r2 H(2)0 (kr)− k
�2ri r j

r3 −
δi j

r

�

H(2)1 (kr)
�

Ti j(x,ω) dy (3.8)

Equation (3.8) will be used in the following to confirm results obtained with the variational

formulation of Lighthill’s analogy.

3.1.2 Two corotating vortices in a medium at rest

Vorticity acceleration produces an acoustic radiation, as investigated by Powell85. This

mechanism is highlighted in the particular two-dimensional case of two corotating vortices;

the vortices turn around each other before merging, and then form a solely eddy structure.

The scheme on Figure 3.2(a) presents the vortices system9: two identical corotating vor-

tices, clockwise rotating are considered; they are separated by the distance 2r0. The pair

formed by both vortices also rotates clockwise. Each vortex is initialized by its tangential

velocity Vθ , using Scully’s vortex model in order to avoid any velocity discontinuity at the

vortex center:

Vθ (r) =−
Γr

2π(r2
c + r2)

where r is the current distance from the vortex center, Γ the vortex circulation; rc is the

distance at which the vortices tangential velocity is maximal, Vmax = Γ/4πrc.

The radii ratio rc/r0 is fixed to 0.22, and the rotation Mach number Mr = Vmax/c0 is

0.5. According to Powell85, in such a configuration, the rotation velocity on the circle of
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Figure 3.2 – Two corotating vortices in a medium at rest. (a): Scheme of the vortices system. (b):
CFD mesh.

radius r0 is given byω= Γ/4πr2
0 ; thus the rotation period is T = 8π2r2

0/Γ and the rotation

Mach number is Mr = Γ/4πr0c0.

A compressible direct numerical simulation, namely without modeling, is performed

using the density-based solver of Fluent, see § 2.2.2.2. Time discretization is explicit with a

4-step Runge-Kutta algorithm, and for spatial discretization a second-order upwind scheme

is considered. Results are processed as follows: the acoustic pressure directly computed

by CFD in the far field is considered as the reference result; the variational formulation of

Lighthill is then carried out, with propagation of the source terms as computed by CFD;

finally, the application of Lighthill’s equation’s analytical solution, as defined in § 3.1.1,

serves as an ultimate verification.

3.1.2.1 Direct Noise Computation

The computational domain extends from −215 r0 to 215 r0 in each direction and is

meshed with 489× 489 points, identically in both x and y directions. The mesh size is

constant on the first 100 points from the center, with ∆ = r0/36 = 1 × 10−4 m, and a

stretching rate of 4% is applied on the 144 following points. Non Reflecting Boundary

Conditions are applied on lateral sides of the computational in order to let the pressure

waves leave the domain without disturbances; symmetry boundary conditions are applied

on top and bottom boundaries.

At t = 0, both vortices are introduced at (r0, 0) and (−r0, 0) in a medium at rest

(uniform density ρ0 and pressure p0). The time step computed by the solver as CFL =
(c0 + Vmax)∆t/∆ is fixed at 0.5, leading to a theoretical rotation period of approximately
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(a) (b)

(c) (d)

Figure 3.3 – Two corotating vortices in a medium at rest. Vorticity field obtained after (a): 50000,
(b): 106000, (c): 108500 and (d): 120000 time steps. Vorticity isocontours from 104 to 1.22×105

s−1.
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Figure 3.4 – Two corotating vortices in a medium at rest. Static pressure fluctuations p−p0 at point
(50 r0, 50 r0) as a function of the number of time steps. Levels in Pa.

5260∆t. The acoustic source associated to the corotating vortices is a rotating quadrupole.

The frequency fa of the acoustic radiation is twice the rotation frequency of the vortices,

due to the symmetry of the structure; the corresponding theoretical acoustic wavelength is

λa = 29.6 r0.

3.1.2.2 Merging mechanism

The vortices undergo the following evolution73: the vortices first perform several rota-

tions before merging, leading to a single vortex structure. In the present case, the vortices

perform 19 rotations keeping well separated from each other, the first rotation at the fre-

quency described by Powell85 (T ∼ 5360∆t), the following at an ever decreasing frequency

with a mean period of Tmean ∼ 5440∆t. Then, during the 20th rotation, the vortices come

closer to each other while accelerating the rotation, and quickly merge. Some vorticity

filaments are ejected at the fringe of the central eddy structure while both cores are merg-

ing, and eventually these filaments are integrated to the remaining big eddy structure. The

latter is slightly elliptic, but recovers slowly a circular shape. This merging mechanism

is shown in Figure 3.3, where the vorticity field is represented at different times of the

structure evolution.

3.1.2.3 Acoustic radiation

The pressure signal is recorded at the point (50 r0, 50 r0) in order to analyze the radi-

ating frequency; its evolution is reported in Figure 3.4. A transient signal is recognized at
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the very beginning, with an amplitude higher than the physical signal’s one. This transient

pressure wave is created by initial conditions, and completely leaves the domain after 7000

time steps without creating spurious waves.

After the transient, three phases with different acoustic radiation are recognized on

the pressure signal. Firstly, between time steps 7000 and 108500, the 19 periods of rota-

tion at the mean period Tmean = 5440∆t produce an acoustic radiation at the frequency

fa ∼ 2/Tmean. Then, frequency and levels increase as the vortices come closer to each other.

Follows a period with an ever increased frequency, and levels equal to one fourth of levels

observed during rotation; this corresponds to the detachment and reattachment of vor-

ticity filaments. Finally, the acoustic radiation decreases while the single vortex structure

becomes slowly circular.

Note that the mean of the pressure signal is not equal to the initial pressure p0; the

disturbances are probably due to defaults in the boundary conditions. This low-frequency

depression can alter the representation of acoustic pressure waves; in this case, visualizing

the dilatation field Θ is often more appropriate taken that the sound field is almost har-

monic, refer to Colonius et al.29 for instance. In the acoustic far field, dilatation is moreover

proportional to the pressure time derivative:

Θ=∇ · u=−
1

ρ0c2
0

∂p

∂ t

The dilatation in far field during the rotation phase is shown in Figure 3.5. It presents

a double spiral structure, corresponding to a rotating quadrupolar acoustic source. The

wavelength associated with the acoustic radiation is λa = 30 r0, corresponding to a fre-

quency fa = 3150 Hz. Figure 3.6(a) reports how the quadrupole lobes are shifted by 45 de-

grees with respect to the principal axes of the two vortices, as illustrated in Figure 3.3(a).

Figure 3.6(b) presents the dilatation in near field, showing the more complex structure

composed of two face-to-face quadrupoles.

3.1.2.4 Application of the hybrid method

The source terms S t
i = ∂T t

i j/∂x j and S f
i = ∂T f

i j/∂x j, refer to equations (2.9) and (3.1)-

(3.2), are recorded during the vortices rotations, between the time steps 104 and 105, every

20 time steps. They are recorded on the central 200× 200 cells where the Cartesian mesh

is uniform, corresponding to a square extending from −2.8 r0 to 2.8 r0 in both directions.

A snapshot of these source terms is given in Figure 3.7. For indication, the instantaneous,

mean and fluctuating velocity fields are also given in Figure 3.8. From these figures, it

is clear that the mean velocity field is localized in the vortices region and is zero in the

acoustic propagation region, as expected.

The source terms are transformed to the spectral space thanks to a Fast Fourier Trans-
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Figure 3.5 – Two corotating vortices in a medium at rest. Dilatation field obtained after 50000 time
steps. Levels from -15 to 15 s−1.

(a) (b)

Figure 3.6 – Two corotating vortices in a medium at rest. Dilatation field obtained after 50000 time
steps. (a): 8 isocontours from 8 to 56 s−1. (b): 5 isocontours from 10 to 810 s−1. —— : positive
isocontours, – – – : negative isocontours.
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(a) (b)

(c) (d)

Figure 3.7 – Two corotating vortices in a medium at rest. Instantaneous source terms obtained
after 50000 time steps. (a): S t

1, (b): S t
2, (c): S f

1 and (d): S f
2 . 6 isocontours from 6×105 to 1.1×107

Pa/m. —— : positive isocontours, – – – : negative isocontours.

form in order to be propagated. The time signal is centered, removing of the mean, and a

Hanning filtering is applied before transformation. The acoustic propagation is realized by

using these spectral source terms through the implementation (2.11) described in §1.3.2.1,

with the direct solver MUMPS24. Infinite elements of order 20 placed along the circular

boundary assure a free field propagation without reflection at the boundary.

The mesh used for the acoustic propagation is circular and extends from −104 r0 to

104 r0 in both directions. It is designed so that its nodes exactly match the CFD cell centers

in the region where sources are recorded in order to avoid interpolation2; in the remainder

of the domain, the mesh size is constrained to ∆ac = 5mm, assuring accurate acoustic

2In a finite volume code, the velocity is computed at the cell centers; computing and exporting source
terms at this location allows a more accurate gradient computation and avoids errors of interpolation from
the cell center to the nodes.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8 – Two corotating vortices in a medium at rest. Instantaneous source terms obtained
after 50000 time steps. (a): u and (b): v, instantaneous velocity; 6 isocontours from 20 to 120 m/s.
(c): ū and (d): v̄, mean velocity; 4 isocontours from 20 to 80 m/s. (e): u′ and (f): v′, fluctuating
velocity; 4 isocontours from 20 to 80 m/s. —— : positive isocontours, – – – : negative isocontours.
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(a) (b)

Figure 3.9 – Two corotating vortices in a medium at rest. (a): Acoustic mesh. (b): Acoustic pressure
field (real part) at the main radiation frequency fa; levels from -50 to 50 Pa. The domain extends
spatially from −104 r0 to 104 r0 in both directions.

propagation up to 11300Hz. The generally admitted criterion states that one acoustic

wavelength has to be discretized by at least 6 elements. The acoustic mesh is displayed in

Figure 3.9(a). The acoustic radiation is then computed in the whole acoustic domain.

3.1.2.5 Application of the analytical resolution

Similarly, in order to compute the analytical solution of Lighthill’s equation, the source

terms T t
i j and T f

i j are recorded on the same 200 × 200 points in the center of the CFD

mesh and at the same time steps. After the same treatment on the time signal (mean

removing and Hanning filtering), the acoustic pressure radiated by these source terms at

point (50 r0, 50 r0) is computed with equation (3.8).

3.1.2.6 Acoustic results

As a first validation, Figure 3.9(b) presents the acoustic radiation as computed by the

variational formulation at the main frequency of radiation fa = 3153Hz. The radiation

structure is identical to the one determined by direct computation, namely a rotating

quadrupole characterized by its double spiral shape. The levels correspond to the mean

amplitude of the pressure signal presented in Figure 3.4.

Acoustic results are shown in Figure 3.10 in terms of sound pressure levels radiated

at point (50 r0, 50 r0). The three methods described above are compared: the direct com-

putation, the variational formulation and the analytical resolution of Lighthill’s Acoustic
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Figure 3.10 – Two corotating vortices in a medium at rest. Sound pressure level radiated at point
(50 r0, 50 r0) obtained with three different methods. Black: direct calculation; blue: variational
formulation; red: analytical resolution of Lighthill’s Acoustic Analogy. Without symbols: levels
obtained using the total source terms S t

i and T t
i j . With symbols: levels obtained using the fluctuating

source terms S f
i and T f

i j . Levels in dB.

Analogy. Moreover, the two possible definitions of the source terms are used in both hybrid

resolutions. It is found that the DNS, the variational and analytical resolutions produce the

same levels provided the total source terms S t
i and T t

i j are used.

The agreement is excellent at the radiation frequency fa = 3150Hz. In the low-

frequency range, the DNS spectrum departs significantly from spectra obtained using hy-

brid resolutions; a possible explanation lies in the fact that the direct pressure field is

slightly disturbed at low frequencies, as already observed on the time pressure signal in

Figure 3.4; however, these disturbances do not alter the signal at the main radiation fre-

quency. An important feature of the graph is the good correlation between the spectra

obtained by both the variational and analytical solutions of Lighthill’s Acoustic Analogy;

this allows in particular to validate its variational implementation: in absence of surfaces,

both formulations are equivalent. The only disparity between both spectra is found at

higher frequencies, above 6000 Hz, where the variational formulation produces higher lev-

els; this is likely to be due to the spatial derivation in the former source term definition,

where a factor proportional to M2 appears.

When using the fluctuating source terms S f
i and T f

i j , the spectra produced by both

hybrid resolutions provide the same results, with levels shifted 13 dB below the DNS spec-

trum. In the considered case, there is no explicit mean flow in the observer region, namely

in the propagation region. However the localized mean flow present inside the source re-
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Figure 3.11 – Two corotating vortices in a medium at rest, incompressible simulation. Static pres-
sure evolution at point (50 r0, 50 r0) as a function of the number of time steps. Levels in Pa.

gion, see Figure 3.8, plays a major role in the acoustic source terms, and the source term

S t
i built on the total velocities has to be used.

3.1.2.7 Incompressible computation

The simulation is performed a second time, with constant density in order to assess

if previous results are linked to the compressibility. The same numerical parameters are

chosen: the simulation is laminar, using the density-based solver of Fluent; second order

upwind spatial discretization is used for flow variables, while the time discretization is

implicit of second order, with the time step ∆t = 1× 10−7 s.

As previously, the vortices perform 19 rotations before merging. The vortices evolution

is the identical to the one shown in Figure 3.3 and is not reported here. The static pressure

signal is displayed in Figure 3.11; as the computation is incompressible, the levels are not

representative, on the contrary of frequency content. It is observed that the vortices rota-

tion is slightly faster than in the compressible simulation, yielding an acoustic radiation at

the frequency fa = 3444 Hz. The acoustic spectra obtained using the variational and the

analytical formulations of Lighthill’s Acoustic Analogy at point (50 r0, 50 r0) are presented

in Figure 3.12. These spectra exhibit nearly the same levels as for the compressible simu-

lation for the main radiating frequency, fa, with a shift of 11 dB when using the fluctuating

source terms with respect of spectra obtained using the total source terms. This last com-

putation allows to understand that compressibility effects play a minor role in Lighthill’s

source term in low Mach number conditions.
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Figure 3.12 – Two corotating vortices in a medium at rest, incompressible simulation. Sound
pressure level radiated at point (50 r0, 50 r0) obtained with two different methods. Blue: variational
formulation; red: analytical resolution of Lighthill’s Acoustic Analogy. Without symbols: levels
obtained using the total source terms S t

i and T t
i j . With symbols: levels obtained using the fluctuating

source terms S f
i and T f

i j . Levels in dB.

3.1.3 Two corotating vortices placed in a shear layer

The addition of a shear layer, previously introduced by Bogey et al.15, allows to study

the effects of a mean velocity field on the acoustic radiation. The shear layer is built

between two parallel plane flows of opposite velocity∆U and −∆U , producing thus a zero

mean convection velocity. With this definition, the vortices are not convected by the mean

flow field and remain in the center of the computational domain. The shear profile, also

shown in Figure 3.13, is defined with the following hyperbolic-tangent expression of the

longitudinal mean velocity:

u0(y) = ∆U tanh
�

u

2r0

�

where r0, half distance between vortices, is also the shear layer momentum width. The

mean velocity is fixed at ∆U = c0/8.

The same computations as in the previous case are performed: a DNS constitutes the

reference results, while the variational and analytical formulations of Lighthill’s Acoustic

Analogy are successively applied using the complete source terms S t
i and T t

i j, and using

the fluctuating source terms S f
i and T f

i j in which the mean velocity considered is only the

mean shear layer. The mean local velocity due to the constant vortices rotation is no longer

considered.
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Figure 3.13 – Scheme of the shear layer used for corotating vortices.

3.1.3.1 Direct Noise Computation

The computational features are similar to those used before: two identical vortices

are introduced at (r0, 0) and (−r0, 0) together with the mean shear layer velocity field.

The boundary conditions are adapted to allow flow entrance without disturbances: at the

upper half of left border and lower half of right border, where fluid is entering the domain, a

pressure shear profile corresponding to the velocity shear profile is imposed. The remaining

lower half of left border and upper half of right border keep the Non Reflecting Boundary

Conditions imposed in the medium at rest; symmetry is also kept on upper and lower

boundaries.

Although this is not visible on the vorticity contours of Figure 3.14, the evolution of the

vortices is modified by the presence of the shear layer. Indeed, when a vortex is located

in the upper half of the shear layer, its rotation is accelerated with the positive convection

velocity toward the right; the inverse happens in the lower half shear layer. This is because

the shear layer is added to the natural clockwise rotation of the vortices, inducing an

increase of the rotation speed ω. Besides, during the rotation phase, the vortices rotation

is not constant any more and is subject to variations, depending on the position of the

vortices in the shear layer.

Due to the rotation speed increase, the vortices undergo merging sooner than in a

medium at rest; here, the merging happens during the 8th rotation period and the rotation

period is 3090∆t. The pressure signal of Figure 3.15 is similar to the signal obtained in

the previous case, while the disturbances of the mean pressure seem lower.

The dilatation is used once again to represent the acoustic radiation; in presence of

a mean uniform unidirectional flow ∆U , the dilatation is related to the pressure time

derivative by the following expression:

Θ=−
1

ρ0c2
0

�

∂p

∂ t
±∆U

∂p

∂x

�
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(a) (b)

(c) (d)

Figure 3.14 – Two corotating vortices placed in a shear layer. Vorticity field obtained after (a):
20000, (b): 24000, (c): 26000 and (d): 28000 time steps. Vorticity isocontours from 1.5× 104 to
2.2× 105 s−1.
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Figure 3.15 – Two corotating vortices placed in a shear layer. Static pressure fluctuations p− p0 at
point (50 r0, 50 r0) as a function of the number of time steps. Levels in Pa.

In Figure 3.16(a), the double spiral structure is again present, indicating a rotating

quadrupole. The effects of the shear layer on the acoustic radiation are clearly visible. The

wave fronts are deformed by the mean flow, having an oval shape instead of circular as

in the medium at rest case. Moreover, the directivity is affected by the mean flow, with a

favored radiation direction perpendicular to the mean flow, and lower levels in the main

direction.

3.1.3.2 Acoustic results

As previously, the sound pressure level radiated at point (50 r0, 50 r0) is reported in

Figure 3.17 for the different computations: DNS, variational formulation with use of total

and fluctuating source terms, and analytical formulation with use of total and fluctuating

source terms. All spectra are found to collapse, except the DNS spectrum which presents a

peak at the main radiation frequency 3 dB lower than the remaining spectra. Therefore, as

taking into account or not the mean flow field yields no difference in the acoustic results, it

is concluded that the terms linked to pure convection in Lighthill’s tensor do not contribute

to the radiated sound. The small gap between the DNS and hybrid curves is explained by

the fact that in both variational and analytical formulations, the source term is defined on

the central portion of the CFD domain extending from −2.7 r0 to 2.7 r0 in both directions.

Therefore, all refraction effects computed by DNS in the whole domain are missed in hybrid

formulations, leading to a slightly different result. Moreover, the propagation operator

does not account for the mean flow in the observer region and is therefore not able either

to catch these effects.
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(a) (b)

Figure 3.16 – Two corotating vortices placed in a shear layer. (a): Dilatation field obtained after
20000 time steps. Levels from -50 to 50 s−1. (b): Acoustic pressure field (real part) at the main
radiation frequency fa; levels from -50 to 50 Pa. The domain extends spatially from −50 r0 to 50 r0
in both directions.
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Figure 3.17 – Two corotating vortices placed in a shear layer. Sound pressure level radiated at point
(50 r0, 50 r0) obtained with three different methods. Black: direct calculation; blue: variational
formulation; red: analytical resolution of Lighthill’s Acoustic Analogy. Without symbols: levels
obtained using the total source terms S t

i and T t
i j . With symbols: levels obtained using the fluctuating

source terms S f
i and T f

i j . Levels in dB.
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However, in terms of radiation structure, the variational formulation is consistent; the

acoustic pressure field shown in Figure 3.16(b) presents a distorted double spiral struc-

ture of oval shape, less pronounced than on the dilatation field of Figure 3.16(a) but still

present. The privileged radiation directions are also similar to those of the direct compu-

tation.

3.1.4 Conclusion

The study of corotating vortices firstly placed in a medium at rest, and then in a shear

layer, has shown the correct expression of the source term in the variational formulation

of Lighthill’s Acoustic Analogy: the source term S t
i build on the total velocities has to be

used. Secondly, the study with the shear layer sheds some light on the convection effects

in Lighthill’s Acoustic Analogy: the terms linked to pure convection in Lighthill’s tensor

do not contribute to the radiated sound, on the contrary to the terms linked to a local

mean velocity which can contribute significantly to the radiated sound. Moreover, in the

variational formulation of Lighthill’s Acoustic Analogy, refraction of acoustic waves by a

mean flow field can only be taken into account if the source terms are computed on the

whole region where acoustic mean flow interactions exist. Otherwise, as in the case of the

two vortices placed in a shear layer, mean flow effects outside the source region are out of

reach of the present method. The present investigation clearly supports the discussion of

Bogey et al.15.
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3.2 Exit of turbulent structures from the CFD domain

The spatial extent of the source term has to be treated with great care; indeed, following

several authors, refer to Casper et al. 23 for instance, this study shows with the test case

of a vortex convection through a virtual boundary that spatial truncation of noise sources

creates spurious numerical noise of dipolar nature. While common sense would then lead

to define a source region extended in the whole CFD region, the simulation time objective

of the hybrid method rather leads to a selection of reduced noise source regions. In order

to conciliate both aspects of the problem, a spatial filtering technique, derived from the

work of Pérot79, is tested and shown to eliminate the effects of spatial truncation of noise

sources.

The following study is focused on the convection of a vortex through a virtual boundary

and its radiated noise. As the objective is to determine the best method to reduce spurious

noise created at the boundary, and not to study the vortex evolution in the CFD code,

the vortex is perfectly convected, without disturbances, within an analytical solution; the

acoustic propagation is performed with the variational formulation of Lighthill’s Acoustic

Analogy as previously. Dissipation effects usually present in a CFD calculation are not taken

into account. This is thus a very constraining test case, as in a real computation, a vortex

is progressively dissipated with the convection and its energy decreases as moving toward

the boundary.

3.2.1 Convection of a vortex through a virtual boundary: presentation

A two-dimensional vortex is initialized at the origin of the domain, whose extent is

−50∆ < x < 750∆ in the first direction and −50∆ < y < 50∆ in the second direction.

The mesh size ∆ is constant in both directions: ∆ = 5× 10−4 m. The vortex is initialized

with the following velocity components:















u(x , y) = U0+ a0 y exp
�

−
ln2

(n∆)2
(x2+ y2)

�

v(x , y) = − a0 x exp
�

−
ln2

(n∆)2
(x2+ y2)

�

where U0 is the convection velocity, and the constant a0 = 320 m2/s is chosen to verify that

umax = 2 m/s at a distance of n∆ from the vortex center. With this definition, the vortex

diameter is D = 2n∆, and n = 10 and 5 successively in this study. The vortex is convected

at velocity U0 from x = 0 to x = 0.35, with the time step ∆t =∆/U0.

Regarding the acoustic propagation, the acoustic domain is a disk of radius 800∆ cen-

tered on the vortex origin at t = 0 and containing the mathematical region described

previously. The mathematical mesh is kept for the acoustic mesh; in the remaining of the
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Figure 3.18 – Initialization of the vortex. The vertical blue line indicates the location of xmin, the
vertical red line indicates the location of xmax.

domain, the mesh is coarsened up to ∆max = 10∆. Results are given in terms of acoustic

power radiated by the whole domain, integrated on the circular boundary. For representa-

tion, the Strouhal number St = f D/U0 is chosen where f is the frequency.

Spatial filtering is defined as a weight applied to the source terms before Fourier trans-

formation. This weight is applied on distance d = xmax − xmin (see Figure 3.18). xmin is

fixed at 50∆ in the whole study, while xmax can vary, producing various filter lengths d.

First of all, the filter length d is fixed at 600∆ and the filter shape is varied. Secondly, the

best filter shape is chosen and the filter length d is adjusted.

3.2.2 Study on the filter shape
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Figure 3.19 – Spatial filters applied to the vortex convection case. The vertical blue line indicates
the location of xmin, the vertical red line indicates the location of xmax. · · · · · · : W1; − · − · −: W2;
– – –: W3; —–: W4.

The vortex diameter is fixed at D = 20∆, and the convection velocity is U0 = 2 m/s. The

filter length is thus d = 600∆ = 30D: the filter is applied on a distance corresponding to

30 vortex diameters. The acoustic radiation produced by a sharp truncation of the source

terms at x = xmin, as well as four different filter shapes are compared; the reference case is

obtained by analyzing the acoustic radiation of the vortex convected without modification
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Figure 3.20 – Acoustic power radiated by the vortex convection. Study on the filter shape. Bold
solid line: reference case (no truncation, no filtering); —×—: sharp truncation at xmin; − · − · −:
W2; – – –: W3; —–: W4.

along the whole domain. The different filter weights are defined as follows:






























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
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
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













W1(x) = −1+ exp
�

(xmax− x)2

2σ2

�

W2(x) = 2− exp
�

(x − xmin)2

2σ2

�

W3(x) = exp

¨

−
1

2

�

α

2
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2 ln2 and α = 9, and are displayed in Figure 3.19. Acoustic results are

presented in Figure 3.20. The sharp truncation of noise sources at xmin produces a strong

acoustic radiation in the low frequency range St < 2.6, with levels superior by more than

75 dB to the reference case, namely without truncation. Such a spurious acoustic radia-

tion is often encountered when working with hybrid methods, when the acoustic terms are

crossing the boundary of the region where they are considered. Casper et al.23 have shown

that the spurious radiation is of dipolar nature. Filters W1 and W2 are symmetric and thus

produce the same acoustic radiation; therefore, only the results associated to filter W2 are

presented in Figure 3.20. The main observation is that all filters produce a spurious acous-
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tic radiation. However, filters have a different impact on the acoustic power level. Indeed,

filters W2 and W3, which are sharper than filter W4, radiate in a greater range of Strouhal

numbers, respectively for St < 1.8 and St < 1.1, while the hyperbolic-tangent shaped fil-

ter W4 radiates only for St < 0.26. This last filter is thus retained for the remaining of the

study.

3.2.3 Study on the filter length
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Figure 3.21 – Acoustic power radiated by the vortex convection. Study on the filter length. Bold
solid line: reference case (no truncation, no filtering); —×—: sharp truncation at xmin; —◦—: d =
10D; −−−: d = 20D; · · · · · · : d = 30D; − ·− ·−: d = 40D; —•—: d = 50D; —–: d = 60D.

In order to minimize the length of the sponge zone that will be used for spatial fil-

tering of acoustic source terms, a study on the filter length is performed. We chose here

a convection velocity of 5 m/s and the vortex diameter is now D = 10∆. We apply the

spatial filtering defined with the weight W4, and the filter length d is varied from 10 D to

60 D. Acoustic results are presented in Figure 3.21. The filter length directly influences the

critical frequency: the critical Strouhal number decreases from 0.6 to 0.18 when the filter

length varies from 10 D to 40 D. Then, a further increase of the filter length d does not

seem to significantly improve spectra.

3.2.4 Conclusion

This study allows to state that using a W4-shaped spatial filtering on acoustic source

terms on a distance of around 20 to 40 times the structure’s diameter D should minimize

the effects of spatial truncation above the critical Strouhal number St = f U0/D, where U0

is the convection velocity of the structures crossing the virtual boundary.
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3.3 Conclusion

In this chapter, the main goal was to present a general validation of the two steps

hybrid method. The academic case of two corotating vortices is studied to this purpose. A

compressible Direct Numerical Simulation using the density-based solver is Fluent provides

reference results, as well as the database for source terms. Although incompressible source

terms will be considered in the next chapter, this compressible approach is consistent, since

an incompressible verification has been shown to yield similar results. This study has also

assessed an important fact, namely that using an acoustic analogy where the propagation

operator does not account for mean flow effects, the mean flow has to be accounted for in

the source term. However, it has been also verified that mean flow effects in the observer

region, outside the source region, are not computed in this way.





4.

Study of a diaphragm placed in a duct at

low Mach number

T HIS CHAPTER is devoted to the study of a three-dimensional internal flow in a rather

simple geometry. In particular, a thorough analysis of the transient flow field and of its

radiated noise is performed. Firstly, we explain the reasons for the choice of this particular

geometry as a validation case for our hybrid method of aeroacoustic noise computation.

Then, the experimental data obtained from a dedicated campaign in the frame of this

research project are presented, constituting the base for the validation of numerical results.

Two numerical studies of the diaphragm case are finally presented, the first one being

applied on a periodic slice of the domain (this case will hereafter be named the diaphragm

slice study); we will show that although the geometric approximation is relevant, it suffers

from limitations due to the limited spanwise extent. The second numerical study applies on

the complete three dimensional geometry; aerodynamic and acoustic results are compared

to the reference experimental data, as well as on the Direct Noise Computation performed

by Gloerfelt & Lafon54.
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L

w

D

l
e

h

Figure 4.1 – Diaphragm geometry. The aspect ratio is given by A= w/h, where w is the duct width
and h the diaphragm opening; the expansion ratio is R = D/h, where D is the duct height. The
x-axis indicates the streamwise flow direction; y- and z-axis respectively indicate the transverse
and spanwise directions.

4.1 Introduction

4.1.1 Geometry

The diaphragm geometry is presented in Figure 4.1; it consists in a rectangular duct

of section D×w = 80× 100 mm obstructed by a diaphragm whose opening is rectangular

of section h× w = 35× 100 mm. The diaphragm extends over e = 5 mm, and the inlet

and outlet ducts lengths are respectively l = 95 mm and L = 500 mm. The aspect ratio

defined as A= w/h is equal to 2.86, and the expansion ratio defined as D/h is 2.29. In this

paper, we study the flow and acoustic results for a very low Mach number flow, with the

mean velocity U0 = 6 m/s at the inlet, corresponding to M = U0/c0 = 0.018. The Reynolds

number ReD based on the inlet velocity U0 and duct height D, and the Reynolds number

Reh computed at the diaphragm, based on the maximum mean velocity Um = 20 m/s and

obstruction height h, are respectively

ReD = 3.3× 104 and Reh = 4.8× 104

The flow is thus fully turbulent.

4.1.2 Previous studies on similar geometries

The ducted diaphragm case has generated a great interest in the aeroacoustic commu-

nity. Analytical developments have also been written by Hofmans et al.59 for the reflec-
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tion and transmission coefficients of the diaphragm. Longatte67 choose to apply a hybrid

method consisting in propagating acoustic source terms based on mean flow quantities.

The present work is based on reference results provided by Van Herpe et al.110;111 who

performed experiments in order to get the acoustic power radiated by the diaphragm, and

by Gloerfelt and Lafon54 who performed a Direct Noise Computation.

The aerodynamic features of the flow downstream a rectangular diaphragm is very

similar to that downstream a plane sudden expansion. This last geometry has been ex-

tensively studied experimentally, and many authors provide detailed descriptions of the

flow characteristics for different aspect and expansion ratios. These studies mainly aim

at providing a physical explanation to the symmetry breaking, pitchfork bifurcation, oc-

curring just behind the double step in a specific range of Reynolds numbers and aspect

and expansion ratios. This asymmetry causes the flow to attach to one or the other wall

parallel to the expansion; this phenomenon is sometimes called the Coanda effect in the

literature. The experiments of Durst et al.35 demonstrate that the low Reynolds number

flow downstream of a sudden expansion in a symmetric channel of large aspect ratio may

be asymmetric and substantially three-dimensional. Cherdron et al.25 moreover provide a

map of symmetric and asymmetric flow regions, depending on Reynolds number, aspect

and expansion ratios; it is found that a decrease of the aspect and expansion ratios has

a stabilizing effect, which extends the range of Reynolds numbers over which symmetric

flow can exist. At higher Reynolds numbers, the small disturbances generated at the lip of

the sudden expansion are amplified in the shear layers, shedding patterns which alternate

from one side to the other with consequent asymmetry of the mean flow. Another general

conclusion of Cherdron et al.25 is the ratio between both recirculation lengths: the smaller

recirculation region length corresponds to a single wavelength of the disturbance, while

the longer recirculation length is close to odd multiples of the disturbance wavelength,

three in Cherdron et al.25 experiments.

Last reviews of Escudier et al.38 and Casarsa and Giannattasio22 provide detailed exper-

imental results for the case of turbulent flow through a plane sudden expansion (PSE) at

high Reynolds numbers. In Escudier et al.38, aspect and expansion ratios are A= 5.33 and

R = 4 and the Reynolds number is fixed at Reh = 5.55× 104. In addition to the asymme-

try already noticed previously, three-dimensional effects are noticed with differences along

the span; this behavior is attributed to the presence of two contra-rotating vortices located

downstream the expansion, near the channel side walls, seemingly resulting from the mod-

est aspect ratio. After a detailed analysis of PIV results of the flow through a planar sudden

expansion of aspect and expansion ratios A = 10 and R = 3 and at a Reynolds number of

104, Casarsa and Giannattasio22 propose a three-dimensional model of the complex flow

field. In this model, a spanwise mass transport of spiral motion is associated to each recir-

culation; the mass loop is closed thanks to the presence of corner vortices in the vicinity of

lateral walls.
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It is interesting to note that all numerical experiments performed on planar sudden

expansions report a natural evolution of the flow toward asymmetry, even when using

Reynolds Averaged Navier-Stokes simulations, provided that the geometric and flow con-

ditions are favorable to bifurcation and that a transient computation is led. Fearn et al.42

compute the two-dimensional flow field downstream of a plane sudden expansion (R = 3,

A = 8) with a finite-element discretization of Navier-Stokes equations. An experimental

bifurcation diagram is built; in order to reproduce the disconnection due to small im-

perfections in the experimental apparatus, the calculations are run with a 1% change in

the geometry, grid shift with respect to the symmetry axis. Fearn et al.42 conclude that,

considering the overall agreement in resulting diagrams, the bifurcation observed is a fun-

damental property of the Navier-Stokes equations.

Durst et al.36 study experimentally and numerically a plane sudden expansion of aspect

and expansion ratios A = 2 and R = 2, at a high Reynolds number in the fully laminar

region Re = 610. Three-dimensional effects are supposed weak, therefore a 2D finite

element simulation is used. While a symmetric flow configuration was always assumed,

flow bifurcation occurred without geometric inlet disturbances; Durst et al.36 attribute it to

truncation errors which prevent a zero transverse velocity at the symmetry plane.

More recently, De Zilwa et al.33 assume that the flow through a plane sudden expansion

of aspect ratio A = 4 and expansion ratio R = 2.85 is two-dimensional; they chose a

transient k − ε modeling, and predicted the transition from symmetry to asymmetry at

Re = 90. Detailed comparisons of velocity and r.m.s. profiles are given and compared

to experimental results at low Reynolds numbers; the poor agreement is attributed to the

turbulence modeling limitations, while missed three-dimensional effects could also be a

source of errors.

Chiang et al.26 report an original behavior of the flow field where, in addition to the

conventional step height bifurcation, a spanwise bifurcation is observed when the channel

aspect ratio exceeds a critical value; indeed, in this particular case, the step height sym-

metry breaking evolves with different symmetry breaking orientations on the left and right

sides of the channel.
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Figure 4.2 – Diaphragm slice. Sketch of the geometry.

4.2 Numerical study on a slice of the domain

In this first numerical study, the computation is performed on a slice of the diaphragm

geometry, considering that a periodicity in the z-direction is relevant; 1/10th of the width,

i.e., 10 mm is kept, as shown in Figure 4.2. Taken the results obtained in previous stud-

ies, this domain reduction may be limiting for accuracy and in particular for the three-

dimensional development of the flow, but this configuration had to be studied to stress the

importance of considering the whole geometry in an (hybrid) aeroacoustic computation

involving Large Eddy Simulation. Indeed, it is tempting for an industrial having little com-

puting resources available to cut in the geometry or apply periodic or symmetry boundary

conditions to reduce the computational domain, while this is not either physically consis-

tent or representative for the actual flow field.

4.2.1 Configuration and parameters of the CFD simulation

4.2.1.1 CFD mesh

The mesh is a slowly non-uniform cartesian mesh with low non-orthogonality, as visible

in Figure 4.3), and composed of 843,800 cells. A first two-dimensional structured mesh is

built in the XY plane with 82 × 120 cells in the inlet duct, 10 × 74 cells in the diaphragm

aperture and 492 × 150 cells in the outlet duct. In the x-direction, the mesh size is

constant in the diaphragm aperture, ∆x = h/70, and in the first half of the outlet duct,

∆x = h/58. The mesh is then stretched to the inlet and outlet sections with the rates

of 1.85 % and 1.2 % respectively, leading to the maximum cell size of h/15 in the inlet

duct and h/8 in the outlet duct. In the y-direction, the mesh is constant in the diaphragm

aperture, ∆y = h/70; in the inlet duct, ∆y = h/53, and in the outlet duct, ∆y = h/66.

Boundary layers consisting of local refinement are also defined with the first cell of size
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(a) Overall view of the mesh.

(b) Zoom on the inlet and diaphragm region.

Figure 4.3 – Diaphragm slice mesh. Every line mesh is shown.

∆ymin = h/175 and a stretching rate of 20 % on the upper and lower diaphragm walls and

on the walls of the first part of the outet duct, as well as on the downstream vertical walls

of the diaphragm. The two-dimensional mesh is then extruded in the z-direction on 10

cells of size ∆z = h/35.

4.2.1.2 Simulation parameters

The inlet boundary condition is a uniform velocity of 6 m/s. The outlet boundary condi-

tion is an outflow condition, constraining the flow to leave the domain at the same flow-rate

as at the inlet. When considering an incompressible simulation, Non Reflecting Boundary

Conditions are of no use. Moreover, the association of the outflow boundary condition

and the mesh growing rate toward the downstream boundary is relaxed enough to damp

energetic waves downstream the region of interest and avoid reflections of pressure waves

at the outlet boundary. Periodic boundary conditions are applied to the lateral sides of the

model, simulating an infinite duct in the third direction. Non-slipping walls are considered

for remaining surfaces.

An incompressible Large Eddy Simulation Smagorinsky–Lilly, with CS = 0.1, is per-

formed on the previously described mesh. Central differencing is used for the discretiza-

tion of momentum equation, PRESTO! for the pressure equation, and the pressure-velocity

coupling is taken into account via a PISO scheme. The time step satisfies a CFL less or
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equal to 1 for the smallest cell of the domain, yielding ∆t = 5 · 10−7 s.

4.2.1.3 Initial conditions

In confined flow problems, starting from a medium at rest causes stability and conver-

gence problems, differing from free jet flow problems. Indeed, the pressure drop between

the inlet and outlet plays a crucial role and must be steadily converged before starting the

unsteady simulation. Therefore, for all computations presented here on the diaphragm

geometry, a first Reynolds Averaged Navier-Stokes (RANS) k − ε computation has been

converged to second order and is used as an initial condition for LES.

A stable transient state is reached after approximately 0.1 s of physical time, that is to

say 200000 time steps; the computation is then performed for another physical period of

0.15 s for statistics and source term recordings.

4.2.2 Aerodynamic results

4.2.2.1 Mean flow analysis

The three components of the averaged velocity, presented in Figure 4.4, highlight three

distinct flow regions:

1. the upstream flow, before the diaphragm, with very fine turbulent boundary layers

near the walls;

2. the jet-like flow coming from the diaphragm aperture and attaching to the top wall

through the Coanda effect1;

3. the quieter flow in the second part of the outlet duct, with reattachment to the bottom

wall.

The remarkable behavior of attachment to the top wall just downstream of the sudden

expansion has been already described by many authors from experimental measurements,

see § 4.1.2, and is also present in Gloerfelt & Lafon54 simulation. The Reynolds number

considered in this study, of order 104, is well above the critical Reynolds number of order

102 where transition to asymmetry was observed for large expansion ratios. In present

results, the bifurcation is found to happen in favor of top wall, while other simulations

performed in the same conditions showed a bifurcation toward bottom wall; truncation

errors are likely to be responsible for this "choice"36.

However, the presence of a region with secondary attachment to bottom wall is more

questionable. Indeed, while such a behavior was observed by some authors35;36;42, it oc-

curred well downstream the primary attachment, typically around x/h = 20. In this slice

1The Coanda effect is the tendency for a moving fluid to attach itself to a surface and flow along it.
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simulation, this secondary attachment can also be seen as a remainder of the unphysical

two dimensional evolution presented in Appendix A; the reduction of the three dimen-

sional domain may have lead to miss important three dimensional results. A dedicated

experimental study would be useful to lift the veil on this uncertainty.

The levels of the mean velocity components are in good agreement with Gloerfelt &

Lafon54 results. The turbulent intensities reported in Figure 4.5, computed as u′ =
p

u2

for the streamwise component and normalized by Um, present high levels in the sepa-

rating shear layers, which is usually associated to a broadband acoustic radiation. Once

again, discrepancies with reference results are sizable. In addition to the low levels of the

spanwise turbulent intensity, expected taken that the geometry reduction in the spanwise

direction prevents a correct three dimensional development, the streamwise and transverse

turbulent intensity components have very high levels, in excess of 30%Um, downstream of

the attachment.

Figure 4.6 presents the path lines of the averaged flow field in the XY midplane. The

large recirculation region below the jet extends over 8.6 h, while the smaller recirculation

located above the jet, upstream attachment, is found to exist over 2.8 h. This last value

is well below those reported by Gloerfelt & Lafon, 5 h and 4.3 h for numerical and experi-

mental results, respectively. Two pairs of small and symmetric corner recirculation zones

are present just upstream and downstream of the diaphragm, their extent being of order h

and 0.7 h.

4.2.2.2 Instantaneous flow features

Figures 4.7-4.9 present the instantaneous velocity components. The jet is finely mod-

eled, with creation of periodic small structures shed from the downstream diaphragm lips,

this being confirmed in Figure 4.10 displaying the instantaneous vorticity modulus. From

these instantaneous pictures of the flow field, a strong unsteadiness is evident. Down-

stream vortex shedding occurring at the diaphragm lips, roll-ups are responsible for the

shear layer thickening before impinging on top wall, convected by the jet-like flow.

Top and side views are added to give an indication about the three dimensional flow

development. As with the turbulent intensities, the spanwise velocity component is under-

estimated by the slice simulation, with levels generally 3 times lower than in Gloerfelt &

Lafon54 simulation.

4.2.2.3 Statistic analysis

Determination of the maximal frequency resolved by CFD

The Large Eddy Simulation cutoff frequency is determined in order to evaluate the

limits of the present computation; this cutoff frequency is mainly linked to the mesh and
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(a) U/Um (levels from −0.3 to 1)

(b) V/Um (levels from −0.3 to 0.4)

(c) W/Um (levels from −0.02 to 0.02)

Figure 4.4 – Diaphragm slice. Mean velocity field in the XY midplane. Solid contours have positive
values, dashed contours have negative values.

(a) u′/Um (levels from 0.02 to 0.26)

(b) v′/Um (levels from 0.02 to 0.26)

(c) w′/Um (levels from 0.02 to 0.26)

Figure 4.5 – Diaphragm slice. Turbulence statistics in the XY midplane.
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Figure 4.6 – Diaphragm slice. Streamlines computed with the U and V components of the 3D mean
velocity field in the XY midplane.

Figure 4.7 – Diaphragm slice. Instantaneous streamwise velocity u (levels between −10 and
25 m/s). Top, top view in the XZ midplane; bottom left, front view in the XY midplane; bottom
right, cross section at x/h= 2.8.

Figure 4.8 – Diaphragm slice. Instantaneous transverse velocity v (levels between−10 and 10 m/s).
Top, top view in the XZ midplane; bottom left, front view in the XY midplane; bottom right, cross
section at x/h= 2.8.

Figure 4.9 – Diaphragm slice. Instantaneous spanwise velocity w (levels between−10 and 10 m/s).
Top, top view in the XZ midplane; bottom left, front view in the XY midplane; bottom right, cross
section at x/h= 2.8.

Figure 4.10 – Diaphragm slice. Instantaneous vorticity magnitude ‖ω‖ (levels between −1 and
1 · 104 s−1). Top, top view in the XZ midplane; bottom left, front view in the XY midplane; bottom
right, cross section at x/h= 2.8.
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Figure 4.11 – Diaphragm slice. Power Spectral Density of velocity components and velocity magni-
tude at point (1.81;1.16)× h in the XY midplane, and f −5/3 slope.

discretization schemes used. Velocity component fluctuations recorded during the transient

run are analyzed at a point located in a region where turbulence is almost isotropic, outside

the shear layers and inside the jet-like flow. The point (1.81;1.16) × h, located in the

central X Y plane, seems well chosen. The f −5/3 slope and the power spectral densities

of velocity components at this point are displayed in the same graph in Figure 4.11. The

cutoff frequency is the maximum frequency at which the PSD follows the f −5/3 slope; here,

fcut,CFD ' 3500 Hz. Above this frequency, acoustic and aerodynamic results will not be

considered.

Correlation lengths

The study of correlation functions allows to determine the extent of homogeneous tur-

bulence in the flow field. The correlation coefficient Ri j at two points x and x+ dx of two

components of the fluctuating velocity field u′i and u′j, is defined as

Ri j(x,x+ dx) =
u′i(x)u

′
j(x+ dx)

Æ

u′2i (x)
q

u′2j (x+ dx)

Note that Ri j is without dimension and is always included in [−1;1]; u′i, u′j are the fluc-

tuating velocities in the directions i and j respectively.

In order to determine the size of the largest turbulence structures, a length scale repre-

senting the distance over which the correlation function is non-zero is defined. This integral

length scale L(k)i j in the direction (k) is defined by integrating the correlation coefficientRi j

in the direction (k):

L(k)i j =

∫ ∞

0

Ri j(rxk)dr
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Figure 4.12 – Correlation coefficients of fluctuating velocities. From left to right: R11(x), R22(y)
and R33(z).

The integral scales of interest in this study are the longitudinal integral scale L1 = L(1)11 ,

the transverse integral scale L2 = L(2)22 and the spanwise integral scale L3 = L(3)33 , defined as
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L1 = L(1)11 =
1

2

∫ ∞

−∞
R11(x)dx with R11(x) =

u′(x − dx/2)u′(x + dx/2)
p

u′2(x − dx/2)
p

u′2(x + dx/2)

L2 = L(2)22 =
1

2

∫ ∞

−∞
R22(y)dy with R22(y) =

v′(y − dy/2) v′(y + dy/2)
Æ

v′2(y − dy/2)
Æ

v′2(y + dy/2)

L3 = L(3)33 =
1

2

∫ ∞

−∞
R33(z)dz with R33(z) =

w′(z− dz/2)w′(z+ dz/2)
p

w′2(z− dz/2)
p

w′2(z+ dz/2)
(4.1)

where centered expressions of the correlation coefficients have been used. Note that when

analyzing CFD data, the integration in each direction +x , −x , is performed until R11(x)
crosses the x axis (and similarly for R22(y) and R33(z)).

The correlation coefficients in the 3 directions and at different locations in the flow are

displayed in Figure 4.12; their integration give the following integral scales at the point

(0.1;0.06; 0.055):






L1 = 11 mm

L2 = 8 mm

L3 = 2 mm

This analysis shows that the turbulence is well-developed and quasi-isotropic along

directions x and y . The spanwise integral scale L3 tells us that the slice approximation may

be justified, as the span extent Lz contains several spanwise integral scales L3. However,

we can state that the mesh size in the third direction is probably too coarse to resolve

correctly the turbulence structures: Lz = 10 mm is the model span extent and ∆z = 1 mm

is the mesh size in the third direction.
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Figure 4.13 – Mean streamwise velocity profiles for the upper shear layer versus η= (y− y0.5)/δθ ,
where y0.5 corresponds to ū = 0.5Um and Um = 20 m/s, at different longitudinal locations. ◦: x =
1.2 mm; ∗: x = 3 mm; Í: x = 5.2 mm; Ï: x = 7.4 mm. A hyperbolic-tangent profile (1− tanh η)/2
is superimposed (—–).

Power Spectral Densities of velocity fluctuations

The Power Spectral Densities of vertical velocity signals are displayed in Figure 4.14

at several locations in the upper shear layer. A sharp peak centered around 460 Hz is

present on the first two sensors. Similarly to Gloerfelt & Lafon54, the similarity parameter

η = (y − y0.5)/δθ is defined and used to show that mean streamwise velocity profiles

collapse for δθ = 0.55 mm instead of 0.7 mm in the reference paper54, see Figure 4.13.

This corresponds to a Strouhal number Stδθ ' 0.013 for f = 460 Hz and Um = 20 m/s; it is

close to the most unstable frequency of a hyperbolic-tangent velocity profile. This intense

peak therefore indicates the presence of primary Kelvin-Helmholtz instabilities in the jet

shear layers.

The last three sensors show a very intense peak around 40 Hz. The analysis of in-

stantaneous snapshots of velocity correlate this low-frequency with the transport of large

structures by the recirculation below the jet. This frequency is not present in the reference

analysis, suggesting that the recirculation below the jet is too intense due to the restriction

in the third direction inherent to the slice model.

The sensors located from x/h = 1.71 to 4 exhibit a more broadband content, with a

peak around 130 Hz (this peak is however masked by the very intense peak at 40 Hz for

the last three sensors). This frequency is linked with the periodic shedding of large-scale

jet-column instabilities, as suggested by Gloerfelt & Lafon54.

4.2.2.4 Analysis of the source terms

The three instantaneous components of the source term S1, S2 and S3 are displayed in

Figure 4.15 on the region where they are recorded, for −0.43 ≤ x/h ≤ 4.7. The three

components of the source term present well organized structures located mainly in the

shear layers; vortex shedding is clearly visible on the two first components S1 and S2,
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x/h= 1.14

x/h= 1.71

x/h= 2.28

x/h= 2.85

x/h= 3.43

x/h= 4

Figure 4.14 – Left: instantaneous velocity fluctuations v′, right: power spectral densities of v′.
Signals were recorded at y = 0.05 m, z = 0.0055 m; the x position is indicated on the left of each
subfigure.
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(a) General view of the source region in the diaphragm geometry.

(b) Zoom on the region where S is recorded.

Figure 4.15 – Visualization of the source term S in the plane z = 0.0055 m. In both figures, the 3
components of the source term S1, S2 and S3 are displayed from top to bottom. Levels between −1
and 1× 105 Pa/m.
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(a) Overall view of the two dimensional acoustic mesh.

(b) Zoom on the acoustic source region.

Figure 4.16 – Two dimensional acoustic mesh used for the diaphragm slice computation.

from both downstream diaphragm lips. While the most intense features of the source

term are well contained in the limited export region, some structures convected by the

lower recirculation zone are crossing the outlet boundary, successively leaving and entering

the domain at x/h = 4.7. By visualization of Si time evolution, it is noticed that this

phenomenon of acoustic sources crossing downstream boundary is not permanent, but

rather occurs periodically; however, it was not possible to determine a frequency linked to

this event.

4.2.3 Acoustic simulation

The previous diaphragm slice Large Eddy Simulation is exploited to compute the acous-

tic power radiated at the outlet of the duct. Like in the reference simulation54 and experi-

mental111 results, the acoustic duct is supposed semi-infinite at both ends, as is the case in

the fluid computation. A two dimensional acoustic computation is performed based on the

acoustic sources computed in the central XY plane.

4.2.3.1 Configuration and numerical parameters

Mesh

The mesh is built in a way to keep the CFD accuracy in the source region shown in

Figure 4.15; therefore, as was the case in the validations of chapter 3, the acoustic nodes

are placed at the CFD cell centers in order to avoid interpolation errors. Outside of the

source region, the acoustic mesh is coarsened up to a maximum mesh size of h/7, see

Figure 4.16.
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Figure 4.17 – Diaphragm slice: two dimensional acoustic source components in the frequency
domain at f = 30 Hz, ℜ( eS1), ℑ( eS1), ℜ( eS2) and ℑ( eS2) from left to right and top to bottom. Levels
from −2 to 2× 103 Pa/m.

Acoustic simulation parameters

As explained previously, acoustic sources consisting of the two-components vector [S1 S2]t

are used in the acoustic model. Note that the third component S3 of the source vector is

omitted in this computation. The natural condition is used at the walls. At inlet and outlet,

modal bases are defined to force acoustic waves leave the duct without reflections. Free

outgoing modes are used at both ends; for the frequencies considered, f ≤ 2000 Hz, the

only propagating mode is the plane wave as the cutting frequency for the duct is 2125 Hz,

based on the duct height.

The total signal length is 100 ms, recorded at the sampling rate of fs = 100 kHz, corre-

sponding to one sample every 20 CFD time steps. The signal is Fourier transformed after

being windowed with a Hanning window. The resulting resolution frequency is 10 Hz.

Figure 4.17 presents the acoustic source terms eSi in the frequency domain at the main

radiating frequency of 30 Hz. A second processing is performed by averaging the contribu-

tion of 19 overlapping samples of 10 ms each, the samples being 50% overlapped; this last

processing yields a resolution frequency of 100 Hz.
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4.2.3.2 Spatial filtering to damp outgoing sources

Spatial filtering, as studied in § 3.2, is applied to smooth source outgoing from the

source region. A cosine-type filter is applied, with a weight exactly equal to zero at the

outlet boundary and to unity where the filter starts to act:

W (x) =
1

2

¨

1+ cos

�

(x − xmin)π
xmax− xmin

�«

with the same conventions as in § 3.2. Two filtering lengths d = xmax − xmin are fixed,

1.14 h and 1.86 h, and their effect is studied.

4.2.3.3 Conversion from 2D to 3D acoustic power

The present CFD computation is three dimensional (slice), and in a first approach the

noise is computed with a two dimensional acoustic model, using the noise sources com-

puted in the plane z = 0.0055 m of the CFD model. The acoustic pressure obtained from

a 2D acoustic computation does not depend on the dimension of the problem, while the

acoustic power does; indeed, the power value is obtained on a surface of integration.Two

methods are proposed to compute the acoustic power from this 2D simulation.

The plane wave assumption is valid in the present case up to 2125 Hz, which is the

cutting frequency associated to the duct height D. Under this assumption, only the plane

wave is propagating in the duct, and far enough from the aerodynamic sources, the acoustic

pressure is only a function of the duct axial position x and is constant in duct sections. The

acoustic intensity I is then expressed as

I =
p′2rms

ρ0c0

where p′rms is the acoustic pressure, either provided by a two- or a three-dimensional acous-

tic computation. Finally, the acoustic power is obtained by multiplying the intensity by the

duct section surface S:

P = I × S (4.2)

Actran also provides the intensity radiated by the modal bases at both ends of the duct.

Under the duct cutting frequency, both methods should yield the same results:

P =
p′2rms

ρ0c0
× S = Imodal basis× S. (4.3)
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(a) no time averaging (resulting resolution frequency: 10 Hz)
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(b) time averaging over 19 overlapping samples (resulting resolution
frequency: 100 Hz)

Figure 4.18 – Diaphragm slice. Acoustic power level spectra, in dB/Hz, without and with time
averaging over 19 samples, for different lengths of spatial filtering. – – –: reference result (see
Gloerfelt & Lafon54). —–: no spatial filtering; —–: spatial filtering over 1.14 h; —–: spatial filtering
over 1.86 h.
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Reference No averaging Averaging over 19 samples

results54 d = 0 d = 40 d = 65 d = 0 d = 40 d = 65

Inlet 69 96.3 94.4 90.9 79.0 79.5 77.9

Outlet 78.8 96.5 94.7 91.2 79.3 79.9 78.3

Total 79 99.4 97.6 94.0 82.2 82.7 81.1

Table 4.1 – Overall acoustic power radiated by the diaphragm, in dB. d, in mm, refers to the
presence of spatial filtering and specifies its application length.

4.2.3.4 Acoustic results

Effect of spatial filtering and averaging

The effect of spatial filtering and of time averaging is presented in Figure 4.18. As was

already shown in the academic case of a vortex crossing a virtual boundary, the application

of spatial filtering mainly damps low frequencies, while high frequencies are smoothly

attenuated. In the present case, both cosine filters yield the same acoustic power levels at

frequencies higher than 500 Hz; levels obtained with filtering are very close to the levels

obtained without filtering in the range 500− 1400 Hz, while they are attenuated at higher

frequencies. At frequencies lower than 500 Hz, not only the filtering but also its application

length has an effect; thus, the longer filtering length of 1.86 h yields more attenuation on

the high-energy peak of 20−40 Hz. Note that the difference between both filters is mainly

visible on this peak. Spatial filtering has the same qualitative effect on the total signal than

on the averaged signal.

Regarding the averaging, its effect is clearly to smooth the spectra; moreover, the levels

are seen to be reduced after averaging. This could be due to the use of a non normalized

weighting function, namely the Hanning window. Table 4.2.3.4 gathers the overall acoustic

power levels, in dB, for each computed configuration. From this overall power values, the

configuration with 19 averaged samples and spatial filtering applied on 1.86 h yields the

closest result at the outlet, compared to the reference. In addition, note that in all acoustic

computations detailed here, the acoustic power at the inlet is of the same order as at the

outlet, while Gloerfelt & Lafon54 found a much lower value at the inlet. However, the

latter was obtained after linear detrending of the directly obtained pressure, because a

relatively intense continuous component was present close to the diaphragm, polluting the

solution; this is a source of approximation. In present computations though, the acoustic

pressure maps of Figure 4.20, see below, show that the inlet duct is long enough and

that the pressure is already established 0.095 m upstream from the diaphragm, at the inlet

location.

Note finally that the comparison of overall noise levels in Table 4.2.3.4 takes the low
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frequencies into account, while averaged and non averaged signals do not have the same

lowest frequency. For the non averaged signals, the lowest frequency is 10 Hz, while it

is 100 Hz for averaged signals. Therefore, the continuous component is more present in

non averaged signals, which makes the comparison of overall levels more difficult. A more

relevant overall noise levels comparison should be done over the same frequency range,

for instance [100–2000]Hz.

Results’ consistency

Acoustic results after propagation within Actran are examined in Figure 4.19. The spec-

trum of the acoustic power radiated at the outlet of the duct, obtained by averaging over

19 samples and using the 1.86 h cosine spatial filtering, is compared with the reference re-

sults of Gloerfelt & Lafon54. The acoustic power is computed by the two methods described

previously, namely using the intensity radiated by modal basis, as computed by Actran, and

by integrating the acoustic pressure at one point over the outlet and inlet sections of the

duct, and closer to the acoustic source region.

At the outlet, it is shown that, computing the power using the modal basis intensity

or the acoustic pressure yield the exactly same results. Besides, the acoustic pressure

integrated over several sections closer to the aerodynamic region prove the consistency

of the plane wave approximation from x = 0.3 m; indeed, only very small deviations are

observed for x = 0.3 m for frequencies larger than 1950 Hz. These deviations are due

to the presence of evanescent waves, since the integration section is quite close to the

aerodynamic source region, the latter ending at x = 0.25 m.

At the inlet, the agreement is not so clear, and larger deviations are observed between

both power evaluation methods, even at the inlet section. In this case, differences are

observed for frequencies upper than 1200 Hz. This shows that the plane wave assumption

is not valid at this position, located too close from the aerodynamic source region.

The acoustic pressure maps in Figure 4.20 confirm previous results regarding the plane

wave propagation assumption under the cutting frequency. Indeed, only plane wave is

propagating in the duct for f < fcut, while the first mode in the y direction is clearly visible

for f = 2500 Hz. This is valid just upstream and downstream of the aerodynamic sources.

Note also that the plane wave propagation hypothesis seems to fail around 2000 Hz at the

outlet, where the acoustic pressure already exhibits a y-dependency, even far from the

aerodynamic sources. At the inlet, evanescent wave are seen to be important already at

1500 Hz.

Discussion

The present CAA approach seems to be consistent to tackle the diaphragm noise. Al-

though in this slice configuration, turbulence levels are higher than the corresponding
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levels from the reference, these differences are smoothed after the acoustic computation,

except for the low-frequency peak. Spatial filtering is efficient, with, in particular, no

dipolar reflections at the downstream source region boundary, as visible in Figure 4.20.

Averaging the time signal smooths even more the low-frequency peak so as overall levels

are closer to the reference, though overall levels are difficult to compare.
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(a) Acoustic power at inlet. Acoustic power obtained by integrating the
pressure at ×: x =−0.1 m (inlet), ◦: x =−0.075 m.
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(b) Acoustic power at outlet. Acoustic power obtained by integrating the
pressure at ×: x = 0.5 m (outlet), ◦: x = 0.4 m, •: x = 0.3 m.

Figure 4.19 – Diaphragm slice. Acoustic power radiated at the inlet and outlet of the duct, taken
from the 10 Hz resolution computation without averaging and with spatial filtering on 1.86 h. – – –:
reference results of Gloerfelt & Lafon54. —–: acoustic power obtained using the intensity radiated
by the inlet or outlet modal basis. Symbols: see appropriate legend.
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(a) f = 500 Hz (levels: ±0.35 Pa)

(b) f = 1000 Hz (levels: ±0.2 Pa)

(c) f = 1500 Hz (levels: ±0.25 Pa)

(d) f = 2000 Hz (levels: ±0.04 Pa)

(e) f = 2500 Hz (levels: ±0.08 Pa)

Figure 4.20 – Diaphragm slice. Acoustic pressure maps for different frequencies, taken from the
100 Hz resolution computation with 19 averages and spatial filtering on 1.86 h.
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(a) Overall view of the mesh.

(b) Zoom on the inlet and diaphragm region.

Figure 4.21 – Diaphragm mesh. Every line mesh is shown.

4.3 Numerical study on the complete 3D domain

A second computation on the total geometry is then carried out in order to overcome

the limitations of the slice simulation. Results are in better agreement with experimental

data regarding the flow field. Interpolation is used to define an acoustic mesh coarser than

the CFD mesh, and a spatial filtering technique similar to the one described in § 3.2 is

applied. Acoustic propagation is performed up to the duct inlet and outlet section planes

where acoustic power is computed.

4.3.1 Mesh and numerical parameters for CFD

4.3.1.1 Mesh

The geometry is shown in Figure 4.1. The mesh used for the CFD computation, reported

in Figure 4.21, is composed of 8 millions cells. A first two-dimensional structured mesh in

the XY plane is built with 82× 120 cells in the inlet duct, 10× 66 cells in the diaphragm

aperture and 428×130 cells in the outlet duct. In the x-direction, the mesh size is constant
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in the diaphragm aperture, ∆x = h/70, and in the first half of the outlet duct, ∆x = h/58.

The mesh is then stretched to the inlet and outlet sections with the rates of 1.7 % and

2.75 % respectively, leading to the maximum cell size of h/16 in the inlet duct and h/4

in the outlet duct. In the y-direction, the mesh is constant in the diaphragm aperture,

∆y = h/64, in the inlet duct, ∆y = h/54, and in the outlet duct, ∆y = h/55. Boundary

layers consisting of local refinement are also defined near lower and upper walls with the

first cell of size ∆ymin = h/100 and a stretching rate of 5 % on diaphragm walls and outlet

duct walls, and 10 % on the inlet duct walls. The two-dimensional mesh is then extruded

in the z-direction on 120 cells of size ∆z = h/35 in the central region, with a local 5 %

refinement near the lateral walls, with the minimum cell size ∆zmin = h/88.

4.3.1.2 Numerical simulation parameters

An incompressible Large Eddy Simulation is performed on the previously described fi-

nite volume mesh. The Smagorinsky–Lilly subgrid-scale modeling is used with the constant

value CS = 0.1. Spatial discretization is central differencing of second order, and the time

discretization is implicit of second order with the use of a Non Iterative Time Advancement

(NITA) scheme. The time step is ∆t = 10−5 s, corresponding to a maximum Courant num-

ber of 0.78. A uniform constant velocity U0 = 6 m/s is imposed at the inlet boundary, and

an outflow condition at the outlet boundary.

4.3.1.3 Initial conditions

A first Reynolds Averaged Navier-Stokes k− ε computation has been converged to sec-

ond order and is used as an initial condition for LES. A stable transient state is reached

after approximately 0.2 s of physical time, that is to say 20,000 time steps; the computa-

tion is then performed for another physical period of 0.1 s for statistics and source term

recordings.

4.3.2 Aerodynamic results

4.3.2.1 Mean flow analysis

Upstream flow conditions

The check of inlet conditions allows to determine if the flow is fully developed and

symmetric before the contraction; Figure 4.22(a) presents the streamwise velocity pro-

files upstream of the diaphragm in the XY midplane, normalized with the inlet velocity.

The profiles are symmetric as expected, but characterize a non fully developed flow. The

streamwise turbulent fluctuations in the XY midplane show to be of order 1 % of U0, with

peaks on both sides of the channel centerline reaching 2.5 %.
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(a) (b)

Figure 4.22 – Diaphragm. Profiles of mean (solid) and rms (symbols) streamwise velocity compo-
nents in the (a): XY midplane and (b): XZ midplane at x/h=−1.

In the XZ midplane, the flow appears to be more developed as shown in Figure 4.22(b)

by the profiles of mean and rms streamwise velocity profiles normalized by U0. The mean

velocity profile exhibits a plateau in the range 0.3< z/h< 2.6, which shows the uniformity

of the inlet flow in the z-direction. Both profiles are again symmetric.

Mean flow in the XY midplane

As the averaged components of velocity illustrate it in Figure 4.23, the flow field can

be divided in three regions. Upstream of the diaphragm, the flow is uniformly sucked by

the contraction, producing very fine turbulent boundary layers near the walls. The jet-like

flow emanating from the diaphragm then attaches to the top wall as observed in the case

of plane sudden expansions, with the formation of two recirculation regions on both sides

of the core flow. Each recirculation zone is composed of one primary large structure and

one corner vortex near the diaphragm walls. Finally, in the second half of the outlet duct,

the flow becomes more quiet with progressive detachment from the top wall and tends to

become symmetric again. Note that the probability for the flow to exhibit one or the other

stable solution is the same; in a previous calculations, the flow was found to attach to the

bottom wall. No secondary attachment to the opposite wall is observed, as noticed for

instance by Durst et al.35;36 or Fearn et al.42 in the case of PSE in the laminar flow regime.

However, such a secondary attachment may be absent or masked by the too short length

of the outlet duct, since the experimental results show it to appear around x/h= 20.

As already discussed, the mechanism of symmetry breaking leading to asymmetry re-

sults from a fundamental instability in Navier-Stokes equations when exceeding a critical

Reynolds number, depending on the expansion geometry; this instability has two stable

asymmetric solutions, with attachment to one or the other wall, and one unstable sym-

metric solution. It is clear that in the fully turbulent regime of the diaphragm, the critical

Reynolds number is exceeded, and the large enough expansion ratio R = 2.28 allows the
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(a) U/Um (levels from −0.3 to 1)

(b) V/Um (levels from −0.3 to 0.4)

(c) W/Um (levels from −0.06 to 0.06)

Figure 4.23 – Diaphragm. Mean velocity field in the XY midplane. Solid contours have positive
values, dashed contours have negative values. Bold black lines indicate the position of partitions
for the parallel computation (4 partitions).

(a) u′/Um (levels from 0.02 to 0.26)

(b) v′/Um (levels from 0.02 to 0.26)

(c) w′/Um (levels from 0.02 to 0.26)

Figure 4.24 – Diaphragm. Turbulence statistics in the XY midplane.
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pitchfork bifurcation to occur. A smoother expansion can lead to a symmetric flow field

even at a high Reynolds number, as shown experimentally by Smyth97, who found a sym-

metric field downstream of a double backward facing step of expansion ratio R = 1.5 and

Reynolds number Reh = 2× 104.

The overall agreement for mean and r.m.s. velocity contours with Gloerfelt & Lafon54 is

satisfactory, in terms of levels as well as regarding the position and extent of recirculation

zones and boundary layers. The contours of mean streamwise velocity in Figure 4.23(a)

shows that the maximum values of U/Um follow the general direction of the flow toward

the top wall. The largest back flow is located in the core of the large recirculation zone,

near the walls, and reaches a value of 20 % Um as noticed in previous studies22;33;36;38. Local

minima and maxima of transverse mean velocity V are found at the upstream diaphragm

lips, where the flow is accelerated through the contraction; in the outlet duct, a maximum

is located in the lower shear layer just before the jet flow attaches the top wall.

Figure 4.25 – Diaphragm. Reynolds shear stress u′v′/U2
m (levels from −0.02 to 0.025) in the XY

midplane.

Moreover, the r.m.s. turbulent velocities normalized by the bulk velocity Um displayed

in Figure 4.24 show a significant anisotropy with streamwise intensity levels in general

higher than the transverse and spanwise ones. Local maxima are found in the shear lay-

ers before the attachment. The maximum value of the r.m.s. axial turbulence intensity is

u′/Um|max ' 0.26, consistent with that reported by Casarsa & Giannattasio22 and Escud-

ier et al.38; resulting axial turbulence in the second half of the duct has a 15 % mean in-

tensity, also consistent with previous studies. The transverse turbulence intensity reaches a

maximum of 18 %Um in the upper shear layer, consistent with Escudier et al.38 and sligthly

higher than that of Casarsa & Giannattasio22; far downstream, the mean transverse turbu-

lence intensity is still 10 % of Um. The Reynolds shear stress u′v′ presented in Figure 4.25

is consistent with the contours of U since its sign inversion occurs where the mean stream-

wise velocity is maximum. Maximum values about 2.5 %U2
m are reached in the upper shear

layer at the same downstream location as the peak of axial turbulence intensity; minima of

−2 %U2
m occur in the lower shear layer just downstream of the diaphragm.

The lengths of the primary recirculations L1 and L3 and of the secondary structures L2

and L4, as labeled in Figure 4.26, are defined as the positions where the mean streamwise

velocity component changes sign. They are reported in Table 4.2 in the XY midplane.

While the absolute values can hardly be compared to the values published previously, due

to the wide range of PSE geometries and Reynolds numbers investigated, some tendencies
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Figure 4.26 – Diaphragm. Labels of the different recirculations.

L1/h L2/h L3/h L4/h

9.83 0.57 2.6 0.46

Table 4.2 – Diaphragm. Normalized lengths of the primary and secondary recirculations in the XY
midplane.

can still be drawn. As reported by Casarsa & Giannattasio22, the reattachment lengths

are mainly a function of the expansion ratio; for the case R = 3, the ranges provided by

Abbott & Kline1 are L1/h = 11 − 15 and L3/h = 3.5 − 4; the values reported here are

substantially below these ranges, but considering the lower expansion ratio of this work,

namely R = 2.29, the values found are consistent. Regarding the secondary recirculation

lengths, the only reported values are from Casarsa & Giannattasio22 and Spazzini et al.98,

with L2 and L4 of the order of one; it is twice the values found here, but no conclusion can

be drawn taken the disparity in the considered geometries. Note also the presence of two

corner vortices, just upstream of the diaphragm; their extent is also of order h.

Mean flow evolution along the span

As shown in Figure 4.27, where the mean path lines computed with the U and V com-

ponents of the mean velocity field are drawn for three XY planes, the flow is not uniform

along the span. Figure 4.28 also reports the evolution of the recirculation lengths along the

span z/h. While the shorter recirculation L3 remains almost constant, the longer recircula-

tion L1 undergoes great variations, with in particular a nearly uniform increase of 2h in the

right channel half from the center to the wall. Regarding the secondary corner structures,

their extent is almost uniform in the central portion of the channel, and opposite behaviors

are found near the lateral walls: the lower recirculation zone extent is doubled near the

left wall, while the upper one is nearly doubled in the vicinity of the right wall.

The three-dimensionality of the flow field can also be investigated by visualization of

the flow paths in the XZ planes, as presented in Figure 4.29 for four y/h locations: in the

lower recirculation region close to the wall (y/h = 0.28) and a bit upper (y/h = 0.57),

in the midplane (y/h = 1.1), and in the upper recirculation, where the flow impinges

the top wall (y/h = 1.7). In the lower recirculation, just above the channel floor, see



4.3 Numerical study on the complete 3D domain 109

(a) z/h= 0.28

(b) z/h= 1.4 (midplane)

(c) z/h= 2.6

Figure 4.27 – Diaphragm. Streamlines in XY planes computed with the U and V components of the
3D mean velocity field at different spanwise locations.
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Figure 4.28 – Diaphragm. Recirculation lengths evolution, normalized by h, with respect to the
position along the span.

Figure 4.29(a), two counter-rotating vortices are found, resulting from the impingement

of the big recirculation on the lower vertical diaphragm wall; the presence of these vortices

was already proposed by Abbott & Kline1 and confirmed by Casarsa & Giannattasio22.

These vortices are still present at y/h = 0.57, see Figure 4.29(b), but the flow exhibits a

much more complex behavior with several vortex structures counter rotating at the right

and left of the channel centerline. In the midplane, see Figure 4.29(c), path lines are

almost parallel since the jet-like flow is dominant in this plane. Upper at y/h = 1.7, see

Figure 4.29(d), the location of flow separation is recognized, with the flow directed toward

the diaphragm for x/h< 0.6 and toward the channel exit for x/h> 0.6.

In the light of figures 4.30 and 4.31, which present the mean axial and spanwise velocity

contours at respectively y/h= 0.57 and y/h= 1.7, it is noticeable that, in the upper plane

at y/h= 1.7, the axial mean velocity U is not constant along the span and has its minimum
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(a) y/h= 0.28

(b) y/h= 0.57

(c) y/h= 1.1 (midplane)

(d) y/h= 1.7

Figure 4.29 – Diaphragm. Streamlines in XZ planes computed with the U and W components of
the 3D mean velocity field at different height locations.

values of −0.3 Um around the channel centerline. The spanwise mean flow W presents

significant values only close to the diaphragm walls for x/h < 0.2, where the ground

counter rotating vortices are present. In the upper plane at y/h = 1.7, the mean axial

velocity contours are almost uniform along the span for x/h< 2.2, with the separation line

between negative and positive velocities located at x/h∼ 0.6 as noticed in Figure 4.29(d).

Around x/h= 3, two symmetrical maxima of U are found around z/h= 0.4 and 2.4. The

levels of spanwise velocity W in this plane are low, as indicated by the almost parallel path

lines.

Finally, the flow paths in section cuts as shown in Figure 4.32 allow to complete the

understanding of this complex flow structure. In the first planes of figures 4.32(a)-(c), the

flow paths are vertical for 0.8 < y/h < 1.5, which corresponds to the core flow and shear

layers. However, this behavior is perturbed near the walls for z/h < 0.3 and z/h > 2.5,



4.3 Numerical study on the complete 3D domain 111

(a) U/Um (levels from −0.3 to 1)

(b) W/Um (levels from −0.06 to 0.06)

Figure 4.30 – Diaphragm. Mean velocity field in the XZ plane located at y/h= 0.57.

(a) U/Um (levels from −0.3 to 1)

(b) W/Um (levels from −0.06 to 0.06)

Figure 4.31 – Diaphragm. Mean velocity field in the XZ plane located at y/h= 1.7.

where the interaction between the primary recirculations and corner vortices produce a

complex flow. From x/h = 2, two counter-rotating structures develop in the lower cor-

ners; these structures are created just downstream of the ground counter-rotating vortices

noticed in Figure 4.29(a) and extend over the whole longer recirculation zone.

4.3.2.2 Instantaneous flow features

In Figures 4.33, 4.34, 4.35 and 4.36 are presented the instantaneous contours of, re-

spectively, streamwise, transverse and spanwise velocity and vorticity magnitude, in the

XY and XZ center planes and one YZ view. The jet unsteadiness is clearly visible, with

the periodic shedding of structures from the lips of the diaphragm. The three-dimensional

development is representative of the computational level of refinement. The levels and
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(a) x/h= 0.43 (b) x/h= 0.86 (c) x/h= 1.3

(d) x/h= 2 (e) x/h= 2.8 (f) x/h= 6.3

Figure 4.32 – Diaphragm. Streamlines in YZ planes computed with the V and W components of
the 3D mean velocity field at different longitudinal locations.

the general aspect of this instantaneous flow field are conform to that shown in Gloerfelt

& Lafon54.

An alternative way of representing turbulence structures is obtained by visualizing the

positiveQ criterion, defined as the second invariant of velocity gradient tensor∇u, Hunt et

al.61:

Q =
1

2

�

‖Ω‖− ‖S‖
�

where Ω and S are the antisymmetric and symmetric parts of the velocity gradients ∇u.

Figure 4.37 represents three views of the Q criterion normalized with (Um/h)2. The iden-

tified coherent structures are located in the shear layers. Close to the diaphragm, in the

thin shear layers, the structures are well organized; the first series of structures generated

by a Kelvin-Helmholtz instability are almost parallel to the z-axis with a nearly cylindrical

shape. Further downstream, their orientation changes, and the structures are progressively

split and turn in the main flow direction as the shear layers thicken. After the flow impinges

on top wall, the structures rapidly disappear.
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Figure 4.33 – Diaphragm. Instantaneous longitudinal velocity u (levels between −10 and 25 m/s).
Top, top view in the XZ midplane; bottom left, front view in the XY midplane; bottom right, cross
section at x/h= 2.8.

Figure 4.34 – Diaphragm. Instantaneous crossflow velocity v (levels between −10 and 10 m/s).
Top, top view in the XZ midplane; bottom left, front view in the XY midplane; bottom right, cross
section at x/h= 2.8.

Figure 4.35 – Diaphragm. Instantaneous spanwise velocity w (levels between −10 and 10 m/s).
Top, top view in the XZ midplane; bottom left, front view in the XY midplane; bottom right, cross
section at x/h= 2.8.
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Figure 4.36 – Diaphragm. Instantaneous vorticity magnitude ‖ω‖ (levels between −1 and 1 ·
104 s−1). Top, top view in the XZ midplane; middle, front view in the XY midplane; bottom, cross
sections at x/h= 1.3, 2.8 and 6.3.

Figure 4.37 – Diaphragm. 3d isosurfaces of Q/(Um/h)2 = 10. Top, top view; bottom left, front
view; bottom right, side view.
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4.3.2.3 Statistic analysis

Correlation lengths

Correlation lengths in the three directions, defined by expressions 4.1, are computed

and displayed in Figures 4.38-4.40; these integral flow scales are useful to understand the

spatial structure of the flow. The evolution of streamwise correlation lengths of Figure 4.38

thus enlightens that the largest turbulence structures are located in the shear layers and

are fed by the streamwise and spanwise velocity fluctuations; indeed, L11(x) and L33(x)
are always of the same order and larger than L22(x), reaching up to 20 mm in the shear

layers, while L22(x) stays below 5 mm almost everywhere. More surprisingly, high values

of L11(x) and L33(x) in the recirculation zones indicate the possible presence of large co-

herent structures that were not detected by the Q-criterion. Finally, the three-dimensional

complexity is once again evident taken the differences between the correlation lengths in

several XY planes.

The transverse, Lii(y), and spanwise, Lii(z), correlation lengths evolution along x re-

ported in Figures 4.39 and 4.40 have a different behavior. Indeed, the three are now of the

same order, proving that the three velocity components of the flow field contribute equally

to the existence of coherent structures. Note that the evolution of L11(y, z) and L33(y, z)
have a very similar behavior, with a difference in length of a few millimeters in favor of

L33(y, z).
It is worth noting that at this point, no universal integral length scales can be deduced

from the previous analysis. In particular, the spanwise integral scale L33(z) undergoes

great variations along the streamwise direction; the choice for an integral scale usable for

a two-dimensional acoustic simulation is therefore almost impossible.

Spectral content of the velocity field

An analysis similar to the one led in § 4.2.2.3 using the similarity parameter η = (y −
y0.5)/δθ enables determining the width of the upper and lower shear layers; as is reported

in Figure 4.41, the velocity profiles are seen to collapse for respectively δθ ,up ' 0.8 mm and

δθ ,down ' 0.9 mm. Considering that a Strouhal number of ' 0.017 corresponds to the most

unstable frequency for a hyperbolic-tangent velocity profile, the excited frequencies should

lie around 425 Hz and 378 Hz for the upper and lower shear layers, respectively. Note that,

in Figure 4.41, the simulated profiles do not exactly coincide with the hyperbolic-tangent

profile outside of the jet, for η > 2 in Figure 4.41(a) and η < −2 in Figure 4.41(b);

indeed, in the diaphragm simulation, there are recirculations above and below the jet,

which appear as negative values of umean/U0 in the profiles.

However, the Power Spectral Densities reported in Figure 4.42 do not exhibit the 425 Hz

peak for the upper shear layer. Instead, a rather broadband content is found for the first
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Figure 4.38 – Diaphragm. Correlation lengths Lii(x) along the transverse direction y for different
locations x , z. —–: L11(x), – – –: L22(x), – · –: L33(x). Note that Lii(x) ≡ L(1)ii with the notations of
expressions 4.1.
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Figure 4.39 – Diaphragm. Correlation lengths L(2)ii , in m, along the streamwise direction x for

different y locations, at z/h= 1.43. —–: L(2)11 , – – –: L(2)22 , – · –: L(2)33 .

0 2 4 6
0

0.01

0.02

0.03

L
ii
(z

) 
(m

)

x/h

(a) z/h= 0.86

0 2 4 6
0

0.01

0.02

0.03

L
ii
(z

) 
(m

)

x/h

(b) z/h= 1.43

0 2 4 6
0

0.01

0.02

L
ii
(z

) 
(m

)

x/h

(c) z/h= 2.0

0 2 4 6
0

0.01

0.02

0.03

L
ii
(z

) 
(m

)

x/h

(d) z/h= 2.57

Figure 4.40 – Diaphragm. Correlation lengths L(3)ii , in m, along the streamwise direction x for

different z locations, at y/h= 1.71. —–: L(3)11 , – – –: L(3)22 , – · –: L(3)33 .
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Figure 4.41 – Diaphragm. Mean streamwise velocity profiles for the upper and lower shear layer
versus η = (y − y0.5)/δθ , where y0.5 corresponds to ū = 0.5Um and Um = 20 m/s, at different
longitudinal locations. ◦: x = 1 mm; ∗: x = 2 mm; Í: x = 3 mm; Ï: x = 4 mm; +: x = 5 mm; /:
x = 6 mm; .: x = 7 mm; •: x = 8 mm. A hyperbolic-tangent profile (1− tanh η)/2 is superimposed
on the left, (1+ tanh η)/2 on the right (—–).
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Figure 4.42 – Diaphragm. Power Spectral Densities (PSD), in m2/s2/Hz, of velocity fluctuations,
as a function of frequency; linear scale. Signals are recorded at y/h= 1.14 (upper shear layer) and
z/h= 1.43 at different x positions. −−−−: PSD of u′; −−−−: PSD of v′; −−−−: PSD of w′.
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five sensors, for x/h≤ 2.85; from then on, a well-defined peak centered at 120 Hz is dom-

inant; Gloerfelt & Lafon54 suggest that this low frequency is correlated with the periodic

shedding and collapse of large scale jet-column instabilities, and is responsible for most of

the radiated noise. Indeed, it was observed that this peak is dominant in the shear layers,

before the impingement of the jet on top wall.

In addition, an intense and sharp low frequency peak at 20 Hz is present for almost

all sensors. The visualization of PSD levels in the whole flow field shows that this peak is

mainly located at the outline of recirculation regions.

4.3.3 Analysis and filtering of the source terms Si

It is tempting to look for the most energetic source terms in the domain, and suppose

that these terms are the most important contributors for far field acoustic radiation. How-

ever, according to Colonius et al.29 and Bogey9 analyses in the academic case of a mixing

layer, the source term fluctuations and amplitude do not necessarily reflect the actual con-

tributions to the radiated noise; indeed, only a small part of the source term is efficient in

the far field radiation. Freund48 performs a Direct Numerical Simulation of a more realis-

tic jet flow case where the Lighthill source term is confronted with direct acoustic results;

this study shows that the radiating component of the source does not coincide with peak

source levels nor with peak turbulence levels. Moreover, in the ducted diaphragm case, the

confining walls act as secondary noise sources in terms of reflectors, and this adds a level

of complexity in the analysis. Therefore, all source terms have to be accounted for.

4.3.3.1 Raw data smoothing

An intermediate fully Cartesian mesh, more tractable for post-processing than the CFD

mesh and truncated at x/h = 7.1, is built to record the source term components Si. This

mesh is designed to be as close as possible to the CFD mesh to retain its accuracy, and

is composed of 397× 130× 120 points; the x , y and z-spacings are conform to the CFD

mesh, and the mesh points are located at the CFD cells centers. After locating these points

in its own domain, the CFD code performs a zero order interpolation of the source terms:

at each point, the interpolated quantity is the quantity at the closest CFD cell center. This

"raw" data is plotted in Figure 4.43.

A post treatment is necessary to smooth the data, similarly to Fluent’s procedure for

graphics display. To do this, the dual mesh of this fine Cartesian mesh is computed, so

as to reflect its cell centers. The values at the nodes of the dual mesh are obtained by

doing a weighted average of the surrounding node values of the original; the weights are

defined as the inverse of the distance between the current node in the dual mesh and its

neighbor nodes in the original mesh. This mesh change is illustrated in Figure 4.44 for

a two-dimensional uniform mesh; considering the original blue cell with nodes n1, n2, n3
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Figure 4.43 – Diaphragm. Raw source term components in the XY midplane. From top to bottom:
S1, S2 and S3; levels: ±1× 105 Pa/m.
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Figure 4.44 – Illustration of original and dual mesh. In solid line: original mesh, with filled circles
representing the nodes. In dashed line: dual mesh with its nodes (empty circles) located at the cell
centers of original mesh.

and n4, the dual mesh is built with one node located at the cell center c0. Then, the value

of the smoothed quantity at c0 is obtained with

φ′c0
=

4
∑

i=1

1

dc0→ni

φni

4
∑

i=1

1

dc0→ni

where φni
is the original quantity at node ni and φ′c0

its smooth value at cell center c0,

and dc0→ni
is the distance between c0 and the node ni. The smoothed data is plotted in

Figure 4.45, with a very visible improvement on the data definition.

4.3.3.2 Filtering to remove grid-to-grid oscillations

The isosurfaces of the second component S2 of the smoothed source term are displayed

in Figure 4.46, where grid-to-grid oscillations are evident; these non physical waves are

also visible in Figure 4.45, more particularly on the second and third components of Si

since their levels are lower. These high frequencies appear during the spatial derivation of

Lighthill’s tensor, and must be removed since they are not supported by the mesh. A spatial

filtering is required to remove those spurious waves. It is chosen here to apply a selective

filtering directly on the source term components Si and remove all wave numbers larger

than the cut-off wave number. Filters are designed according to the procedure described

in Bogey & Bailly10. Filters are centered on 9 points, and the cut-off wave number is 2π/3,
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Figure 4.45 – Diaphragm. Smoothed source term components in the XY midplane. From top to
bottom: S1 (±1× 105 Pa/m), S2 (±4× 104 Pa/m) and S3 (±4× 104 Pa/m).



4.3 Numerical study on the complete 3D domain 123

Figure 4.46 – Diaphragm. Isosurfaces of S2 smoothed source term, top view. Blue isosurfaces:
negative levels, red isosurfaces: positive levels (±1.5× 104 Pa/m).

Figure 4.47 – Diaphragm. Isosurfaces of S2 smoothed and filtered source term, top view. Blue
isosurfaces: negative levels, red isosurfaces: positive levels (±1.5× 104 Pa/m).
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Figure 4.48 – Diaphragm. Isosurfaces of S smoothed and filtered source term, top view. Blue
isosurfaces: negative levels, red isosurfaces: positive levels (±8× 104 Pa/m).

which allows to remove all oscillations occurring on less than 1.5 grid points. Toward the

domain boundaries, centered filters on 7, 5, 3 points are successively applied while the

last boundary point is discarded. After filtering, all grid-to-grid oscillations are removed

while preserving the essential nature of the source terms, as can be seen in Figure 4.47, as

compared to Figure 4.46.

Perspective views of the three source term components are displayed in Figure 4.49; in

addition, a view of the source term magnitude is presented in Figure 4.48. From this figure

and according to the levels, it is clear that the main contribution to S comes from its first

component S1. On the source term components visualization, source terms are identified as

the juxtaposition of positive and negative isosurfaces. The analysis of their time evolution

shows no particular merging event, as could be expected downstream vortex shedding

from the diaphragm lips.
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(a) S1 (levels at ±8× 104 Pa/m)

(b) S2 (levels at ±1.5× 104 Pa/m)

(c) S3 (levels at ±1.5× 104 Pa/m)

Figure 4.49 – Diaphragm. Isosurfaces of the three source term components, perspective view. Blue
isosurfaces: negative levels, red isosurfaces: positive levels.
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Figure 4.50 – Diaphragm. Acoustic mesh used for the three-dimensional acoustic computation.

4.3.4 Acoustic simulation

4.3.4.1 Configuration and numerical parameters

Transformation to the spectral domain

As in the case of corotating vortices, a Fast Fourier Transform is performed on the

transient signals after detrending and application of a Hanning filtering. The acoustic time

step ∆tac = 10×∆tCFD = 10−4 s allows reaching the maximal frequency fmax = 5000 Hz.

The total recorded physical time T = 100 ms drives the frequency resolution fr with fr =
1/T = 10 Hz if no averaging is done. Acoustic computations have also been performed

using averaged source terms, the signal being averaged on 19 overlapping samples of 10 ms

each, leading to a frequency resolution of 100 Hz.

Creation of the acoustic mesh and acoustic model parameters

The acoustic mesh, displayed in Figure 4.50, is built to retain maximum accuracy in

the source term description in the region −0.29 < x/h < 0.7 where most sources are

located; in this region, the mesh size is uniform: ∆x = ∆y = h/28 and ∆z = h/18 and

the finite elements are wedges with triangular basis extruded along the x-direction. In the

remaining of the domain, for x/h < −0.14 and x/h > 0.7, tetrahedral cells are used with

a maximum size of 10 mm to accurately propagate acoustic waves up to fmax = 5600 Hz,

using the criterion of 6 elements per acoustic wavelength stated in § 3.1.2.4. The total

mesh is composed of 700,000 nodes and 1.5×106 elements.

On the inlet and outlet faces, acoustic duct modes are imposed, such that only outgoing

free modes can exist; therefore, free modes in the −x−direction are imposed at inlet, and

free modes in the −x−direction are imposed at outlet. The duct modes corresponding the

present geometry are gathered in Table 4.3.4.1.

The MUMPS24 solver is chosen for the resolution.

4.3.4.2 Interpolation from the CFD mesh to the acoustic mesh

As explained in § 2.4.3, the strategy for interpolation in the diaphragm case is to define

an intermediate Cartesian mesh as fine as the CFD mesh where source terms are recorded:

this is the original export mesh; the dual mesh, defined in § 4.3.3.1 and on which the
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Inlet Outlet
mode cut frequency mode cut frequency

(Hz) (Hz)
(−1 0 0) plane wave (+1 0 0) plane wave
(−1 0 1) 1700 (+1 0 1) 1700
(−1 1 0) 2125 (+1 1 0) 2125
(−1 1 1) 2721 (+1 1 1) 2721
(−1 0 2) 3400 (+1 0 2) 3400
(−1 1 2) 4009 (+1 1 2) 4009
(−1 2 0) 4250 (+1 2 0) 4250
(−1 2 1) 4577 (+1 2 1) 4577

Table 4.3 – Modes considered for the inlet and outlet boundary acoustic conditions.

data is successively smoothed and filtered, is also Cartesian. High order interpolation is

then possible from this dual mesh to the final acoustic mesh of Figure 4.50. Thus, a 4th

order Lagrange polynomial interpolation is performed in the z-direction, followed by a two-

dimensional second order linear interpolation in each XY plane. Indeed, performing the

interpolation successively on different directions has been shown more efficient and less

subject to errors than interpolating in all directions at the same time. Space interpolation

is applied to frequency data as a last processing operation.

4.3.4.3 Acoustic results

Analysis of source terms in the frequency domain

The six frequency components of the source term, at the frequencies of 20 and 1000 Hz,

are displayed in Figures 4.51-4.52. The isosurfaces show large and organized structures

at the low frequency of 20 Hz for the eS1 component, as can be expected after the Fourier

transform; these high energy structures are located well downstream of the diaphragm,

in the upper and lower shear layers; the attachment to top wall seems to kill the upper

structures, while the lower ones survive farer downstream. Small scales are also present

at 20 Hz for the eS2 and eS3 components, in particular just downstream of the diaphragm

where the shedding produces elongated structures in the streamwise direction, with small

diameter. At 1000 Hz and the same source levels, the source field is very different, without

clear topological distinction between the streamwise component and the other ones; it is

composed of alternately positive and negative spots very close from each other, organized

in rows parallel to the diaphragm lips. No extinction is noticed after attachment to top

wall.

After interpolation onto the acoustic mesh, part of the accuracy preserved up to this

point is lost, as Figures 4.53-4.56 attest. However, the overall coherence of the source

terms seems to be retained.
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(a) ℜ(eS1) (levels at ±8× 102 Pa/m) (b) ℑ(eS1) (levels at ±8× 102 Pa/m)

(c) ℜ(eS2) (levels at ±1× 102 Pa/m) (d) ℑ(eS2) (levels at ±1× 102 Pa/m)

(e) ℜ(eS3) (levels at ±1× 102 Pa/m) (f) ℑ(eS3) (levels at ±1× 102 Pa/m)

Figure 4.51 – Diaphragm. Isosurfaces of the six frequency source term components (real and
imaginary parts are displayed separately) at 20 Hz, perspective view. Blue isosurfaces: negative
levels, red isosurfaces: positive levels.
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(a) ℜ(eS1) (levels at ±8× 102 Pa/m) (b) ℑ(eS1) (levels at ±8× 102 Pa/m)

(c) ℜ(eS2) (levels at ±1× 102 Pa/m) (d) ℑ(eS2) (levels at ±1× 102 Pa/m)

(e) ℜ(eS3) (levels at ±1× 102 Pa/m) (f) ℑ(eS3) (levels at ±1× 102 Pa/m)

Figure 4.52 – Diaphragm. Isosurfaces of the six frequency source term components (real and
imaginary parts are displayed separately) at 1000 Hz, perspective view. Blue isosurfaces: negative
levels, red isosurfaces: positive levels.
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(a) ℜ(eS1) (levels at ±1× 103 Pa/m) (b) ℑ(eS1) (levels at ±1× 103 Pa/m)

(c) ℜ(eS2) (levels at ±1× 102 Pa/m) (d) ℑ(eS2) (levels at ±1× 102 Pa/m)

(e) ℜ(eS3) (levels at ±1× 102 Pa/m) (f) ℑ(eS3) (levels at ±1× 102 Pa/m)

Figure 4.53 – Diaphragm. Six frequency source term components in the XY midplane at 20 Hz
before interpolation onto the acoustic mesh; real and imaginary parts are displayed separately.

(a) ℜ(eS1) (levels at ±1× 103 Pa/m) (b) ℑ(eS1) (levels at ±1× 103 Pa/m)

(c) ℜ(eS2) (levels at ±1× 102 Pa/m) (d) ℑ(eS2) (levels at ±1× 102 Pa/m)

(e) ℜ(eS3) (levels at ±1× 102 Pa/m) (f) ℑ(eS3) (levels at ±1× 102 Pa/m)

Figure 4.54 – Diaphragm. Six frequency source term components in the XY midplane at 1000 Hz
before interpolation onto the acoustic mesh; real and imaginary parts are displayed separately.
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(a) ℜ(eS1) (levels at ±1× 103 Pa/m) (b) ℑ(eS1) (levels at ±1× 103 Pa/m)

(c) ℜ(eS2) (levels at ±1× 102 Pa/m) (d) ℑ(eS2) (levels at ±1× 102 Pa/m)

(e) ℜ(eS3) (levels at ±1× 102 Pa/m) (f) ℑ(eS3) (levels at ±1× 102 Pa/m)

Figure 4.55 – Diaphragm. Six frequency source term components in the XY midplane at 20 Hz after
interpolation onto the acoustic mesh; real and imaginary parts are displayed separately.

(a) ℜ(eS1) (levels at ±1× 103 Pa/m) (b) ℑ(eS1) (levels at ±1× 103 Pa/m)

(c) ℜ(eS2) (levels at ±1× 102 Pa/m) (d) ℑ(eS2) (levels at ±1× 102 Pa/m)

(e) ℜ(eS3) (levels at ±1× 102 Pa/m) (f) ℑ(eS3) (levels at ±1× 102 Pa/m)

Figure 4.56 – Diaphragm. Six frequency source term components in the XY midplane at 1000 Hz
after interpolation onto the acoustic mesh; real and imaginary parts are displayed separately.
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Figure 4.57 – Diaphragm. Acoustic power radiated at the outlet of the duct. – – –: reference results
of Gloerfelt & Lafon54. Acoustic power obtained using the intensity, for —–: the non-averaged
signal without spatial filtering, —–: the averaged signal without spatial filtering, —–: the averaged
signal with spatial filtering. Acoustic power obtained by integrating the pressure at the duct outlet
for ×: the non-averaged signal without spatial filtering, ◦: the averaged signal without spatial
filtering, ◦: the averaged signal with spatial filtering.

Reference No averaging Averaging over 19 samples

results54 d = 0 d = 0 d = 50

Inlet 69 84.5 94.7 90.4

Outlet 78.8 84.8 94.4 90.2

Total 79 87.7 97.6 93.3

Table 4.4 – Overall acoustic power radiated by the diaphragm, in dB. d, in mm, refers to the
presence of spatial filtering and specifies its application length.

Analysis of acoustic results

The acoustic propagation is performed within Actran using these interpolated three

dimensional frequency source terms; two type of signal processing are applied, as specified

previously, namely the Fourier transform of the total signal and the Fourier transform of an

averaged signal. Spatial filtering is finally applied on 1.43 h to the averaged source terms.

The acoustic power spectra computed at the outlet of the duct are displayed in Figure 4.57

together with reference results54. As for the diaphragm slice computation, a sharp peak

centered around 30 Hz is present at a high level on the 10 Hz-resolution spectrum, and this

low-frequency peak is still present in the averaged spectra at a lower level. In addition, the

broadband shape of the spectrum is different from the reference, with a downward level

slope until 1000 Hz, followed by a rise up to 1500 Hz. From then on, the spectrum shows
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a tendency to follow the reference solution.

The results’ consistency regarding the plane wave propagation assumption under the

first duct mode at 1700 Hz is proved in Figure 4.57. Indeed, the acoustic power obtained

by integrating the pressure at one point over the duct outlet section is equal to the acoustic

power obtained using the modal basis intensity. The acoustic pressure maps in Figure 4.59

confirm this, with constant pressure in duct sections up to 1500 Hz; the first duct mode

appears in the 2000 Hz pressure map. Spatial filtering is efficient to remove spurious scat-

tering from the downstream source region boundary, as no dipolar radiation from this

location is observed on the maps; only the plane wave propagates.

Once again, as Table 4.3.4.3 attests it, the overall power levels at the inlet are of the

same order as at the outlet, which is consistent with the two-dimensional acoustic results.

As noticed in § 4.2.3.4, overall levels between averaged and non averaged signals should

be compared with caution because of the different lowest frequency in both spectra.

On all spectra obtained using the present method, high levels are obtained in the low

frequency range, below 100 Hz. This kind of peak is not present at all in the reference

spectrum, the Direct Noise Computation performed by Gloerfelt & Lafon54. In order to

understand its origin, an experimental spectrum obtained by Van Herpe110 is plotted in

Figure 4.58. In this experiment, the domain is the same (same diaphragm and duct sec-

tions), but the inlet velocity is 14 m/s instead of 6 m/s in the present study. This exper-

imental acoustic power spectrum also exhibits strong low frequency levels below 100 Hz.

Even if the absolute levels cannot be compared because of the mass flow difference, this

comparison shows the physical origin of the low frequency peak.

Discussion and comparison with 2D results

As was already noticed, the turbulence levels obtained in the 3D computation are quan-

titatively very consistent with reference results of Gloerfelt & Lafon54, while the results on

the slice model are globally overestimated. Acoustic results are consistent with this last re-

mark, since the noise levels obtained on the slice model with the 2D acoustic computation

are higher than the 3D acoustic results. Though, the 2D levels are closer to the reference

than 3D levels. This is partly due to the sources decimation performed by interpolating

data on the 3D case, the main consequence being the loss of the correct broadband shape

on the spectra.
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(a) Results of present work. —–: 3D acoustic computation without spatial
filtering and time averaging; —–: 2D acoustic computation with spatial

filtering and time averaging; – – –: reference results of Gloerfelt & Lafon54.

(b) Results obtained by van Herpe110 for an inlet velocity of 14 m/s in the
same geometry. – – –: measurements, —–: calculation.

Figure 4.58 – Diaphragm. Acoustic power radiated at the outlet of the duct.
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(a) f = 500 Hz (levels: ±0.045 Pa)

(b) f = 1000 Hz (levels: ±0.03 Pa)

(c) f = 1500 Hz (levels: ±0.035 Pa)

(d) f = 2000 Hz (levels: ±0.08 Pa)

Figure 4.59 – Diaphragm. 3D acoustic pressure maps for different frequencies, taken from the
100 Hz resolution computation with 19 averages and spatial filtering on 1.43 h.
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4.4 Conclusion

This chapter is devoted to the application of the hybrid aeroacoustic method to a real

life configuration, namely a ducted diaphragm at a low Mach number. This study has

enabled to assess the quality of the simulation in terms of aerodynamic results, while some

issues are still opened regarding the acoustic computation for large models.

Firstly, a reduced model is considered: taken the extrusion in the spanwise direction,

only 10% of the total width is retained. A Large Eddy Simulation is performed; the mean

aerodynamic features are consistent with the Direct Noise Computation of Gloerfelt & La-

fon54. A two-dimensional acoustic computation is performed, retaining all CFD accuracy

for the definition of the source terms. Despite the absence of the third dimension, the

acoustic power spectrum at the duct outlet, which is obtained using the integral spanwise

length scale, is in quite good agreement with reference results. In particular, the broadband

slope is accurately computed. The major discrepancy is found at very low frequencies, be-

low 80 Hz, where a sharp peak is obtained in present simulation; this last peak is attributed

to the limitations of the slice model.

To overcome the limitations of previous simulation, the same computation is achieved

on the full three dimensional geometry. Similarly, a Large Eddy Simulation is performed,

revealing a very complex three dimensional flow field. In addition to the large recircu-

lations above and below the jet, already present in the slice computation, the mean flow

presents two ground contra rotating vortices of y axis just below the jet. Two large contra

rotating structures develop in the streamwise direction downstream of the ground vortices.

All this complex flow behavior is consistent with previous experimental studies on similar

geometries; the levels of the mean velocity components and turbulence intensities are also

in harmony with those experimental results. The instantaneous flow field is representa-

tive of the refinement level of the simulation. In order to perform a three-dimensional

acoustic computation with the source terms extracted from the CFD, an interpolation of

these source terms on a coarser mesh is required to reach an acceptable finite element

model size, with regard to the available computing resources. Prior to the interpolation, a

cleaning and smoothening of the data is applied to remove numerical noise. However, as

the interpolation from the fine CFD to the coarser acoustic mesh is a decimating process,

some level of accuracy is inevitably lost. Acoustic results attest this accuracy loss, with the

broadband slope quite different from the reference one.

The development of robust and versatile interpolation schemes, as well as their valida-

tion regarding accuracy and usage is out of reach of the present work, but constitutes the

natural continuation of this study. A detailed experimental campaign, providing reference

for the mean, rms and statistic aerodynamic fields, as well as acoustic measurements, is

also required to properly conclude this work.



Conclusion

T HIS DOCUMENT presents the implementation of a hybrid method of aeroacoustic com-

putation for internal, low Mach number, high Reynolds number flows. This approach con-

sists in the coupling of a finite volume Computational Fluid Dynamics code with a spectral

finite element acoustics code; Fluent and Actran/LA are used throughout this work for

CFD and acoustic propagation, respectively. In such a two steps aeroacoustic procedure

with very low flow velocities, the aerodynamic computation is shown to require an in-

compressible resolution of Large Eddy Simulation type. The variational implementation

of Lighthill’s Acoustic Analogy in a finite elements framework enables treating any com-

plex geometry for the acoustic propagation, as well as taking advantage of the features

already implemented within Actran, such as the hard wall, infinite elements or modal duct

basis boundary conditions. Moreover, considerations related to retarded time are natu-

rally discarded when working in the spectral space. All steps in the coupling are validated

separately using academic studies, and an application to a real configuration, the ducted

diaphragm, is proposed. In this work, the physics of the flow field is clearly highlighted,

with an attempt to understanding noise generation mechanisms. The limits of the method

are also pointed out, and solutions are proposed to overcome the difficulties.

A complete validation of this computational method is presented for the first time,

where Direct Numerical Simulation is compared to the present hybrid method; an analyt-

ical solution of Lighthill’s Acoustic Analogy serves as an ultimate reference. The physical

issue investigated is the correct definition of the source term; to a larger extent, the goal is

to assess the role of linear source terms in acoustic analogies. Indeed, while linear terms

have to be discarded in the source term of acoustic analogies where convection by a mean

flow is accounted for in the propagation operator, it is argued that such linear terms are

required in the source term of a non convected wave equation. The academic case of two

corotating vortices evolution is defined to establish this point. Firstly placed in a medium

at rest, then in a shear mean flow, their evolution is shown to match in every respect with
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previous simulations reported in the literature. The hybrid computational method pro-

vides excellent results and confirms the previous statement, namely that the linear terms

are required in the source term definition when dealing with Lighthill’s Acoustic Analogy.

In addition, an incompressible computation was found to yield results very consistent with

the compressible computation.

The application of the previously validated method to a "real life" flow is performed

with the study of a low Mach number flow in a ducted diaphragm. An incompressible

Large Eddy Simulation is firstly achieved on a slice of the model consisting of 10% of the

total width. General flow features are consistent with reference results, though the flow

restriction along the truncated dimension yields a quasi two dimensional mean flow evo-

lution; instantaneous three dimensional development is still visible. The two-dimensional

acoustic computation compares reasonably with the reference, considering that the real

wall restriction in the width is not taken into account. In order to get more realistic and

accurate results, the flow field in the full three dimensional geometry is studied. The ex-

tensive analysis of the mean flow field reveals very complex three dimensional structures,

whose existence and features are very likely when compared to similar experimental stud-

ies. The instantaneous field and flow satistics are similarly in reasonable agreement with

reference results.

The implementation of the hybrid noise computation is more complex for this big model

than for the diaphragm "slice" or for the academic cases. Indeed, the accuracy obtained in

the source term description, thanks to the CFD computation, cannot be retained for the

acoustic propagation since current computational resources restrict the size of the finite

elements acoustic model. It is then necessary to decimate the source terms with spatial

interpolation from the fine CFD mesh to the coarser acoustic mesh. After smoothing the

source terms, high order interpolation is applied to yield an acceptable resolution for the

acoustic computation; acoustic results after propagation are still quite far from the refer-

ence.

Prospects

Regarding the primary objective of total simulation time, it is clear that for the full

diaphragm computation it is no less than one week, but closer to one month using the

local hardware, a cluster of 8 computing nodes; it is worth mentioning here that, for

the slice simulation, about 80% of the total computing time for the whole aeroacoustic

simulation is spent on CFD, 15% on the acoustic computation and 5% in signal processing

(Fourier transform, space smoothening and interpolation). For the complete 3D simulation,

figures are closer to 50% spent on CFD, 40% on acoustics and 10% on signal processing.

This rough decomposition depends strongly on the hardware and its architecture, and a

decrease of the total computing time is expected when working on dedicated machines



4.4 Conclusion 139

optimized for each type of computation; the optimal requirements of a finite volume CFD

code are indeed very different from those of a finite elements acoustic code. However,

the figures associated to the bigger problem actually show that this kind of simulation

is currently out of reach for industrial applications. Significant improvement in acoustic

computing time is expected if relevant and accurate interpolation schemes are validated in

order to decrease the acoustic finite element model size.

The comparison to experimental results could not be achieved in the frame of this work

as reference results were not available. An experimental campaign will have to be led to

confirm all aerodynamic and acoustic features observed numerically. Particle Image Ve-

locimetry (PIV) will provide reference mean flow maps, while Laser Doppler Anemometry

(LDA) will supply time-resolved statistics at specific locations. The acoustic investigation

should be performed with a silent airflow generator and an anechoic outlet to reproduce

the numerical conditions, namely semi infinite ducts at both inlet and outlet.

Finally, the simulation tools used throughout this study are commercial software; the

CFD software, Fluent in this study, could be chosen among all available solvers, provided

that the Large Eddy Simulation is implemented with accurate enough space time discretiza-

tion schemes. On the contrary, Lighthill’s Acoustic Analogy as implemented within Actran

is unique. The present work has involved the development of many scripts for signal pro-

cessing, but these are rather universal and can be easily adapted to any model, even com-

plex. The only fine tuning resides in the interpolation procedure, developed exclusively for

Cartesian meshes. The extension of the present method to more complex geometries, such

as HVAC systems, will require the development of space interpolation schemes adapted to

arbitrary meshes. These schemes should be integrated, either in the CFD or in the acoustic

software, in order generalize the applicability to any kind of mesh, and finally to ease the

use of these tools. In particular, this would avoid painful and long intermediate processing

steps, and reduce the data exchange volume between the CFD and acoustic solvers. Such

an interpolation procedure will have to undergo an extensive validation, which constitutes

the natural continuation of this work.





A.

Study of the diaphragm:

two-dimensional case

A TWO-DIMENSIONAL computation for the diaphragm case is performed in order to

show the irrelevancy of a Large Eddy Simulation in two dimensions. The configuration here

is the diaphragm with a 15 mm opening, instead of 35 mm as studied in Chapter 4, with

an inlet velocity of 6 m/s. The mesh is built similarly to the three dimensional diaphragm

case and contains 64,000 cells, with fine cells in the diaphragm zone (∆x =∆y =0.5 mm)

and boundary layers on the diaphragm opening and downstream (5 boundary layers, the

first one at 0.2 mm from the wall, with a growing rate of 20%).

A first a steady RANS k − ε second-order converged calculation is performed, as an

initial guess of the flow. Then transient LES is activated, using Smagorinsky–Lilly subgrid-

scale model, with CS = 0.1. A centered scheme is used for the momentum equation,

PRESTO! for the pressure equation, and the pressure-velocity coupling is taken into account

via a PISO scheme. The computation is incompressible, and the time step satisfies a CFL

less or equal to 1 for the smallest cell of the domain: ∆t = 5 · 10−7s.

Analysis of the flow field

Results are shown in Figure A.1 at time t = 50 ms. Firstly, we notice that the jet is

attaching to the top wall, thanks to the Coanda effect, prior to attaching to the bottom wall

later on.

Pressure, velocity and vorticity fields in Figure A.1 show eddy structures rather inde-

pendent from each other; indeed, it is possible to identify some eddies in regions where
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(a) static pressure (levels from −7000 to 1000 Pa)

(b) streamwise velocity u (levels from −60 to 80 m/s)

(c) transverse velocity v (levels from −70 to 80 m/s)

(d) velocity magnitude (levels from 0 to 75 m/s)

(e) z-vorticity ωz (levels from −2× 104 to 2× 104 s−1)

Figure A.1 – 2D Diaphragm, flow results at t=80 ms.

there is neither flow nor recirculation zone, for instance just downstream of the diaphragm,

below the jet. These eddies tend to drive each other, moving alone in the same time and

without mixing. They constitute vorticity clouds, also shown in Bogey7;9 in the case of a

two-dimensional jet. This behavior is typical of two-dimensional flows; such structures are

seldom met in naturally evolving flows.

Those eddies are incoherent and are characteristic of a two dimensional calculation for

a jet flow case. As the third dimension is absent, the jet cannot develop correctly, eddies

can only be stretched in the x and y directions. Moreover, the energy waterfall (energy

transfer from big to small eddies) does not take place in absence of the third direction,

usually the preferred direction of eddies stretching.

Figure A.2 represents the streamlines at consecutive times of calculation. We notice
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a flapping phenomenon; indeed, the jet successively attaches itself to the top wall, then

to the bottom one, just downstream of the diaphragm. This is not observed experimen-

tally: experiments show a definitive attachment to one wall or the other, in the case of

a diaphragm with a rectangular cross-section (in the case of a diaphragm with a circular

cross-section, the jet attaches itself to the wall and turns along it, and never detaches from

it).
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(a) t = 80 ms

(b) t = 85 ms

(c) t = 90 ms

(d) t = 95 ms

(e) t = 100 ms

(f) t = 105 ms

(g) t = 110 ms

Figure A.2 – 2D Diaphragm. Streamlines colored by velocity, from t = 80 ms to t = 110 ms.
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