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ABSTRACT:
Wave steepening and shock coalescence due to nonlinear propagation effects are investigated for a cold Mach 3 jet.

The jet flow and near pressure fields are computed using large-eddy simulation. The near acoustic field is propagated

to the far field by solving the linearized or the weakly nonlinear Euler equations. Near the angle of peak levels, the

skewness factors of the pressure fluctuations for linear and nonlinear propagations display positive values that are

almost identical. Thus, the positive asymmetry of the fluctuations originates during the wave generation process and

is not due to nonlinear propagation effects. Compressions in the signals are much steeper for a nonlinear than for a

linear propagation, highlighting the crucial role of nonlinear distortions in the formation of steepened waves. The

power transfers due to nonlinear propagation are examined for specific frequencies by considering the spatial distri-

bution of the Morfey–Howell indicator in the near and far acoustic fields. They are in good agreement with the direct

measurements performed by comparing the spectra for nonlinear and linear propagations. This shows the suitability

of the Morfey–Howell indicator to characterize nonlinear distortions for supersonic jets.
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I. INTRODUCTION

Propagation of acoustic waves generated by high-speed

jets is usually modeled as a linear phenomenon, since the

amplitude of the acoustic fluctuations is low with respect to

the ambient pressure. While this assumption holds for sub-

sonic and moderately supersonic jets, it has been shown to

be disputable in the case of highly supersonic jets such as

those powering military jet fighters and rocket launchers

(Crighton and Bashforth, 1980; Gee et al., 2008; McInerny

and €Olçmen, 2005; Morfey and Howell, 1981; Schlinker

et al., 2007). For instance, by analyzing the noise radiated

by high-performance aircrafts over long propagation distan-

ces, Morfey and Howell (1981) observed an excess of high-

frequency noise with respect to predictions based on linear

models. This noise excess was attributed to nonlinear distor-

tions caused by the intense pressure levels, which can

exceed 140 dB at 20 m from a jet engine at full power (Gee

et al., 2008; Morfey and Howell, 1981). Accurately predict-

ing the acoustic waves produced by high-speed supersonic

jets requires taking into account these nonlinear distortions

as they can have a significant impact on the acoustic field.

Notably, nonlinear propagation effects are expected to play

a key role in the formation of crackle noise (Ffowcs

Williams et al., 1975), which is an unpleasant perception

effect attributed to the rapid succession of sharp

compressions and gradual expansions in acoustic pressure

signals (Gee et al., 2018a; Tam et al., 2018). Indeed, when

propagation is nonlinear, strong positive peaks propagate

faster than the other components in the signals, leading to

the formation of shocks and to a nonlinear power transfer

from middle to high frequencies as revealed by experimental

measurements (Fi�evet et al., 2016; Gallagher and

McLaughlin, 1981; Gee et al., 2008; Petitjean et al., 2006)

and numerical simulations (de Cacqueray and Bogey, 2014;

Saxena et al., 2009; Shepherd et al., 2009) of the nonlinear

propagation of jet noise. Moreover, nonlinear propagation

effects can cause these shocks to coalesce, leading to fewer

of them for longer propagation distances, which is also

observed in some of the aforementioned studies (Fi�evet

et al., 2016; Gallagher and McLaughlin, 1981; Saxena et al.,
2009; Shepherd et al., 2009).

It has, however, been argued that nonlinear propagation

effects are not the only mechanism involved in the forma-

tion of the steepened waves at the origin of crackle. This is

particularly true for jets exiting from small-scale nozzles

such as those considered in most experiments. For these jets,

the peak frequencies are higher than in full-scale jet engines

so that the effects of molecular absorption are stronger and

can counteract those of nonlinear propagation. By combin-

ing detailed sound measurements in the acoustic field of a

cold Mach 3 jet of diameter 2.5 cm and a wavepacket model

for the source, Fi�evet et al. (2016) and Baars et al. (2016)

suggested that nonlinear propagation effects dominate those

of the molecular absorption in the jet near field, where sound

intensity decays according to a cylindrical law, but that they
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are almost nonexistent in the far acoustic field, where sound

intensity decays following a spherical law. Based on the

estimation of the propagation distances required for shock

formation, they concluded that nonlinear propagation

effects, alone, were not sufficient to explain the presence of

shocks in the far-field pressure signal. Moreover, other

authors (Ffowcs Williams et al., 1975; Krothapalli et al.,
2000; Lighthill, 1994) suggested that shock formation can

occur at the source, inside the turbulent flow, which is visi-

ble in optical visualizations (Krothapalli et al., 2000;

Lowson and Ollerhead, 1968; Murray and Lyons, 2016;

Papamoschou, 1995; Rossmann et al., 2002) and numerical

simulations (Buchta and Freund, 2017; Nichols et al., 2013;

Pineau and Bogey, 2019, 2020) showing the presence of

shocks embedded inside the turbulent flow for supersonic

jets and free-shear flows. These steepened waves, which are

too close from the jet to result from nonlinear propagation

effects alone, then propagate to the far field, leading to

shock structures possessing the distinctive features of

crackle. The formation of these waves has recently received

much attention, since a better understanding of the mecha-

nisms involved could allow us to mitigate crackle using

noise reduction devices acting on the jet flow such as micro-

jets (Krothapalli et al., 2002), chevrons (Martens et al.,
2011), or nozzle inserts (Murray and Lyons, 2016). In par-

ticular, using conditional averages, the generation of steep-

ened Mach waves was related by the authors of the present

paper (Pineau and Bogey, 2018, 2019, 2020) to the super-

sonic convection of large-scale coherent structures in the jet

shear layers. These coherent structures act on the surround-

ing medium as supersonically traveling bluff bodies or wavy

walls and generate positively skewed, steepened waveforms

(Buchta and Freund, 2019).

The respective roles of nonlinear propagation effects

and source steepening in the formation of crackle are diffi-

cult to distinguish. This is due, in large part, to the lack of a

unique, unambiguous definition of this perception effect. In

the past, several statistical indicators have been introduced

(Baars and Tinney, 2014; Ffowcs Williams et al., 1975;

Fi�evet et al., 2016; Gallagher and McLaughlin, 1981;

McInerny, 1996; Mora et al., 2014), most of them measur-

ing a particular aspect of the pressure fluctuation signals pre-

sumably linked to crackle. Among these indicators, which

include the skewness and kurtosis factors of the pressure

fluctuations, the skewness and kurtosis factors of the pres-

sure time derivative, or the wave-steepening factor (WSF),

only the skewness factor of the pressure time derivative has

been directly related to the perception of crackle through lis-

tening tests (Gee et al., 2018a). In addition, while some of

them, such as the skewness factor of the pressure time deriv-

ative, or the WSF, significantly increase with the distance

from the jet (Fi�evet et al., 2016; Gallagher and McLaughlin,

1981; Gee et al., 2013; Petitjean et al., 2006), suggesting

nonlinear propagation effects, some others, such as the

skewness factor of the pressure fluctuations, appear to be

relatively insensitive to the propagation distance (Buchta

and Freund, 2017; Mora et al., 2014). Depending on the

indicator considered, this has led to inconsistent conclusions

on whether crackle is mostly a nonlinear propagation effect

or the consequence of a source mechanism.

Another challenge in the study of nonlinear propagation

effects is that the sources of supersonic jet noise are distrib-

uted over a large extent of the jet flow, which complicates any

assessment of nonlinear propagation effects based on a single

linear array of microphones. According to Fi�evet et al. (2016),

who measured pressure signals at different locations on a lin-

ear array of microphones originating from the end of the

potential core, the acoustic waves produced by the jet can be

considered as spherical for propagation distances greater than

40D. The minimum distance can even be as long as 70D
when the microphone array originates from the nozzle exit

(Fi�evet et al., 2016; Kuo et al., 2012). This is unfortunate, as

nonlinear propagation effects are expected to be strongest near

the jet, where the pressure levels are highest.

Finally, molecular relaxation and thermoviscous effects

can also gradually change the waveforms as the propagation

distance increases. This linear phenomenon mostly affects

the high-frequency components of the signals, which are

also those that are the most strongly influenced by nonlinear

propagation effects. The respective roles of nonlinear propa-

gation effects and molecular absorption can be assessed by

computing the Gol’dberg number, which is a dimensionless

parameter defined as the ratio between the length scales

associated with nonlinear propagation and molecular

absorption, respectively. In the experiments of the literature,

this parameter can vary over several orders of magnitude

when the effects of spherical spreading are accounted for

(Hamilton, 2016), even for jets with very similar Mach num-

bers and temperatures, as illustrated by Baars et al. (2016).

It is argued that these differences can explain some of the

inconsistencies reported in the literature regarding the role

of nonlinear propagation effects in supersonic jet noise.

A direct way to assess the effects of nonlinear propagation

on supersonic jet noise is to compare the linear and nonlinear

propagation of a given signal using time domain simulations.

In this way, the changes in the crackle indicators imputable to

nonlinear propagation effects can be isolated. This has been

done, for instance, by Gee et al. (2008) and Saxena et al.
(2009) using a generalized Burgers equation and by Shepherd

et al. (2009) by solving the one-dimensional Navier–Stokes

equations. These studies, however, rely on one-dimensional

models, which cannot take into account the spatial distribution

of the sound sources in supersonic jets. In particular, it has

been suggested (Fi�evet et al., 2016) that nonlinear interactions

between waves emitted from different locations in the jet flow

play an important role in the steepening of the waves associ-

ated with crackle. Full, three-dimensional simulations of the

nonlinear propagation of jet noise reproduce these interactions,

but they are, unfortunately, rare due to their high computa-

tional cost. Such studies have been performed, for instance, by

de Cacqueray and Bogey (2014) and Langenais et al. (2019),

who propagated to the far field the near field pressure fluctua-

tions obtained from a large-eddy simulation (LES) by solving

the linear and full nonlinear Euler equations.
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In the present study, the formation of steepened waves in

the sound field of a cold Mach 3 jet is studied using numeri-

cal simulations. The jet exhaust conditions are very close to

those in the experiments carried out at the University of

Texas at Austin (Baars et al., 2014; Baars and Tinney, 2014;

Fi�evet et al., 2016). The jet flow and very-near acoustic fields

are computed using high-fidelity LES, and the far acoustic

fields are extrapolated from the LES pressure fields by solv-

ing the linear and weakly nonlinear Euler equations

(Gloerfelt et al., 2003). The mesh grids used for the LES and

the acoustic propagation are carefully designed to simulate

the propagation of high-frequency waves for which nonlinear

effects are strongest. Indeed, the combination of high-order

schemes and fine grids allows us to accurately resolve these

waves up to a Strouhal number of St ¼ fD=uj ¼ 5. This is

significantly higher than the cutoff Strouhal numbers of 0.3

and 1 in the simulations of Langenais et al. (2019) and de

Cacqueray and Bogey (2014), respectively, as well as that in

the experiments of Baars and co-workers (Baars et al., 2014;

Baars and Tinney, 2014; Baars et al., 2016), in which the

maximum Strouhal number is close to 2. The linear propaga-

tion allows us to reveal the properties of the acoustic field

without nonlinear propagation effects outside of the LES

domain, thus highlighting the contribution of the source

steepening mechanism to the formation of the steepened

waves at the origin of crackle. Then the effects of nonlinear

distortions can be identified by comparing the nonlinearly

and linearly propagated signals. Since crackle is a perception

effect, assessing its presence requires careful listening tests,

such as the ones performed in Gee et al. (2018a). This was

not possible in the present study due to the short duration of

the signals. Instead, classical nonlinearity indicators, includ-

ing the WSF, the zero-crossing rate (ZCR), and the skewness

factors of the pressure fluctuations and of their time deriva-

tive, are computed to identify wave steepening and shock

coalescence in the jet near and far acoustic fields. The main

objective is to identify which of these indicators are affected

by nonlinear propagation effects and how. Finally, nonlinear

exchanges of power resulting from these distortions are also

characterized. In particular, the flux of power transfers is ana-

lyzed by considering the Morfey–Howell nonlinearity indica-

tor (Morfey and Howell, 1981), and changes in the spectra

are determined by comparing the power spectrum densities

(PSDs) for linear and nonlinear propagations.

The paper is organised as follows. First, the LES meth-

odology is described, and the linear and nonlinear propaga-

tion methods are introduced in Sec. II. The results are

presented in Sec. III. They include several crackle indicators,

pressure signals, and spectra at different locations, as well as

the spatial distribution of the Morfey–Howell nonlinearity

indicator. Finally, concluding remarks are given in Sec. IV.

II. NUMERICAL METHODOLOGY

A. Jet parameters

The jet conditions considered in the present study are

very similar to those in the experiments of Baars et al.

(2014) and Fi�evet et al. (2016). The jet is perfectly

expanded and exits from a straight-pipe nozzle at a Mach

number Mj ¼ uj=aj of 3, where uj is the exit velocity and

aj ¼
ffiffiffiffiffiffiffiffi
crTj

p
is the speed of sound at the nozzle exit, with

c ¼ 1:4 the ratio of specific heat, r the ideal gas constant,

and Tj the static temperature. The stagnation temperature Ts

is equal to T1, where T1 ¼ 293 K is the ambient tempera-

ture, which yields an acoustic Mach number Ma ¼ uj=a1
¼ 1:77, where a1 is the speed of sound in the ambient

medium. The diameter-based Reynolds number ReD

¼ ujD=�j of the jet is equal to 2� 105, where D ¼ 2r0

¼ 0:7 mm is the jet diameter and �j is the kinematic viscos-

ity computed from the Sutherland’s law. It is lower than the

Reynolds number considered in the above experiments,

which is of ReD ¼ 7:2� 106, to limit the computational cost

of the simulations. In the nozzle, a Blasius-like velocity

profile of thickness dBL ¼ 0:15r0 is prescribed, and random

vortical disturbances are added in the boundary layers to

favor the transition of the mixing layer from a laminar to a

turbulent state. These disturbances are Gaussian vortex rings

of random phases and amplitudes, as proposed in Bogey

et al. (2011b). Their mean amplitude has been tuned to yield

peak turbulence rates of 3% at the nozzle exit so that the jet

shear layers are initially in a weakly disturbed state.

B. LES methodology

The LES is carried out by solving the filtered compress-

ible Navier–Stokes equations in cylindrical coordinates

ðr; h; zÞ using high-order schemes. The spatial derivatives

are evaluated using centered, fourth-order, 11-point finite

differences, and a six-stage Runge–Kutta algorithm is used

for time integration (Bogey and Bailly, 2004). Near the jet

axis, the method of Mohseni and Colonius (2000) is used to

treat the singularity at r¼ 0, and the derivatives are com-

puted using fewer points than permitted by the grid to

relieve the time step constraint due to the use of explicit

schemes (Bogey et al., 2011a). At the end of each time step,

a sixth-order selective filter (Bogey et al., 2009) is applied

to damp grid-to-grid oscillations. This filter also serves as an

implicit subgrid scale model relaxing turbulent kinetic

energy near the grid cutoff wavenumber (Bogey and Bailly,

2006, 2009). A shock capturing adaptive filtering (Bogey

and Bailly, 2009) is also applied to remove Gibbs oscilla-

tions that are formed near shocks. Finally, non-reflecting

radiation boundary conditions (Bogey and Bailly, 2002;

Tam and Dong, 1996) are prescribed at the inflow, outflow,

and radial limits of the computational domain.

The LES computational domain extends down to

z ¼ 35D in the axial direction and out to r ¼ 9D in the

radial direction. It contains a total number of nr � nh � nz

¼ 511� 256� 2481 ¼ 325� 106 points. Since the objec-

tive of the present simulation is to investigate the generation

of steepened acoustic waves near the jet, specific care has

been taken to accurately resolve high-frequency components

in the near acoustic field. In particular, the axial and radial

mesh spacings Dz and Dr do not exceed 0:025D, which
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yields a maximum Strouhal number St ¼ fmaxD=uj of 5,

where fmax is the maximum frequency for an acoustic wave

discretized using four points per wavelength. After an initial

transient period, the flow and sound field are recorded dur-

ing a time of 1100D=uj. In particular, the flow variables are

recorded at a sampling Strouhal number of fsD=uj ¼ 5,

where fs ¼ 17:4 MHz is the sampling frequency, on a closed

cylindrical surface at r ¼ 7:5D from the jet axis, spanning

the whole axial extent of the computational domain, from

the inflow at z ¼ �0:75D down to the outflow at z ¼ 35D.

C. Wave extrapolation methods

The linear and nonlinear extrapolations are carried out

by solving the set of Eq. (1) in cylindrical coordinates,

where u0r; u0h and u0z are the radial, azimuthal, and axial com-

ponents of the fluctuating velocity, and p0 ¼ p� p1 is the

acoustic pressure,

@u0r
@t
þ 1

q1

@p0

@r
¼ 0;

@u0h
@t
þ 1

q1

1

r

@p0

@h
¼ 0;

@u0z
@t
þ 1

q1

@p0

@z
¼ 0;

@p0

@t
þ q1a2 @u0r

@r
þ 1

r

@u0h
@h
þ @u0z
@z

� �
¼ 0:

(1)

The first three equations are the linearized, lossless momen-

tum equations, and the last one is a continuity equation

combined with the isentropic equation of state. For linear

propagation, the speed of sound a is constant and equal to

a1 so that the linear extrapolation is performed by solving

the linearized Euler equations. For a nonlinear propagation,

however, the speed of sound depends on the local value of

the pressure fluctuations. For moderately weak pressure per-

turbations, it can be estimated using the following first order

modification (Whitham, 1974),

a ¼ a1 1þ cþ 1

2c
p0

p1

� �
: (2)

Including expression (2) for the speed of sound in Eq. (1)

allows us to take into account nonlinear propagation effects

in the weak shock limit at a moderate cost. Notably, this

approach is consistent with second-order, lossless nonlinear

models such as the inviscid Burgers equation (Whitham,

1974) and has been followed in Gloerfelt et al. (2003) to

compute the nonlinear propagation of the noise produced by

the flow over a shallow cavity. It has been verified in prelim-

inary tests that solving the weakly nonlinear Euler equations

yields results very close to those obtained by solving the full

Euler equations for wave amplitudes up to 10 000 Pa. Since

the peak root mean square (rms) value of pressure levels on

the extrapolation surface is 930 Pa, the present approxima-

tion is thus sufficient to reproduce the most important

nonlinear propagation effects for the present jet. Finally, the

effects of molecular absorption are not taken into account in

the present model, as they would be significantly stronger

than in experiments due to the small diameter of the simu-

lated jet. As a result, the Gol’dberg number in the present

simulation can be considered as infinite, which is not the

case in the experiments. This simplification, however, facili-

tates the identification of nonlinear propagation effects in

the acoustic field, as they are the only possible source of dif-

ferences between the linear and nonlinear propagation mod-

els. The propagation equations are solved by using the same

numerical methods as for the LES. At each time step, the

fluctuation fields extracted from the LES are prescribed as

boundary conditions at r ¼ 7:5D, as well as at the inflow

and outflow surfaces of the LES at z ¼ �0:75D and

z ¼ 35D, respectively. Near these boundaries, where cen-

tered finite difference schemes cannot be used, the spatial

derivatives are computed using the non-centered schemes of

Berland et al. (2007). In the nonlinear propagation, a shock-

capturing procedure is applied at each time step to damp

Gibbs oscillations near shocks. For that purpose, an adapta-

tive filtering is applied. Its strength is computed based on

the method presented in Sabatini et al. (2016). The computa-

tional domain for the extrapolations extends from z ¼ �10D
down to z ¼ 100D in the axial direction and out to 100D in

the radial direction. The axial and radial mesh spacings are

equal to Dr ¼ Dz ¼ 0:025D, yielding a grid cutoff Strouhal

number of 5, identical to that in the LES domain. In total,

the grid contains nr � nh � nz ¼ 4133� 64� 4480 ¼ 1:19

� 109 points. After an initial transient period, the acoustic

fields are recorded during a time of 1000D=uj on eight

planes of measurement points at h ¼ hm, with hm ranging

from 0� to 315� by steps of 45�, and the statistical results are

averaged in the azimuthal direction. The microphones are

separated by a distance of 0:5D in the radial and axial direc-

tions, and the sampling frequency is equal to fs¼ 17.4 MHz,

which corresponds to a Strouhal number of 5, identical to

the grid cutoff frequency.

III. RESULTS

A. Snapshots and comparison with experiments

Snapshots of the pressure fluctuations from the LES and

nonlinear extrapolation method are shown together in Fig. 1.

Very directive wavefronts are generated and propagate at an

angle of approximately 45� with respect to the flow direc-

tion. The region from which they originate spans a large

extent of the plume, starting just downstream from the noz-

zle exit and ending at z ’ 30D. These wavefronts are Mach

waves generated by the supersonic convection of large-scale

coherent structures in the jet (Tam, 1995; Troutt and

Mclaughlin, 1982). They are expected to be the main cause

of crackle as their generation process and nonlinear propa-

gation promote the formation of shocks in the acoustic field.

The pressure spectra obtained for linear and nonlinear

propagations at r ¼ 45D and z ¼ 65D, in the region of the

acoustic field where Mach wave radiation is dominant, are

represented in Fig. 2. The measurements of Baars et al.
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(2014) for a cold Mach 3 jet are also indicated. The numeri-

cal and experimental spectra have very similar shapes. They

all peak, in particular, at a Strouhal number of 0.15. The

acoustic levels from the simulations are approximately 2 dB

lower than those from the experiments. This can be

explained by the fact that the boundary layers in the nozzle

are weakly disturbed in the simulations but fully turbulent in

the experiments. The pressure levels obtained for a nonlin-

ear propagation are also lower than those for a linear propa-

gation for Strouhal numbers between 0.15 and 1 but higher

for Strouhal numbers higher than 1. This indicates that the

Mach waves generated in the direction of peak levels are

subject to nonlinear propagation effects, which are investi-

gated in details in what follows.

B. Spatial distribution of the acoustic levels

The rms values of the pressure fluctuations obtained for

nonlinear propagation are represented in the (r, z) plane in

Fig. 3. A peak due to Mach wave radiation is clearly visible

in the downstream direction, as expected (Baars et al., 2014;

Troutt and Mclaughlin, 1982). To characterize the spatial

structure of the acoustic field, a line and a circular array of

microphones, displayed as red dashed lines in Fig. 3, are

considered. As in the experimental studies of Baars et al.
(2014) and Fi�evet et al. (2016), the line array of micro-

phones follows the path of peak noise levels. It originates at

z ¼ 8:6D on the jet axis and has an angle of 48� with respect

to the flow direction. The circular array is centered at the

same point on the jet axis and has a radius of 80 D. It can be

noted that the origin of the two arrays is significantly

upstream from that in the experiments, located at

z ¼ 17:5D, suggesting that the distribution of the sound

sources is not the same in the experiments and simulations.

This is likely due to the different potential core lengths of

the two jets, which are of 13 D in the LES and of 20 D in the

experiments, because of the different initial states of the

nozzle boundary layers.

The pressure levels on the circular array obtained in the

numerical and experimental studies are plotted in Fig. 4.

They are maximum for an angle close to 45� and are stron-

ger for linear than for nonlinear propagation, as in de

Cacqueray and Bogey (2014) and Langenais et al. (2019).

As expected, the discrepancy between linear and nonlinear

propagations is most important near the peak where the line-

arly predicted levels exceed the nonlinear ones by 2 dB.

Despite the different origins of the circular and line arrays in

the simulations and experiments, the results from the nonlin-

ear simulations are in good agreement with the experimental

data for polar angles lower than 60�, where crackle is

expected to be strongest. This suggests that the sound sour-

ces in the simulated jets are located more upstream than in

FIG. 1. (Color online) Snapshots of pressure fluctuations in the LES and

extrapolation domains. The color scale ranges between 63000 Pa.

FIG. 2. (Color online) PSDs of the pressure fluctuations at z ¼ 65D and r ¼
45D for linear (black line) and nonlinear (gray line) propagation. The red

dots indicate the experimental measurements of Baars et al. (2014).

FIG. 3. (Color online) rms values of pressure fluctuations (in pascals)

obtained for a nonlinear propagation. The linear and circular arrays are rep-

resented as red dashed lines.
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the experiments but that the acoustic levels radiated along

the path of peak noise levels are very similar. At higher

angles, for / � 60�, the agreement between the simulations

and experiments is poorer, which is likely due to the differ-

ent states of the nozzle boundary layers, as previously

observed for subsonic jets Bogey et al. (2012).

The pressure levels are represented as a function of the

distance from the jet on the line array in Fig. 5. In the LES

domain, on the left-hand side of the figure, the pressure lev-

els decrease at a rate that is lower than the 1/r-law derived

for spherically spreading waves due to the fact that the

sound sources are distributed over a wide extent of the jet

flow. This decrease in the pressure levels is, however,

slightly faster than the cylindrical decay predicted by Baars

et al. (2016) and Fi�evet et al. (2016) using a wavepacket

model (Morris, 2009). In the propagation domain, on the

right-hand side of the figure, the sound intensities predicted

from the linear and nonlinear simulations are in good agree-

ment in the vicinity of the LES domain, at d ’ 10D. They

diverge, however, for longer propagation distances so that

the pressure levels for a linear propagation are approxi-

mately 2 dB louder than those for a nonlinear propagation at

d ¼ 120D. Far from the jet, for z � 40D, the pressure levels

decay at a rate close to the 1/r-law derived for spherically

spreading waves. It can also be noted that the location from

which the pressure fluctuations decay according to a spheri-

cal law seems to be closer to the jet flow for the nonlinear

propagation than for the linear one, which suggests that it is

sensitive to the degree of nonlinearity in the waveforms.

Finally, for the nonlinear propagation, the pressure levels on

the path of peak noise are very close to those in the experi-

ments, which confirms that the simulations reproduce well

the acoustic waves radiated by the experimental jet along

the line of peak pressure levels.

The PSDs of the acoustic pressure signals obtained on

the linear array for propagation distances of 20D, 40D, 60D,

and 80D are plotted in Fig. 6 for the nonlinear propagation.

They are scaled up to the levels obtained at d ¼ 80D assum-

ing spherical spreading. The spectra are found to collapse

very well for propagation distances longer than 40D and for

Strouhal numbers higher than 0.2. This confirms that the

pressure fluctuations along a linear array aligned with the

path of peak noise levels can be considered as spherical for

distances greater than 40D, as observed by Fi�evet et al.
(2016). It can also be noted that the levels in the high-

frequency range slightly increase with the propagation

distance, as expected for a nonlinear propagation (de

Cacqueray and Bogey, 2014).

C. Wave steepening and shock coalescence

1. Wave steepening

The nonlinear steepening of the acoustic waves radiated

by the jet is investigated by comparing commonly used indi-

cators of nonlinearity in the case of linear and nonlinear

propagations. The signals recorded on the circular and line

arrays are considered. The values of the skewness factor of

the pressure fluctuations on the circular array are repre-

sented in Fig. 7(a). For all polar angles, they are positive

and significantly deviate from the value of 0 expected for

Gaussian signals, indicating a pronounced positive asymme-

try of the fluctuations. This asymmetry is particularly strong

near the peak of acoustic levels, at / ’ 45�, where the skew-

ness factor reaches the threshold value of 0.4 proposed by

FIG. 4. Overall sound pressure levels on the circular array for linear (solid

line) and nonlinear (dashed line) propagations. The squares indicate the

experimental measurements of Baars et al. (2014).

FIG. 5. (Color online) Overall sound pressure levels on the linear array (left

from dashed-dotted line) for the LES and (right from dashed-dotted line)

for the linear (solid line) and nonlinear (dashed line) propagations. The

symbols indicate the experimental measurements of Baars et al. (2014)

(squares) and Fi�evet et al. (2016) (circles), and the dashed-dotted line indi-

cates the limit between the LES and propagation domains.

FIG. 6. (Color online) PSDs of the acoustic pressure for nonlinear propaga-

tion at d ¼ 20D (black line), d ¼ 40D (blue line), d ¼ 60D (red line), and

d ¼ 80D (green line) on the linear array scaled at d ¼ 80D, assuming spher-

ical spreading.
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Ffowcs Williams et al. (1975) for the onset of crackle. The

peak value of the pressure skewness appears to be the same

for linear and nonlinear propagations, indicating that the

positive asymmetry of the waves radiated in this direction is

mostly due to nonlinearities in the generation process of

Mach waves, as described by Buchta and Freund (2019),

and not to nonlinear propagation effects. For propagation

angles higher than the peak angle, however, the skewness

factor obtained for a nonlinear propagation is higher than

the one obtained for a linear propagation, which suggests

that nonlinear propagation effects increase the asymmetry of

the pressure fluctuations for the waves propagating in the

sideline direction.

The skewness factor of the pressure time derivative is

represented in Fig. 7(b). Positive values are obtained for lin-

ear and nonlinear propagations, indicating the presence of

steep compressions in the signals. The skewness factor of

the pressure time derivative is significantly higher for a non-

linear than for a linear propagation, especially at polar

angles lower than 60�. Indeed, as the propagation distance

increases, nonlinear distortions promote the emergence of

extreme, positive peaks of the pressure time derivative so

that the skewness factor increases, as observed in Fi�evet

et al. (2016), Mora et al. (2014), and Gee et al. (2013). The

WSF, defined as the ratio between the mean of the negative

and positive values of the pressure time derivative

(Gallagher and McLaughlin, 1981), is another measure

of the steepened aspect of the waves. It is represented in

Fig. 7(c) for the present signals. For linear and nonlinear

propagations, the WSF is lower than the value 1 expected

for smooth, harmonic waves, which indicates that the com-

pressions in the pressure signals are steeper than the expan-

sions. As expected, the WSF is significantly lower for a

nonlinear than for a linear propagation as a result of nonlin-

ear wave steepening. The decrease in the WSF can be seen

for all polar angles and is most important around /¼ 45�, in

the direction of peak noise levels.

The variations of the three indicators of nonlinearity on

the line array are also represented in Fig. 8. In all cases, the

values predicted for linear and nonlinear propagations are

very close near the jet but diverge for longer propagation

distances. In Fig. 8(a), the skewness factor of the pressure

fluctuations peaks at d ’ 30D and then decreases with the

propagation distance, as observed in Saxena et al. (2009).

When the propagation is nonlinear, the peak skewness is

slightly higher, and it decreases at a faster rate than when

the propagation is linear. However, the difference between

the skewness factors for linear and nonlinear propagation is

small, thus confirming that the positive asymmetry of the

pressure fluctuations is mainly a source effect. In Fig. 8(b),

the skewness factor of the pressure time derivative decreases

with the distance from the jet for a linear propagation but

rapidly increases for a nonlinear propagation. In the nonlin-

ear case, a rapid saturation is reached at d ’ 30D, after

which the skewness does not significantly vary with the

propagation distance. Similarly, in Fig. 8(c), the WSF for a

FIG. 7. Representation on the arc-array of the skewness factor of the pressure fluctuations (a), skewness factor of the pressure time derivative (b), and WSF

(c) for linear (solid lines) and nonlinear (dashed lines) propagation.

FIG. 8. Representation on the line array of the skewness factor of the pressure fluctuations (a), skewness factor of the pressure time derivative (b), and WSF

(c) for linear (solid lines) and nonlinear (dashed lines) propagation.
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nonlinear propagation decreases with the distance from the

jet and reaches an asymptotic value of 0.4 for propagation

distances greater than 80D, which is much lower than the

value of 0.75 obtained for a linear propagation. Therefore,

while the acoustic waves radiated in the direction of peak

levels present a steepened aspect near the source, they

steepen even more with the propagation distance due to non-

linear propagation effects, in agreement with experiments

(Fi�evet et al., 2016; Gallagher and McLaughlin, 1981;

Petitjean et al., 2006). Finally, for a linear propagation, it

can be noted that the three nonlinearity indicators vary with

the distance from the jet in the near acoustic field, for

d � 60D, which can be surprising as there is no nonlinear

wave steepening in this case. These variations are due to the

fact that the pressure signals at a given measurement point

include acoustic waves emitted from different regions of the

jet flow. Since the tendency of the waves to present a steep-

ened aspect near the source depends on the region from

which they are generated (Pineau and Bogey, 2018), this

will lead to variations of the nonlinearity indicators, even

for a linear propagation.

2. Shock coalescence

The ZCR is defined as the mean number of zero-

crossings in the pressure fluctuation signals recorded at a

given position during a time of D=uj. Its values on the line

and circular arrays for linear and nonlinear propagations are

plotted in Fig. 9. On the arc array, in Fig. 9(a), the ZCR is

maximum at polar angles of 50� and 58� for linear and non-

linear propagations, respectively. In addition, the values

obtained for a nonlinear propagation are lower than those

for a linear propagation at all positions and, more particu-

larly, close to the angle of peak noise levels, for a polar

angle of 50�. On the line array, in Fig. 9(b), the ZCR for lin-

ear and nonlinear propagations are identical close to the jet

flow, at d ¼ 10D, but diverge for longer propagation distan-

ces, as the ZCR for a linear propagation increases while that

for a nonlinear propagation decreases. The decrease in the

ZCR for a nonlinear propagation can be explained by the

coalescence of shocks in the jet acoustic field. Indeed, since

the speed of sound increases with the local pressure, high

amplitude peaks will aggregate those of smaller amplitudes

as they propagate (Lighthill, 1994), thus causing a decrease

in the ZCR, as observed in experimental measurements and

numerical simulations of supersonic jets and free-shear

flows (Buchta and Freund, 2017; Fi�evet et al., 2016;

Gallagher and McLaughlin, 1981).

The difference between the ZCR obtained for linear and

nonlinear propagations in the (r, z) plane is shown in Fig. 10

to directly determine the regions of the jet acoustic field

where shock coalescence is strongest. This difference is neg-

ative at all of the positions considered, which indicates that

shock coalescence occurs everywhere in the jet acoustic

field. It is, however, particularly, important along a narrow

cone located slightly upstream from the line of peak acous-

tic levels.

D. Effects of nonlinear propagation on pressure
signals and spectra

The effects of wave steepening and shock coalescence

on the pressure signals and spectra are now investigated. For

that, the signals recorded on the line array at distances

FIG. 9. Mean number of zero-crossings during a time t ¼ D=uj on the circu-

lar (a) and line (b) arrays for linear (solid lines) and nonlinear (dashed lines)

propagations.

FIG. 10. (Color online) Difference between the mean number of zero-

crossings during a time t ¼ D=uj obtained for nonlinear and linear propaga-

tions. The line of peak pressure levels is represented as a red dashed line.
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d ¼ 20D, 40D, and 80D are plotted in Fig. 11 for linear and

nonlinear propagations. In the two cases, distinctive, posi-

tively skewed shock-like structures are present in the signals

as, for instance, at t ¼ 2D=uj and 6D=uj in Fig. 11(b). The

pressure signals for linear and nonlinear propagations are

very similar at d ¼ 20D but differ for larger distances, for

d ¼ 40D and 80D. At these locations, the pressure peaks for

a nonlinear propagation are found earlier in the signals than

those for a linear propagation, since the speed of sound

increases with the local pressure, according to Eq. (2). In

addition, compressions in the signals are also much steeper

as a result of nonlinear propagation effects, which is consis-

tent with the rise of the skewness factor of the pressure time

derivative as well as with the decrease in the WSF. Finally,

at d ¼ 80D in Fig. 11(c), the signal for a linear propagation

displays two pressure peaks between t ¼ 2D=uj and 4D=uj,

whereas only one peak is visible in the signal obtained for a

nonlinear propagation. This is likely due to the merging of

the two peaks, i.e., to shock coalescence.

PSDs of the pressure fluctuations signals on the line array

are shown in Fig. 12, at the same positions as those in Fig. 11.

Near the jets, at d ¼ 20D in Fig. 12(a), the pressure spectra

obtained for linear and nonlinear propagations are similar in

the low- and medium-frequency ranges, up to a Strouhal num-

ber of 1, but differ in the high-frequency range where the lev-

els for a nonlinear propagation are higher than those for linear

propagation. This is also the case at d ¼ 40D in Fig. 12(b)

and d ¼ 80D in Fig. 12(c). At these locations, the spectra for

a nonlinear propagation also exhibit lower levels than those

for a linear propagation in the medium-frequency range, for

Strouhal numbers between 0.3 and 1, suggesting a power

transfer from the middle to the high frequencies, which is con-

sistent with nonlinear wave steepening. Moreover, for the

largest propagation distance, in Fig. 12(c), the peak Strouhal

number is slightly lower for a nonlinear propagation than for a

linear propagation, which can be explained by the coalescence

of shocks in the signals. Finally, in Fig. 12(c), the PSD for

nonlinear propagation decays at a rate very close to the power

law St�2 in the medium-frequency range. This observation is

in agreement with analytical predictions (Gurbatov and

Rudenko, 1998) and experimental measurements (McInerny

and €Olçmen, 2005) of the nonlinear evolution of broadband

acoustic waveforms.

To measure the cumulated importance of nonlinear prop-

agation effects in the signals recorded at a given point, the

power deficit rate (PDR) is defined as the difference of power

between the signals obtained for a nonlinear and a linear prop-

agation, integrated over frequencies for which the noise levels

are lower for a nonlinear than for a linear propagation. It is

normalized by the sound intensity for a linear propagation and

can thus be interpreted as the fraction of power in the linear

signal transferred to the high or low frequencies in the nonlin-

ear case because of wave steepening and shock coalescence. It

is computed using the following relation,

PDR ¼ t

ð1
0

min Snlin
pp ðf Þ � Slin

ppðf Þ; 0
n o

df
ð1

0

Slin
ppðf Þdf

��������

��������
t; (3)

FIG. 11. Pressure fluctuations at d ¼ 20D (a), 40D (b), and 80D (c) on the linear array for linear (black line) and nonlinear (gray line) propagation.

FIG. 12. (Color online) PSDs of pressure fluctuations on the linear array at d ¼ 20D (a), 40D (b), and 80D (c) for a linear (black line) and nonlinear (gray

line) propagation.
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where Slin
pp and Snlin

pp are the PSDs of the pressure fluctuations

for linear and nonlinear propagations, respectively. The val-

ues of the PDR in the (r, z) plane are plotted in Fig. 13.

They are close to 0 near the LES domain, for short propaga-

tion distances, but increase with the distance from the jet.

Significant values are obtained at all propagation angles.

They are, however, particularly high near a narrow cone

located slightly upstream of the path of peak noise levels,

which is also where shock coalescence is the most frequent

in Fig. 10. Along this cone, the rise of the PDR is rapid close

to the jet but is more gradual as the propagation distance

increases due to decrease in the pressure levels.

It is noteworthy that the region of the jet acoustic field

where the nonlinear power transfer is strongest is not

aligned with the line of peak levels. To investigate this, the

shock formation distance is estimated for different axial

positions at r ¼ 7:5D as an indicator of the tendency of the

waves to propagate nonlinearly. The expression proposed by

Gurbatov and Rudenko (1998) for plane, broadband waves

is used:

�x ¼ q1a3
1

bð2pfmaxÞprms
; (4)

where fmax is the peak frequency of the signal and

b ¼ ðcþ 1Þ=2. It can be noted that this expression is not

strictly valid for diverging waves. Expressions of the shock

formation distance have been derived for the case of spheri-

cal or cylindrical diverging waves, as in Hamilton (2016).

However, they involve the location of the source, which is

not known in the present case. Thus, since the objective here

is to compare the tendency of the waves to propagate nonli-

nearly and not to estimate actual shock formation distances,

the expression (4) for plane waves is used for the sake of

simplicity. This is justified, since the shock formation dis-

tance for diverging waves is an increasing function of the

right-hand side of Eq. (4). Based on this expression, the

shock formation distance decreases with the amplitude of the

pressure fluctuations, as well as with their peak frequency.

The peak Strouhal number of the pressure fluctuations

fmaxD=uj at the outward limit of the LES domain is repre-

sented in Fig. 14(a) as a function of the axial distance. It

reaches a clear peak of 0.8 at z ¼ 10D which is much higher

than the value of 0.4 obtained near the maximum of pressure

levels at z ¼ 14D. This peak is due to the generation of

high-frequency waves by the shear layers of the jet (Baars

et al., 2014). The axial variations of the shock formation dis-

tance at the same locations are plotted in Fig. 14(b). It

reaches a minimum of �x ¼ 20D near z ’ 10D, which is

slightly upstream from the location of peak noise levels but

close to that where the signal peak frequency is highest. It is

also very close to the origin of the cone of PDR in Fig. 13.

Upstream and downstream from this minimum, the shock

formation distance, can, however, be higher than 100D so

that nonlinear propagation effects are weak. Therefore,

waves generated near the nozzle, which have high frequen-

cies and amplitudes, steepen more rapidly than those

produced near the peak, which have higher levels but lower

frequencies. This explains why the most strongly nonlinear

waves are located slightly upstream from the line of peak

levels.

E. Morfey–Howell indicator

The power transfers due to nonlinear propagation are

evaluated by considering the Morfey–Howell indicator

FIG. 13. (Color online) Power deficit rate in the (r, z) plane. The line of

peak pressure levels is represented as a red dashed line.

FIG. 14. (Color online) Axial variations at r ¼ 7:5D of the peak Strouhal

number of the pressure fluctuations (a) and shock formation distance (b).

The red triangles indicate the location of peak acoustic levels.
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(Baars et al., 2014; Morfey and Howell, 1981; Petitjean

et al., 2006). This indicator is defined as Qp2pðf Þ
¼ �Imf2p̂2ðf Þp̂?ðf Þg, where p̂ðf Þ and p̂2ðf Þ are the Fourier

transforms of p(t) and p2ðtÞ, respectively. By using a gener-

alized Burgers equation for spherically spreading waves,

Morfey and Howell (1981) related this quantity to the deriv-

ative of the signal PSD with respect to the radial direction:

@

@r
r2e2arSpp

� �
¼ 2pf

b
q1a3

1

� �
r2e2arQp2p; (5)

where b ¼ ðcþ 1Þ=2 and a is the linear attenuation.

According to Eq. (5), this indicator measures the flux of

power transfers due to nonlinear distortions: negative values

for a given frequency indicate a loss of power for that fre-

quency, whereas positive ones reveal a gain of power. In

practice, predictions of nonlinear propagation effects based

on the Morfey–Howell indicator at a single point can be dif-

ficult to interpret. Indeed, separating the effects of nonli-

nearities, geometrical spreading, and molecular absorption

based on Eq. (5) only is not straightforward. For this reason,

Reichman et al. (2016) rearranged Eq. (5) so that the spatial

rate of change of the pressure levels is the sum of three

contributions associated with nonlinearities, geometrical

spreading, and molecular absorption and derived a single-

point nonlinearity indicator accounting for the effects of

nonlinearities only (Gee et al., 2018b; Miller and Gee,

2018). Another issue is that while Qp2p measures the degree

of quadratic nonlinear interactions in the waveforms, nonlin-

ear propagation effects are not the only mechanism that can

cause such interactions. Notably, the pressure signals near

supersonic jets are known to display shock-like structures

that are formed inside the jet flow due to a source steepening

mechanism (Buchta and Freund, 2017; Nichols et al., 2013;

Pineau and Bogey, 2019). This will lead to non-zero values

of the Morfey–Howell indicator for a linear propagation.

Thus, it has been pointed out that the indicator must be esti-

mated at several positions to assess the presence of nonlin-

ear propagation effects (Baars et al., 2014; Howell and

Morfey, 1987). Finally, the physical interpretation relies on

the assumption that the waves are spherical. This is not the

case in the near field of supersonic jets, where the pressure

fluctuations include acoustic waves emitted from different

regions of the jet flow, propagating along different rays. For

these reasons, in the present work, the spatial distribution of

the Morfey–Howell indicator is considered in the (r, z) plane

and not only along a given propagation path as in most

studies. The values obtained for linear and nonlinear propa-

gations are also compared so that any difference between

the Morfey–Howell indicators computed for nonlinear and

linear propagations can be directly attributed to nonlinear

distortions.

The Morfey–Howell indicator obtained for a linear

propagation is represented in Fig. 15 for Strouhal numbers

of 0.5, 1, and 2. Since the values of Qp2p depend on the

sound intensity, the normalized version Q/S of the indicator

is considered, with Q ¼ Qp2p=p3
rms and S ¼ Spp=p2

rms. This

quantity is useful, as it can be directly related to the dissipa-

tion of power arising because of nonlinearities (Morfey and

Howell, 1981; Ohm et al., 2020). For a Strouhal number of

0.5, in Fig. 15(a), Q/S displays negative values near the peak

of acoustic levels, while the values away from the maximum

are much lower in absolute value. For a Strouhal number of

1 in Fig. 15(b), the indicator Q/S has strong negative values

over a very narrow band slightly upstream from the peak of

acoustic levels but positive ones at low polar angles.

Finally, for a Strouhal number of 2, Q/S is positive for polar

angles below and near the line of peak acoustic levels. The

fact that the Morfey–Howell indicator exhibits significant

values for a linear propagation indicates that the input wave-

forms present a certain degree of nonlinearity near the LES

interface that remains unchanged during the linear propaga-

tion. This is also reflected in the values of the skewness

factors of the pressure fluctuations and of their time deriva-

tive in Figs. 7 and 8, which are significant, even for a linear

propagation. This is either due to nonlinear distortions

occurring over short distances inside the LES domain or due

to the generation of shocks directly from the jet flow, as

described in Buchta and Freund (2017) and Pineau and

Bogey (2019).

FIG. 15. (Color online) Representation of the Morfey–Howell nonlinearity indicator Q/S for a linear propagation for Strouhal numbers of 0.5 (a), 1 (b), and

2 (c). The color scale ranges between 61, from blue to red. The line of peak pressure levels is represented as a red dashed line.
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The Morfey–Howell indicator calculated from the pres-

sure fields obtained for a nonlinear propagation is repre-

sented in Fig. 16 for the same three Strouhal numbers as

previously. For a Strouhal number of 0.5, in Fig. 16(a),

strong negative values of Q/S are obtained near the peak of

acoustic levels. This is also the case for a Strouhal number

of 1, in Fig. 16(b). These negative values are much stronger

than for a linear propagation. This indicates a nonlinear

power loss from the middle frequencies as the waves propa-

gate. For a Strouhal number of 1, in Fig. 16(b), positive val-

ues are also obtained at low polar angles. At these angles,

the peak frequencies are indeed lower than those near the

peak of rms. Thus, nonlinear distortions tend to transfer

power from the low frequencies to the St¼ 1 component.

The values of the Morfey–Howell indicator are, however,

only very slightly higher than those for a linear propagation,

suggesting that nonlinear distortions are weak for waves

propagating in that direction. Finally, for a Strouhal number

of 2, in Fig. 16(c), Q/S is negative close to the line of peak

pressure levels but positive away from the peak. This is in

stark contrast with the distribution for a linear propagation

in Fig. 15(c), where Q/S is positive all over the acoustic

field. This demonstrates that power is lost for a Strouhal

number of 2 in the direction of peak noise level because of

nonlinear propagation effects. This power is then transmit-

ted to higher frequencies, leading to the formation of

shocks. At high polar angles, the positive values of Q/S
are much stronger than for a linear propagation, which is

also indicative of nonlinear propagation effects. For these

angles, the Morfey–Howell indicator is positive, which

means that the St¼ 2 component receives power from the

lower frequencies.

Finally, the nonlinear power transfers can be measured

directly by considering the difference between the PSD

obtained for nonlinear and linear propagations. Unlike the

Morfey–Howell indicator, which predicts the flux of power

transfer based on the degree of quadratic nonlinear interac-

tion in the waveforms, this approach provides a direct way

to assess the effects of nonlinear distortions on the pressure

spectra. It can thus be used as a reference. In Fig. 17, the

spatial distribution of the difference between the PSD for

nonlinear and linear propagations is represented for a

Strouhal number of 1. It is normalized by the PSD obtained

for a linear propagation to take into account the decrease in

the pressure levels with the propagation distance. Negative

values are obtained at high polar angles and are strongest, in

absolute value, near the peak of acoustic levels. Low-

amplitude, positive values are, however, obtained at lower

polar angles. Negative values at a given point indicate that

power is lost during the nonlinear propagation of the waves,

whereas positive ones reveal a gain of power. Therefore, the

power transfers directly evaluated by comparing the spectra

for nonlinear and linear propagations are, qualitatively, in

very good agreement with the flux estimated using the

Morfey–Howell indicator for the same Strouhal number in

Fig. 16(b). This suggests that considering the spatial distri-

bution of the Morfey–Howell indicator for individual fre-

quencies can provide reliable estimations of the direction of

nonlinear power flux in the sound field of supersonic jets,

even in the jet near field, where the spherical-wave hypothe-

sis is not strictly verified.

FIG. 16. (Color online) Representation of the Morfey–Howell nonlinearity indicator Q/S for a nonlinear propagation for Strouhal numbers of 0.5 (a), 1 (b),

and 2 (c). The color scale ranges between 61, from blue to red. The line of peak pressure levels is represented as a red dashed line.

FIG. 17. (Color online) Difference between the PSD for a nonlinear and a

linear propagation for a Strouhal number of 1 normalized by the PSD for a

linear propagation. The red dashed line indicates the line of peak acoustic

levels.
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IV. CONCLUSION

In the present study, the effects of nonlinear propaga-

tion on the acoustic waves emitted by a cold Mach 3 jet are

investigated using numerical simulations. The jet flow and

near acoustic fields are computed using LES, while the

acoustic field is propagated to the far field by solving the

loss-less linearized and weakly nonlinear Euler equations,

respectively. By comparing the pressure signals obtained for

linear and nonlinear propagations, this approach allows us

to directly identify the effects of nonlinear distortions on the

acoustic waves generated by the jet. Near the peak of pres-

sure levels, these waves present a strong positive asymmetry

that does not seem to depend on the linear or the nonlinear

propagations of the waves. This confirms that this asymme-

try is the consequence of a source mechanism occurring

inside the turbulent jet flow, as suggested by previous inves-

tigations (Buchta and Freund, 2017; Ffowcs Williams et al.,
1975; Fi�evet et al., 2016), and not that of nonlinear propaga-

tion effects. A different conclusion is, however, reached for

the steepened aspect of the waves, which is evaluated by

computing the skewness factor of the pressure time deriva-

tive and the WSF. Indeed, while the signals for a linear

propagation present a steepened aspect due to the source

steepening mechanism, this aspect is much more pro-

nounced for a nonlinear propagation than for a linear one

because of the formation of shocks. For a nonlinear propaga-

tion, the number of zero-crossings also decreases with the

propagation distance, which is attributed to the coalescence

of shocks, as observed in previous experiments (Fi�evet

et al., 2016; Gallagher and McLaughlin, 1981). The present

results thus highlight the importance of nonlinear wave

steepening in the formation process of the steepened waves

at the origin of crackle noise. In particular, the fact that the

skewness factor of the pressure time derivative, which has

been found to correlate well with the perception of crackle

(Gee et al., 2018a), is much higher for the nonlinear propa-

gation than for the linear one advocates that nonlinearities

play a key role in the perception of crackle. However, since

the present simulations do not include the effects of molecu-

lar absorption, additional studies at finite Gol’dberg num-

bers are required to confirm that it is the dominant

mechanism.

Finally, the nonlinear transfer of power from the

middle- to the high- and low-frequency components of the

spectra due to wave steepening and shock coalescence,

respectively, are investigated. These transfers are first pre-

dicted by considering the distribution of the Morfey–Howell

nonlinearity indicator in the (r, z) plane for linear and non-

linear propagations. Then nonlinear power transfers are

directly measured by comparing the spectra for a nonlinear

and a linear propagation. These measurements are found to

be in good qualitative agreement with the predictions based

on the Morfey–Howell indicators. More surprisingly, this is

also the case in the jet near field, where the spherical-wave

hypothesis is not verified. This advocates for the use of the

Morfey–Howell indicator to predict nonlinear distortions in

the near acoustic field of supersonic jets, even when its

underlying assumptions are not strictly verified.
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McInerny, S. A., and €Olçmen, S. M. (2005). “High-intensity rocket noise:

Nonlinear propagation, atmospheric absorption, and characterization,”

J. Acoust. Soc. Am. 117(2), 578–591.

Miller, K. G., and Gee, K. L. (2018). “Model-scale jet noise analysis with a

single-point, frequency-domain nonlinearity indicator,” J. Acoust. Soc.

Am. 143(6), 3479–3492.

Mohseni, K., and Colonius, T. (2000). “Numerical treatment of polar coor-

dinate singularities,” J. Comput. Phys. 157(2), 787–795.

Mora, P., Heeb, N., Kastner, J., Gutmark, E. J., and Kailasanath, K. (2014).

“Impact of heat on the pressure skewness and kurtosis in supersonic jets,”

AIAA J. 52(4), 777–787.

Morfey, C. L., and Howell, G. P. (1981). “Nonlinear propagation of aircraft

noise in the atmosphere,” AIAA J. 19(8), 986–992.

Morris, P. J. (2009). “A note on noise generation by large scale turbulent

structures in subsonic and supersonic jets,” Int. J. Aeroacoust. 8(4),

301–315.

Murray, N. E., and Lyons, G. W. (2016). “On the convection velocity of

source events related to supersonic jet crackle,” J. Fluid Mech. 793,

477–503.

Nichols, J. W., Lele, S. K., Ham, F. E., Martens, S., and Spyropoulos, J. T.

(2013). “Crackle noise in heated supersonic jets,” J. Eng. Gas Turb. Pow.

135(5), 051202.

Ohm, W.-S., Gee, K. L., and Park, T. (2020). “An impedance-based formu-

lation of frequency-domain nonlinearity indicators in finite amplitude

sound propagation,” J. Acoust. Soc. Am. 148(3), EL295–EL300.

Papamoschou, D. (1995). “Evidence of shocklets in a counterflow super-

sonic shear layer,” Phys. Fluids 7(2), 233–235.

Petitjean, B. P., Viswanathan, K., and McLaughlin, D. K. (2006). “Acoustic

pressure waveforms measured in high speed jet noise experiencing non-

linear propagation,” Int. J. Aeroacoust. 5(2), 193–215.

Pineau, P., and Bogey, C. (2018). “Study of the generation of shocks by

high-speed jets using conditional averaging,” Proceedings of the 2018
AIAA/CEAS Aeroacoustics Conference, June 25–29, Atlanta, GA, AIAA

Paper 2018-3615.

Pineau, P., and Bogey, C. (2019). “Steepened Mach waves near supersonic

jets: Study of azimuthal structure and generation process using condi-

tional averages,” J. Fluid Mech. 880, 594–619.

Pineau, P., and Bogey, C. (2020). “Temperature effects on convection speed

and steepened waves of temporally developing supersonic jets,” AIAA J.

58(3), 1227–1239.

Reichman, B. O., Gee, K. L., Neilsen, T. B., and Miller, K. G. (2016).

“Quantitative analysis of a frequency-domain nonlinearity indicator,”

J. Acoust. Soc. Am. 139(5), 2505–2513.

Rossmann, T., Mungal, M. G., and Hanson, R. K. (2002). “Evolution and

growth of large-scale structures in high compressibility mixing layers,”

J. Turbul. 3, N9.

Sabatini, R., Marsden, O., Bailly, C., and Bogey, C. (2016). “A numerical

study of nonlinear infrasound propagation in a windy atmosphere,”

J. Acoust. Soc. Am. 140(1), 641–656.

Saxena, S., Morris, P. J., and Viswanathan, K. (2009). “Algorithm for the

nonlinear propagation of broadband jet noise,” AIAA J. 47(1), 186–194.

Schlinker, R. H., Liljenberg, S. A., Polak, D. R., Post, K. A., Chipman, C.

T., and Stern, A. M. (2007). “Supersonic Jet Noise Characteristics &

Propagation: Engine and Model Scale,” Proceedings of the 13th AIAA/
CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference),
May 21–23, Rome, Italy, AIAA Paper 2007-3623.

Shepherd, M. R., Gee, K. L., and Wochner, M. S. (2009). “Short-range

shock formation and coalescence in numerical simulation of broadband

noise propagation,” J. Acoust. Soc. Am. 126(6), 2886–2893.

Tam, C. K. W. (1995). “Supersonic jet noise,” Annu. Rev. Fluid Mech.

27(1), 17–43.

Tam, C. K. W., Spyropoulos, J. T., Aubert, A. C., and Powers, R. W.

(2018). “Crackle in the noise of high-performance aircraft,” Proceedings
of the 2018 AIAA/CEAS Aeroacoustics Conference, June 25–29, Atlanta,

GA, AIAA Paper 2018-3306.

Tam, C. K. W., and Dong, Z. (1996). “Radiation and outflow boundary con-

ditions for direct computation of acoustic and flow disturbances in a non-

uniform mean flow,” J. Comput. Acoust. 04(02), 175–201.

Troutt, T. R., and McLaughlin, D. K. (1982). “Experiments on the flow and

acoustic properties of a moderate-Reynolds-number supersonic jet,”

J. Fluid Mech. 116, 123–156.

Whitham, G. B. (1974). Linear Nonlinear Waves (Wiley, New York), Chap.

9, pp. 312–338.

370 J. Acoust. Soc. Am. 149 (1), January 2021 Pierre Pineau and Christophe Bogey

https://doi.org/10.1121/10.0003343

https://doi.org/10.1260/1475-472X.13.7-8.607
https://doi.org/10.1260/1475-472X.13.7-8.607
https://doi.org/10.1017/S0022112075002558
https://doi.org/10.2514/1.J054252
https://doi.org/10.1121/2.0000899
https://doi.org/10.1121/1.4773225
https://doi.org/10.1121/1.5046094
https://doi.org/10.1121/1.2903871
https://doi.org/10.1260/147547203322775533
https://doi.org/10.1260/147547203322775533
https://doi.org/10.1121/1.4968787
https://doi.org/10.1016/S0022-460X(87)80147-5
https://doi.org/10.1260/1475-472X.11.7-8.885
https://doi.org/10.1260/1475-472X.11.7-8.885
https://doi.org/10.1063/1.5050905
https://doi.org/10.1007/BF00311841
https://doi.org/10.1007/BF00311841
https://doi.org/10.1121/1.1911131
https://doi.org/10.2514/3.46975
https://doi.org/10.1121/1.1841711
https://doi.org/10.1121/1.5041741
https://doi.org/10.1121/1.5041741
https://doi.org/10.1006/jcph.1999.6382
https://doi.org/10.2514/1.J052612
https://doi.org/10.2514/3.51026
https://doi.org/10.1260/147547209787548921
https://doi.org/10.1017/jfm.2016.127
https://doi.org/10.1115/1.4007867
https://doi.org/10.1121/10.0002030
https://doi.org/10.1063/1.868621
https://doi.org/10.1260/147547206777629835
https://doi.org/10.1017/jfm.2019.729
https://doi.org/10.2514/1.J058589
https://doi.org/10.1121/1.4945787
https://doi.org/10.1088/1468-5248/3/1/009
https://doi.org/10.1121/1.4958998
https://doi.org/10.2514/1.38122
https://doi.org/10.1121/1.3243466
https://doi.org/10.1146/annurev.fl.27.010195.000313
https://doi.org/10.1142/S0218396X96000040
https://doi.org/10.1017/S0022112082000408
https://doi.org/10.1121/10.0003343

	s1
	tr1
	l
	n1
	n2
	s2
	s2A
	s2B
	s2C
	d1
	d2
	s3
	s3A
	s3B
	f1
	f2
	f3
	s3C
	s3C1
	f4
	f5
	f6
	f7
	f8
	s3C2
	s3D
	f9
	f10
	d3
	f11
	f12
	d4
	s3E
	f13
	f14
	d5
	f15
	f16
	f17
	s4
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54
	c55
	c56
	c57
	c58
	c59
	c60

