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Steepened Mach waves near supersonic jets:
study of azimuthal structure and generation
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The azimuthal structure and the generation process of steepened acoustic waves are
investigated in the near field of temporal round jets at Mach numbers of 2 and 3.
Initially, the shear layers of the jets are in a laminar state and display instability
waves whose main properties are close to those predicted from linear temporal
analysis. Then, they transition to a turbulent state and generate high-intensity Mach
waves displaying sharp compressions typical of those recorded for jets producing
crackle noise. These waves are first shown to be poorly reproduced when only the
axisymmetric mode is considered, but to be well captured with the first five azimuthal
modes. Their generation process is investigated by performing conditional averages
of the flow and acoustic fields triggered by the detection of intense positive pressure
peak close to the jets. No steepened waves are visible in the conditionally averaged
pressure profiles when the procedure involves only one azimuthal mode at a time.
However, sharp compressions are obtained based on the first five modes taken together.
In that case, the steep compressions are correlated over a limited portion of the jet
circumference and are steeper as more azimuthal modes are considered. Moreover, a
direct link is established between the steepened waves and the supersonic convection
of large-scale coherent flow structures located in the supersonic core of the jets.
This indicates that these waves constitute an extreme, nonlinear case of Mach wave
radiation by these structures. In addition, the capacity of flow structures to generate
sharp, steepened waves is related to their shapes. More particularly, flow structures
with a large extent in the radial direction are shown to produce stronger and steeper
Mach waves than those that are elongated in the flow direction.

Key words: aeroacoustics, jet noise

1. Introduction
It is now well recognised that the noise generated by highly supersonic jets at

low outlet angles is related to the motion of large-scale coherent structures inside
the flow (McLaughlin, Morisson & Troutt 1975; Troutt & McLaughlin 1982; Tam,
Chen & Seiner 1992). When the convection velocity of these structures exceeds

† Email address for correspondence: pierre.pineau@doctorant.ec-lyon.fr
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Steepened Mach waves near supersonic jets 595

the ambient speed of sound, they generate Mach waves which propagate in the far
field, leading to a peak of sound emission in the direction of the Mach angle as
observed, for instance, by Seiner et al. (1992). A distinctive feature of the sound
waves radiated in this direction is the presence of steep, jagged shock structures in
the far acoustic field (Ffowcs Williams, Simson & Virchis 1975; Laufer, Schlinker
& Kaplan 1976; Krothapalli, Venkatakrishnan & Lourenco 2000; Baars & Tinney
2014). These steepened waves are believed to be the cause of crackle, an unpleasant
perception effect first described by Ffowcs Williams et al. (1975). Despite several
years of research, the mechanisms leading to their formation remain unclear. Notably,
an important issue is to distinguish the respective roles of propagation and source
effects in their formation process. It is well known that the pressure levels generated
by highly supersonic jets are so high that nonlinear propagation effects must be
taken into account to accurately describe the propagation of sound. The accumulation
of these phenomena induces a gradual steepening of the wavefronts leading to
the formation of shocks (Crighton & Bashforth 1980; Morfey & Howell 1980;
Enflo & Hedberg 2002). For instance, in their simulation of the noise generated
by a Mach 3.3 hot jet, de Cacqueray & Bogey (2014) pointed out the progressive
formation of N-shaped waves resulting from a nonlinear energy transfer from middle
to high frequencies. Similar observations have also been made in the sound field
of full-scale jet engines, as shown by Gee et al. (2007) or Reichman et al. (2017),
for instance. However, nonlinear propagation effects are less prevailing in the case
of experiments conducted at the laboratory scale (Gallagher & McLaughlin 1981;
Petitjean & McLaughlin 2003; Petitjean, Viswanathan & McLaughlin 2006; Baars,
Tinney & Hamilton 2014). In such experiments, the peak frequencies are higher
and molecular absorption, which can counteract the formation of shocks, is thus
significant. By taking into account the role of molecular absorption, Baars et al.
(2014) and Baars, Tinney & Hamilton (2016) predicted that nonlinear steepening,
alone, could not account for the presence of shocks in the sound field of their
small-scale laboratory jet. Therefore, there must be some other mechanism at play.
Optical visualisations of the near acoustic field radiated by very high-speed jets and
mixing layers (Lowson & Ollerhead 1968; Papamoschou 1995; Rossmann, Mungal &
Hanson 2001) have shown the presence of shocks, whose tips appear to be embedded
inside the turbulent flow. As sketched in Rossmann et al. (2001), the formation of
these waves is expected to be linked to the supersonic motion of flow structures,
acting as bluff bodies or wavy walls, and yielding to the formation of shocklets in
the interfacial region between the turbulent flow and the ambient medium. In their
simulation of plane temporally developing mixing layers, Buchta & Freund (2017)
observed the formation of such shocklets in the immediate vicinity of the shear layers.
As these shocks propagate away from the flow, they merge with each other, resulting
in fewer but stronger and steeper waves with increasing propagation distance. This
shock coalescence mechanism has also been observed experimentally in the near
acoustic field of a Mach 3 jet by Fiévet et al. (2016) and is expected to play a key
role in the formation of crackle. All of these observations strongly suggest that shock
formation can also occur at the source, in and near the jet flow. However, the precise
mechanisms involved are currently not well understood.

In order to clarify this point, Nichols et al. (2013a), Nichols, Lele & Spyropoulos
(2013b) performed large eddy simulations (LES) of hot supersonic jets. They observed
that strong Mach waves of very steep nature are intermittently generated from the
shear layers of the jets and can be attributed to the occurrence of violent events inside
the jets. Murray & Lyons (2016) measured the propagation angles of the shocks
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generated in the near field of a hot Mach 1.55 jet. Assuming these shocks are Mach
waves, they investigated the statistical distribution of the resulting convection velocities
and found that they follow an extreme value distribution. These studies suggest that
crackle events can be comprehended as extreme, nonlinear occurrences of Mach wave
radiation. The mechanism by which Mach waves are generated has received a lot
of attention in the last decades (Tam & Morris 1980; Tam & Burton 1984a,b; Tam
et al. 1992) and is now reasonably well understood. A simplified view originally
proposed by Ribner (1969) is that the velocity disturbances induced by a train of
coherent structures can be seen as a travelling wavy wall along which the flow is
successively compressed and expanded. When the convection velocity of the structures
is supersonic, the pressure perturbations resulting from these compression–expansion
processes propagate in the far field as sound. While this model provides a direct and
simple explanation of the Mach wave phenomenon, any further attempt to explain how
shocks can be formed as a result of this mechanism requires additional information
on the nature and the dynamics of coherent structures in high-speed jets. At the
present time, this can be very challenging since the very concept of a coherent
structure is not even clearly defined (Hussain 1983; Jordan & Colonius 2013). In
order to bridge that gap, several researchers have tried to model coherent structures
as linear instability waves (Tam & Burton 1984a,b; Tam et al. 1992; Sinha et al.
2014). While this approach has been successful in predicting several aspects of Mach
wave radiation, such as the convection velocity of the structures, the direction of
peak sound emission or the shapes of far field spectra near the peak frequency (Tam
& Burton 1984b; Tam et al. 1992; Mohseni & Colonius 2002; Sinha et al. 2014),
its linear character does not allow us to take into account the possible formation of
shocks. Consequently, there is a need for a deeper understanding of the generation
process of Mach waves, as it could lead to a better understanding of the way shocks
can be formed as a nonlinear by-product of this mechanism, and thus pave the way
for future noise reduction strategies.

In the present study, the connection between the formation of steepened waves
and the motion of large-scale coherent structures in supersonic jets is investigated
by performing large eddy simulations of temporally developing round jets. These
temporal simulations are used as simplified models of spatially developing jets, as in
previous studies of sound generation in subsonic (Kleinman & Freund 2008; Bogey
2019) and supersonic free-shear flows (Buchta & Freund 2017). The jets considered
are isothermal and have Mach numbers of 2 and 3, in order to explore the effects
of this parameter on the properties of the flow structures which produce steepened
waves. Indeed, the influence of the Mach number on the formation of these waves is
known to be strong (Ffowcs Williams et al. 1975; Buchta & Freund 2017) but the
means by which it influences noise generation and, in particular, the way it affects
the large-scale flow structures are less obvious. In axisymmetric supersonic jets,
large-scale coherent structures and the Mach waves that they generate are associated
with low-order azimuthal modes of the pressure field, typically of order lower than
two (Troutt & McLaughlin 1982; de Cacqueray, Bogey & Bailly 2011). Consequently,
this raises the question of whether the sharp, shock-like compressions observed
close to the jets also exhibit such a strong azimuthal correlation. In order to answer
that question, one possibility is to examine whether steepened waves are present in
low-order azimuthal modes of the near pressure field and, if so, to find out how
many modes are necessary to recover those sharp compressions. In this way, the
large-scale flow structures that generate steepened Mach waves could be extracted
from these low-order modes and investigated separately with the aim to isolate the
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particular mechanisms leading to the steepening of Mach waves. To achieve this,
conditional averages triggered by positive pressure peaks in the jet near field provide
a useful tool, since they allow to highlight the most generic features of flow events
associated with intense sound generation (Pineau & Bogey 2018; Schmidt & Schmid
2019). They are thus applied to the present simulation results in order to provide
some information on the flow structures correlated with the waves.

The paper is organised as follows: the main characteristics and numerical parameters
of the simulations are introduced in § 2, along with the results of a linear stability
analysis conducted from the jet initial profiles. The simulation results, including
snapshots of the flow development, wavenumber spectra and conditional averages are
presented in § 3, and concluding remarks are given in § 4. Finally, the effects of the
initial conditions on the development of instability waves are presented in appendix A
and the convergence of the conditional averages is assessed in appendix B.

2. Simulations of temporally developing supersonic jets
2.1. Jet parameters

Two simulations of temporally developing isothermal round jets at Mach numbers
Mj = uj/aj of 2 and 3 are performed, where uj is the initial centreline axial velocity
and aj is the speed of sound in the jet. The diameter-based Reynolds numbers
ReD = ujD/ν of the jets is equal to 12 500, where D = 2r0 is the jet initial
diameter and ν the kinematic viscosity. The static temperature Tj in the jet core
is equal to the ambient temperature T∞ whose value is set to 293 K, and the
ambient pressure is equal to 105 Pa. At t = 0, the simulations are initialised with
a hyperbolic-tangent velocity profile whose shear-layer momentum thickness δθ is
equal to δθ/r0 = 2/

√
ReD = 0.018r0, following an empirical law obtained for initially

laminar subsonic jets (Zaman 1985). In order to trigger the transition of the jet
shear layers from a laminar to a turbulent state, small perturbations are added at the
initial time. These perturbations are solenoidal Gaussian ring vortices of radius r0,
whose half-widths are equal to 2δθ , as proposed by Bogey, Bailly & Juvé (2003)
in a simulation of a spatially developing subsonic jet. As in Bogey (2019), in the
case of temporally developing subsonic jets, these vortices have random azimuthal
phases and amplitudes and they are evenly spaced every 1z in the axial direction,
where 1z = 0.025r0 is the axial mesh spacing. Their amplitudes are chosen so that
the initial perturbation levels are 0.02uj, so that the jet shear layers are initially in a
weakly disturbed state.

The choice to consider simulations of temporal jets is motivated by the simplicity
of these model flows in comparison with more realistic, spatially developing jets.
Indeed, there is no effect of the nozzle in temporally developing jets, which makes
the control of the initial development of the shear layers easier. Furthermore, the
turbulent structures developing in these flows have length scales that are statistically
uniform in the axial direction, which allows us to achieve high spatial resolutions
at a relatively low computational cost. This simplicity comes at the price that no
far acoustic field can be defined for temporally developing jets since they have two
homogeneous directions. This could be a concern for the study of the steepening
induced by nonlinear propagation effects or the wave merging process, as these
phenomena occur over relatively long propagation distances and are thus affected by
the spatial spreading of the jet. However, the present study focuses on the mechanisms
responsible for the formation of steepened waves directly inside the turbulent flow.
These mechanisms take place over very short length scales, typically of the order of
the shear-layer thickness (Buchta & Freund 2019), hence are not expected to depend
on the temporal or spatial nature of the flow.
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2.2. Numerical parameters
The flow and sound fields of the temporal jets are computed using a numerical solver
very similar to those used in previous simulations of spatially developing supersonic
jets (de Cacqueray et al. 2011; Gojon & Bogey 2017). The unsteady compressible
Navier–Stokes equations are solved in cylindrical coordinates using high-order finite
differences. The spatial derivatives are computed using low-dispersion eleven-point
centred finite difference schemes (Bogey & Bailly 2004; Berland et al. 2007), and an
explicit six-stage Runge–Kutta method is used for time integration. At the end of each
time step, grid-to-grid oscillations are removed by the application of a twelfth-order
centred selective filter. In the simulations, which are very well resolved LES, the
selective filter also acts as a subgrid-scale model that allows the relaxation of turbulent
kinetic energy near the grid cutoff wavenumber (Bogey & Bailly 2006). In order to
treat the axis singularity arising from the use of cylindrical coordinates, the method
of Mohseni & Colonius (2002) is implemented. The discretisation point closest to
the axis is located at r = 1r/2, where 1r is the radial mesh spacing near the axis.
Moreover, the azimuthal derivatives near the jet centreline are computed using fewer
points than permitted by the grid to alleviate the time-step restriction, as proposed
in Bogey, Marsden & Bailly (2011). As a result, the effective azimuthal resolution
progressively varies from 16 for the point nearest to the jet axis to 256 for r > 0.25r0.
The radiation boundary conditions of Tam & Dong (1996) are prescribed at the radial
boundary to allow the acoustic waves to leave the computational domain without
causing significant spurious reflections. Periodicity conditions are also imposed at
the axial boundaries. Since the velocities of the jets are much higher than the speed
of sound, shocks are expected in the simulations, which will lead to the formation
of spurious Gibbs oscillations. In preliminary computations, it was found that these
oscillations are weak for the Mach 2 jet but strong for the Mach 3 jet. For the latter
case, Gibbs oscillations are thus damped by the application of a shock-capturing
filtering (Bogey, de Cacqueray & Bailly 2009) at the end of each time step.

2.3. Computational parameters
The simulations are carried out using a cylindrical mesh extending up to z= 240r0 in
the axial direction and out to r = 13r0 in the radial direction. The number of points
in the radial, azimuthal and axial directions are respectively nr = 382, nθ = 256 and
nz = 9600, yielding a total number of 940 million points. The axial mesh spacing
is constant and equal to 1z = 0.025r0, allowing an accurate resolution up to a
wavenumber of kzr0 = 62.8, corresponding to a wavelength discretised by 4 points
(Bogey & Bailly 2004). The radial mesh spacing 1r varies with the radial position.
It is equal to 1r=1z on the jet axis and reaches a minimum value of 1rmin=1z/4
at r = r0. Then, it rises until it is equal to 0.05r0 for r > 4r0. The simulations are
performed using the OpenMP-based in-house solver developed by Bogey (2019) for
subsonic temporal jets. The final simulation time is equal to 70r0/uj for the jet at
Mj = 2 and to 120r0/uj for the jet at Mj = 3, which necessitated 8000 and 20 000
iterations, respectively. Finally, several runs of the same jets are performed using
different initial perturbations of the shear layers by modifying the random seed used
in the excitation procedure. This allows us to improve the convergence of the spatial
statistics by ensemble averaging the results over all simulated runs. More particularly,
the results obtained for the Mach 2 jets are computed over four runs whereas those
for the Mach 3 jets are computed over three runs.
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FIGURE 1. Amplification rates of the Kelvin–Helmholtz instability waves at t = 0 for
(a) Mj = 2 and (b) Mj = 3; modes —— n= 0, - - - - n= 1, — · — n= 2, · · · · · · n= 3,
—— (grey) n= 4 and - - - - (grey) n= 5.
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FIGURE 2. Representation of the (a) maximum amplification rate and (b) the most
amplified axial wavenumber as a function of the azimuthal mode number for —— Mj= 2
and - - - - Mj = 3.

2.4. Temporal stability analysis
An inviscid temporal stability analysis is carried out from the initial velocity and
density profiles. For a given axial wavenumber kz and azimuthal mode n, the
compressible Rayleigh equation is solved in cylindrical coordinates using a shooting
method. This method combines the Euler method for the integration step and the
secant method for the search of the complex angular frequency ω. The integration in
the radial direction is performed on an homogeneous grid with a spacing of 0.0001r0,
extending from the LES point closest to the jet axis out to r= 5r0.

The amplification rates of the Kelvin–Helmholtz instability waves obtained for
the first five azimuthal modes are represented in figure 1 as a function of the axial
wavenumber for the two jets. For each azimuthal mode, they are positive over a broad
range of axial wavenumbers, and reach maximum values over 36 kzr0 6 5 at Mach 2
and over 26 kzr0 6 3 at Mach 3. The peak amplification rates and their corresponding
axial wavenumbers are plotted in figure 2 as a function of the mode number. For
the two jets, the most amplified mode is mode n= 7. For this mode, the maximum
amplification rate is obtained for kzr0 = 5.2 at Mach 2, and for kzr0 = 3 at Mach 3,
yielding wavelengths of 1.2r0 and 2.1r0, respectively. Furthermore, for all azimuthal
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FIGURE 3. (Colour online) Vorticity norm for (a) Mj = 2 and (b) Mj = 3 at times (i) t=
5r0/uj, (ii) tc − 10r0/uj, (iii) tc and (iv) tc + 10r0/uj. The colour scale ranges from 0 to
5uj/r0, from white to red.

mode numbers, the maximum amplification rate is lower, and is reached for lower
values of the axial wavenumber at Mach 2 than at Mach 3. This well-known effect
of compressibility on the Kelvin–Helmholtz instability waves is expected to cause
the Mach 3 jet to grow at a slower rate, and to exhibit stronger low-wavenumber
components in the early stages of its development than the Mach 2 jet.

3. Simulation results
3.1. Flow development

3.1.1. Vorticity field
Instantaneous fields of the vorticity norm are represented in figure 3 for the two jets

at times t=5r0/uj, tc−10r0/uj, tc and tc+10r0/uj, where tc is the time of the potential
core closure. This time, defined as the time when the mean centreline velocity reaches
the value of 0.95uj, is equal to 25.3r0/uj for the jet at Mj = 2 and to 61.1r0/uj for
the jet at Mj = 3. At t = 5r0/uj, the vorticity is concentrated in thin axisymmetric
mixing layers separating the inner potential core of the jet and the ambient medium.
Very slight perturbations are distinguishable in the mixing layers and correspond to the
instability waves growing from the initial excitation. At t = tc − 10r0/uj, the mixing
layers are thicker than previously, due to the development of turbulent structures. The
mixing layers of the Mach 3 jet exhibit larger scales than those of the Mach 2 jet,
which is consistent with the linear stability analysis predicting that the most amplified
axial wavenumber is lower at a higher Mach number. At t= tc, the mixing layers from
the opposite sides of the jet begin to interact on the centreline. Finally, the jets are
fully mixed at tc + 10r0/uj.
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FIGURE 4. Time variations of (a) maximum r.m.s. value of axial velocity fluctuations and
(b) shear-layer momentum thickness for —— Mj = 2 and - - - - Mj = 3.

3.1.2. Mean and fluctuating axial velocity fields
The time variations of the maximum root-mean-square (r.m.s.) values of axial

velocity fluctuations are presented in figure 4(a). For the two jets, the velocity
fluctuations start at t = 0 at a value close to 2 % of the jet velocity and then rise
and reach a peak at a time tp = 13.4r0/uj for Mj = 2 and tp = 58.2r0/uj for Mj = 3.
The peak value is approximately equal to 20 % of the jet initial velocity and can be
attributed (Bogey & Bailly 2010) to the pairing of vortices when the jet shear layers
transition from a laminar to a turbulent state. This time tp will be used as a reference
throughout the paper to perform comparison between the two jets. It is longer for
the Mach 3 jet than for the Mach 2 jet, which can be explained by the lower growth
rate of instability waves in the former case.

The shear-layer momentum thicknesses are represented in figure 4(b) as a function
of t− tp. Initially, it grows slowly as the shear layers are in a laminar state. At t' tp,
as the jets transition from a laminar to a turbulent state, the momentum thickness
rapidly increases and grows at a fast pace until the closing of the potential core, when
the mixing layers join and merge on the jet axis. Then, the momentum thickness
continues to grow, but at a slower rate.

3.1.3. Spectra of velocity fluctuations
The power spectral densities of the axial velocity fluctuations at r= r0 at t= 5r0/uj,

tp − 10r0/uj, tp and tp + 10r0/uj are represented in figure 5 as a function of the axial
wavenumber. The grid cutoff wavenumber kzr0= 62.8 is also displayed. At t= 5r0/uj,
as the jet mixing layers are still in a laminar state, the spectra obtained for the two
jets display a distinctive hump close to the most unstable wavenumber predicted from
linear stability analysis, i.e. for kzr0 = 5.2 at Mj = 2 and for kzr0 = 3 at Mj = 3. In
appendix A, this peak wavenumber is shown not to depend on the strength of the
initial forcing. At t = tp, when the jets transition to a turbulent state, the spectra are
broadband thanks to the presence of turbulent fluctuations in the jet shear layers. At
subsequent times, for t = tp + 10r0/uj and tp + 20r0/uj, the spectra display a similar
shape to that at t = tp. Moreover, at t = tp + 20r0/uj, the spectral slopes are close to
the k−5/3

z slope characteristic of turbulence at equilibrium over a little less than one
wavenumber decade. Further later, at t = tp + 55r0/uj for instance, the spectra, not
shown for brevity, display a wider inertial range because of the fully developed state
of the turbulence at these times.
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FIGURE 5. Representation, for (a) Mj= 2 and (b) Mj= 3, of the power spectral densities
of axial velocity fluctuations at r = r0 normalised by uj as a function of the axial
wavenumber at times —— 5r0/uj, - - - - tp, — · — tp + 10r0/uj and · · · · · · tp + 20r0/uj.
The triangle indicates the most amplified wavenumber at t = 0 and the dashed grey line
indicates the grid cutoff wavenumber.
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FIGURE 6. Representation, for (a) Mj= 2 and (b) Mj= 3, of the power spectral densities
of axial velocity fluctuations at r = r0 normalised by uj as a function of the azimuthal
mode number at times —— 5r0/uj, - - - - tp, — · — tp + 10r0/uj and · · · · · · tp + 20r0/uj.
The triangle indicates the most amplified mode number at t= 0.

The azimuthal power spectral densities of axial velocity fluctuations computed at
r= r0 are shown in figure 6 as a function of the azimuthal mode number n at the same
times as the spectra in figure 5. At t= 5r0/uj, the most energetic mode is the seventh
azimuthal mode, which is also the most amplified one based on the linear stability
analysis. At later times, the spectra are broader, following the jet transition from a
laminar to a turbulent state, which causes the formation of turbulent fluctuations over
a wide range of mode numbers. The peak mode number also decreases over time, as
visible in the spectra at t= tp + 10r0/uj and tp + 20r0/uj.

3.2. Near pressure field
3.2.1. Statistical properties of the near pressure field

The time variations of the r.m.s. value of pressure fluctuations at r= 8r0 are plotted
in figure 7(a). For the two jets, a peak is reached at t ' tp + 12r0/a∞, due to the
generation of intense acoustic waves during the development of the jets. The peak
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FIGURE 7. Time variations of the r.m.s. value of pressure fluctuations at r= 8r0

normalised by (a) p∞ and (b) p∞M3/2
j for —— Mj = 2 and - - - - Mj = 3.
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FIGURE 8. (Colour online) Snapshots of pressure fluctuations and vorticity norm at t =
tp + 12r0/a∞ for (a) Mj = 2 and (b) Mj = 3. The colour scales range from −0.02p∞M3/2

j

to 0.02p∞M3/2
j for the pressure and up to 3uj/r0 for the vorticity, from blue to red.

pressure is stronger for the Mach 3 jet than for the Mach 2 jet, as expected, which
is due to the higher speed of the former. In addition, when normalised by M3/2

j , the
peak pressure levels do not significantly differ in figure 7(b), which is consistent
with a common assumption that the sound intensity produced by supersonic jets
varies with the third power of the jet speed (Ffowcs Williams 1963). After the peak,
the pressure fluctuations gradually weaken over time, following the decrease of the
velocity fluctuation intensity.

Snapshots of the pressure fluctuations and vorticity fields in the (r, z) and (r, θ)
planes are provided in figure 8 at the time tp + 12r0/a∞ of peak levels for r = 8r0,
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Mj S(p) K(p) S(Θ) K(Θ)

2 0.27 3.2 −2.6 16.8
3 0.40 3.7 −3.3 24.1

TABLE 1. Values at r= 8r0 and t= tp + 12r0/a∞ of the normalised skewness S and
kurtosis K of the pressure p and dilatation Θ .

as well as in the corresponding movies movie_figure8a and movie_figure8b available
online at https://doi.org/10.1017/jfm.2019.729 for Mj = 2 and Mj = 3, respectively.
In the (r, z) plane, straight, elongated wavefronts propagating in the downstream
direction are observed in the vicinity of the flow. They are very similar to the Mach
waves observed in simulations (de Cacqueray et al. 2011; Nichols et al. 2013b), as
well as in optical visualisations (Lowson & Ollerhead 1968; Kearney-Fischer, Kim
& Samimy 2011; Murray & Lyons 2016) for spatially developing supersonic jets.
In addition, the snapshots in the (r, θ) plane reveal organised wavefronts spanning
the entire circumference of the jets, highlighting the strong azimuthal correlation of
the sound field. Some of the waves in the snapshots of figure 8 have an asperous,
jagged aspect, especially in the case of the Mach 3 jet, which indicates the presence
of shock-like, steepened waves. As in the study of Nichols et al. (2013a), these fast
compression waves are visible in the immediate vicinity of the jet flow and appear to
be associated with the coherent, elongated Mach waves that dominate the sound field.
They also appear to be significantly correlated in the azimuthal direction, which will
be investigated into further details later on in the paper.

In the past, several statistical indicators have been proposed in order to quantify
the presence of such steepened waves (Ffowcs Williams 1963; McInerny 1997;
Krothapalli, Arakeri & Greska 2003; Falco 2007; Baars & Tinney 2014). Notably,
the skewness and kurtosis factors provide useful information on the asymmetry and
intermittency of the sound field (Ffowcs Williams et al. 1975; Mora et al. 2014;
Fiévet et al. 2016). Their values, computed at r= 8r0 and at t= tp+ 12r0/a∞ for the
pressure and dilatation fields, are reported in table 1. For both jets, the skewness and
kurtosis factors of the pressure fluctuations are significantly higher than the values 0
and 3 expected for a Gaussian distribution, as observed in jets emitting crackle noise.
In addition, the skewness factor of the dilatation is negative, while its kurtosis factor
takes large, positive values, revealing the intermittent presence of strong, shock-like
compressions in the signals. As expected, the present indicators are stronger, in
absolute value, at Mach 3 than at Mach 2, which shows that the waves generated
by the jets are steeper, more positively skewed and more intermittent at the highest
Mach number.

In order to explore the structure of the sound field from a more quantitative
perspective, axial and azimuthal power spectral densities of pressure fluctuations
obtained at r= 8r0 at t= tp+ 12r0/a∞ are shown in figure 9. They are normalised by
p∞M3

j , following the assumption that sound intensity varies with the third power of
the jet speed. In figure 9(a), the spectra are plotted as a function of kzδθ(tp), where
δθ(tp) is the shear-layer momentum thickness at time tp, and is equal to 0.09r0 for
Mj = 2, and to = 0.18r0 for Mj = 3. This choice is motivated by the expectation that
the dominant wavelength in the pressure field should scale according to the shear-layer
thickness at time of peak noise emission, arbitrarily estimated as t= tp. The reasonably
good collapse of the spectra confirms this assumption. In particular, they both peak
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FIGURE 9. Pressure fluctuation spectra at t = tp + 12r0/a∞ normalised by p∞M3
j as a

function of (a) axial wavenumber and (b) azimuthal mode number for —— Mj = 2 and
- - - - Mj = 3.

for a wavenumber kzδθ(tp)' 0.2, yielding acoustic wavelengths of approximately 2.8r0
for Mj = 2 and 5.7r0 for Mj = 3. The collapse is however less obvious at low and
high wavenumbers, where the pressure levels are higher for Mj = 3 than for Mj = 2.
In the high-wavenumber range, this excess is due to the presence of more shock-like
structures in the jet near field, as indicated by the skewness and kurtosis factors in
table 1. Indeed, the sharp compressions associated with these structures are expected
to cause an increase of the energy contained in high-wavenumber components. In
the low-wavenumber range, the discrepancy is likely to be due to the presence of
low-frequency, hydrodynamic components whose spectra are not expected to scale
according to M3

j (Arndt, Long & Glauser 1997).
The pressure power spectral densities are also plotted as a function of the azimuthal

mode number in figure 9(b). In all cases, the dominant azimuthal mode number is
the axisymmetric one, and the energy decay is rapid at higher mode numbers. In
particular, 87 % of the total sound intensity radiated by the Mach 2 jet is contained
within the azimuthal modes of order 0 to 4 whereas 82 % of the total intensity is
contained within these modes for the Mach 3 jet. The results are in agreement with
experimental (Troutt & McLaughlin 1982) and numerical (de Cacqueray et al. 2011;
Sinha et al. 2014) studies of spatially developing supersonic jets, where low-order
azimuthal modes are prevalent in the noise radiated in the downstream direction.

3.2.2. Azimuthal structure of the steepened waves
In order to illustrate the main features of the steepened waves radiated by the

jets, the pressure fluctuations obtained at r = 8r0 at t = tp + 12r0/a∞ are provided
in figure 10. Two steepened, shock-like waves are clearly visible at z= 223.6r0 and
z = 226r0. Their shapes are typical of the structures observed near jets radiating
crackle noise. In particular, a rapid compression phase yields to a strong positive
pressure peak and it is followed by a gradual expansion having a much wider extent
than the initial compression, spanning approximately over 2r0. The pressure profiles
reconstructed from all of the Nth first azimuthal modes, with N ranging from 0 to
4 are also plotted in figure 10. Rapid compressions are not found in the waveforms
obtained for N = 0, when only the axisymmetric mode is considered. Rather, the
compressions associated with the shocks are progressively unveilled as more modes
are included in the reconstruction of the pressure field. In particular, for N = 4,
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FIGURE 10. Profiles of pressure fluctuations at r = 8r0 at t = tp + 12r0/a∞ for Mj = 2;
partial sum of the azimuthal modes from mode 0 to mode N, with —— N=0, - - - - N=1,
— · — N = 2, · · · · · · N = 3 and —— (grey) N = 4 and —— full signal.
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FIGURE 11. Pressure fluctuation spectra at r= 8r0 at t= tp+ 12r0/a∞ for (a) Mj= 2 and
(b) Mj= 3; partial sum of the azimuthal modes from mode 0 to mode N, with - - - - N= 0,
— · — N = 1 and · · · · · · N = 4 and —— full signal.

all of the most important features of the full field are present, including the sharp
compression waves.

The power spectral densities of the signals reconstructed from the Nth first
azimuthal modes are plotted for N= 0, 1 and 4 in figure 11, as a function of the axial
wavenumber. For the two jets, the spectra for N = 0 closely match those for the full
fields at very low wavenumbers but significantly differ for kzr0 > 0.1. For instance, for
Mj = 2, the axisymmetric mode contains more than 95 % of the total sound intensity
for kzδθ = 0.1, but only 10 % for kzδθ = 0.5. The agreement between the reconstructed
and full pressure fields is satisfactory over a wider range of wavenumbers as more
modes are included in the reconstruction. For N = 4, the spectra obtained for the
reconstructed field closely match those for the full field up to kzδθ(tp)' 0.6 although
significant differences persist in the high-wavenumber range, for kzδθ(tp) > 1 for
instance. However, based on the analysis of the waveforms in figure 10, the missing,
high-wavenumber components associated with modes higher than 4 are not expected
to significantly change the structure of steepened waves, whose most peculiar features
are associated with low-order modes. For that reason, the following study of their
generation process is limited to the azimuthal reconstruction of the flow and sound
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FIGURE 12. Axial profiles of the conditionally averaged pressure at t= ttrig and r = rtrig
for (a) Mj = 2 and (b) Mj = 3; azimuthal modes —— n= 0, - - - - n= 1, — · — n= 2,
· · · · · · n= 3 and —— (grey) n= 4.

fields with N = 4. This should facilitate the analysis by filtering out the contribution
of these high-order azimuthal modes.

3.3. Mechanisms at the origin of the steepened waves
3.3.1. Conditional averages of the wave generation process

In order to investigate the mechanisms leading to the generation of steepened
waves, a conditional averaging procedure is applied to the flow and sound fields of
the jets. This technique consists in synchronising several flow events over a detection
criterion, before performing an ensemble average such that only recurrent, generic
features remain (Antonia 1981). When the trigger condition is related to the acoustic
pressure field, conditional averages constitute a powerful tool for the study of sound
generation mechanisms since they allow flow events associated with noise production
to be described (Mercier, Castelain & Bailly 2018; Bogey 2019; Schmidt & Schmid
2019). In the present study, the conditional averages are triggered by the detection of
extreme maxima of pressure fluctuations at a distance rtrig = 4.5r0 from the jet axis,
in the very near acoustic field. This location has been empirically chosen to be far
enough from the flow that acoustic disturbances are dominant in the pressure field
but close enough that nonlinear propagation effects have only a weak impact on the
acoustic waves. The profiles of pressure fluctuations obtained at time ttrig= tp+6r0/a∞,
close to the time of peak pressure levels at r= rtrig, are binned in intervals of length
30δθ(tp) in the axial direction, corresponding to an axial wavenumber kzδθ(tp) ' 0.2,
close to the peak of the spectra in figure 9. For each interval, the pressure maximum
is determined, and the flow and sound fields are synchronised according to the axial
and azimuthal coordinates of peak pressure, labelled ztrig and θtrig, and ensemble
averaged.

The conditional averaging procedure is first applied to individual azimuthal modes
of the pressure field, as in the study of Schmidt & Schmid (2019). For the two jets,
the axial variations of the waveforms obtained at t = ttrig and r = rtrig are shown in
figure 12 for the first five azimuthal modes. The signals are normalised by M3/2

j and
plotted as a function of (z− ztrig)/δθ(tp), using the same length scale reference as for
the spectra in figure 9. For the two jets, and for all mode numbers, the conditionally
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FIGURE 13. Axial profiles of the conditionally averaged pressure in the plane θ = θtrig
at t = ttrig and r = rtrig for (a) Mj = 2 and (b) Mj = 3; partial sum up to order N with
—— N = 0, - - - - N = 1, — · — N = 2, · · · · · · N = 3 and —— (grey) N = 4.

averaged pressure fluctuations are maximum for z = ztrig, as expected given the
synchronisation condition. Moreover, they remain positive over a distance which
shortens with the mode number, and equal to approximately ten times the shear-layer
momentum thickness. It is noteworthy that none of the waveforms exhibits sharp
compressions such as those in the signals reconstructed from the first five modes in
figure 10. Instead, the conditional pressure fluctuations obtained for all mode numbers
are symmetric with respect to the trigger position ztrig. This shows that steepened
waves are not associated with one particular azimuthal mode of the pressure field, and
suggests that several modes need to be superposed in order to recover their specific
features.

On the basis of the above finding, the conditional averaging procedure is now
applied to the pressure field reconstructed from all of the azimuthal modes of order
ranging from n = 0 to 4. They are computed from 142 and 110 shock events for
the jets at Mach 2 and 3, respectively, and this number is shown in appendix B to
be sufficient to obtain converged statistics. The axial variations of the conditional
waveforms at rtrig and ttrig are provided in figure 13 for the two Mach numbers, using
the same normalisation as in figure 12. The partial sum of the azimuthal modes up
to the order N is also represented for 06N 6 4, in order to highlight the contribution
of the different modes. The steepened, asymmetric shape of the waveforms is clearly
visible in the present conditional averages, and it is more pronounced as more
azimuthal modes are included. Notably, the sharp compression and smooth expansion
are observed for N = 4, confirming that only five modes are sufficient to recover the
main features of the steepened shock-like waves. The peak of the conditional pressure
does not scale according to the third power of the jet velocity, as the normalised
pressure maximum is equal to 0.02 for Mj = 2 and to 0.03 for Mj = 3. This suggests
that the conditional averages are computed from more extreme events at Mj = 3 than
at Mj= 2, which is consistent with the higher skewness and kurtosis obtained for the
former Mach number.

The azimuthal structure of the waves is illustrated in figure 14, where the
conditional waveforms reconstructed from N = 4 for the jet at Mj = 2 are represented
in the planes θ = θtrig, θtrig+π/6, θtrig+π/3 and θtrig+π/2. As expected, the pressure
is strongest in the detection plane at θtrig, but rapidly decreases with increasing
azimuthal angle, so that the levels obtained for θ = θtrig + π/2 are more than ten
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FIGURE 14. Conditionally averaged pressure at r= rtrig and t= ttrig for Mj= 2 represented
in the plane —— θ = θtrig, - - - - θtrig +π/6, — · — θtrig +π/3 and · · · · · · θtrig +π/2.

times lower than the maximum pressure. The waveforms are also smoother at a
higher azimuthal angle, which indicates that the sharp compressions associated with
the waves are localised over a narrow azimuthal extent centred around the detection
angle θtrig.

Conditional averages in the detection plane θ = θtrig are also computed at times
t < ttrig to provide a chronological description of the events leading to the formation
of the steepened waves. Two-dimensional plane views of the conditional pressure and
radial velocity fields are shown in figure 15 at times t = tp + 1.5r0/a∞, tp + 3r0/a∞,
tp + 4.5r0/a∞ and tp + 6r0/a∞; see also the corresponding movies movie_fig15a and
movie_fig15b. The sonic line, defined as uz = a∞, is also represented to highlight the
upper limit of the jet supersonic core. The conditional flow and sound fields obtained
for the two Mach numbers are very similar. At tp + 1.5r0/a∞, a straight, inclined
pressure wave emerges from the jet, upstream of z = ztrig. It consists of a positive
peak surrounded by two bands of negative levels, and its shape reminds us that of
wavepacket disturbances extracted from simulations of spatial supersonic jets by Sinha
et al. (2014), for instance. Inside the jet flow, the inner tip of this pressure disturbance
is directly connected to a large-scale perturbation of the radial velocity, located in the
inner, supersonic core of the jet. A slight indentation of the sonic line is associated
with this disturbance. At tp+ 3r0/a∞, the inner tip of the wave remains connected to
the velocity disturbance, which is still located in the supersonic side of the jet, but
downstream from its initial position. Finally, for tp + 4.5r0/a∞ and tp + 6r0/a∞, the
wave separates from the flow and propagates in the downstream direction.

The inclination angle αcond of the waves can be estimated from the orientation of the
pressure gradient, computed at the location of minimum dilatation. At time ttrig, this
yields αcond= 46◦ for Mj= 2 and 53◦ for Mj= 3. Thus, the acoustic waves radiated by
the jet at Mj= 3 are more inclined than at Mj= 2, which can be related to the higher
convection speed in the latter case. This speed can be estimated from the relation

uc =
a∞

cos αcond
, (3.1)

leading to uc = 1.5a∞ for Mj = 2 and 1.7a∞, for Mj = 3. These values can be
compared with those obtained from the axial position of the minimum of radial
velocity in the lower, high-speed part of the jet. This position, shown in figure 16
varies approximately linearly, indicating a nearly constant convection speed, close
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FIGURE 15. (Colour online) Conditionally averaged pressure and radial velocity
fluctuations for (a) Mj = 2 and (b) Mj = 3 at times (i) tp + 1.5r0/a∞, (ii) tp + 3r0/a∞,
(iii) tp + 4.5r0/a∞ and (iv) tp + 6r0/a∞. The dashed line indicates the sonic line and the
colour scales range from −0.03p∞M3/2

j to 0.03p∞M3/2
j for the pressure and up to 0.1uj

for the radial velocity, from blue to red.

to uc = 0.7uj = 1.4a∞ for Mj = 2 and to 0.55uj = 1.65a∞ for Mj = 3, which are in
good agreement with those estimated from the wavefront inclinations. This strongly
suggests that the waves in the conditional averages are Mach waves produced by
the flow large-scale coherent structures. This is further supported by the variations
of the location of peak conditional pressure, also represented in figure 16. This
location is indeed very similar to that of the minimum of radial velocity from tp to
tp + 3r0/a∞, i.e. when the pressure wave is attached to the flow disturbance. This is
not true for t > tp + 4r0/a∞, when the wave separates from the flow disturbance and
propagates away from the jet. During that time, the position of the peak pressure still
increases linearly, but at a speed close to the value of a∞ cos αcond obtained assuming
a propagation in the direction predicted from (3.1).

The present conditional averages thus show a direct link between the formation of
steepened waves and the supersonic convection of large-scale flow disturbances located
inside the jets. These flow disturbances have supersonic convection speeds, persist over
significant length and time scales, and bear some resemblance to large-scale coherent
structures extracted in jets at lower speed (Yule 1978; Bogey 2019). This provides
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FIGURE 16. Time evolution of the axial positions of —— minimum radial velocity and
- - - - maximum pressure in the plane at θ = θtrig for (a) Mj = 2 and (b) Mj = 3.

evidence that steepened waves generated by supersonic jets are a particular, nonlinear
case of Mach wave radiations by coherent structures, as proposed in previous studies
(Nichols et al. 2013a; Murray & Lyons 2016; Buchta & Freund 2017). Given their
nonlinear nature, steepened waves only appear when several azimuthal modes are
simultaneously considered and thus cannot be related to one particular, azimuthal
mode.

3.3.2. Flow events at the origin of the steepened waves
The connection between the steepened waves and the flow disturbances is further

explored in order to determine what particular aspect of the flow structures causes
Mach waves to steepen near the source. To this end, the conditional averaged
fields constitute a useful tool since they provide an idealised, generic view of the
coherent structures connected with the waves. The conditionally averaged pressure
field obtained for the jet at Mj = 2 is displayed in figure 17 at tp + 2r0/a∞, close
to the time when the steepened waves are generated; see also the corresponding
movie available online at journals.cambridge.org/flm/figure17. The flow field is also
represented as a vector field showing the direction and magnitude of the conditionally
averaged velocity fluctuations. At the lower tip of the wave, a vortical structure
associated with a pressure deficit is visible below the sonic line and can be interpreted
as the trace of coherent structures in the shear layers. Upstream of this structure, a
stagnation point with a pressure excess is also found past the coherent vortex. When
convected by the jet flow, this velocity perturbation acts upon the surrounding medium
as a wavy wall travelling at a supersonic speed (Ribner 1969). In most models of
Mach wave radiation (Tam & Burton 1984b; Sinha et al. 2014), it is assumed that
the relation between the flow disturbance and the Mach wave is linear, and shock
formation is thus prohibited. However, this linear assumption will not hold if the flow
perturbation is strong enough. In such a case, nonlinear effects could result in the
formation of steepened, positively skewed Mach waves as observed, for instance, by
Buchta & Freund (2019) who solved the nonlinear Euler equations for a supersonic
flow over a wavy wall.

Determining at what point a flow perturbation is strong enough for wave steepening
to occur is not straightforward. Indeed, there is no obvious way to define a strength
parameter for flow perturbations such as the ones revealed in the conditional averages,

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

co
le

 C
en

tr
al

e 
de

 L
yo

n,
 o

n 
10

 O
ct

 2
01

9 
at

 1
2:

00
:4

3,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

72
9

http://journals.cambridge.org/flm/figure17
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.729


612 P. Pineau and C. Bogey

-6 -4 -2 0 2

2

1

0

(z - ztrig)/r0

r/
r 0

FIGURE 17. (Colour online) Conditionally averaged pressure and velocity at t = tp +

2r0/a∞ for Mj=2. The pressure fluctuations are represented in colour, the arrows represent
the velocity fluctuations and the dashed line indicates the sonic line. The colour scale for
the pressure ranges from −0.1p∞ to 0.1p∞, from blue to red.
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FIGURE 18. Radial position of the sonic line at t = tp + 2r0/a∞ for (a) Mj = 2 and
(b) Mj = 3 and (c) time variations of the aspect ratio hs/ws of the sonic-line disturbance
for —— Mj = 2 and - - - - Mj = 3.

which are more complex than a wavy wall. One possibility is to consider the
displacement of the sonic line induced by the large-scale vortex. This is motivated by
the fact that the sonic line is close to the location r= r0 of maximum Reynolds stress,
so that the amplitude of its displacement is related to that of the velocity fluctuations
induced by the coherent structures. Moreover, since the sonic line delimitates the
flow region with supersonic speed with respect to the ambient medium, the flow
perturbations below this line are expected to be efficient sound generators. The radial
position of the sonic line is represented in figure 18(a,b) as a function of the axial
coordinate for the two jets. In both cases, it has a wavy shape, and shows a peak
and a trough located upstream and downstream from the pressure wave, respectively.
The height hs of the structure is defined as the difference between the extreme radial
positions of the sonic line, whereas its width ws is given by the difference between
the locations of the peak and trough, as illustrated in figure 18(a).

The aspect ratio of the sonic-line disturbance, defined as hs/ws, is introduced as a
strength parameter for the structures correlated with the waves. Indeed, following Tam
& Hu (1989), the amplitude of the acoustic pressure wave produced by a sinusoidal
wavy wall moving at a supersonic speed is proportional to the product εkz, where ε
and kz are the amplitude and wavenumber of the wavy-wall disturbance, respectively.
Thus, assuming for the present flow that the amplitude and axial wavenumber of the
wavy wall are such that ε=hs and kz=2π/ws, coherent structures with a higher aspect
ratio are expected to cause a stronger deviation of the surrounding flow, leading to
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FIGURE 19. Representation of (a) the peak conditional pressure at r = rtrig and (b) the
steepness parameter −Θmin/Θmax as a function of the aspect ratio of the sonic-line
disturbance at t= tp + 2r0/a∞ forE Mj = 2 and@ Mj = 3.

the production of more intense and steeper Mach waves. The ratio hs/ws obtained
for the two jets is plotted as a function of time in figure 18(c). It is close to 0 at
t= tp− 2r0/a∞, and rapidly increases until it reaches a peak at t' tp+ 2r0/a∞, which
is near the time when the pressure wave is generated. Moreover, the peak value is
stronger for Mj = 3, than for Mj = 2, as it is equal to 0.2 and 0.1, respectively.

The relationship between the aspect ratio of the flow disturbances and the steepened
waves is finally investigated. To this end, the detected pressure events are sorted for
each jet according to the value of the positive pressure peak at r = rtrig and t = ttrig

and split into different groups of equal size depending on the value of their pressure
maxima. Three such groups are defined for the Mach 2 jet, so that the pressure peaks
are compared against the first and second tercile of their distribution. For Mj= 3, only
two groups are considered, so that the pressure peaks are compared with the median
of the distribution. Indeed, fewer shock events are available in that case with respect
to Mj= 2, due to the lower number of simulated runs. The number of groups is thus
lower in order to maintain a number of events that is statistically significant.

The conditional averages are computed separately for the different groups following
the same procedure as previously. In particular, the mean pressure maximum computed
for all groups at r = rtrig and t = ttrig is plotted in figure 19(a) as a function of the
aspect ratio of the sonic-line displacement, computed at t = tp + 2r0/a∞. A linear
variation is obtained, showing a direct correlation between the strength of the pressure
waves and the aspect ratio of the coherent structures which produce them. This
relation is consistent with the assumption that the coherent structures extracted by
the conditional averaging procedure produce sound by acting upon the surrounding
medium as a supersonically moving wavy wall. This result also confirms that the
aspect ratio of the structures, as defined from the sonic-line displacement, provides a
simple yet relevant way to assess the tendency of flow structures to produce strong
Mach waves.

The effects of the aspect ratio of the structures on the steepened aspect of the
waves is finally assessed by considering a wave steepening parameter defined as
−Θmin/Θmax, where Θmin and Θmax are the minimum and maximum of the conditional
dilatation computed at r = rtrig and t = ttrig. The steepening parameter is plotted in
figure 19(b) as a function of the structure aspect ratios. It is higher than 1 in all
cases, indicating that the compressions in the conditional averages are steeper than
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the associated expansions. More importantly, the steepening parameter increases with
the aspect ratio of the sonic-line disturbance, thus showing that Mach waves are not
only stronger for higher values of this parameter, but that they are also steeper.

4. Conclusion

In the present paper, the azimuthal structure and generation process of steepened
acoustic waves by supersonic axisymmetric shear flows are investigated by performing
large eddy simulations of temporal round jets. Two isothermal jets at Mach numbers
of 2 and 3 and at a diameter-based Reynolds numbers of 12 500 are simulated,
and their initial development is validated against linear stability. In particular, the
most amplified wavenumbers and azimuthal modes compare favourably with those
predicted from temporal stability analysis. In addition, the Mach 3 jet spreads more
slowly than the Mach 2 jet and contains stronger low-wavenumber components. After
their transition from a laminar to a turbulent state, the two jets radiate intense Mach
waves with a shock-like, steepened aspect, such as those observed near supersonic
jets radiating crackle noise. This is reflected in the high values of the skewness and
kurtosis factors of the pressure and dilatation computed close to the jets, which show
a strong asymmetry and intermittency of the near field. As for spatially developing
jets at similar Mach numbers, the sound fields of the jets are dominated by low-order
azimuthal modes, which are investigated separately by reconstructing the pressure field
from its first, low-order Fourier components. No steepened waves are observed in the
axisymmetric mode, but steeper wavefronts progressively arise as more than one mode
are involved. This is explained by the observation that low-wavenumber components
in the pressure spectra are mostly associated with low-order mode numbers, whereas
high-wavenumber components are essentially supported by high-order modes. Despite
this, the shape of the steepened waves is clearly recovered when as low as five modes
are considered, which highlights their strong azimuthal correlation.

The generation process of the waves is then investigated by applying a conditional
averaging procedure. No steepened waves are present in the averages when the
procedure is applied to only one azimuthal mode, highlighting their nonlinear nature.
Therefore, the conditional averaging procedure is then applied to the pressure field
reconstructed from all of the first five modes. In that case, the distinctive shape of
the waves is recovered over a relatively narrow extent of the jet circumference. The
conditional averages are also used to describe the generation process of steepened
waves by synchronising and ensemble averaging the flow fields at times preceding
the detection of the pressure peaks. These averages show a direct link between
the formation of steepened waves and the supersonic motion of large-scale flow
disturbances which are located in the inner, supersonic core of the jets and persist
over significant length and time scales. When they are convected downstream by the
jet, these structures act upon the surrounding medium as a supersonic wavy wall,
causing the formation of intense Mach waves presenting a steepened aspect over a
limited azimuthal portion of the jet circumference. Finally, the strength and steepness
of the waves are directly related to the shape of the structures which generate them,
and more particularly to their aspect ratio, defined as the ratio between their radial
and axial extents. Indeed, the structures which extend deep into the jet flow, such
as those in the shear layers of the Mach 2 jet, cause a stronger deviation of the
surrounding flow field than structures which are elongated in the flow direction, thus
leading to the formation of steeper Mach waves. This result is consistent with the
observation that passive noise reduction devices such as chevron or nozzle inserts,
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which alter the shape of the large-scale structures near the nozzle, can reduce the
crackling behaviour of supersonic jets (Martens, Spyropoulos & Nagel 2011; Murray
& Lyons 2016).
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Appendix A. Influence of the initial excitation
In this first appendix, the influence of the amplitude of the initial excitation

procedure on the early development of instability waves is examined. To this end,
three simulations are carried out for the jet at Mj = 2 by considering different values
for the amplitude αexc of the initial excitation. The first simulation has αexc = 0.04,
which is the value used for the simulations presented in the present paper. The
amplitude of the excitation used in the two other simulations is lower with respect
to the reference case, as αexc = 0.01 and 0.0025. The power spectral densities of
the axial velocity fluctuations obtained at r = r0 and t = 5r0/uj, in the early, laminar
phase of the jet development, are represented in figure 20(a) as a function of the axial
wavenumber, and in figure 20(b) as a function of the azimuthal mode number. As
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FIGURE 20. Power spectrum densities of the axial velocity fluctuations for the jet at Mj=

2 at r= r0 and t= 5r0/uj as a function of (a) the axial wavenumber and (b) the azimuthal
mode number, and for three values of the excitation strength parameter αexc: —— αexc =

0.04, - - - - αexc= 0.01 and — · — αexc= 0.0025. The triangles indicate the most amplified
wavenumbers and mode numbers at t= 0.
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FIGURE 21. Representation for Mj = 2 of (a) the conditional pressure fluctuations at r=
8r0 and t = ttrig and (b) the radial velocity fluctuations at r = 0.5r0 and t = tp + 2r0/a∞,
computed using —— N0, - - - - N0/2, — · — N0/4 and · · · · · · N0/8 events.

expected, the spectra display higher levels for higher values of the initial excitation.
Nevertheless, the spectra in figure 20(a) all share the same shape, with a distinctive
hump centred around the wavenumber kzr0 = 4. This wavenumber does not seem
to depend on the amplitude of the excitation, and is close to the value kzr0 = 5.15
predicted from the linear stability analysis of the initial profiles of § 2. Likewise, in
figure 20(b), the azimuthal spectra obtained for the different amplitudes of the initial
excitation also have a similar shape, with peak value reached for the mode n = 7
for αexc = 0.04, and n = 6 for αexc = 0.01 and 0.0025 which is also near the most
amplified mode n= 7 estimated by the stability analysis. Thus, the initial development
of the jets is consistent with the temporal linear analysis, regardless of the amplitude
of the initial excitation.

Appendix B. Convergence of the conditional averages

The convergence of the conditional averages presented in § 3.3 is investigated for
Mj = 2 by varying the number of events involved in their computations. To this end,
the averages are computed using N0, N0/2, N0/4 and N0/8 events, where N0= 142 is
the number of events used in § 3.3. The axial variations of the pressure fluctuations
obtained at r = 8r0 and t = ttrig are plotted in figure 21(a). The signals obtained for
N0/8 events exhibit more noise than the others, suggesting that they are not fully
converged. However, the averages computed for N0/4 and N0/2 do not significantly
differ from those obtained from the full sample, indicating that using N0 events is
sufficient in order to obtain statistically converged pressure profiles. The conditional
radial velocity fluctuations obtained at r = 0.5r0 and t = tp + 2r0/a∞ are also plotted
in figure 21(b) in order to show the convergence of the flow features correlated with
the pressure events. The results are very similar when the number of events is greater
than N0/4. Thus, the number of events used in § 3.3 is sufficiently large to obtain
converged conditionally averaged fields.
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