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a b s t r a c t

An analytical model of the broadband noise produced by both the interaction of

ingested turbulence with a fan rotor blades and the rotor-wake impingement on

downstream stator vanes is proposed and detailed. The noise prediction methodology is

a strip-theory approach based on a previously published formulation of the three-

cascade response applied in each strip combined with an acoustic analogy in an annular

duct have been chosen to account for the main three-dimensional effects. To further

improve some of the identified limitations of this approach, a correction is added to

mitigate the effects of the non-coincidence of the cut-on frequencies of the annular duct

modes and of the modes of the rectilinear cascade. A correction of the unsteady blade

loading formulation, previously developed in a tonal configuration, is also introduced to

account for the dispersion relation of annular duct modes in the rectilinear-cascade

model. The model is compared with experimental results of the 22-in source diagnostic

test (SDT) fan rig of the NASA Glenn Research Center. A numerical assessment of the

simplifications proposed in the model and of the convergence of the truncated sums in

spanwise wavenumbers and azimuthal orders of the incident perturbation is carried

out. The subcritical gusts are shown to have a crucial effect at low frequencies, whereas

they become negligible at higher frequencies. Furthermore, alternative high-frequency

formulations lead to a satisfactory accuracy above a Helmholtz number based on the

duct radius of 20. The strong reduction in computational time associated with these

formulations could justify their use for parametric studies in industrial context. The

effect of the turbulence model is also investigated showing the relevance of Liepmann’s

isotropic model in the SDT case, and a possible strong effect of anisotropy in static tests.

Finally, the model is compared with NASA’s experimental results for two outlet guide

vanes at approach condition, showing a very good agreement upstream, whereas an

underestimate of 3–5 dB is observed downstream in the middle frequency range.
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Nomenclature

Latin characters

BR number of rotor blades
BS number of stator vanes
c blade chord length in cascade reference

frame (m)
cd ¼ c=cos jI blade chord length at constant radius (m)
c0 speed of sound (m s�1)
d chordwise non-overlap length (stagger dis-

tance) in the cascade reference frame Rc (m)
E½�� expected value of the enclosed quantity
Em,m duct eigenfunction of the mode ðm,mÞ
exd

unit vector in the axial direction of the duct
f frequency (Hz)
gI inter-blade distance in the duct azimuthal

direction (m)
Gdðxd,t9xd0,t0Þ Green’s function tailored to the annular

duct in uniform axial mean flow Uxd
for a

source in xd0 at time t0 and a receiver in xd at
time t.

h inter-blade distance normal to the blades in
the cascade reference frame Rc (m)

HðnÞm ðxÞ Hankel function of kind n of order m

HðnÞ0m ðxÞ Hankel function of kind n of order m derivative
j current index of the blades
Jm(x), Ym(x) Bessel function of first and second kind of

order m

k0 ¼o=c0 acoustic wavenumber (m�1)
k7

xd ,mm axial wavenumber of the duct mode ðm,mÞ in
the duct reference frame (m�1)

k7
xcd ,mmðrÞ axial wavenumber of the duct mode ðm,mÞ in

the cascade reference frame, Rcd, before the
rotation of sweep angle (m�1)

Kc ¼ ðkxc ,kyc ,kzc Þ current wavenumber vector in the cas-
cade coordinate system Rc (m�1)

Kc0 ¼ ðkxc0
,kyc0

,kzc0
Þ wavenumber vector of the incident

gust in the cascade coordinate system Rc

(m�1)
KI current wavenumber vector in the reference

frame RI (m�1)
ðkxI

,kzI0
Þ current axial and radial wavenumber in the

reference frame RI (m�1)
KI0 wavenumber vector of the incident gust in the

reference frame RI , (I¼ R or S) (m�1)
ðkxI0

,kzI0
Þ axial and radial wavenumber of the incident

gust in the reference frame RI (m�1)
la, lt integral length scales of turbulence in the

direction k and in its normal plane (m)
Lr distance such that Sðj,j0ÞFF,cdðxcd,r,o; x0cd,r0,oÞ-0

when 9r�r094Lr and that the cascade geome-
try and the flow properties can be considered
unchanged over lr ¼ 2Lr (m)

lr radial correlation length of the unsteady blade
loading, assimilated to the radial correlation
length of the incident, locally homogeneous
turbulence (m)

Lw width of the wakes

M¼Uc=c0 chordwise Mach number in the cascade
reference frame Rc

Mxd
¼Uxd

=c0 duct axial Mach number
m azimuthal order of an acoustic duct mode
mg azimuthal order of the incident gust
n unit outward-normal vector
p7 ðxd,tÞ acoustic pressure at point xd, at time t (Pa)
ps, pp pressure on suction and pressure side of a

blade respectively (Pa)
P7

m,mðoÞ pressure amplitude of the duct mode ðm,mÞ
P0 mean fluid pressure (Pa)
Q �wc,I transformation matrix from duct RI to cascade

reference frame Rcd

Q �wcj,I transformation matrix from duct RI to cascade
reference frame Rc

Q inv,I ¼Q�1
�wcj,I inverse transformation matrix from Rc

to RI

qI qI ¼Q �wcj,Ið2, :Þ ¼ ð�sin �wI cos cI , cos �wIcos cI ,�
sincIÞ

r current radius (m)
Rc reference frame linked to the rectilinear cas-

cade at a radius r after rotation of the sweep
angle jI

Rcd reference frame linked to the rectilinear cas-
cade at a radius r before rotation of the sweep
angle jI

Rd fixed frame of reference linked to the duct
Reð�Þ real part
Rf frame of reference linked to the mean flow
RH duct hub radius (m)
RI relative frame of reference linked to the annu-

lar blade row rotating at the angular velocity
OI

Rnn,i cross-correlation function of the non-dimen-
sional upwash velocity wi

RT duct tip radius (m)
s distance between two adjacent leading-edges

in the cascade reference frame Rc (m)
Sðj,j0ÞFF,cdðxcd,r,o; x0cd,r0,oÞ cross-spectrum of the unsteady

blade loadings at point M ðxcd,rÞ on blade j

and at point M0 ðx0cd,r0Þ on blade j0 at angular
frequencies o and o0

SppðoÞ acoustic power spectral density (dB Hz�1)
t time (s)
T0 mean static fluid temperature (K)
T uðrÞ ¼ urmsðrÞ=Uxd

ðrÞ local turbulent intensity at radius
r

uðxd,tÞ fluctuating velocity vector (m s�1)
U¼ Uxd

,Ur ,Uy
� �

mean velocity vector in the reference
frame RI (m s�1)

ua, ut values of the root mean square (r.m.s.) velocity
components in the direction k and in its nor-
mal plane (m s�1)

ðUc ,0,WcÞ mean velocity components in the cascade
coordinate system (m s�1)

Uxd
ðrÞ circumferentially averaged mean axial velocity

at radius r (m s�1)
U0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

c þW2
c

p
mean flow speed (with zero angle of

attack) (m s�1)
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Uxd
mean axial velocity (area-averaged) (m s�1)

Uy mean tangential velocity (m s�1)
wðxd,tÞ blade upwash velocity in the duct fixed-refer-

ence frame (m s�1)
�wiðxdÞ upwash velocity component of the incident

gust in the frame of reference Rf (m s�1)
wið �xd,R9�rÞ stochastic non-dimensional upwash velocity

(wið �xd,R9�rÞ ¼ �wiðxd,RÞ=wrms,ið�rÞ)
wrms,i upwash r.m.s. velocity (m s�1)
�x ¼ x=la quickly varying coordinates to describe the

local homogeneity of the turbulence around a
radius (m)

�x ¼ x=RT slowly varying coordinates to express the slow
variation of the turbulence characteristics and
of the geometry from one strip to a neighbor-
ing one (m)

ðxc ,yc ,zcÞ Cartesian coordinates in the cascade reference
frame Rc (origin Oc), zc spanwise (m)

ðxcd,ycd,zcdÞ Cartesian coordinates in the cascade refer-
ence frame Rcd (origin Ocd) before rotation of
the sweep angle jI , zcd along the radius (m)

ðxd,yd,zdÞ Cartesian coordinates in the absolute duct
reference Rd (origin Od) (m)

ðxd,rd,ydÞ cylindrical coordinates in the absolute duct
reference Rd (origin Od) (m)

ðxI ,yI ,zIÞ Cartesian coordinates in the duct reference
frame rotating with the blade row I, RI (origin
OI) (m)

ðxI ,rI ,yIÞ cylindrical coordinates in the duct reference
frame rotating with the blade row RI (m)

xLE,I axial coordinate of the leading edge taken to be
0 in r¼ RH (m)

yLE,I tangential coordinate of the leading edge taken
to be 0 in r¼ RH (m)

Greek characters

b¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2
p

compressibility parameter relative to the
chordwise mean velocity Uc

bxd
compressibility parameter for axial mean flow

bw compressibility parameter relative to the span-
wise mean velocity Wc

Gm,m squared norm of the duct eigenfunction Em,m
(m2)

di,j Kronecker symbol equal to 1 if i¼ j, else
equal to 0

Dpcðxc ,zc ,tÞ unsteady blade loading on the blade 0 at the
radius r in the cascade reference frame Rc (Pa)

DbPc,0ðxc ,o9�rÞ pressure jump made non-dimensional by
r0c0w0 produced by a gust of amplitude w0,
and parameters s, kzc0

and o, on the rectilinear
cascade defined at radius r

DbPcd,jðxcd, �r ,oexÞ pressure jump at the radius r, on the
blade j, for a chordwise position xcd in Rcd at
the angular frequency of the incident excita-
tion oex (Pa Hz�1)

W deterministic envelope of the rotor wakes
k direction of symmetry of the axisymmetric

turbulence model

L turbulence integral length scale for an isotropic
turbulence model (la ¼ lt ¼L) (m)

m radial order of an acoustic duct mode
r0 mean fluid density (kg m�3)
s inter-blade phase angle (s¼ kxc0

dþkyc0
h¼

�2pmg=BI)
f acoustic potential (m2 s�1)
Fww,i PSD of the fluctuating upwash velocity divided

by w2
rms,i, i.e. PSD of wi (m3)

~Fww,i PSD of the fluctuating upwash velocity
(m5 s�2)bFwwðkxc ,kzc Þ two-dimensional spectrum of the non-
dimensional upwash velocity (m2)

�FwwðoÞ PSD of the non-dimensional upwash
velocity (s)

jI sweep angle after stagger and lean angle (rad)
�jI sweep angle in the duct reference frame (rad)
�wI stagger angle in the duct reference frame of the

cascade (rad)
w¼ arctan d=h rectilinear-cascade stagger angle (rad)
wm,m eigenvalue of the mode ðm,mÞ (m�1)
cI stator lean angle after stagger angle (rad)
�cI stator lean angle in the duct reference

frame (rad)
Cm,mð�r ,ydÞe

ik7
xd ,mmxd duct eigenmodes (Cm,mð�r ,ydÞ ¼ Em,

mð�rÞeimyd )
OI cascade angular speed (rad s�1)
oex incident angular frequency (rad s�1)
o angular frequency (rad s�1)
og ¼oex�kzc0

W modified angular frequency (rad s�1)

Subscripts

b relative to the ingested turbulence interacting
with the rotor or to the background turbulence
interacting with the stator

I I� R (relative to the rotor) or S (relative to the
stator)

i i� b (relative to the background turbulence) or
w (relative to the rotor-wake turbulence)

w relative to rotor-wake turbulence interacting
with the stator

Superscripts

T matrix transpose
n complex conjugate
7 refers to the radiation upstream and down-

stream of the blade row respectively

Abbreviations

LEE linearized Euler equations
PSD power spectral density
OGV outlet guide vanes
r.m.s. root mean square
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1. Introduction

Turbofan engines with higher bypass ratios ensure improved aircraft performances at lower nominal rotation speed.
Both the exhaust velocities of burnt gases and the corresponding jet noise are reduced and the fan-OGV (outlet guide vane)
stage becomes a major contributor to the total noise. Modern very-high bypass architectures involve lower fan tip speed,
reduced number of blades, selected blade and vane counts, and acoustic liners. This ensures tonal noise reduction and
shifts the tone frequencies to lower values associated with weaker loudness. As a result, the broadband noise contribution
is expected to become relatively more significant and dedicated prediction schemes are a crucial step to be included in the
design cycles, as early and as accurately as possible. More specifically, the present study is dedicated to the prediction of
the broadband noise resulting from the impingement of incident turbulence on a blade row either rotating or stationary.
Numerical simulations of the turbulent compressible three-dimensional flow around the blades or the vanes could in
principle reproduce all sound generation and propagation phenomena accurately, but are still a daunting task for an actual
fan (blade span of the order of 1 m and Reynolds number based on the chord length and mean velocity around 106) and are
far from being compatible with industrial time constraints. Besides, fan broadband noise prediction requires the whole
power spectral density (PSD) of the acoustic power for frequencies ranging up to 10 kHz. Fast-running analytical models
then appear to be still more appropriate in an industrial context.

Many studies have been performed over the past 40 years to predict the fan broadband noise caused by turbulence
ingestion and wake interactions. Mugridge and Morfey [1], Mani [2], Hanson [3] and Sevik [4], among others, have dealt
with the interaction of an incident turbulence with a rotating blade or a stationary vane. Homicz and George [5] extended
these works to rotating blades at low frequencies and George and Kim [6] and Amiet [7] at high frequencies. Detailed
reviews of the methods and experiments carried out during the seventies on rotor broadband noise were proposed by
Cumpsty [8], Brooks and Schlinker [9] and George and Chou [10]. Most of these works were dedicated to open rotors, in
particular the main rotor of a helicopter, for which the moderate blade number, often smaller than 10, allows using an
isolated-airfoil response function.

Dealing with turbofan engines requires including the in-duct propagation in the prediction methods. Glegg [11], De
Gouville [12] and Joseph and Parry [13] developed broadband noise models for ducted fans using Green’s function tailored
to the duct, and the unsteady blade loadings as acoustic sources. Glegg [11] dealt with the interaction of the rotor blades
with the boundary layer of the casing and with the interaction of rotor wakes with the OGV. Yet the blades were assumed
to be acoustically compact along the chord. De Gouville [12] resorted to Graham’s similarity rules [14] to account for the
compressibility effects and the non-compactness of the airfoil to determine the turbulence ingestion noise, while Joseph
and Parry [13] used the two-dimensional compressible Amiet’s function to predict the noise due to the interaction of the
casing boundary layer with the rotor blades. These investigations were based on an isolated-airfoil response function.
Nevertheless, current turbofan engines involve higher and higher bypass ratio and chord lengths, and the blade number of
the rotor and the vane number of the stator can easily exceed 20 and 50 respectively (e.g. [15]). As a result, cascade effects
must also be included in the prediction methods. Ventres et al. [16] were the first to propose a fan broadband noise model
for inlet and wake turbulence considering both the duct and the cascade effects. These two aspects are an important
theoretical improvement. An in-duct formulation of the acoustic analogy was applied, using the unsteady blade loading as
input data, but resorting to a two-dimensional cascade response function. The radial variation of the turbulence was then
taken into account by means of a strip theory. More recently Nallasamy and Envia [17] enhanced and coupled this model
to a Reynolds-Averaged Navier–Stokes computation to get the turbulence input data for the acoustic model, showing a
good agreement with measurements.

However, experimental results (e.g. [18]) show clear evidence of the strong spanwise variation of the turbulence in
the rotor wakes developing upstream of the OGV, which may hinder the above two-dimensional decomposition of
the impinging turbulence on stator vanes. Another approach then consists in including the spanwise variations of the
turbulence by means of a three-dimensional rectilinear-cascade model: incident gusts are three-dimensional but the
cascade is still considered rectilinear. Hanson [19] and Hanson and Horan [20] proposed a model for the interaction of a
homogeneous or radially inhomogeneous incident turbulence with a rectilinear flat-plate cascade resorting to Glegg’s
cascade model [21]. Hanson then extended it to swept and leaned cascades [22] and to the broadband noise of a complete
fan stage [23]. Glegg [24] and Glegg and Walker [25] accounted for the duct wall in the unwrapped configuration giving
the exact solution to this approximate problem by means of a cosine functions basis. Evers and Peake [26] finally extended
the method of Hanson and Horan [20] to include blade geometry effects. These predictions agreed quite well with the
available experimental results despite the crucial assumption of rectilinear cascade [20]. Cheong et al. [27] again using a
rectilinear-cascade model based on Smith’s two-dimensional theory [28], pointed out a critical frequency, below which
cascade effects are important, and only a part of the turbulent wavenumbers contribute to the resulting noise. Above that
frequency, cascade effects can be neglected and the whole incident turbulence contributes. Jurdic et al. [29] predicted the
rotor/stator interaction noise with this model using RANS data as inputs. Hanson’s model and similar ones can be declined
in a strip theory to take the radial variation of the geometry of an actual annular cascade into account. Yet, it directly
applies to the radiated field and associated acoustic power, and does not rely on the unsteady blade loading as in the
previous methods. As a result, the propagation in an annular duct cannot be accounted for.

Finally a significant improvement in fan broadband noise predictions has been recently achieved through three-
dimensional unsteady linearized-Euler (LEE) simulations, fully accounting for the actual blade geometry. For instance,
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Atassi and Vinogradov [30,31] and Atassi and Logue [32] proposed a very accurate fan broadband interaction noise method
based on a previously developed model [33]. This approach noticeably accounts for the three-dimensional effects of the
actual geometry, swirling mean flow and three-dimensional turbulence excitation and points out the importance of these
parameters [33].

The present paper describes an analytical model of the broadband noise produced by turbulence in a rotor–stator
arrangement. Both the interaction of ingested turbulence with the rotor blades and the rotor-wake impingement on
downstream stator vanes are addressed. The model is a strip-theory application [34] based of a previously published
formulation of the unsteady blade loading for a rectilinear cascade [35] and of the subsequent developments by the
authors [34]. More precisely, Glegg’s analytical formulation [21] has first been extended to provide closed-form
expressions of the acoustic field valid inside the inter-blade channels, and of the unsteady-blade loading [35]. A
wavenumber correction has also been proposed to include some of the three-dimensionality inherent to the annular
configuration into the unwrapped description of a cascade strip in Cartesian coordinates [34]. This makes the unsteady
blade loading calculated on each strip an equivalent dipole source distribution in an acoustic analogy formulation inside an
annular duct. Preliminary broadband noise prediction issues have been addressed by Posson and Roger [36] and Posson
et al. [37] to assess the effect of simplifying assumptions and the role of specific corrections to account for the main three-
dimensional effects. The model was compared with the reference three-dimensional LEE computation of Atassi et al. [33]
and with Logue and Atassi’s updated version of the linear cascade model of Atassi and Hamad [38]. Posson and Roger [39]
also carried out a dedicated experiment involving a turbulence grid upstream of a stationary cascade mounted at the exit
section of an open-jet anechoic wind-tunnel. The model was found in a rather good agreement with the experiment in an
extended low and middle frequency range. Further validations in configurations closer to a real engine were however
recognized as necessary. The final version of the broadband noise model is described in detail in Section 2. The predictions
are then compared, in Section 3, with the experimental data of the 22-in source diagnostic test (SDT) fan rig of the NASA
Glenn Research Center [40–46]. Both numerical assessment and experimental validation are achieved.
2. Fan broadband noise model

Although three-dimensional features, such as swirl and non-uniform mean flow, induce significant aerodynamic effects
(e.g. [47,48,33]), Atassi and Vinogradov showed that a simplified two-dimensional cascade model is adequate for
predicting the fan broadband acoustic response at high frequencies [30,31]. Moreover, both Glegg’s analytical formulation
[24] and Hanson’s model [20,22], based on a three-dimensional rectilinear-cascade response [21], were found successful in
predicting the fan broadband noise caused by the interaction of an incident turbulence with an isolated blade row. For
instance, Hanson and Horan [20] showed the ability of the model implemented in the code BFANS (e.g. Morin [49,50]) to
be a design tool for rather realistic fans. Yet, some additional three-dimensional effects and further accuracy could be
expected from coupling the cascade near-field information, such as the unsteady blade loading, with an acoustic analogy
stated in an annular duct. This possible improvement motivated the present model developments that directly resort to
the unsteady blade loading provided by the cascade response model. For a better geometrical representation, the annular
duct is split into several strips. Each radial strip and its blade row part are unwrapped and assimilated to a rectilinear
cascade having the local geometrical parameters embedded in a turbulent stream. The three-dimensional rectilinear-
cascade response provides the unsteady blade loading distributed on the strip. This distribution is used as an equivalent
dipole source in the acoustic analogy as an alternative to directly computing the radiated field. The turbulence is assumed
to be locally homogeneous (assumption H1) and frozen (assumption H2) so that Taylor’s hypothesis is introduced. The
swirling mean flow effects on the sound propagation and on the distortion of the incident perturbations are ignored. The
model can be considered as an extension of Ventres et al. [16] in the sense that it resorts to an acoustic analogy in an
annular duct with uniform mean flow, as proposed by Goldstein [51] in circular duct, and to a cascade response function to
compute the unsteady blade loading. Nevertheless, two important differences must be highlighted. Firstly, a three-
dimensional response function is used in each strip instead of a two-dimensional one. Even if the radial variations of the
geometry and of the mean flow features and turbulence are treated as parametric variations, the local three-
dimensionality of the turbulence is introduced in the response function. Secondly, the formulation is written in cylindrical
coordinates to reckon with the annular geometry and its effect on turbulence. Several developments in [16,17,22,51] are
reproduced here in a unified way to stress the different assumptions used in the model and to emphasize the main
differences and additions of the present work.

Until Sections 2.2 and 2.3 the developments apply indifferently to a rotor or a stator, the term blade will then be used
indifferently for both a rotor blade and a stator vane. Section 2.2 will then focus on rotor blades and Section 2.3 on stator
vanes. Several coordinate systems must be defined: Rd ðOd,ðxd,yd,zdÞÞ a fixed reference frame attached to the duct with
associated cylindrical coordinates ðxd,rd,ydÞ, RI ðOI ,ðxI ,yI ,zIÞÞ a relative reference frame fixed to the annular blade row
rotating at the speed OI with associated cylindrical coordinates ðxI ,rI ,yIÞ, Rcd ðOcd,ðxcd,ycd,zcdÞÞ and Rc ðOc ,ðxc ,yc ,zcÞÞ two
reference frames fixed to the rectilinear cascade at a particular radius r respectively before and after rotation of the sweep
angle jI. The four coordinate systems are represented on a sketch of the annular duct with the blade row in Fig. 1(a), and
the main geometrical parameters are defined in Fig. 1(b). The rotation matrices between the different reference frames,
previously defined by Hanson [22], are reminded in Appendix A.1 with additional sketches in Fig. C1.



Fig. 1. Sketches of (a) the frames of reference used in the present model and (b) the geometrical parameters. Case of zero lean angle �c I .
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To better account for the different scales of the problem and in particular those of turbulence, two non-dimensional
variables are defined: the quickly varying coordinates �x ¼ x=la which will be used to describe the local homogeneity and
possible isotropy or axisymmetry of the turbulence around a radius, and the slowly varying coordinates �x ¼ x=RT , with in
particular �r ¼ r=RT , which will be used to express the slow variation of turbulence characteristics and the geometry from
one strip to a neighboring one. For instance, the cascade geometry, the turbulence intensity T u and integral length scales
(ðla,ltÞ or L), and the shape of the rotor wakes vary along the span but are assumed constant around a particular radius r

inside a radial interval characterizing the fluctuations. Atassi and Vinogradov [30] dealt with the more general case where
fluctuating velocities slowly vary in all directions due to swirling mean flow distortion effects.

2.1. Power spectral density of the acoustic power

Let us consider a fluid with mean density r0, static pressure P0, and temperature T0 corresponding to a speed of sound
c0, moving at a mean velocity U¼ ðUxd

,Ur ,UyÞ inside an annular duct of inner and outer radii RH and RT respectively. The
sound produced by the impingement of turbulence on a blade row in the duct is characterized by the PSD of the acoustic
power SppðoÞ at the angular frequency o. The PSD can be expressed as a function of the acoustic pressure and velocity, as
given for instance by Goldstein [51] for harmonic sources, or can be re-written as a function of the time-Fourier transform
of the acoustic potential,

Fðxd,oÞ ¼ lim
T-1

FT ðxd,oÞ (1a)

with

FT ðxd,oÞ ¼ 1

2p

Z T

�T
fðxd,tÞ eiot dt, (1b)

in the form

SppðoÞ ¼�r0 lim
T-1

p
T

Re E

Z
S
�ioFT ðxd,oÞ rFðxd,oÞ� U

c2
0

U � rFT ðxd,oÞ�ioFT ðxd,oÞð Þ

( )n

n dS
" # !

(2)

where n is the unit outward-normal vector of the elementary surface dS, U the mean velocity vector and the operator E

denotes the expected value of the enclosed quantity. E is introduced since turbulence is treated as a random process. The
radial component of the mean flow speed Ur is assumed to be zero (assumption H3). This hypothesis is very often valid in
axial-flow turbomachines, since the fan design generally satisfies the radial equilibrium. The azimuthal component Uy can
also be neglected upstream of the fan rotor and downstream of the OGV, but its contribution is significant in-between. The
azimuthal component must then be accounted for both in the distortion of the incident disturbance and in the sound
propagation (e.g. [52–54,33]). In the present model, the properties of the incident turbulence are assumed to be known
sufficiently close to the blade row of interest in order that their distortion by the mean flow can be neglected. Then the
actual velocity triangle is used to convect the turbulent velocity field which is assumed frozen (assumption H2). The
unsteady blade loading is calculated with the three-dimensional rectilinear-cascade model developed by Posson et al.
[35,34]. The relative or total mean flow component U0 is derived from the actual axial and azimuthal mean flow
components, assuming zero angle of attack. The unsteady blade loading is then seen as an equivalent distribution of dipole
sources in an acoustic analogy. In contrast, the acoustic field prediction assumes a uniform axial mean flow of Mach
number Mxd

¼Uxd
=c0, which yields an analytical normal basis of eigenmodes. The acoustic potential can then be expanded

on the eigenmodes of a rigid annular duct with uniform mean flow Cm,mð�r ,ydÞe
ik7

xd ,mmxd ¼ Em,mð�rÞe
ik7

xd ,mmxdþ imyd , with

Em,mð�rÞ ¼ Am,mJmðwm,mrÞþBm,mYmðwm,mrÞ: (3)
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The azimuthal and radial orders of the mode ðm,mÞ are the number of azimuthal nodes and the number of radial nodes
respectively. The norm of the eigenmode is noted

ffiffiffiffiffiffiffiffiffiffi
Gm,m

p
and the eigenvalue of Em,m is wm,m. The acoustic potentials in the

upstream (þ) and downstream (–) directions are then expressed as

F7
ðxd,oÞ ¼

X
m2Z

X
m2N

F7
m,mðoÞ Em,mð�rÞ e

ik7
xd ,mmxdþ imyd , (4a)

with the modal amplitudes

F7
m,mðoÞ ¼

P7
m,mðoÞ

ir0½o�k7
xd ,mmUxd

�
, (4b)

where P7
m,mðoÞ is the pressure amplitude of the duct mode ðm,mÞ. The acoustic powers S7

pp are obtained by replacing F by
its expressions (4a) and S by two duct sections upstream and downstream of the blade row, of unit outward-normal vector
n7 ¼ 8 ð1,0,0Þ respectively, in Eq. (2). The acoustic PSD is finally written as the sum of the acoustic powers of all cut-on
duct modes:

S7
pp ðoÞ ¼

X
m2Z

X
m2N

Re F 7
m,m lim

T-1

p
T

E½9P7
m,mðoÞ9

2
�

� �
, (5a)

limT-1ðp=TÞ E½9P7
m,mðoÞ9

2
� is the expected value of the power density of the duct mode ðm,mÞ and

F 7
m,m ¼

Gm,m

r0c0
G7

m,m, G7
m,m ¼

kn
m,mk0

9k0�k7
xd ,mmMxd

92
, k0 ¼

o
c0

,

k2
m,m ¼ k2

0�b
2
xd
w2

m,m, k7
xd ,mm ¼

�k0Mxd
8km,m

b2
xd

, bxd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

xd

q
, (5b)

where the superscript n stands for the complex conjugate.
The acoustic analogy in an annular duct with uniform mean flow provides an expression for the noise due to the

interaction of a row of BI blades or vanes (I stands either for the rotor I¼R or the stator I¼S) with an incident gust, as given
by Posson et al. [34] and, by extension, with an incident turbulence as detailed by Ventres et al. [16]. The problem only
involves time-stationary processes. The acoustic pressure p7 ðxd,tÞ at point xd and time t is determined by the unsteady
force per unit area fðxd0,t0Þ on the blade/vane surfaces (

S
j2½0,BI�1�S

t
j ðt0Þ) and Green’s function tailored to the annular duct in

uniform axial mean flow Gdðxd,t9xd0,t0Þ [51]:

p7 ðxd,tÞ ¼

Z T

�T

ZZ S
j
St

j
ðt0Þ

qGdðxd,t9xd0,t0Þ

qn
fðxd0,t0Þ dSðxd0Þ dt0: (6)

Only the dipole-like sources are considered in Eq. (6); monopoles and quadrupoles are ignored. Since the viscous forces are
neglected, the net force on a surface reduces to the pressure force f ¼ pn where n is the surface outward-normal unit
vector and p the pressure on the surface. Moreover the blades are assumed to be flat plates, and the normal vectors ns

j and
np

j , on the suction and pressure sides of the blade j respectively, are opposite: ns
j ¼�np

j ¼ nj. The elementary force
fðxd0,t0Þ dSj across the blade j on the elementary surface dSj reduces to

fðxd0,t0Þ dSj ¼ ½p
sðxd0,t0Þ�ppðxd0,t0Þ� dSj nj ¼�DPðxd0,t0Þ dSj nj, (7)

where DP is the pressure jump. Sj is the surface of the blade j which spins at angular frequency OI . A change from the
reference frame Rd to the reference frame rotating with the blades RI is introduced to evaluate the unsteady loading on a
blade. By definition, the azimuthal coordinates are related by yd0 ¼ yI0þOIt0. In the frame of reference RI , the surface Sj,I of
the blade j is stationary. The integrals in Eq. (6) can then be inverted, and the following property is used:

lim
T-1

Z T

�T
eiðo�mOIÞt0DPðxI0,t0Þ dt0 ¼ 2pDbPðxI0,o�mOIÞ, (8)

where DbPðxI0,oexÞ is the Fourier transform of DPðxI0,t0Þ in time. The pressure can be Fourier transformed and expanded on
the duct modes. The expression of the complex amplitude of the pressure of the duct mode ðm,mÞ is then equal to

P7
m,mðoÞ ¼

ZS
j
Sj,I

DbPðxI0,o�mOIÞ

2ikm,mGm,m
nj,I � rnj,I

½En

m,mðr0Þe
�imyI0�ik7

xI ,mmxI0 � dSjðxI0Þ: (9)

The contribution of the duct mode of azimuthal order m to the pressure at frequency o is produced by the interaction of
the cascade with the gust at frequency om ¼o�mOI . The rotating blade row thus induces a frequency scattering in
addition to the modal scattering. Since all blades are identical, evenly spaced and labelled by ascending numbers along yl,
like in Fig. 2, the coordinates of point Mj of the blade j corresponding to point M0ðxI0,r0,yI0Þ of the blade 0 are
MjðxI0,r0,yI0�2pj=BÞ. The unit vector n0,I normal to the blade 0, defined as uy,cd ¼ uy,c in the cascade reference frame Rcd,



Fig. 2. Sketch of the rotor and the stator in an unwrapped view at radius r, including the mean velocity triangles and the coordinate systems: (a) incident

turbulence impinging on a rotor; (b) rotor wakes and background turbulence impinging on a stator.
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and the gradient vector rn0,I
are defined in the duct reference frame RI in Cartesian coordinates to yield

n0,I ¼ ðuy,cdÞI ¼ ðuy,cÞI ¼Q inv,I�uy,c ¼Q �wcf,Ið2, :Þ ¼ qI ,

rn0,I
¼

q
qr0

,
q

r0qyI0
,

q
qxI0

� �
: (10)

These developments generalize those of Ventres et al. [16] to any blade row. The sweep �jI and lean �cI angles can now be
non-zero and vary radially. The definitions of the geometry and of the successive changes of reference frames match
Hanson’s developments and conventions [22]. The transformation matrices Q �wcf,I and Q inv,I are detailed in Appendix A.1.
The complex amplitude of the duct mode ðm,mÞ finally reads

P7
m,mðoÞ ¼

1

2kmmGmm

Z RT

RH

S7
mmð�r ,oÞ

Z cdð�r Þ

0

XBI�1

j ¼ 0

eij2pm=BIDbPcd,jðxcd, �r ,omÞe
�ik7

xcd ,mmð�r Þxcd eiðm=rÞyLE,Ið�r Þ�ik7
xI ,mmxLE,I ð�r Þ dxcd dr, (11a)

where

S7
mmð�r ,oÞ ¼ z7m,mð�rÞEm,mð�rÞ, z7

m,mð�rÞ ¼ �iq3,I
dEm,mð�rÞ

Em,mð�rÞdr
þ q2,I

m

r
�q1,Ik

7
xI ,mm

� �	 

, (11b)

xLE,I and yLE,I are leading-edge distances defined in Eq. (A.4) of Appendix A.1, and k7
xcd ,mmð�rÞ ¼ Q �wc,I,11k7

xd ,mm�Q �wc,I,12m=r is the
axial wavenumber of the duct mode ðm,mÞ in the cascade frame of reference Rcd before the rotation of sweep angle [22].
DbPcd,jðxcd, �r ,oexÞ is the pressure jump at the radius r, on the blade j, for a chordwise position xcd in the cascade frame of
reference Rcd at the angular frequency of the incident excitation oex. Unlike the harmonic gust, considered by Posson et al.
[34] in the Third Computational Aeroacoustic benchmark [55], the unsteady flow excitation is here a turbulent flow. The
only random parameter in Eq. (11a) is actually the unsteady blade loading, leading to the term Sðj,j0ÞFF,cdðxcd,r,o; x0cd,r0,oÞ in the
expected value of the spectrum of the duct modes in Eq. (12a).The latter is the cross-spectrum of the unsteady blade
loadings at point M ðxcd,rÞ on blade j and at point M0 ðx0cd,r0Þ on blade j0 at angular frequencies o and o0 defined in Eq. (12b).

A radial length Lr is now assumed to exist beyond which the cross-correlation of the unsteady blade loading goes to
zero (H4). The cascade geometry and the flow properties are also considered unchanged over an extent lr ¼ 2Lr . This is the
second part of assumption H4. The radial correlation length lr is taken in practice as the radial correlation length of the
incident, locally isotropic or axisymmetric homogeneous turbulence. Under this assumption, the expected value of the
spectrum of the duct mode ðm,mÞ is written as

lim
T-1

p
T

E½Pm,mðoÞ9
2
� ¼

1

29kmm9Gmm

 !2 Z RT

RH

Z rþLr

r�Lr

S7
m,mð�r ,oÞS7

m,mð�r
0,oÞn

Z cdð�r Þ

0

Z cdð�r
0
Þ

0
e�iðk7

xcd ,mmð�r Þxcd�k7
xcd ,mmð�r

0
Þx0

cd
Þ

�
XBI�1

j ¼ 0

XBI�1

j0 ¼ 0

eiðj�j0 Þ2pm=BI Sðj,j0ÞFF,cdðxcd,r,om; x
0
cd,r0,omÞ dxcd dx0cd

�e�iðm=r0 ÞyLE,I ð�r
0
Þþ ik7

xI ,mmxLE,Ið�r
0
Þdr0eiðm=rÞyLE,Ið�r Þ�ik7

xI ,mmxLE,Ið�r Þ dr, (12a)

where

Sðj,j0ÞFF,cdðxcd,r,om; x
0
cd,r0,o0mÞ ¼ lim

T-1

p
T

E½DbPcd,jðxcd,r,omÞDbPcd,jðx
0
cd,r0,o0mÞ

n
�: (12b)
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The distribution of the unsteady loading must be computed at all points on the blade. From the formulation (12a), it is
useful to scan each radius r and then to scan every chordwise position at constant radius, that is to say to scan xcd in the
cascade frame of reference before sweep Rcd as proposed by Posson [34]. Assumption H4 and the following developments
related to lr lead to an important difference with the approach of Ventres et al. [16] or Nallasamy and Envia [17], who
assume that the radial integral length scale is very small compared to the duct radius. Consequently, in their approach the
difference of radii is neglected in all terms except in the radial correlation function.

Two different noise mechanisms are now investigated. The interaction of an incident turbulence with a rotor, sketched
in Fig. 2(a) is first presented in Section 2.2 . The interaction of turbulent rotor wakes and background turbulence with a
stator, sketched in Fig. 2(b) is then discussed in Section 2.3.

2.2. Interaction of ingested turbulence with the rotor

2.2.1. Statistical properties of the turbulence

Since the incident disturbance on the rotor corresponds to ingested turbulence, its properties are considered in the
stationary frame of reference Rd. From Taylor’s hypothesis H2, the turbulence is simply convected by the mean flow, so
that the upwash velocity is written as

uðxd,tÞ � nc ¼wbðxd,tÞ ¼ �wbðxd�tUxd
ð�rÞexd

Þ, (13)

where �wbðxdÞ is the upwash component of the incident gust in the frame of reference Rf attached to the axial mean flow
upstream of the rotor. The assumption of locally homogeneous turbulence allows writing

�wbðxdÞ ¼wrms,bð�rÞwbð �xd9�rÞ, (14)

where wb is a stochastic variable in the interval [�1,1]. The amplitude wrms,b and the integral length scales ðla,ltÞ or L
involved in wb only depend on the slowly varying coordinate �r . The turbulence itself is nearly isotropic or axisymmetric in
the vicinity of the radius r. A Liepmann or an axisymmetric-turbulence model is then assumed to describe the spectrum of
the non-dimensional velocity wb �xd, �rð Þ. The former only depends on the turbulence intensity wrms,i and the integral length
scale Li (see Appendix C.1). In the chosen formulation detailed in Section 2.5 and Appendix C.2, the latter is expressed as a
function of the turbulence intensity wrms,i and the longitudinal and transverse integral length scales ðla,i,lt,iÞ. Besides, �wb

and wb are periodic functions of the azimuthal angle because the turbulence is analyzed in a duct. Since the turbulence
interacts with the rotor, the cross-spectrum of the upwash velocity must be given in the cascade frame of reference of the
rotor Rc (or Rcd) in which the unsteady blade loading is expressed. To do so, the intermediate frame of reference RR must
be introduced. In this reference frame, the Fourier transform yields

�wmg ðkxR
,kzR0

,oÞ ¼ 1

ð2pÞ4

ZZZ
R3

Z p

�p
wbðxd,tÞeiotþ ikxR

xR�imgyR�ikzR0
r dyd dr dxR do: (15)

The variables being stochastic, the expected value of the turbulent inflow wavenumber frequency spectrum, SWW, must
be introduced. It is defined as

SWW ¼
X

mg2Z

X
m0g2Z

S
mg ,m0g
WW (16a)

with

S
mg ,m0g
WW ¼/wmg ðkxR

,kzR0
,oÞw0mg

ðk0xR
,k0zR0

,o0ÞnS

¼
1

ð2pÞ2

ZZ
R2

1

ð2pÞ2

ZZ
½�p,p�2

1

ð2pÞ2

ZZ
R2

1

ð2pÞ2

ZZ
R2
/wbðxd,tÞwbðx

0
d,t0ÞnS

�eiot�io0t0 dt dt0 e
ikxR

xR�ikx0
R

x0
R dxR dx0R � e�iðmgyR�m0gy0RÞ dyR dy0R e

�iðkzR0
r�kz0

R0
r0 Þ

dr dr0: (16b)

Introduce now the quantities:

U¼ kxR
xR�mgyR�kzR0

r, U0 ¼ k0xR
x0R�m0gy

0
R�kzR0

0 r0, (17a)

and the distance n between the two points xd�tUxd
ð�rÞexd

and x0d�t0Uxd
ð�r 0Þexd

. In the absolute frame of reference Rd n, reads

n¼ xd0�Uxd
ð�r 0Þexd

t0�xdþUxd
ð�rÞexd

t¼ ðr0�r,y0d�yd,x0d�xd�Uxd
ð�r 0Þt0 þUxd

ð�rÞtÞ ¼ ðxr ,xy,xxÞ: (17b)

The phase term in the complex exponential of Eq. (16b) follows as

U�U0 þot�o0t0 ¼ ½kxR
�k0xR
�xd�ðmg�m0gÞyd�ðkzR0

�k0zR0
Þr�k0xR

xxþm0gxyþk0zR0
xrþ½oþk0xR

Uxd
ð�rÞþmgOR�t

�½o0 þk0xR
Uxd
ð�r 0Þþm0gOR�t

0: (18)

Further neglecting the differences between the mean velocities Uxd
and the turbulence intensities wrms,b at radii �r and �r 0,

which is valid whenever 9r�r09r lr from assumption H4, Eq. (16b) becomes
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S
mg ,m0g
WW ¼

1

ð2pÞ6

ZZ
R2

ZZ
½�p,p�2

ZZ
R2

ei½kxR
�k0xR

�xd e�iðmg�m0g Þyd e�iðkzR0
�k0zR0

Þr

�dðoþk0xR
Uxd
ð�rÞþmgORÞdðo0�oþðm0g�mgÞORÞ

�wrms,bð�rÞ
2 wbð �xd�tUxd

ð�rÞexd
, �rÞwbð �x

0
d�t0Uxd

�rð Þexd
, �rÞn

� �
�e�ik0xR

xxþ im0gxyþ ik0zR0
xr dxR dxx dyd dxy dr dxr : (19)

In addition, the assumption of local homogeneous turbulence (H1) yields

/wbð �xd�tUxd
ð�rÞexd

, �rÞwbð �x
0
d�t0Uxd

ð�rÞexd
, �rÞnS¼Rnn,bðn, �rÞ, (20)

where Rnn,b is the cross-correlation function of the upwash velocity which slowly varies with the radius seen as a mere
parameter. By definition:

Rnn,bðDx, �rÞ ¼

ZZZ
R3
Fww,bðK

00
R, �rÞeiK00

R
�Dx dK00R, (21)

where Fww,b is the PSD of the fluctuating upwash velocity divided by wrms,bð�rÞ
2, i.e. the PSD of wb. Then the integrations

over xR, yd, and r are equal to the product of two Dirac delta functions and a Kronecker term: dðkxR
�k0xR
Þ, dðk0zR0

�kzR0
Þ and

d0mg ,mg
. The triple integrals over the vector n must be calculated in Cartesian coordinates to be consistent with the three-

dimensional spectrum Fww. The difference between the radii is neglected in the coordinates yl ¼�ryd and y0l, thus
yl�y0l ��rxy. The integrations then readZ

R2

Z p

�p

Rnn,bðx, �rÞ

ð2pÞ3
e�ik0xR

xxþ im0gxyþ ik0zR0
xr dxy dxx dxr ¼

1

r
Fww,b �k0xR

,�
mg

r
,k0zR0

, �r
� �

: (22)

Finally, the upwash expected value of the ingested turbulence associated with modes mg , m0g , S
mg ,m0g
WW , is written as

S
mg ,m0g
WW ¼

wrms,bð�rÞ
2

r
dðoþmgOR�kxR0

Uxd
ð�rÞÞdðo0�oÞFww,bðKR0, �rÞdðk0xR0

�kxR0
Þd0mg ,mg

dðk0zR0
�kzR0

Þ, (23)

where

KR0 ¼ kxR0
,�

mg

r
,kzR0

� �
with kxR0

¼�kxR
. This result also supposes that L is small compared with the radial variation of the excitation, i.e. that the

two radii can be taken equal in the amplitude terms. The three-dimensional spectrum of the upwash velocity of the locally
homogeneous turbulence Fww will be modelled in Section 2.5.

2.2.2. Expected value of the unsteady blade loadings

The incident turbulent flow must be expressed in the rotor frame of reference RR and finally in the local cascade frame
of reference Rc for the sake of applying the cascade response function. Using the Fourier coefficients �wmg ðkxR

,kzR0
,oÞ

introduced in the previous section, the fluctuating upwash velocity is expanded as

wbðxR,tÞ ¼

Z X
mg2Z

ZZ
�wmg ðkxR

,kzR0
,oÞeikzR0

re�iKR�xR�iot dkzR0
dkxR

do, (24)

where expðikzR0
rÞ stands for the phase shift due to the radial position in the three-dimensional blade row. The wavenumber

vector in the cascade frame of reference Kc is related to the wavenumber vector in the rotor frame of reference KR by
Kc ¼Q � KR ¼Q � ðkxR

,mg=r,�kzR0
Þ
T . The incident wavenumber vector is Kc0 ¼ ðkxc0

,kyc0
,kzc0
Þ ¼�Kc and the associated inter-

blade phase angle is s¼�2pmg=BR. Then, the incident disturbance on the blade in the cascade frame of reference is
expanded as

wbðxc ,tÞ ¼�

Z X
mg2Z

ZZ
�wmg ð�kxR0

,kzR0
,oÞeikzR0

reiKc0
�xc�iot dkzR0

dkxR0
do: (25)

The associated unsteady response on the reference blade 0 at radius r is expressed as

Dpcðxc ,zc ,tÞ ¼�r0ð�rÞc0ð�rÞ

Z X
mg2Z

ZZ
�wmg ð�kxR0

,kzR0
,oÞeikzR0

rDbPc,0ðxc ,o9�rÞeikzc0
zc�iot dkzR0

dkxR0
do, (26)

where DbPc,0ðxc ,o9�rÞ is the pressure jump made non-dimensional by r0c0w0 produced by a gust of amplitude w0, inter-
blade phase angle s, radial wavenumber kzc0

and angular frequency o, on the rectilinear cascade having the local geometry
of the blade row. From Eq. (12a), the Fourier transform of the unsteady blade loading Dpcðxcd,r,tÞ, DbPcd,jðxcd, �r ,oÞ, must be
computed for each radius at every chordwise position at constant radius, xcd, in the cascade frame of reference before
sweep Rcd. Posson et al. [34] showed that

DbPcd,jðxcd, �r ,oÞ �DbPc,jðxcdcos j,o9�rÞeikzc0
sinjxcd , (27a)
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with

DbPc,jðxc ,o9�rÞ ¼DbPc,0ðxc ,o9�rÞeijs: (27b)

As a result, the Fourier transform reads

DbPcd,jðxcd,r,oÞ ¼�r0c0

X
mg2Z

ZZ
�wmg ð�kxR0

,kzR0
,oÞeikzR0

rDbPc,0ðxcdcos jRð�rÞ,o9�rÞeijseikzc0
sinjRxcd dkzR0

dkxd
: (28)

Eqs. (12b), (23) and (28) yield the cross-spectrum of the unsteady blade loadings:

Sðj,j0ÞFF,cdðxcd,r,o; x0cd,r0,o0Þ ¼ ðr0c0wrms,bð�rÞÞ
2

rUxd
ð�rÞ

X
mg2Z

Z
e�ikzR0

Dre�i2pððj�j0 Þ=BRÞmg �Fww,bðKR0, �rÞeikzc0
½sinjRð�r Þxcd�sinjRð�r

0
Þx0

cd
�

�dðo0�oÞDbPc,0ðxcdcos jRð�rÞ9mg ,kzR0
,o, �rÞ

�DbPc,0ðx
0
cdcos jRð�r

0
Þ9mg ,kzR0

,o, �r 0ÞndkzR0
, (29a)

where DbPc,0ðxcdcos jRð�rÞ9mg ,kzR0
,o, �rÞ �DbPc,0ðxcdcos jRð�rÞ,o9�rÞ to refer to the incident gust azimuthal order mg and to the

radial wavenumber kzR0
and Dr¼ r�r0. The axial wavenumber kxR0

of wavenumber vector in the duct frame of reference
KR0, defined in Eq. (23), is set equal to

kxR0
¼
oþmgOR

Uxd
ð�rÞ

: (29b)

The wavenumber in the cascade frame of reference is Kc0 ¼Q � KR0 with in particular:

kzc0
¼ Q31,R

o
Uxd
ð�rÞ
�

mg

r
½Q32,R�tan �wRQ31,R�þQ33,RkzR0

, (30)

from Eq. (A.13) in Appendix A.2.1.

2.2.3. Power spectral density of the acoustic power

Eq. (29a) of the cross-spectrum of the unsteady blade loadings combined with Eq. (12a) finally gives the expected value
of the spectrum of the duct mode ðm,mÞ:
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29kmm9Gmm
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Dr dkzR0

�e�iðm=ðrþDrÞÞyLE,Rð�r þD�r Þþ ik7
xR ,mmxLE,dð�r þD�r Þ dDr � eiðm=rÞyLE,Rð�r Þ�ik7

xR ,mmxLE,dð�r Þ dr, (31a)

with

Ic,m,mð�r ,o,mg ,kzR0
Þ ¼

Z cdðrÞ

0
DbPc,0ðxcdcos jRð�rÞ9mg ,kzR0

,om, �rÞei½kzc0
sinjRð�r Þ�k7

xcd ,mmðrÞ�xcd dxcd: (31b)

The summation over k with the Kronecker symbol results from the double summation over the blade indices j and j0. This
leads to the condition m�mg � 0 ðmod BÞ corresponding to Tyler and Sofrin’s condition [56]. This formulation neglects the
difference of radii r and r0 in the amplitude of the gust wrms,b, in the factor r0c0, and in the wavenumber along yd (�mg=r

and �m0g=r) in the three-dimensional spectrum. But the radii are kept different in the duct functions, in the calculation of
the cascade response function and in the phase terms. A further simplification is introduced now to avoid the numerical
integration in Dr which is both time consuming and error-prone. Eq. (31a) is simplified by assuming that the radial
distance Dr¼ r0�r on which the blade loads are correlated is small compared to the duct height RT�RH . The difference of
radii is retained only in the phase terms and neglected in the amplitude terms, as proposed by Glegg and Jochault [57]. The
eigenfunction Em,m can be expressed as a linear combination of two Hankel functions of first and second kinds as

Em,mðrÞ ¼ Cm,mHð1Þm ðwm,mrÞþDm,mHð2Þm ðwm,mrÞ: (32)

If a Taylor expansion of the Hankel functions is made around r, and the variation of z7
m,m in Dr is neglected, the duct

function S7
mm takes the approximate form

S7n

m,mðr
0,oÞ7 Cz7n

m,mðrÞC
n

m,mHð1Þnm ðwm,mrÞe�ikn
zd1

Dr
þz7n

m,mðrÞD
n

m,mHð2Þnm ðwm,mrÞneikzd1
Dr (33a)

with

kzd1
¼�i

d

dr
ðlnðHð1Þm ðwm,mrÞÞÞ ¼�i

wm,mHð1Þ0m ðwm,mrÞ

Hð1Þm ðwm,mrÞ
¼�i

wm,mHð2Þ0m ðwm,mrÞ

Hð2Þm ðwm,mrÞ

 !n

, (33b)

In addition, the variations of the cascade response function DbPc,0 with the radius in the interval Dr are also neglected. This
is valid if the cascade geometry can be assumed unchanged over the radial correlation length lr (assumption H4). But, the
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variation is kept in the phase term g:

gðr,r0Þ ¼ ðkzc0
sinjRð�rÞ�k7

xcd ,mmð�rÞÞxcd�ðkzc0
sinjRð�r

0
Þ�k7

xcd ,mmð�r
0
ÞÞx0cd

�kzR0
Dr�

m

r0
yLE,Rð�r

0
Þþk7

xR ,mmxLE,dð�r
0
Þþ

m

r
yLE,Rð�rÞ�k7

xR ,mmxLE,dð�rÞ: (34)

It can be simplified from assumption H4 as

gðr,r0Þ ¼ ðkzc0
sinjRð�rÞ�k7

xcd ,mmð�rÞÞðxcd�x0cdÞþ �kzR0
�

m tan �cRð�rÞ

r
þk7

xR ,mm tan �jRð�rÞ

" #
Dr: (35)

Introducing the wavenumbers:

K1 ¼�kn

zd1
þk7

xR ,mm tan �jR�
m

r
tan �cR,

K2 ¼ kzd1
þk7

xR ,mm tan �jR�
m

r
tan �cR, (36)

the PSD of the amplitude of the duct mode ðm,mÞ is expressed as

/9P7
m,mðoÞ9

2S¼
BRr0c0

29kmm9Gmm

 !2 Z RT
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wrms,bð�rÞ
2S7

m,mð�r ,oÞ
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ð�rÞ

z7n

m,mð�r ,oÞ
X

mg2Z

X
k2Z

dm,mg þkBR

Z
Fww,bðKR0, �rÞ

�½Cn

m,mHð1Þnm ðwm,mrÞIntð�r ,K1ÞþDn

m,mHð2Þnm ðwm,mrÞIntð�r ,K2Þ�9Idpc,m,mð�r ,o,mg ,kzR0
Þ92

dkzR0
dr, (37a)

where

Intð�r ,KiÞ ¼

Z þLr

�Lr

ei½Ki�kzR0
�Dr dDr¼ 2Lr sincð½Ki�kzR0

�LrÞ: (37b)

The PSD of the acoustic power is finally given by Eq. (5a). The accuracy of the simplification will be investigated as a
function of the frequency and the duct mode orders in Section 3.2.4.

2.3. Impingement of wake and background turbulence on OGV

2.3.1. Statistical properties of the turbulence

Since the incident disturbance on the stator corresponds to the turbulence downstream of the rotor, its properties are
introduced in the rotor rotating frame of reference RR. The upwash velocity then reads

uðxR,tÞ � nc ¼wðxR,tÞ ¼ �wðxR�tUxd
exd
Þ, (38)

instead of Eq. (13).
As proposed by Nallasamy and Envia [17], the turbulence is split into the sum of a background component (subscript b)

and a component from the turbulent rotor wakes (subscript w) which is assimilated to a random term multiplied by a
deterministic envelope W though possibly controversial this choice is made for a more relevant comparison of the present
results with the reference. The assumption of locally homogeneous turbulence allows writing

wðxR,tÞ ¼wbðxR,tÞþwwðxR,tÞ ¼ �wbðxR�tUxd
ð�rÞexd

Þþ �wwðxR�tUxd
ð�rÞexd

Þ (39a)

with

�wbðxRÞ ¼wrms,bð�rÞwbð �xR9�rÞ and �wwðxRÞ ¼wrms,wð�rÞWðxR � nRÞwwð �xR9�rÞ: (39b)

Again, the symbols above the coordinates are only to remind that the amplitudes wrms,i and integral length scales ðla,i,lt,iÞ or
Li of the turbulence (i¼ b or w) vary with the reference radius r but that the turbulence itself is nearly isotropic or
homogeneous and axisymmetric in the vicinity of this radius. Then a Liepmann or an axisymmetric turbulence model is
involved to describe the spectrum of the non-dimensional velocities wið �xR, �rÞ, i¼ b or w. The envelope W is taken to be a
periodic series of Gaussian profiles as proposed by Nallasamy and Envia [17], each one corresponding to the wake
downstream of a particular blade:

WðxR,yRÞ ¼
X
j2Z

exp �p yR�xR tanðwRð�rÞÞ�jgRð�rÞ

Lw

	 
2
 !

¼ WðxR � nRÞ ¼
X
j2Z

exp �p xR � nRð�rÞ�jgRð�rÞcos ðwRÞ

cos ðwRÞLw

	 
2
 !

: (40)

gRð�rÞ ¼ 2pr=BR is the pitchwise distance between two successive rotor blades in the duct section and Lw the width of the
wakes. This has been shown to be a very good approximation for broadband noise predictions [58]. The distribution being
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½gR cos wRð�rÞ�-periodic, it can be expanded in Fourier series:

WðxR � nRð�rÞÞ ¼
X
n2Z

Wnð�rÞe
�inBRxR�nRð�r Þ=rcos wRð�r Þ (41a)

with

Wnð�rÞ ¼
Lwð�rÞ

gRð�rÞ
e�pðnLwð�r Þ=gRð�r ÞÞ

2

(41b)

As previously, �w and w are periodic functions of the azimuthal angle.
In addition, since the turbulence interacts with the stator, the cross-spectrum of the upwash velocity must be given in

the stator frame of reference RS which leads to the Fourier transform:

wmg ðkxS
,kzS0

,oÞ ¼ 1

ð2pÞ4

ZZZ
R3

Z p

�p
wðxR,tÞeiotþ ikxS

xS�imgyS�ikzS0
r dyS dr dxS dt: (42)

Again, the expected value of the turbulent inflow wavenumber frequency spectrum can be expressed as

SWW ¼
X

mg2Z

X
m0g2Z

S
mg ,m0g
WW (43a)

with

S
mg ,m0g
WW ¼/wmg ðkxS

,kzS0
,oÞwm0g ðk

0
xS

,k0zS0
,o0ÞnS: (43b)

This expected value of the turbulent inflow wavenumber frequency spectrum of modes mg and m0g is the sum of the three
terms corresponding to the background turbulence S

mg ,m0g
WW,b, the wake turbulence S

mg ,m0g
WW,w contributions and the background/

wake cross-correlation S
mg ,m0g
WW,bw. The latter is set equal to zero by assuming that the background turbulence and the

turbulence in the wakes are not correlated. After some algebra, and a change from the rotating frame of reference fixed to
the rotor RR to a stationary frame of reference attached to the diffracting stator cascade RS — in a rather similar way as
above — the upwash expected value of the background turbulence SWW,b is written as

S
mg ,m0g
WW,b ¼/wb,mg

ðkxS
,kzS0

,oÞwb,m0g
ðk0xS

,k0zS0
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where Fww,b is the PSD of wb, and

KS0 ¼ kxS0
,�

mg

r
,kzR0

� �
(45)

with kxS0
¼�kxS

. This result is the analogue of Eq. (23) in the rotating case. It also supposes that the radial integral length
scale is small compared with the radial variation of the excitation, i.e. that the two radii can be taken equal in the
amplitude terms. In a same way, the cross-correlation of wake turbulence S

mg ,m0g
WW,w, can be derived as

S
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(46)
2.3.2. Power spectral density of the acoustic power

The PSD of the amplitude of the duct mode ðm,mÞ is as in Section 2.2. It can be approximated by the expression
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where Intð�r ,KiÞ is defined in Eq. (37b),

KS0 ¼
o�kyS0
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(47b)

and
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oþn1BROR
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tanwSð�rÞ,�

mg�n1BR

r
,kzS0

� �
, (47c)

similarly to Eq. (37a) in the case of the rotor in Section 2.2. The PSD of the acoustic power is finally given by Eq. (5a).
2.4. Definition of the length scale Lr

An important input to the model is the radial correlation length of the unsteady blade loading lr � 2Lr , which is almost
neither measured nor computed. Even though the recent measurements by Envia [40] seem to show that the unsteady
blade loading is likely correlated over a longer distance than the incident velocity, lr is usually assimilated to the radial
correlation length of the incident, locally isotropic or axisymmetric homogeneous turbulence, as usually done for the
broadband noise due to the interaction of an incident turbulence with an isolated airfoil [59]. lr is then defined as the radial
correlation length relating the two-dimensional spectrum of the upwash velocity bFww kxc ,kzc

� �
in kxc ,kzc

� �
¼ o=U0,0
� �

to the
PSD of the upwash velocity �Fww oð Þ, by the relation

bFww
o
U0

,0

� �
¼

U0

p lrðoÞ �FwwðoÞ, (48)

given by Hinze [60] and used by Amiet [59], where U0 is the mean flow velocity. The two-dimensional spectrum is
obtained by integration of the three-dimensional spectrum Fww over the wavenumber along the normal of the blade kyc .
2.5. Turbulence models

The three-dimensional spectrum of the upwash velocity of the locally homogeneous turbulence Fww and the radial
correlation length lr of the upstream turbulence are the properties of the upstream turbulence needed as input data. The
inlet turbulence is assumed locally isotropic and homogeneous according to Liepmann’s model [61] or a Gaussian model
(see Appendix C.1). Von Kármán’s model [60] could have been used instead but is not presented here for conciseness.
When not mentioned Liepmann’s model is used. The isotropy of turbulence is typical of well-controlled wind-tunnel
experiments and fan test rigs. In contrast, the turbulence in the annulus of a turbomachinery is hardly isotropic as outlined
by Kerschen and Gliebe [62]. For instance, the eddies of ingested turbulence are often elongated in the axial direction
upstream of the rotor in static test conditions [63]. In the present study, to assess the effect of anisotropy, locally
homogeneous and axisymmetric turbulence is also investigated. It should be closer to the actual turbulence in a turbofan
duct in particular for a rotor in static condition (mostly for the rotor ingestion noise but also for the stator interaction
noise). In normal flight condition, the ingested turbulence is mostly isotropic; however possible anisotropy may be
observed in the turbulent rotor wakes. It will also allow studying the importance of an accurate definition of the
turbulence impinging a blade row on the broadband noise prediction. The physically consistent model developed by
Kerschen and Gliebe [62] is considered. It is based on the earlier works by Batchelor [64] and Chandrasekhar [65,66].
Kerschen and Gliebe [62] reviewed the first analyses of anisotropic turbulence, from Hanson’s model of discrete eddies
with random properties [63] to Mani [67] and Mani and Bekofske [68]’s work resorting to the description of turbulence
in a contraction stream by Ribner and Tucker [69]. This rapid distortion theory [69,70] could have been used here as
was done by Atassi and Logue [71]. However, as outlined by Kerschen and Gliebe [62] a too large ratio of velocities ut=ua

(e.g. from Eqs. (34) and (35) of [69], ut=ua ¼ 4:9 for la ¼ 5L and lt ¼L=
ffiffiffi
5
p

) is induced for a realistic value of the ratio of the
axial and transverse length scales la=lt . The expressions of the three-dimensional spectrum Fww and the correlation length
lr for the axisymmetric model of Kerschen and Gliebe are derived in Appendix C.2.
2.6. Correction in the vicinity of the cut-on frequencies

A correction of the model has been introduced in the vicinity of the duct modes cut-on frequencies as proposed by
Posson and Roger [39] to avoid unrealistic peak response. The peaks are found because of the non-coincidence of the cut-
on frequencies of the annular duct modes and the cut-on frequencies of the rectilinear cascade obtained when unwrapping
an annular strip. Posson and Roger [39] enforced the coincidence by choosing a particular gust spanwise-wavenumber kzc0

when the azimuthal order of the gust mg �m ðmod BIÞ and the angular frequency o is close to the cut-on frequency of the
duct mode of azimuthal order m. They showed a substantial reduction of most of these unrealistic peaks in the rather low-
frequency experiment performed on a stator annular cascade briefly described in the next section.
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2.7. Annular effect: correction of the unsteady blade loading formulation

The unsteady blade loading for a rectilinear-cascade model was derived by Posson et al. [35] based on Glegg’s model
[21]. To evaluate the accuracy of the strip-theory approach, the category 4 of the Third Computational Aeroacoustic
benchmark [72] has been investigated [73,34]. Narrow and moderate annular cascades are excited by a mean rotor-wake
harmonic. The unsteady blade loading produced by the rectilinear-cascade model [34], the unsteady pressure field in the
blade passage [73] and the radiated acoustic duct modes [34] (produced by applying the acoustic analogy in an annular
duct with the unsteady blade loading as equivalent dipole sources) were compared with the results of more accurate
three-dimensional numerical methods. Some discrepancies were only found in the prediction of the unsteady blade
loading and consequently on the acoustic field for annulus with a small hub-to-tip ratio. A comparison of the dispersion
relation in an annular duct and a rectilinear configuration highlighted the presence of additional terms in the annular case,
caused by annular effects. A correction of the rectilinear-cascade model and hence of the unsteady blade loading was then
detailed [34]. The results suggested that this correction is necessary to get closer to the underlying physics of the annular-
space wave equation, but still remain significantly different from the three-dimensional results. Better results should be
expected in the present broadband case. The correction which mainly consists in introducing a corrected radial
wavenumber is then introduced in the current model and its effect on the results will be discussed in the next validation
section.

2.8. Concluding remarks: summary of the model

As outlined at the beginning of the section, the model can be considered as an extension of Ventres et al. [16] as it uses
an acoustic analogy in an annular duct with uniform mean flow, and a cascade response function to compute the unsteady
blade loading. Nevertheless, three important differences have been highlighted.

Firstly, the unsteady blade response used in each strip is a three-dimensional response which accounts for three-
dimensional incident gusts and which can deal with a more general blade row involving both non-zero sweep and lean
angles. Indeed, even if the radial variations of the geometry and of the mean flow features and turbulence are treated as
parametric variations, the local three-dimensionality of the turbulence is introduced in the unsteady blade response
function. Moreover, the effect of the first subcritical gusts is introduced.

Secondly, considering the three-dimensional turbulence spectra permits to introduce a non-zero radial correlation
length lr, and as a result, the cross-correlation of the unsteady blade loading for two close but not identical radial positions.
Indeed, former works of Ventres et al. [16] or Nallasamy and Envia [17] assume that the radial integral length scale is very
small compared to the duct radius and then neglect the difference of radii in all terms except in the turbulence correlation
function which ends in exhibiting the radial integral length scale as a multiplicative factor of the solution.

Thirdly, the formulation has been written in cylindrical coordinates to reckon with the annular geometry and its effect
on turbulence, instead of using Cartesian coordinates.

Finally, several turbulence models are investigated. The main interest of this last point is to quantify the effect of the
turbulence model on the broadband noise prediction (Section 3.4).

3. Fan-OGV broadband noise predictions

3.1. Experimental data and preliminary assessment

In order to assess the model, Posson and Roger [39] proposed a dedicated experiment in a subsonic anechoic wind-
tunnel facility. The experimental set-up has been designed to isolate the noise due to the interaction of an incident
turbulent flow with a stationary annular cascade of vanes as much as possible. The cascade has 49 or 98 vanes of 25 mm
chord length, a tip radius of 230 mm, and a hub-to-tip ratio of 0.65. The mean velocity ranges from 50 m/s to 100 m/s.
A turbulence-generating grid is inserted upstream to ensure a turbulent intensity of about 5.5 percent. As a result, the test
case corresponds to a low-frequency turbomachinery problem with relatively few cut-on duct modes. The resulting
broadband noise was predicted with the model described in Section 2.2 for the noise produced by a background turbulence
impinging on a blade row. Despite spurious numerical peaks, the predictions were found to differ by less than 2 dB from
the experimental data and reproduced the proper trend between the two annular cascades. Yet this was still far from a
realistic fan configuration involving more modes and a rotor/stator stage. For a more convincing validation, the model
must be assessed also in the case of rotor wakes interacting with stator vanes. This is achieved here with the experimental
results of the 22-in source diagnostic test (SDT) fan rig of NASA Glenn’s 9�15 low-speed wind tunnel [40–46,15]. The SDT
experiments were performed on a fan stage composed of 22 rotor blades and three different OGV: the baseline OGV with
54 radial vanes, the low-count OGV with 26 radial vanes and the low-noise OGV with 26 swept vanes. Three flight
conditions were investigated : approach, cut-back and fly-over. Both the flow field and the acoustic field were measured.
The comparison is performed for the two radial OGV in the approach configuration, for which the main characteristics are
summarized in Table 1 [17,42,74]. The duct dimensions lead to about 2600 and 4600 cut-on modes at 30 and 40 kHz
respectively. For the numerical assessment of the present broadband noise model, the baseline configuration only is used,
in Sections 3.2 and 3.3. The low-count configuration is then used to assess the effect of the incident turbulence in Section



Table 1
Main geometrical and aerodynamic parameters of the studied SDT cases.

BR RH=RH RT (m) OR (rad s�1) T0 (K) r0 (kg m�3)

22 0.5 0.28 817.65 288 1.248

OGV BS c (m) wðRHÞ (deg) wðRmÞ (deg) wðRT Þ (deg)

Baseline 54 0.04 35.9 29.8 33.1

Low-count 26 0.082 33.5 29.7 33.1

OGV Uxd
ðRHÞ (m s�1) Uxd

ðRmÞ (m s�1) Uxd
ðRT Þ (m s�1) UyðRHÞ (m s�1) UyðRmÞ (m s�1) UyðRT Þ (m s�1)

Baseline 105.9 111.1 71.1 102.2 75.9 80.0

Low-count 107.1 115.8 66.6 101.6 75.0 71.4

OGV LðRHÞ (m) LðRmÞ (m) LðRT Þ (m) LwðRHÞ (m) LwðRmÞ (m) LwðRT Þ (m)

Baseline 0.0046 0.0058 0.013 0.036 0.049 0.088

Low-count 0.0054 0.0061 0.014 0.020 0.026 0.040

OGV urms,bðRHÞ (m s�1) urms,bðRmÞ (m s�1) urms,bðRT Þ (m s�1) urms,wðRHÞ (m s�1) urms,wðRmÞ (m s�1) urms,wðRT Þ (m s�1)

Baseline 4.62 2.90 9.13 0.15 4.86 0.97

Low-count 4.22 2.72 10.55 0.44 5.11 0.50
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3.4. Both configurations are considered in the final validation of the model in Section 3.5. Moreover, the model is also
compared with the predictions of Nallasamy and Envia [17] in this final section. It is important to highlight that the
acoustic power predicted by the model assumes an infinite duct whereas experimental acoustic power is computed from
measurements outside of the duct. The reflexion at the duct end and the diffraction by the shear layers notably can modify
the overall power as well as the frequency content. Besides the presence of the rotor in the experiment introduces a
shielding effect, a coupling between the blade rows and a swirling mean flow in between the rotor and the stator. All these
aspects may considerably modify the response. Finally, the experimental measurements and the blade row manufacturing
process can introduce additional uncertainties in the experimental results. All these differences and uncertainties will have
to be kept in mind when assessing the model. For instance an exact agreement in level will not mean a perfect prediction
by the model but rather a very good agreement.

Besides, before any comparison, it is necessary to verify that the domain of validity of the cascade model contains the
studied frequency range. The low-frequency limit of the model is specified by the numerical truncation of the infinite
matrix system coupling the leading edges and trailing edges in the rectilinear-cascade model, since Glegg’s cascade
response function [21] gives the exact solution for an infinitely thin flat-plate cascade of finite length. However, using
Richardson’s procedure together with 100 terms in the matrix gives well converged results. The good accuracy well below
the low-frequency limit of a two-steps Schwarzschild procedure has already been outlined in the limit case of a reduced
cascade effect [35], with an agreement for k1 ¼oc=ð2UcÞ42 in the incompressible case. Compressibility effects and
cascade effects may modify this limit, in the present configuration. However, the model has been shown in a good
agreement with experimental data in the case of an isolated stator impinged by a turbulent flow [39] for k140:6 (600 Hz
in [39]). The low-frequency range ½1,2� kHz (k1 2 ½1,2�) will then have to be considered more carefully.
3.2. Numerical assessment of the model

The numerical evaluations of the integral over R and series involved in the model require truncations. The truncation
criteria and their effects are studied in Section 3.2.1 for the integration in spanwise wavenumber and in Section 3.2.2 for
the series in azimuthal order of the incident perturbation mg .
3.2.1. Convergence of the numerical integration in the spanwise wavenumber

Results below are obtained for mg 2 ½�Nmg ,Nmg � with Nmg ¼ 200. The integration on the radial wavenumber kzS0
over R

and then the spanwise wavenumber kzc0
over R is performed numerically by integrating over a particular range

½kzc0,min
,kzc0,max

�. It is first possible to determine the maximal and minimal values of the spanwise wavenumber such that
at least one cascade radiation mode propagates outside, namely the cascade is cut-on for this gust. These values are
defined by

kzc0,max,crit:
¼max

k2Z
ðkzc0,crit:

ðkÞÞ ¼
oex

ðbþMwÞc0
, (49a)
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and

kzc0,min,crit:
¼min

k2Z
ðkzc0,crit:

ðkÞÞ ¼
�oex

ðb�MwÞc0
, (49b)

where k is a cascade diffraction order, and kzc0,crit:
ðkÞ is the spanwise wavenumber for which the cascade mode k goes from

cut-on to cut-off. The cut-on condition of the mode k for kzc0
reads
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where d, h, s, M, b, se and bw are defined in Appendix B. The two bounds of Eq. (49b) correspond to the bounds of the ellipse
outlined by Hanson [22] [22, Fig. 10] in the rectilinear model. However, the problem is posed in a different way here.
Indeed, the sound radiated on a particular duct mode m by an incident gust of azimuthal order mg is computed from the

unsteady blade loading produced by this gust. The loading contains a summation over all the cascade radiated modes, and

not only the mode of order k¼ ðm�mgÞ=V . In particular, it is interesting to investigate to what extent the subcritical gusts,

namely the gusts for which no cascade radiated mode k is propagating, contribute to the overall broadband noise. Firstly, a

computation is done by limiting the integration to ½kzc0,min,crit:
,kzc0,max,crit:

�, named run ðIÞ, depicted with symbols x in Fig. 3(b).

Then, three computations are performed with extended bounds ½kzc0,min,crit:
�Dkzc0

,kzc0,max,crit:
þDkzc0

�, with Dkzc0
� c¼ 7, 10 and

20 corresponding to the runs (II)–(IV) in symbols &, o and � respectively. These simulations account for the first
subcritical gusts. Three other runs are performed by imposing the cut-on criteria and requiring that the wavenumber range

½kzc0,min
,kzc0,max

� is at least ½�8p=ðRT�RHÞ,8p=ðRT�RHÞ� and to be at most [�15,15] for run ðVÞ or [�30,30] for run ðVIÞ. The

minimal criterion of 8p=ðRT�RHÞ was previously used by Posson et al.[34,36,37] to introduce the first subcritical gusts at
low frequencies while avoiding to increase the range at higher frequencies where many gusts are supercritical and where
subcritical gusts are expected to have little effect. This is verified here. The value 8p=ðRT�RHÞ corresponds to a cosine mode
with eight nodes which has been observed to be sufficient by Atassi and Vinogradov [30] in another benchmark (noted

ng ¼ 4 there). This value corresponds to kzc0
c� 7:15 here for the NASA baseline OGV. Finally, the run ðVIIÞ accounts for all

the gusts with kzS0
c 2 ½�60,60�. Fig. 3(a) illustrates the truncation criteria of the integral used in runs ðIÞ, ðIIÞ and ðVIÞ.

The first series of runs (I–IV) shows the important role of the subcritical gusts at low to moderate frequencies up to
6.5 kHz i.e. k0RT � 30, zones (1) in Fig. 3. Indeed at 1 kHz (k0RT � 5), they increase the level by 5.3 dB. However, they have
negligible effect at high frequencies (zones (2)). This is quite similar to what Moreau et al. found on plane airfoils [75] and
later on by Roger on an annular airfoil ring [76]. In addition, the convergence in subcritical gusts is already obtained for
Dkzc0

c¼ 7 at all frequencies since it perfectly agrees with run (VII). Runs (V) and (VI) are in perfect agreement below
19 kHz, whereas the run (V) underestimates the prediction above (zones (3)), because several gusts of spanwise
wavenumber bigger than kzc0

c¼ 15 are cut-on as shown in Fig. 3. At low to moderate frequencies, in range (1), the
criterion kzc0,max

¼ 8p=ðRT�RHÞ is sufficient since the runs (V–VI) coincide with runs (II–IV,VII). At very low frequencies
(1 kHz), the bounds of runs (V–VI) are almost equivalent to those of run (II) since there are very few supercritical gusts. At
higher frequencies in zone (1), however, the criterion kzc0,max

¼maxð8p=ðRT�RHÞ,kzc0,max,crit:
Þ is finer, with fewer subcritical
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Fig. 3. NASA baseline OGV: experiment [46] (—), and present model with different bounds of the integral over the radial wavenumber kzc0
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gusts, than the one of runs (II–IV) but it applies again. At the highest frequencies, in area (2), runs (VI) is in perfect
agreement with the first series of runs and with run (VII). The subcritical gusts can then be neglected.

The radial variation of the incident turbulent field could have been written as a Fourier series instead of the present
continuous Fourier transform by invoking the no-flow boundary conditions at hub and tip radii as proposed by Atassi and
Vinogradov [30] in their analysis by linearized Euler equations [33]. This is questionable for turbulent velocities when the
integral length scale is much smaller than the duct height. Turbulence at mid-height is not likely affected by the duct
walls. However, such a formulation has the advantage of saving computational time by a factor ðRT�RHÞ=ðpdkzR0

Þ. The use
of the Fourier series is found to capture the correct overall spectrum shape in Fig. 4. But it exhibits many additional peaks
at intermediate frequencies between 3 and 9 kHz, which are not predicted by the continuous formulation. The peaks
originate from the selection of particular wavenumbers, which emphasize resonances. From now on a continuous Fourier
transform is therefore applied and the run (VI) is used as a compromise between accuracy and computational time.

3.2.2. Convergence of the series in azimuthal order of the incident perturbation mg

As already mentioned by several authors (e.g. [32]) the number of contributing modes to the overall sound power
significantly increases with the frequency. The number of Fourier components of the turbulence velocity that must be
considered also rises. The truncation of the series in azimuthal order of the incident perturbation mg must then be
investigated. The sum over the azimuthal order mg of the incident gusts is calculated by summing over the relative
integers k such that m¼mgþkBS. In practice, the minimal and maximal allowed values of mg are imposed equal to �Nmg

and Nmg (Nmg ¼ 100, 200, 300 and 400 in Fig. 6). Then the effective limits of k are imposed by the number of values of k

between dðm�Nmg Þ=BSe and bðmþNmg Þ=BSc. The summation over k thus over mg reduces to a maximum of d2Nmg=BSe

values, i.e. 8 for mg ¼ 200 and BS ¼ 54 (baseline OGV).
In addition, the rectilinear cascade defined in each strip provides two cut-on conditions, for cascade radiated mode

orders: kmin,cascade and kmax,cascade which are the extreme integers between the two roots of the equation

o¼ok ¼
1

s2
½Ucdðs�2pkÞþsec0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs�2pkÞ2þðkzc0

sÞ2
q

�: (51)

These conditions are merely the translation of the previous ones on kzc0
in terms of k at fixed kzc0

. They are analogous to the
conditions outlined by Hanson [22] in terms of s and kzc0

for k¼0 but derived here in terms of mg and k. Finally the values
of k associated with cut-on modes radiated by the cascade modes are limited in a parallelogram-like region as shown in
Fig. 5 for kzc0

¼ 0. Fig. 6 shows the effect of the bounds of the summation on the acoustic power spectra. Below 9.6 kHz
(k0RT ¼ 50), all results collapse. The convergence in mg is already obtained. Above this value, the results start to differ. The
additional term tends to increase the response at high frequencies. Indeed, the number of modes radiated by the cascade
increases with frequency. The orders of the radiated modes of the cascade equal the orders k, and the azimuthal order of
the associated duct mode is m¼mgþkBS [35]. Finally, the truncation is fixed to Nmg ¼ 200 in the following investigation, as
the numerical convergence of the integrals and series have then been reached. The origin of the peaks observed at low
frequencies in the model, seen in Fig. 6 for instance, whereas the experimental spectrum is really smooth, is
investigated next.

3.2.3. Resonances and spurious peaks at low frequencies

Posson and Roger [39] proposed to introduce a correction in the vicinity of the cut-on frequencies to avoid unrealistic
peaks at these frequencies as briefly introduced in Section 2.6. This correction has already been applied to the above
results. The effect of the correction is illustrated in Fig. 7(a). At low frequencies, it reduces the overall level by up to 10 dB,
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the basis of the peaks becoming closer to the experimental results, whereas it has a negligible effect at higher frequencies
where peaks are less pronounced.

However many numerical peaks remain at low frequencies. As exhibited by the different sampling of the curve in
frequencies in Fig. 7(b), the low-frequency spectrum is highly contaminated by spurious peaks caused by the numerical
sensitivity of the code to the low density of modes. This issue is not omitted. However to make the comparison easier, the
curves obtained with 30 points over the frequency range 1–30 kHz (black dashed line in Fig. 7(b)) are used in the following
sections except in Section 3.3.

3.2.4. Accuracy of the simplifications and assumptions in the acoustic power

The expression of the PSD of the acoustic power produced by a row of either rotor blades or stator vanes (Eqs. (5a), (37a),
(47a)) relies on the simplification made in Sections 2.2.3 and 2.3.2 based on the existence and properties of the length Lr . The
accuracy of the simplification must be assessed as a function of frequency and duct mode order. Indeed, it is valid if half the
radial correlation length Lr , plotted in Fig. 8, is smaller than the radial scale of the variation of the duct mode Em,m. The
correlation length exhibits a hump at intermediate frequencies as shown in Fig. 8. At 25 percent of span, the hump covers a
range of k0RT from 4 to 13 (i.e. between 0.78 and 2.52 kHz) whereas it is much wider near the tip.
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Another issue originates from the use of the Hankel functions in Eq. (32) instead of the Bessel functions in Eq. (3). Indeed, the
Bessel function of second kind r/Ymðwm,mrÞ goes to infinity when increasing the azimuthal order m of a duct mode with low
radial order m, in particular when m¼ 0. But the coefficient Bm,m ¼�ðJ0mðwm,mRT Þ=Y 0mðwm,mRT ÞÞAm,m ¼�ðJ0mðwm,mRHÞ=

Y 0mðwm,mRHÞÞAm,m approaches zero with a steeper decay. Numerically, the second definition at the hub is preferred to ensure
the convergence of the product Bm,mYmðwm,mrÞ and finally of the function Em,m. The imaginary part of the Hankel functions is
defined from the Bessel function of the second kind. In Eqs. (37a) and (47a), the products of the two Hankel functions with
different sine cardinal functions (reminded below in Eq. (53)) may induce numerical errors. It is then required to verify the
proper convergence of the formulation. For this, the expression

X¼ Em,mðrÞ

Z Lr

�Lr

Em,mðrþDrÞe
iðKj�kzR0

ÞDr
dDr, (52)

with Kj ¼ k7
xR ,mm tan �jR�m tan �cR=r (¼0 for radial vanes), is evaluated numerically and plotted in black curves in Fig. 9, for the

baseline OGV, for a radial wavenumber kzR0
cS ¼ 0 or 20, and several frequencies and duct mode orders ðm,mÞ. The analytical

approximation:

2Lr½C
n

m,mHð1Þnm ðwm,mrÞsincððKj�kzR0
�kn

zd1
ÞLrÞþDn

m,mHð2Þnm ðwm,mrÞsincððKj�kzR0
þkzd1

ÞLrÞ�, (53)
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obtained in Sections 2.2.3 and 2.3.2, is plotted for comparison as symbols. The solution obtained when neglecting the difference
of radii in the eigenfunction Em,m:

2Lr9Em,mðrÞ9
2
sincððKj�kzR0

þkzd1
ÞLrÞ (54)

is represented in grey and called real-part approximation later on for conciseness, simply because it results in a real number.
The plots of the quantity X at k0RT ¼ 11:7 (2.27 kHz) in Fig. 9(a), (b), (d) and (e) show a very good agreement in all cases

between the numerical evaluation of the exact integral and the approximated analytical formulation. The difference of
radii in the eigenfunction can be neglected (real-part approximation, dashed line) for a two-dimensional incident gust
(kzR0
¼ 0). For three-dimensional gusts, it is still able to predict the real part of the formulation (Fig. 9(d)), with however

small discrepancies (Fig. 9(e)). Nevertheless, the imaginary part is now important and it cannot be predicted with the real-

part approximation (Fig. 9(d) and (e)). This justifies accounting for the spanwise variation of the eigenfunction as done in
the proposed analytical approximation. When increasing the frequencies to k0RT ¼ 26:7 (5.17 kHz) (Fig. 9(c) and (f)), the
conclusions are almost the same. The prediction from the analytical simplification is again very good, whereas the
discrepancies of the real-part approximation are larger. At high frequencies (k0RT ¼ 137:7 and f¼26.68 kHz), modes of high
radial orders become cut-on (e.g. ðm,mÞ ¼ ð28,23Þ in Fig. 9(g)). The radial scale of these duct modes can be rather small
compared to the duct height. However, at these frequencies the radial correlation length lr ¼ 2Lr also decreases, and finally
goes to zero (Fig. 8). The assumption is still valid as shown for k0RT ¼ 137:7 (f¼26.68 kHz) in Fig. 9(g) whereas the real-part

approximation predicts very low levels. Some discrepancies are observed for modes with small radial orders m and high
azimuthal orders m for the high spanwise wavenumber (kzR0

c¼ 20) as in Fig. 9(h) for ðm,mÞ ¼ ð140,0Þ. However, for
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moderately high values of kzR0
c (e.g. 10), no discrepancies are observed as shown in Fig. 9(i).Finally, the simplification

proposed in Sections 2.2.3 and 2.3.2 performs well for the studied configurations.

3.3. Alternative formulations

The formulation of the present model (Eqs. (37a) and (47a)) referred to as ðF1Þ later on, is now further simplified. Two
high-frequency approximations are introduced as proposed by Posson and Roger [36]. Firstly when k0Lr b1, Intð�r ,K1Þ=ð2pÞ
can be assimilated to a Dirac delta function: Intð�r ,K1Þ � ð2pÞdðKi�kzI0

Þ. Inserting this approximation in Eqs. (37a) and (47a)
leads to the formulation referred to as ðF2Þ.

A final modified version resulting from the formulation ðF2Þ, labelled ðF3Þ is proposed on the basis of the following
observations. First, the wavenumbers Ki are complex and some numerical difficulties might appear, even if theoretically
the formulation ðF1Þ is valid if Lr can be defined and then the formulation ðF2Þ should apply at high frequencies. Secondly,
the rectilinear-cascade model does not produce scattering in radial wavenumbers, as pointed out in [34], and the cut-on
frequencies of the cascade modes do not coincide with the cut-on frequencies of the annular duct modes [36]. A third
formulation is then proposed, as suggested by Glegg [57] for the trailing-edge noise of blades in an annular duct, in order
to tune the radial wavenumber kzI0

and thus kzc0
to ensure the coincidence of the wave equations and then of the cut-on

frequencies. For each duct mode ðm,mÞ, only the incident gusts with the tuned radial wavenumber contribute to the
radiated field of that mode. Yet, this method artificially attributes a large contribution of this particular wavenumber near
the cut-on frequencies of a duct mode. In fact, all wavenumbers of the incident turbulence contribute to the acoustic
radiation of the duct mode ðm,mÞ and other wavenumbers cannot a priori be neglected. The new formulation must then be
assessed, notably against the formulation ðF2Þ. Besides, this spanwise wavenumber defined for each duct mode ðm,mÞ
corresponds to the one used in the correction in the vicinity of the cut-on frequencies (Sections 2.6 and 3.2.3) but it is used
here for all frequencies and duct modes.

The results obtained with these two formulations are plotted in Fig. 10. In the upstream direction (Fig. 10(a)), the
approximated formulations ðF2Þ and ðF3Þ are in good agreement with formulation ðF1Þ above 4 kHz, the formulation ðF3Þ
giving even better results at the highest frequencies. ðF3Þ is then relevant to tune the radial wavenumber of the gusts to
ensure the coincidence of the cut-on frequencies of the cascade modes and of the duct modes. Downstream, the two
formulations ðF2Þ and ðF3Þ predict the overall level of the experiment and the proper spectrum shape above 4 kHz well,
whereas formulation ðF1Þ underestimates the response. This suggests that this underestimate is introduced by the
expression X. However, at highest frequencies, the spectrum obtained with formulations ðF2Þ and ðF3Þ drops more slowly
than those of the experiment and the formulation ðF1Þ, leading to an overestimate of about 4 dB at 30 kHz. Above all, at
low frequencies, formulations ðF2Þ and ðF3Þ overestimate the spectrum level by up to 10–15 dB (at 1 kHz for instance),
which was expected since formulations ðF2Þ and ðF3Þ rely on a high-frequency assumption. Finally, the corresponding
strong reduction of computational time with these formulations with a moderate lack of accuracy could justify their use
for parametric studies in industrial context.

3.4. Effect of the turbulence model

Liepmann’s isotropic model has been used in the aforementioned predictions. Let us note that the provided data
[17,42,74] for the turbulence integral length scale assumes the equality of the integral length scales LbðrÞ ¼LwðrÞ of the
background and wake turbulence. Turbulence properties (urms,i, Li or ðla,i,lt,iÞ) define both the three-dimensional
turbulence spectrum Fww and the length lr . The former is in factor of the cascade response and the duct mode terms
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Fig. 10. NASA baseline OGV: experiment [46] (—), present formulation ðF1Þ ( ), simplified formulations ðF3Þ ( ), and ðF2Þ (– – –): (a) upstream

and (b) downstream narrow-band power spectra.
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inside the integrals. It modulates the amplitudes of the gusts with different wavenumbers. The latter is involved inside and
outside the sine cardinal function. It is then crucial to evaluate the effect of the turbulence model on the predicted results.
First the Liepmann and the Gaussian models for isotropic turbulence are compared in Fig. 11 for the low-count OGV and
are also compared with the results of Atassi and Logue [32] obtained with the LEE solver [33]. Here the corrected unsteady
blade loading presented in [34] and summarized in Section 2.7 has been used for all predictions. As with the LEE solver, the
use of a Gaussian spectrum produces a very steep decrease above 12 kHz. In addition, the low-frequency levels are
underestimated by about 6–7 dB with the present model and of a similar amount (8 dB) with the LEE solver compared to
the results with Liepmann’s model. Furthermore, the model and the LEE simulation behave similarly for both turbulence
models and compare favorably with the SDT cases, for which the turbulence can be considered as isotropic. Indeed, the
SDT fan rig data were acquired in an ambient tunnel Mach number of 0.1 [46] which must have greatly mitigated eddies
stretching during their ingestion and should be sufficient to achieve acoustic flight effect [77]. A preliminary study of the
effect of turbulence anisotropy is illustrated in Fig. 12 with the axisymmetric model of Kerschen and Gliebe, for which
FwwðkcÞ and lr are derived in Appendix C.2. Two different sets of parameters have been tested. The longitudinal la,i and
transverse lt,i integral length scales have been defined with respect to the turbulence intensity formerly used in the
isotropic turbulence case Li. Firstly, the transverse length scale has been reduced to lt ¼L=2, while the axial length scale la
is kept equal to L and ua ¼ ut ¼wrms. Secondly, the axial length scale la has been increased to la ¼ 2L, while the transverse
length scale lt is kept equal to L and ua ¼ ut ¼wrms. The reduction of lt only produces an unrealistic noise reduction (16 dB
here) and a slight shift of the hump to lower frequencies, whereas the increase of la only produces a large but smaller decay
at low frequencies (8 dB) and a stronger decay above 5.8 kHz. Thus, the shape of the spectrum is more distorted than with
the reduction of lt . The model is then highly sensitive to the parameters of the anisotropic model. The use of an anisotropic
turbulence model is then conditioned by a proper characterization of the turbulence from experimental measurements.
When this information is not available, a simpler isotropic model is more robust for noise prediction and parametric
studies.
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Fig. 12. NASA low-count OGV: experiment [46] (—), present formulation with Liepmann’s model ( ) and axisymmetric model for lt ¼ la=2¼L=2

and ua ¼ ut ( ) and for la ¼ 2lt ¼ 2L and ua ¼ ut ( ): (a) upstream and (b) downstream narrow-band power spectra.
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Fig. 11. NASA low-count OGV: experiment [46] (—), Atassi et al. [33] (from [32]) ( ), present formulation with corrected unsteady blade loading

( ). Isotropic Liepmann’s model (black), and Gaussian’s model (grey): (a) upstream and (b) downstream narrow-band power spectra.
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Fig. 14. NASA low-count OGV: experiment (e.g. [46]) (—), Nallasamy and Envia [17] (J), present formulation with original blade loading ( ), and

modified blade loading ( ): (a) upstream and (b) downstream narrow-band power spectra.
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Fig. 13. NASA baseline OGV: experiment (e.g. [46]) (—), Nallasamy and Envia [17] (J), present formulation with original blade loading ( ), and

modified blade loading ( ): (a) upstream and (b) downstream narrow-band power spectra.
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3.5. Final validation

Finally, the effect of the correction proposed in [34] and briefly reminded in Section 2.7 is reported in Figs. 13 and 14 for
the baseline and low-count SDT test cases respectively. The correction reduces the predicted level in both configurations,
with a more pronounced effect upstream of the fan (Figs. 13(a), and 14(a)) than downstream (Figs. 13(b) and 14(b)). More
precisely, in the baseline configuration and upstream (Fig. 13), the correction reduces the overestimation at intermediate
frequencies (2.5 dB at 5.1 kHz). At low and high frequencies, the levels remain almost unchanged. The corrected
formulation then predicts the upstream acoustic power accurately whereas the downstream acoustic power remains
underestimated by 3–5 dB at 5.1 kHz. The behavior is very similar in the low-count OGV case (Fig. 14), for which the
correction significantly improves the prediction over the whole frequency range. The upstream acoustic power is again in
very good agreement with the experiment. The downstream acoustic power is underestimated by 3 dB. The present model
compares better with the experiment than the model developed by Nallasamy and Envia in all four cases, except at mid-
frequency in the downstream direction for the baseline case. At high frequencies, this is mainly attributed to the choice of
Liepmann’s model. At other frequencies, the corrected three-dimensional response recently developed by Posson et al.
[34,35] is the main reason. At low frequencies, the contribution of the subcritical gusts accounted for in the present model
is also significant.

4. Concluding remarks

An analytical model for predicting the broadband noise produced by the interaction of ingested turbulence with the
rotor blades of a fan and the rotor-wake impingement on outlet guide vanes has been described in detail. The model
resorts to a strip-theory approach and an unsteady blade-loading rectilinear-cascade response [35] extending Glegg’s
analytical formulation [21]. The model has been extensively compared with experimental results of the 22-in source
diagnostic test (SDT) fan rig of the NASA Glenn Research Center, which is a very realistic turbomachinery configuration
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involving the rotor–stator interaction-noise mechanism. Possible simplifications of the model have been thoroughly
assessed in order to reduce the computation time. Indeed the analytical formulations involve integrals and sums. The
truncation of the integral over the spanwise wavenumbers of the incident turbulent gusts has been investigated. The
subcritical gusts are shown to be necessary at low frequencies to capture the correct level, whereas the supercritical gusts
underestimate the radiation by 5 dB. A convergence in subcritical gusts is also proved. In the NASA baseline case, it is
ensured by accounting for the subcritical gusts with non-dimensional spanwise wavenumbers apart by less than 7 from
the spanwise-wavenumbers range of supercritical gusts. At higher frequencies subcritical gusts have negligible effects as
previously shown on airfoils [75,76]. The effect of turbulence modelling has also been studied. Turbulence in the SDT cases
is almost homogeneous and isotropic in some radial layers. The prediction with Liepmann’s model gives the best results.
The Gaussian isotropic spectrum leads to a too strong decay at the highest frequencies and an underestimate of 6–7 dB at
low frequencies, which is consistent with Atassi and Logue’s results [32]. The expressions of the turbulence properties
required by the model for Kerschen and Gliebe’s axisymmetric turbulence model have also been derived. A first result with
a reduction by a factor 2 of the transverse length scale lt of a half shows a strong noise level reduction of about 14 dB, for
instance. The present preliminary results underline the strong effect of turbulence modelling. Finally, the correction of the
unsteady blade loading proposed in a previous work by the authors [34] has been shown to provide a better prediction of
the upstream acoustic power. However the present model still underestimates the downstream acoustic power by 2–5 dB.
Finally, two further approximations have been proposed from the original model at high frequencies. These formulations
are in rather good agreement with the experiment above 4 kHz. Their faster computational time makes them useful for
parametric studies in an industrial context.
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Appendix A. Reference frames, coordinate transformation and geometrical parameters

A.1. Reference frames, coordinate transformation

The coordinates X9d, X9I , X9cd, X9c in the different frames of reference Rd, RI , Rcd, Rc respectively are linked by

X9I ¼

xI

yI

r

0B@
1CA¼ xd

yd

r

0B@
1CA� 0

�OIrt

0

0B@
1CA, (A.1)

X9cd ¼

xcd

ycd

zcd

0B@
1CA¼Q �wc,I�

xI�xLE,IðrÞ

yI�yLE,IðrÞ

0

0B@
1CA, (A.2)

X9c ¼

xc

yc

zc

0B@
1CA¼Qj,I�X9cd ¼Q �wcj,I�

xI�xLE,IðrÞ

yI�yLE,IðrÞ

0

0B@
1CA, (A.3)

where xLE,IðrÞ and yLE,IðrÞ are the positions of the leading-edge of the blade 0 at the radius r along ex,I and ey,I . They are
defined by the relation (A.4) and they introduce phase shifts because of the sweep �jI and the lean �cI of the blades:

xLE,IðrÞ ¼ ðr�RHÞsin �jI ,

yLE,IðrÞ ¼ ðr�RHÞsin �cI:
:

(
(A.4)

The transformation matrices Q �wc,I and Q �wcj,I defined by Eqs. (A.5) and (A.6) are rotation matrices that rotate the frames of
reference linked to the duct axis to the frames of reference linked to the cascade axis around a particular radius. The first
matrix is a rotation of the stagger angle �wI followed by a rotation of the lean angle (after stagger) cI. The second matrix
corresponds to the same transformation followed by a rotation of the sweep angle (after stagger and lean angles) jI:

Q �wc,I ¼

cos �wI sin �wI 0

�sin �wIcos cI cos �wIcos cI �sin cI

�sin �wIsin cI cos �wIsin cI cos cI

0B@
1CA, (A.5)
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Q �wcj,I¼

cos �wI cos jIþsin �wI sin cI sin jI sin �wI cos jI�cos �wI sin cI sin jI �cos cI sin jI

�sin �wI cos cI cos �wI cos cI �sin cI

cos �wI sin jI�sin �wI sin cI cos jI sin �wI sin jIþcos �wI sin cI cos jI cos cI cos jI

0B@
1CA, (A.6)

and

Q �wcj,I ¼Qj,IQ �wc,I ¼Qj,IQc,IQ �w ,I (A.7)

with

Qj,I ¼

cos jI 0 �sin jI

0 1 0

sin jI 0 cos jI

0B@
1CA: (A.8)

The matrix of the inverse transformation Qinv,I ¼ Q�1
�wcj,I is equal to

Q inv,I ¼

cos �wI cos jIþsin �wI sin cI sin jI �sin �wI cos cI cos �wI sin jI�sin �wI sin cI sin jI

sin �wI cos jI�cos �wI sin cI sin jI cos �wI cos cI sin �wI sin jIþcos �wI sin cI cos jI

�cos cI sin jI �sin cI cos cI cos jI

0B@
1CA: (A.9)

The lean and sweep angles cI , jI are related to the lean angle looking from the front of the duct �cI and the sweep angle
looking from the side �jI as detailed by [22] and reminded here:

tan cI ¼ cos �wI tan �cI�sin �wI tan �jI ,

tan jI ¼ cos cIðsin �wI tan �cIþcos �wI tan �jIÞ:

(
(A.10)

Finally the stagger angle of the rectilinear-cascade model wI is defined by

tan w¼
Q �wcj,I,12

Q �wcj,I,22

: (A.11)

An additional reference frame ~RI , whose ~x-axis is along k and the ~z-axis is radial, is introduced in Appendix C.2 to deal
with axisymmetric turbulence. The transformation matrix from this reference frame to the cascade reference frameRc , ~Q I ,
is

~Q I ¼

cos D �wI cos ~jIþsin D �wI sin ~cI sin ~jI sin D �wI cos ~jI�cos D �wI sin ~cI sin ~jI �cos ~cI sin ~jI

�sin D �wI cos ~cI cos D �wI cos ~cI �sin ~cI

cos D �wI sin ~jI�sin D �wI sin ~cI cos ~jI sin D �wI sin ~jIþcos D �wI sin ~cI cos ~jI cos ~cI cos ~jI

0BB@
1CCA, (A.12a)

with

tan ~cI ¼ cos D �wI tan �cI�sin D �wI tan �jI ,

tan ~jI ¼ cos ~cIðsin D �wI tan �cIþcos D �wI tan �jIÞ:

(
(A.12b)

It simply differs from Q I by replacing the stagger angle �wI by D �wI .

A.2. Relationship between velocities

The triangle of velocities and the cascade angles impose the following relationships between the mean velocity
components.

A.2.1. Relationship between velocities in the rotor case

tan �wR ¼
ORr

Uxd

, U0 ¼
Uxd

cos �wR

,

Uc ¼U0 cos jR, Wc ¼U0 sin jR: (A.13)

A.2.2. Relationship between velocities in the stator case

U0 ¼
Uxd

cos �wS

, Uy ¼Uxd
tan �wS

Uc ¼U0 cos jS, Wc ¼U0 sin jS,

ORr¼Uxd
ðtan �wS�tan �wRÞ, Uy ¼Uxd

tan �wR: (A.14)
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Appendix B. Cascade parameters

g is the inter-blade distance, that is to say the distance between two leading edges in a section of the duct. Several
parameters of the rectilinear-cascade model are introduced in the equations. They have been originally defined by [21] and
recalled by [35]. They are given here for the sake of completeness:

d¼ Q �wcj,12gI , h¼ Q �wcj,22gI , s¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2þh2

p
M¼Uc=c0, b2

¼ 1�M2, se ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2þb2h2

q
Mw ¼Wc=c0, b2

w ¼ 1�M2
w: (B.1)

d and h are the stagger distance and the inter-blade distance normal to the blade in the cascade frame of reference Rc . M is
the Mach number along the blade in the chordwise direction:

Mh¼Mxds, se ¼ bxds (B.2)

Appendix C. Turbulence models

C.1. Isotropic turbulence model

Liepmann’s model can be used to model a locally isotropic homogeneous turbulence. In Cartesian coordinates, the
turbulence spectrum Fww ¼F2,2 in the cascade frame of reference Rc divided by the turbulence intensity is defined as

FLiep
ww ðkcÞ ¼

2L5

p2

k2
xc
þk2

zc

ð1þL2k2
s Þ

3
(C.1)

with k2
s ¼ k2

xc
þk2

yc
þk2

zc
, and the radial correlation length lr is given by

lr � lLiep
r ðoÞ ¼

3pL

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðKxLÞ2

q ðKxLÞ2

1þ3ðKxLÞ2
: (C.2)

A Gaussian isotropic model can also be used [32]. The turbulence longitudinal correlation coefficient is assumed to be:
f ðxÞ ¼ expð�px2=ð4L2

ÞÞ, leading to the three-dimensional energy spectrum EðkLÞ ¼ 4u2
rmsksL5 expð�ðksLÞ2=pÞ=p3. The

turbulence spectrum Fww and the radial correlation length lr can then be derived:

FGauss
ww ðkcÞ ¼

L5

p4
e�ðkslÞ2=p½k2

xc
þk2

zc
�, lGauss

r ðoÞ ¼ ðKxLÞ2L
p
2
þðKxLÞ2

: (C.3)

C.2. Axisymmetric turbulence model

Following Kerschen and Gliebe’s work [62], the dimensional three-dimensional cross-spectrum of the i and j

components of the turbulence velocity is defined by

FijðkÞ ¼ ½k
2di,j�kikj�Fþ½ðk2�ðk � kÞ2Þdi,j�kikj�k2liljþk � kðlikjþljkiÞ�G, (C.4)

where

F ¼ F0

ð1þ l2ak2
aþ l2t k2

t Þ
3

, F0 ¼
2u2

a lal4t
p2

, G¼ BF and B¼ 2u2
t

u2
a

�
l2t
l2a
�1, (C.5)

and k is the unit vector in the direction of the symmetry. The wavenumber is ka in the direction of symmetry and kty and ktz

in the transverse directions with kt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

tyþk2
tz

q
. ua and ut are the root mean square values of the fluctuating velocities in

the direction of the axis of symmetry and in the transverse direction respectively. la and lt are similarly the integral length
scales of the turbulence in the direction of the axis of symmetry and in transverse direction. The only constraint is that

2
u2

t

u2
a

Z
l2t
l2a
: (C.6)

Using the relation between the turbulence energy spectrum E(k) and the three-dimensional turbulence spectrum

EðkÞ ¼
1

2

ZZZ
R3

X3

i ¼ 1

~Fii ðkÞdðJkJ�kÞ dk (C.7)



Fig. C1. Definition of the rotation angles of the cascade with the successive frames of references: (a) cascade sweep angle �j I looking from the side view

(fixed yI); (b) cascade lean angle �c I looking from the front view (fixed xI); (c) cascade stagger angle �w I looking from an unwrapped cascade view at

constant radius r; (d) cascade lean angle cI after rotation of stagger angle �w I; (e) cascade sweep angle jI after rotation of stagger angle �w I and lean angle
�c I . �j I ,

�c I and �w I are the angles given by the aerodynamic design of the row.
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(see for instance [78, p. 219]), and the formulae (C.17), it can be verified that the three-dimensional turbulence spectrum of
Kerschen and Gliebe satisfies as required:

EðkÞ ¼ 1
2½u

2
aþ2u2

t �: (C.8)

As suggested by Hanson [22], the turbulence symmetry axis k is assumed to be aligned with the flow in stationary

coordinates. Namely, for a rotor impinged by ingested turbulence k¼ exd
and for a stator k¼ ex0

where ex0
is obtained by

rotating exd
of the stagger angle �wS around the rotational axis ezd

¼ er (Fig. C1(c)). Let us define the reference frame ~RI of

associated Cartesian coordinates ð ~xI , ~yI , ~zIÞ, whose ~xI-axis is along k and the ~zI-axis is radial. The transformation matrix from

this reference frame to the cascade reference frame Rc , ~Q I , is given in Eq. (A.12a) in Appendix A.1. It is obtained from the

transformation matrix Q I (betweenRI andRc) simply by replacing the stagger angle �wI by D �wI with D �wR ¼/k,ex0
S¼ �wR in

the rotor case and D �wR ¼ �wS ¼ 0 in the stator case. As a result, the direction of the axis of symmetry is

k¼ ð1,0,0Þ9
	
¼ ð ~Q 11, ~Q 21, ~Q 31Þ9c : (C.9)

The wavenumbers ka, kty and ktz then become

ka ¼
~Q 11kxc0

þ ~Q 21kyc0
þ ~Q 31kzc0

,

kty ¼
~Q 12kxc0

þ ~Q 22kyc0
þ ~Q 32kzc0

,

ktz ¼
~Q 13kxc0

þ ~Q 23kyc0
þ ~Q 33kzc0

(C.10)

as given by Hanson.
Since the interesting direction for the current problem is the upwash direction yc , the spectrum is given in the cascade

frame of reference Rc as a function of the cascade wavenumber kc . After some algebra and factorization, the three-
dimensional spectrum of the axisymmetric turbulence reads

FwwðkcÞ ¼ ½k
2
xc
þk2

zc
þBð ~Q 31kxc�

~Q 11kzc Þ
2
�F : (C.11)

When the radial correlation length lr is calculated, the expressions

bFwwðKx,0Þ ¼

Z
R
FwwðKx,kyc ,0Þ dkyc , (C.12)

with Kx ¼o=Us (Us ¼Uxd
for the rotor and Us ¼U0 for the stator), and

�FwwðoÞ ¼
ZZZ

R3
FwwðkcÞdðo�kxc U0Þ dkc (C.13)

are not derived from Eq. (C.11) to avoid cumbersome integrand expressions, since, for instance, kyc is found in ka, kty and
ktz. Instead, the following relations are used:

Fww ¼
~Q

2

21F11þ2 ~Q 21
~Q 22F12þ2 ~Q 21

~Q 23F13þ
~Q

2

22F22þ2 ~Q 22
~Q 23F23þ

~Q
2

23F33, (C.14)
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and by linearity of the integral operators:

bFwwðKx,0Þ ¼ ~Q
2

21
bF11ðKx,0Þþ2 ~Q 21

~Q 22
bF12ðKx,0Þþ2 ~Q 21

~Q 23
bF13ðKx,0Þþ ~Q

2

22
bF22ðKx,0Þþ2 ~Q 22

~Q 23
bF23ðKx,0Þþ ~Q

2

23
bF33ðKx,0Þ,

(C.15)

and

�FwwðoÞ ¼ ~Q
2

21
�F11ðoÞþ2 ~Q 21

~Q 22
�F12ðoÞþ2 ~Q 21

~Q 23
�F13ðoÞþ ~Q

2

22
�F22ðoÞþ2 ~Q 22

~Q 23
�F23ðoÞþ ~Q

2

23
�F33ðoÞ, (C.16)

where Fij, bFijðKx,0Þ and �F ijðoÞ are expressed in the reference frame ~R. bFij Kx,0ð Þ and �F ijðoÞ are derived for each (i, j). The
integrals are computed using the formula [79, Eq.3.241 (4)]:

Z 1
0

um�1du

ðpþqunÞnþ1
¼

1

npnþ1

p

q

� �m=n G
m
n

� �
G nþ1�

m
n

� �
Gðnþ1Þ

, 80o
m
n
onþ1: (C.17)

This leads to

bFwwðKx,0Þ ¼
pF0

8D5=2l3t
½ð ~Q

2

21þ
~Q

2

23ð1þBÞÞDþ3ðKxltÞ
2
ð1� ~Q

2

21Þ� (C.18)

and

�FwwðoÞ ¼
pF0

4Usl4t D2
½2ðK2

x l2t Þþð1þBÞD� ~Q
2

21ð2ðK
2
x l2t ÞþðB�1ÞDÞ�, (C.19)

with D¼ 1þK2
x l2a . Finally, using Eqs. (48), (C.18) and (C.19), the radial correlation length is equal to

lr ¼
plt

2D1=2

3ðKxltÞ
2
þ ~Q

2

21½D�3ðKxltÞ
2
�þ ~Q

2

23½1þB�D
½1þB�Dþ2ðKxltÞ

2
� ~Q

2

21½ðB�1ÞDþ2ðKxltÞ
2
�

(C.20)

In the case of the stator with zero lean and sweep ~Q 21 ¼
~Q 23 ¼ 0, in addition if ut ¼ ua and lt ¼ la, the spectrum and the

radial correlation length yield the previous expressions given by Liepmann’s isotropic model.
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