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Abstract – This study offers a semi-analytical means to compute the wall pressure spectra beneath a turbulent
boundary layer depending only on the latter’s Kármán number and dimensionless pressure gradient.
By inclusion of the total mean shear profiles in a mixing length model, the velocity profiles can be reconstructed
under adverse, zero- and favourable pressure gradients. These profiles serve as input to existing models of the
wall pressure spectra and thus remove the need for experimental or numerical data. The modelled frequency
spectra fairly estimate the level of the measured ones. The three typical regions of those spectra are recovered,
although the overlap one is shorter than with experimental data, and the trends of pressure gradients effects are
also observed. The wavenumber representation shows the effect of pressure gradients on the convective ridge
structure as its aspect ratio increases from adverse to favourable ones. The same variation is observed in
experimental data, and although the absolute values of the aspect ratios do not match, qualitative observations
can be made.
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1 Introduction

The study of wall pressure fluctuations beneath a turbu-
lent boundary layer has drawn the attention of researchers
for decades [1, 2] due to their importance in a wide range of
applications dealing with vibro-acoustics or aero-acoustics.
There are still open questions and ongoing research for
which the context has been discussed by the authors of
studies on the experimental [3] or numerical [4, 5] character-
isation of their wavenumber–frequency spectra, and the
ability to account for pressure gradients [5, 6] for instance.
There are different ways of modelling the spectra of such
fluctuations, two broad categories being semi-empirical
models and analytical ones.

Semi-empirical models are rather common in the litera-
ture, the one proposed by Goody [7] being perhaps the
prime example. Subsequent studies have modified it to
account for various parameters, such as the free stream
pressure gradient (e.g. Rozenberg et al. [8]) and all share
the same structure with coefficients adapted to the specifi-
cations of each application, as discussed by Lee [9].

The approach followed in the present work is somewhat
different as it is based on a physical equation. Statistical
modelling of the wall pressure spectra beneath a turbulent
boundary layer, based on the work of Kraichnan [10], uses

the Poisson equation to relate pressure and velocity
statistics:
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where p denotes pressure fluctuations, and Ui and u0i the
mean and fluctuating velocities for the ith component.
The overbar is associated with the statistical average. The
wavenumber–frequency transform of the pressure fluctua-
tions at the wall can then be expressed as a weighted inte-
gral of a source term across the boundary layer. The
turbulence-turbulence term (b) is usually left aside, since
its contribution is often much smaller than the turbu-
lence-mean shear one (a) [11] and it requires tedious numer-
ical integrations to be computed [11, 12]. The wall pressure
spectrum involves the expected value of the product of the
wavenumber–frequency transform by its complex conju-
gate, and a double integral along the wall normal direction
must be determined. Two approaches have been used in
previous studies to deal with this difficulty and have led
to the two formulations of statistical models that shall be
discussed hereafter. In the first approach, leading to the
so called tno-Blake model [13, 14], the velocity fluctuations
in the turbulent boundary layer are assumed to be uncorre-
lated over the wall normal direction which reduces the*Corresponding author: simon.prigent@ec-lyon.fr
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expression to only one integral. However, a vertical integral
scale is used as a correcting factor to account for the non-
physicality of this assumption. This results in the following
formulation for the wall pressure spectrum Upp:

Utno
pp k1; k3;xð Þ ’ 8q2

Z 1

0

dU 1

dx2

� �2

L2 /22 k1; r2 ¼ 0; k3ð Þ

� k21
k21 þ k23

e�2
ffiffiffiffiffiffiffiffiffi
k21þk23

p
x2 /m x;kð Þdx2; ð2Þ

where k1 and k3 are the streamwise and transverse
wavenumbers, dU1/dx2 is the mean shear, L2 represents
a vertical integral length scale, /22 is the spectrum of
the wall-normal velocity fluctuations, r2 the wall-normal
separation and x the angular frequency. Note that /22

is expressed in the wavenumber space only for the two
directions parallel to the wall. The filter /m represents
the dispersion relation for the frequency dependence.
The second approach, followed by Lysak in a study of
turbulent pipe flows [15], uses a Fourier pair to remove
one of the integral, which requires that the velocity spec-
trum be expressed in the wavenumber space for all three
directions. One notices that the inherent assumption of
flow homogeneity is at least questionable in a boundary
layer. The outcome of this approach is
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Lysak uses /m (x, k) = d(x � U1 k1) which corresponds
to a frozen turbulence hypothesis with a convection by
the local mean velocity.

Recent studies have looked into the modelisation of
the velocity fluctuations, corresponding to the spectra
/22 (k1,r2 = 0,k3) and /22 (k1,k2 = 0,k3) in the previous
equations. Grasso et al. [11] have summarized the discus-
sions and provided further details on the choice of the
models themselves. They have compared different models
to direct numerical simulations. From their results it
appears that the standard von Kármán model is satisfac-
tory, but improvements in modelling the correlations can
be brought by the use of higher order models of its gener-
alised form corresponding to the Liepman one or the rapid
distortion theory. In addition, Morilhat et al. [16] have
recently conducted measurements of the wall-normal veloc-
ity correlation without pressure gradient and reported that
the von Kármán formulation offered a good approximation.
These considerations were based on isotropic models and
indeed Grasso et al. [11] mentionned that anisotropy would
be of importance only in the innermost part of the bound-
ary layer. However, several studies have looked into taking
into account the anisotropy or inhomogeneity of the flow.
Bertagnolio, Fischer, and Zhu [17] used the tno-Blake
formulation and accounted for anisotropy in the flow by
the use of stretching factors which enable the anisotropic
spectrum to be explicitly linked to an isotropic one, as

previously explained by Lynch, Blake, and Mueller [18].
These stretching factors were based on the mean pressure
gradient [17] which had the disadvantage to fail in zero-
pressure gradient flows. Slama, Leblond, and Sagau [4]
followed a different approach and worked in the space-time
domain to include both turbulence-mean shear and turbu-
lence-turbulence interaction terms, from equation (1). Their
model accounted for anisotropy with amodel for the velocity
correlations describing not only the stretching but also the
inclination of their shape, which was calibrated with DNS
results on a zero-pressure gradient flow. Recently, Jaiswal
et al. [12] focused on computing the wall pressure spectra
from velocity fluctuations data, acquired from particle
image velocimetry. The authors [12] concluded that isotro-
pic models could be used with a fair degree of accuracy pro-
vided that inhomogeneity was accounted for, since the
blocking effect due to the wall was found significant in the
correlation functions. The authors redefined the two-point
correlation length scale as the algebraic mean of the stan-
dard one computed at each point. Further, they showed that
the use of K2

22 as the length scale of reference for the velocity
spectra model, instead of K1

11 as done by Grasso et al. [11]
lead to more accurate results. While this discussion is impor-
tant and sheds light on the limits of potential assumptions
and derivations that shall be carried out later in this study,
most of the data is not available within the frame of our
study since the goal is to work with as few parameters as
possible, and not to rely on experimental nor numerical
data.

It should be noted that Morilhat et al. [16] measured the
convection velocity from the velocity fluctuations’ correla-
tion and found it was very close to the local mean velocity.
This latter result supports the assumption of frozen turbu-
lence in defining /m.

As pointed out by Grasso et al. [11], most of the studies
using or building upon the tno-Blake approach [19, 20] use
experimental or CFD data for the velocity profiles, which is
the last term to compute after having discussed the velocity
spectra and correlation scales. For turbulent boundary
layers in a pipe flow, Lysak [15] had the idea to reconstruct
the mean velocity profile from a mixing length model. How-
ever, that study assumed a constant total mean shear and
did not account for mean pressure gradients. The goal of
the present study is thus to extend the work of Lysak [15]
and present a methodology to compute the mean velocity
profiles that accounts for the effect of mean pressure gradi-
ents, solely based on the Kármán number and the nor-
malised pressure gradient. This methodology shall also
provide a length scale to inform the chosen velocity spectra
model. Finally, using these modelled profiles and a velocity
spectra model, both Lysak and tno-Blake formalisms can be
used to compute the wall pressure spectra.

2 Mixing length model to rebuild velocity
profiles

The mean velocity is governed by the following
equations
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where �st is the total shear stress, defined as

�st ¼ �qu01u
0
2 þ l
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;

with q the density, l and lt the molecular and turbulent
dynamic viscosities respectively and Pe the external mean
pressure to the boundary layer.

By integration of the momentum equation in the direc-
tion normal to the wall, one gets
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where the term (a) is expected to be very small near the
wall. By introducing a mixing length lm to build a zero-
equation eddy viscosity model, the mean velocity profile
can be calculated from

o �Uþ
1

oxþ2
¼ 2�sþt

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2lþmÞ2�sþt

q : ð5Þ

The superscript + denotes the wall unit normalisation,
such that �Uþ

1 ¼ �U 1=us, �sþt ¼ �st=sw and xþ2 ¼ x2us=m,
where us is the friction velocity and m the kinematic
viscosity.

In Bailly and Comte-Bellot [21], the total shear stress is
approximated by a linear relation for a zero-pressure-
gradient boundary layer using equation (4)

�sþt ’ 1� xþ2
Reþ

;

with xþ2 =Re
þ ¼ x2=d. This expression can be improved as

proposed by Thomas and Hasani [22] and discussed in
White [23], the total shear stress �st is then provided by

�sþt ’ 1� 3
xþ2
Reþ

� �2

þ 2
xþ2
Reþ

� �3

: ð6Þ

Note that these expressions can be generalised in the pres-
ence of a mean pressure gradient, that is dPe/dx1 6¼ 0. A
first dimensionless parameter based on the boundary layer
thickness d is defined as

bP � d
sw

dPe

dx1
:

By also introducing the dimensionless variable
n2 � x2=d ¼ xþ2 =Re

þ, the profile of the total mean shear
stress is now approximated by Thomas and Hasani [22]

�sþt ’ 1þ bPn2 � 3þ 2bPð Þn22 þ 2þ bPð Þn32: ð7Þ
When bP = 0, equation (6) is retrieved. The same asymp-
totic behaviour is found from equations (4) to (7) with the

inner part of the mean shear stress profile described by
�sþt ¼ 1þ bPn2 when n2 � 1, in the viscous sublayer.
The profile verifies the constraints �sþt ¼ 1 at the wall,
and �sþt ¼ 0 and d�sþt =dn2 ¼ 0 for n2 = 1, that is at the edge
of the boundary layer. They are plotted in Figure 1 as an
illustration.

The van Driest expression [21, 24] is classically used to
determine lm for a boundary layer. The model considered
in this study contains the inner part of the boundary layer
and an outer part to describe the wake law associated with
a constant turbulent viscosity, with a smooth transition
between the two regions. Following [23, 25, 26], equations
(5) and (6) are integrated with

lþm inner ¼ jxþ2
ffiffiffiffiffi
�sþ

p ð1� e�
xþ
2
A0 Þ;

lþmouter ¼ AwReþ;

lþm ¼ lþmouter tanh
lþm inner

lþmouter

� �
:

8>>>>><
>>>>>:

A smooth transition is obtained using the hyperbolic tan-
gent function [27]. The numerical values of the constants
are A0 = 26 for the van Driest constant and Aw = 0.085 to
compute lþm in the outer region, as recommended in the
literature.

There is a difficulty for favourable pressure-gradient
boundary layers (bP < 0), since the formulation of Thomas
and Hasani [22] leads to

d�sþt
dn2

¼ bP � 2 3þ 2bPð Þn2 þ 3 2þ bPð Þn22;

which indicates the presence of the two local extrema

nþ2 ¼ 1 and n�2 ¼ bP

3ð2þ bP Þ
;

where n�2 2 ½0; 1� for bP � �3. In that case �sþt takes
negative values, which is not physical for accelerated
boundary layers.
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Figure 1. Profiles of �sþt for (– – –) bP = 10, (—–) bP = 0 and
(–�–�) bP = �2.
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A new function is thus proposed for bP < 0:

�sþt ’ 1þ tanh
bPn2 � 3n22
1� n52 þ 0:5

 !
; ð8Þ

which respects the previously discussed constraints.
The constant 0.5 is added to the denominator to prevent
�sþt from reaching null values too early, as this would lead
to velocity profiles reaching a plateau at lower xþ2 .

As illustrated in Figure 2, equations (7) and (8) give
similar profiles for bP = 0, but equation (8) gives positive
values even for strong favourable gradients, which is neces-
sary for the computation of the velocity profiles. In the
remainder of the study, equation (8) is thus taken for all
favourable pressure gradients.

3 Validation of the mean velocity modelling

To validate this numerical procedure, the model is
benchmarked against experimental data at various
Reynolds numbers and under different pressure gradient
conditions. First, zero-pressure gradient (zpg) conditions
are reported in Figure 3, where the modelled velocity profiles
are compared to data from Österlund [28] at three values of
Re+. The values of xþ2 at the edge of the boundary layer are
naturally recovered since they are equal to their correspond-
ing Re+. The viscous sublayer, logarithmic region and outer
region are all well matched by the modelled profiles at the
three Reynolds numbers.

The modelled profiles are then tested for relatively
strong adverse pressure gradients (apg) conditions
(bP ~ 4 � 5), using data from Prigent, Salze, and Bailly
[29], Salze et al. [30] (Fig. 4). Measurements were con-
ducted on a flat surface and the pressure gradient was
created by the inclination of the wind tunnel’s ceiling.
Apart from a 4% over-estimation of the outer velocity at
Re+ = 2.1 � 103, the profiles are well matched in the loga-
rithmic and outer regions. Data points are not available in
the viscous sublayer, but profiles should mainly be affected
by the pressure gradient towards the outer region.

Figure 5 shows the mean velocity profiles for mild and
strong favourable pressure gradients (fpg), comparing the
modelled one to the numerical simulations of Cohen and
Gloerfelt [5] and experimental data from Prigent, Salze,
and Bailly [29]. In the inner region, the numerical profiles
rapidly depart from the Uþ

1 ¼ xþ2 law and are therefore
lower than the modelled ones. Although the log region is
short due to the low value of the Reynolds number, the pro-
files collapse well in this region. In the outer region, the
modelled profiles are slightly higher than the numerical
data, by 2%. A good match is also observed with the exper-
imental data, at higher Reynolds number. The main limita-
tion in that latter case is the underestimation of the
boundary layer thickness, that one can see since the outer
plateau is reached earlier. Nonetheless, the modelled profiles
are satisfactory in those conditions too.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

Figure 2. Profiles of �sþt given by equation (8) for bP ranging
from �10 to 0 (blue) and by equation (7) for bP = 0 (black).
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Figure 3. Mean velocity profiles under zero-pressure gradient
conditions: comparison between experimental data from Öster-
lund [28] (circles) and model (solid line) at Re+ = 9.7 � 102

(green), Re+ = 2.1 � 103 (blue) and Re+ = 4.8 � 103 (black).
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Figure 4. Mean velocity profiles under adverse pressure gradi-
ent conditions: comparison between experimental data from
Prigent, Salze, and Bailly [29] (circles) and model (solid line) at
Re+ = 1.5 � 103 and bP = 4.3 (green), Re+ = 3.2 � 103 and
bP = 4.5 (blue), and Re+ = 4.0 � 103 and bP = 4.3 (black).
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Overall, this approach offers a reliable mean to model
the mean velocity profiles with strong adverse or favourable
conditions.

4 Practical considerations on velocity spectra

As discussed in the introduction, recent studies have
highlighted the importance of accounting for anisotropy
when using velocity data to compute or model the wall pres-
sure spectra. To keep the approach as simple as possible,
the present study does not use data to inform models and
therefore does not account for local anisotropy. The von
Kármán model for the velocity spectra will be used here-
after, to keep with previous studies. It is true that other
models such as Liepman or based on the rapid distortion
theory could bring some slight improvement [26] but it
already gives a good approximation of the velocity correla-
tions [12, 26]. Note that stretching factors could be readily
introduced and the same method could be carried out with
another model.

Using a von Kármán model, the velocity spectral tensor
is written as

/ij kð Þ ¼ E kð Þ
4pk4

dijk � kikj
� 	

;

where the turbulent kinetic energy spectrum is given by

EðkÞ ¼ 55a1
9

u
02Le

ðkLeÞ4
ð1þ ðkLeÞ2Þ17=6

; ð9Þ

with

a1 ¼ Cð5=6Þffiffiffi
p

p
Cð1=3Þ :

For the implementation of the tno-Blake formulation, one
needs the corresponding 2D cross spectra which is obtained
by inverse Fourier transforming along k2. This has already
been derived by Wilson [31], for a generalised von Kármán
spectrum which leads to
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e

Uc
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�1
1þ k2c þ k23

k2e

� ��7
3

e�2
ffiffiffiffiffiffiffiffiffi
k2cþk23

p
x2 dk3 dx2;

ð10Þ
where normalisation has been taken to be in line with
equation (9). Note that in deriving this equation, the
vertical integral scale L2 was set to the integral correlation
length of the vertical velocity fluctuations K2

22. Under the
assumption of isotropic turbulence, K2

22 is equal to the
longitudinal integral length scale K, and as reminded by
Grasso et al. [11], Jaiswal et al. [12], the correlation
length Le in the generalised von Kármán spectrum is
linked to K by:

K ¼ ffiffiffi
p

p Cð5=6Þ
Cð1=3Þ Le: ð11Þ

With the model from Lysak [15], the formulation is

ULysk
pp xð Þ ’ 2q2 55a1

9
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dU 1

dx2

� �2 k2cL
5
e

U 1
u02
2

�
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1þ k2c þ k23

k2e

� ��17=6

e�2
ffiffiffiffiffiffiffiffiffi
k2cþk23

p
x2 dk3 dx2:

ð12Þ
Finally, both formulations require the correlation length
scale Le = 1/ke and the vertical velocity fluctuations u02

2 .
Following from Aupoix [32] and Morilhat et al. [16], one
can take u022 ’ 1:3u01u02, although this relation is mainly valid
in the logarithmic region. Using the previously discussed
mixing length model one has, as a function of x2:

u02
2 ’ 1:3 lm

dU 1

dx2
: ð13Þ

The characteristic wavenumber ke is linked to the mixing
length by

ke ¼ Cke

lm
with Cke ¼

ffiffiffi
p

p
2

Cð5=6Þ
Cð1=3Þ : ð14Þ

5 Results
5.1 Frequency spectra

The frequency spectra computed with equations (10)
and (12) are shown in Figure 6, along with a series of
experimental data for comparison in zero-pressure gradi-
ent conditions (zpg). Spectra and frequencies are
normalised with the inner scales as xþ ¼ x� m=u2s and
Sþ
pp ¼ Spp � u2s=ðs2wmÞ. The modelled spectra are based on

the Re+ values of measurements from Prigent, Salze, and
Bailly [29] which are displayed in blue. Other experimental
measurements taken from the literature at matching Reh
are shown in black symbols. Finally, the Goody model is
also given, based on the data from Prigent, Salze, and Bailly
[29]. Although the levels of the tno-based and Lysak-based
models differ over the whole range of frequencies, their
shapes and trends are the same. At low frequencies, the
models tend to the expected x2 power law, initially derived
for zero Mach numbers by application of the Kraichnan–
Phillipps theorem and under the assumption of frozen
turbulence, but which was shown to hold at finite Mach
for small non-zero frequencies, see Bull [2] for more details.
At high frequencies, they both decay faster than the x�5

power law [2], included in the Goody model. However,
one notices that most of the collected experimental data
also decay faster than �5 and the modelled spectra are
within the bounds of the reported data. Bradshaw [33]
argued that the overlap range, from around x+ = 4 �
10�2 to x+ = 5 � 10�1 here, was mainly influenced by
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the logarithmic region of the boundary layer, and that
dimensional analysis lead to a k�1

1 , or conversely x�1,
dependency [2, 33]. Meyers, Forest, and Devenport [34]
pointed out that the decay rate is often measured around
�0.7 instead of �1, except at very high Reynolds numbers,
in some atmospheric flows for instance. This indeed corre-
sponds to the reported data. With the current modelled
spectra, the decay rate does not change with Reynolds
number, only the extent of the overlap range does, so that
for high Reynolds numbers (tested for Re+ = 102 � 105 but
not illustrated for brevity) the x�1 decay rate is much
clearer, while the high frequency part of the spectra remains
unchanged. With the Reynolds numbers displayed in
Figure 6, the modelled spectra tend to such a decay only
for frequencies just below x+ = 10�1, and rapidly deviate
from it as frequency increases whereas experimental data
or Goody model follow their decay rate until around
x+ = 5 � 10�1. This is noteworthy since the velocity
profiles display the same logarithmic region.

In terms of level, the discrepancies between the mea-
sured data and the Lysak-based spectra are of the same
order as for the Goody model, albeit stronger towards
higher frequencies. The tno-based spectra are below the
data, except for the highest frequencies, and therefore lead
to stronger discrepancies. Overall, although the overlap
region is smaller than for experimental data, the three fre-
quency regions are observed and the levels of the spectra
are estimated within 5 dB for most of the frequency range.

The effect of a pressure gradient on the frequency spec-
tra is illustrated in Figure 7, where experimental data from
[29] and modelled spectra are displayed for two Reynolds
number comparing favourable (fpg), zero- (zpg) and
adverse (apg) pressure gradient conditions, with parameters
listed in Table 1. For a given Reynolds number, the exper-
imental data clearly show that going from favourable to
adverse conditions increases the level of the spectra in

particular at low frequency where the increase from zpg
to apg is close to 5 dB around x+ = 2 � 3 � 10�2. While
the discrepancies, in levels and decay rates, between
modelled and measured spectra have been discussed before,
this low frequency increase with the pressure gradient
is clearly rendered in the modelled ones. Under greater
pressure gradients, the mean velocity profiles are increased
in the outer region, generally associated with large struc-
tures and low frequencies, it is thus not surprising that
the main effect should be an increased content in the low
frequency region. It is nonetheless interesting to note that
although this is not clear for fpg, both the amplitude of
the increase and the frequency of the maxima are correctly
rendered for the zpg and apg cases. Contrarily, the modelled
spectra collapse at high frequencies, due to the structure of
the model itself. As x increases, so does kc and hence by

Figure 6. Comparison of modelled spectra with previous
studies at similar Reh. Data from: Prigent, Salze, and
Bailly [29], ⊕ Schewe [35], ⊗ and } Farabee and Casarella [36],
◄ and & Gravante et al. [37], N Olivero-Bally et al. [38],
► Goody and Simpson [39], ▼ Bull and Thomas [40], Blake
[41] and d Goody and Simpson [39]. Models, matching condi-
tions from Prigent, Salze, and Bailly [29]: – – – Goody model,

extended Lysak, extended tno. power
laws added for reference.

10 0 10 1 10 2 10 3 10 4
0

5

10

15

20

25

30

Figure 5. Mean velocity profiles under favourable pressure
gradient conditions: comparison between numerical data from
Cohen and Gloerfelt [5] (dash) and model (solid line) at
Re+ = 745 and bP = �1.23 (green), and between experimental
data (circles) and model (solid line) at Re+ = 1850 and
bP = �6.0 (blue).
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construction from the exponential in equations (10) and
(12), the contribution from small x2 becomes predominant,
where no variation is rendered in the velocity profiles. One
should note that variation between spectrameasured for dif-
ferent pressure gradients cannot be explained by uncertain-
ties in the measurement of the friction velocity, which has
been determined through various methods, see Prigent

et al. [29]. A different scaling could therefore be sought after
for such a collapse.

The discrepancies between modelled and measured spec-
tra highlight the limitations of the current approach, which
despite correctly rendering the velocity profiles, still misses
features of the frequency spectra. So far, /m has been set
under the assumption of frozen turbulence. While this is a
classical hypothesis, a more realistic formulation would
change the dispersion relation and hence directly affect
the spectra. For instance, a correlation function not only
accounting for the convection by the mean flow but also
for an exponentially decaying envelop in the stream-wise
direction could be used in the formulation, but it would
require to carry on the derivations without expressing it
in a Fourier space. This is an open question that could be
addressed in future studies.

5.2 k–x spectra

The wavenumber–frequency formulation of the spectra
models, given in equations (2) and (3) also gives informa-
tion on the spatial structure of the pressure fluctuations.
For a given frequency, x0, a k1 � k3 representation of
Upp (k1, k3, x0) can be obtained by computing the integral
along x2 in each model. In the following, this is simplified by
taking /m (x, k) = d(x � U1 k1) for both models, that is
assuming the frozen turbulence hypothesis holds. While this
is a common assumption, it has strong implications that one
should keep inmind. For a given frequency,x0, each value of
k1 leads to a single value of U1 satisfying the dispersion rela-
tion. The velocity profiles being strictly monotonous, this in
turns implies that only one position in the boundary layer
contributes to the spectrum for this particular set of x0

and k1, which verifies U1 (x2) = x0/k1. In practice, all
relevant x2-dependant terms are taken at this position and
if x0/k1 is out of the bounds of the velocity profile, the asso-
ciated value is set to zero in the spectrum. One understands
it cannot be physically correct; however, given that the
derivation of the tno-Blake formulation assumes a decorrela-
tion of velocity fluctuations across the x2 direction, such a
simplification of the dispersion relation is not out of line.

Figure 8 shows the contour levels of the convective ridge,
normalised by its maximum, for three values of the pres-
sure gradient at Re+ = 2600 and at the fixed frequency
xþ

0 ¼ 0:05, computed with the Lysak formulation equation
(12) and a von Kármán spectrum for /22. The low frequency
is chosen to fall in the region where most of the difference is
expected. The reader should note that, for ease of visualisa-
tion, the axes are not orthonormal and the ridges are there-
fore more elongated along k3 than they appear. In the zpg
case, the contours exhibit some expected features: they are
elongated in the k3 direction and asymmetric along k1 with
a steeper decay towards low wavenumbers. The effect of
pressure gradients is clear, with contours that are more
elongated in fpg and more compact in apg, with an addi-
tional distortion stretching the ridge towards low wave-
numbers. In turn, the aspect ratio of those ridges are clearly
increased from apg to zpg then fpg, which had been reported
in both experimental [29] and numerical [5] data.
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Figure 7. Comparison of modelled (black) and measured (blue)
spectra at (a) Re+ = 2000 and (b) Re+ = 4000 for apg (dashed),
zpg (solid) and fpg (dash-dotted) conditions. See parameters in
Table 1.

Table 1. Parameters of the experimental data [29] used in
Figure 7.

Re+ bP

zpg 2.1 � 103 –

4.0 � 103 –

apg 2.0 � 103 3.7
4.0 � 103 4.3

fpg 1.9 � 103 �6.0
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The aspect ratio of the half-level contour is computed
for a wide range of frequencies for flow conditions from
Figure 8 and reported in Figure 9a. This computation is
automatised by fitting an ellipse to the half level contour,
as illustrated in Figure 8(b). Although the convective ridge
is not expected to be truly elliptical, this gives a fair esti-
mate of the aspect ratio and removes the risk of accounting
for spurious points when processing experimental data. For
low frequencies, below x+ = 10�1, the difference is striking
with the aspect ratio in favourable conditions up to twice
that of adverse conditions. At frequencies higher than
x+ = 10�1, no clear difference between the pressure gradi-
ents can be observed, which goes along the idea that pres-
sure gradients mostly affect the outer part of the mean
velocity profiles.

Figure 9b shows the aspect ratio computed from
experimental data [29] for favourable, zero- and adverse
pressure gradients. Modelled aspect ratios are also displayed
for matching conditions. The model clearly overestimates
the aspect ratio for all cases and particularly so at low
frequencies. However, the increase from adverse to favour-
able conditions is indeed observed in both the experimental
and modelled data. This variation tends to weaken at higher
frequencies, which could be expected since the variations
in the frequency spectra were more significant at low
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Figure 8. Modelled spectra at x+ = 0.05, Re+ = 2600 and
(a) bp = 10 (apg), (b) bp = 0 (zpg) and (c) bp = �2 (fpg). An
ellipse (dashed) is fitted to the half-level contour in (b).

Figure 9. Aspect ratio of the half level contour for apg (D),
zpg (h) and fpg (s) conditions.
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frequencies. While these trends are always found, the exact
value of the aspect ratio depends on which level is taken to
compute it. The half level contour has been chosen here, but
a similar analysis could be conducted with another level.

A more detailed comparison between experimental data
[29] and modelled spectra is provided in Figures 10–12. For
the zpg case, the value of k1m/us corresponding to the max-
imum of the convective ridge is slightly over-estimated by
the model, 2.7 instead of 2.4. This value strongly depends
on the dispersion relation used in the computation of the
spectrum since it prescribes the x2-dependent quantities
taken into account. For instance, introducing a coefficient
smaller than one in the previous definition of U1 (x2) would
shift the ridge towards smaller k1. With these words of
caution, the ridge maximum is satisfactorily predicted by
the model. In addition to the previously discussed aspect

ratio, the asymmetry of the ridge is clearly visible in both
modelled and measured spectra with a faster decay towards
low wavenumbers. However, the shape of the contours is
exaggeratedly flattened on their high wavenumber side in
the modelled spectra. The same observations can be made
for the apg case, although the discrepancy in k1m/us for
the maximum of the ridge is stronger than for zpg. For
fpg conditions, the experimental data exhibit a slight unex-
pected twist and the model also flattens the high wavenum-
ber side. Finally, the shape of the modelled spectra exhibits
a protuberance that points towards low wavenumbers, par-
ticularly visible for the apg case. Looking back at equation
(3), the observed discrepancies can have several causes.
First, and given the good match between measured and
modelled mean velocity profiles, the mean shear term is
unlikely a main contribution to the discrepancies. Contour

Figure 10. Contour levels of the spectra’s convective ridge for
(a) modelled and (b) experimental data at x+ = 0.05,
Re+ = 1.3 � 103 and bP = 0.

Figure 11. Contour levels of the spectra’s convective ridge for
(a) modelled and (b) experimental data at x+ = 0.05,
Re+ = 1.5 � 103 and bP = 4.3.
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plots have also been computed with the tno-Blake approach
(eq. (2)) and three orders of the generalised von Kármán
model for the velocity fluctuations /22: the standard von
Kármán one, Liepman’s one and the rapid distortion theory
model. The output is not shown for brevity, but the changes
are marginal. Assumptions made regarding homogeneity
and isotropy of the flow could be contributing factors to
this. However, as discussed in the introduction, most of
the existing studies rely on experimental or numerical data
to tune the models. These limitations might be a draw-
back one has to accept in order to keep the approach as
simple as possible and to rely on only two non-dimensional
parameters. It is fair to say that /m most likely plays a role,
as discussed before. Finally, the structure of the tno-Blake
or Lysak formulations, and their derivation leading to the
fractional and exponential terms in the integrand must
structure the shape of the model. Indeed, the product of

these two terms gives contours pointing towards low
wavenumbers that are weighting in the integral.

Despite the observed discrepancies, the modelled spec-
tra exhibit the expected characteristics and show the trends
of the effect of pressure gradients, this can provide useful
qualitative information. In addition, the availability of
two-dimensional experimental data provides a useful
insight that allows the discussions of these discrepancies
before they are hidden out by the successive integrations
leading to the frequency spectra.

6 Concluding remarks

The approach followed in this paper uses a model of the
shear stress across the boundary layer to enable, through a
mixing length model, the computation of velocity profiles
and relevant turbulent quantities that are inputs to existing
wall pressure spectra models. The inclusion of the mean
pressure gradient in the shear stress model, and in particu-
lar the new formulation proposed for favourable conditions,
offers a new semi-analytical means to study its effects on
wall pressure spectra.

Despite the simplicity of its formulation, this approach
has proven useful in estimating the levels of the frequency
spectra and observing the trends of how mean pressure
gradients effect on them. The three typical region of such
spectra are recovered, although the overlap region is shorter
and exhibits a �1 power law decay and not the �0.7 one
usually expected for moderate Reynolds numbers. Further
investigation into the formulation of /m, setting the disper-
sion relation of the frequency dependence, could help better
capture the features of such spectra.

Typical features of the convective ridge (i.e. asymmetry
between low and high wavenumber sides, elongation along
the transverse direction) are found in the modelled
wavenumber spectra. The availability of two-dimensional
experimental data allows for a direct comparison. An
increase of the ridge’s aspect ratio from adverse to zero- then
favourable pressure gradient is observed, which is qualita-
tively consistent with experimental and numerical data
although the exact values do not match. The shape of the
ridge itself displays some discrepancies between modelled
and measured spectra, which are used to discuss the effect
of various hypotheses and assumptions of the model before
they are hidden by integration. Overall, the wavenumber–
frequency representation gives a good illustration of the
effect of pressure gradients and is useful in discussing the
limits of the models.

Finally, the use of a physical equation to be integrated
provides robustness and should help avoiding the pitfalls
that a bespoke model may encounter when used outside
of its range of optimisation. Be it at an advance stage
assessment or for the investigation of various parameters’
effect, this approach can therefore prove useful for many
applications.
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Figure 12. Contour levels of the spectra’s convective ridge for
(a) modelled and (b) experimental data at x+ = 0.05,
Re+ = 1.8 � 103 and bP = �6.
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