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Thewave-number-frequency spectra of a pressure field beneath a turbulent boundary layer is considered, with the

aim of removing the effect of the measuring device. A rotating antenna of aligned microphones has been used in

previous studies, and themeasured spectra are shown to be a convolution of the true spectrawith the transfer function

of said antenna. Deconvolution algorithms that were previously developed for other fields of studies are presented.

Test cases and processing of experimental data are used to assess their applicability. A hybrid approach of both

deconvolution and interpolation, to artificially refine the azimuthal discretization, is found to be best at estimating

both narrowband and broadband components of the spectra.

Nomenclature

F = Fourier transform operator
h , H = transfer function of antenna’s geometry and

its discrete form
k0 , kc , c0 , Uc = acoustic and convective wave numbers,

speed of sound, and convective velocity
p = wall pressure fluctuations
p̂ = frequency Fourier transform of wall

pressure fluctuations
p̃ = wave-number-frequency Fourier transform

of wall pressure fluctuations
Q = auxiliary function used during derivation of

convolution product
Rpp = correlation function of wall pressure

fluctuations
Sf = reconstructed Fourier space
Sm = measurement space, in which p and Spp are

sampled
Spp = cross-spectral density of wall pressure

fluctuations
Ss = unbiased Fourier space
α, β = parameters of Corcos model
Φpp = wave-number-frequency spectra of wall

pressure fluctuations
* = complex conjugate

Subscripts

s, f, m = elements of Ss, Sf, and Sm

1, 2 = first (streamwise) and second (transverse)
directions of plane

I. Introduction

T HE interest in wall pressure fluctuations goes back several
decades [1,2], as it is key to understanding structural vibrations

and vibroacoustic issues in applications ranging fromhydrodynamics

to aeronautics as well as the rail and automotive industries. These
fluctuations can be divided into the acoustic and hydrodynamic
components, the former being induced by the acoustic waves
impacting onto the wall and the latter directly by the turbulent
boundary layer. The simultaneous study of both components is an
experimental challenge, due to the large range of scales involved. In
fact,most studies have focused on the hydrodynamic components and
tried to offer a model for their spectra, such as that by Corcos [3].
However, the acoustic components, while of much lower amplitude,
can play an important role for internal noise as it is commonly
associated with radiating modes. Recent studies by Arguillat et al. [4]
and Salze et al. [5,6] have offered a means to separate the two
components from experimentalmeasurements of awall pressure field
beneath a turbulent boundary layer. The authors have developed
rotating antennas of microphones that allow the computation of the
wave-number-frequency spectra of the fluctuations and offer a means
to study both components separately for sufficiently high frequencies
and/or Reynolds numbers.
As detailed by Salze et al. [5,6], such an antenna consists of a

nonequidistant array of microphones that simultaneously record data
to compute cross-spectra. Rotating the antenna with regard to the
flow direction increases the number of different separation vectors
that can be obtained through a combination of all microphone
positions. Assuming homogeneity of the wall pressure field, the
authors were able to use the large amount of separation vectors to
perform a spatial Fourier transform of the cross-spectra, which gives
the wave-number-frequency spectra. The latter thus depend on the
number of separation vectors and their values, which is to say they
depend on the geometry of the antenna.
In the field of beam forming, the use of deconvolution to recover

the acoustic source maps from data biased by the geometry of a
microphone array has been the topic of many studies [7–9], with
DAMAS2 being a commonly used algorithm, introduced by
Dougherty [10]. In particular, Ehrenfried and Koop [7] provided a
detailed study on the application of such methods.
The use of wave-number-frequency spectra, however, is less

common. Gabriel et al. [11] offered insight into the relative levels of
the acoustic and hydrodynamic components thanks to measurements
of such spectra. A recent numerical study by Cohen and Gloerfelt
[12] has been focused on the influence of pressure gradients and
offered new elements to the ongoing discussion of their impact on
convection velocity. However, because of the inherent spatial
resolution of such numerical simulations, the topic of deconvolution
was not discussed. Another use of this approach was presented by
Bahr and Cattafesta [13], who used this formalism to introduce a
method of deconvolution of arbitrarily coherent acoustic sources by
means of a wave-number-frequency covariance as an intermediate
step in their algorithm. Some studies by Haxter and Spehr [14], and
Ehrenfried and Koop [15] have looked directly into wave-number-
frequency spectra from experimentalmeasurements and have applied
deconvolution to try and recover unbiased data. However, to the
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authors’ knowledge, there is still a number of uncertainties as to how
to apply such deconvolution to wave-number-frequency spectra, and
more details on parameters used in the algorithm itself are much
needed.
The aim of this Paper is to investigate the applicability of common

deconvolution algorithms, particularly DAMAS2, to the case of the
wave-number-frequency spectra of wall pressure fluctuations
beneath a turbulent boundary layer, measured by a rotating antenna
such as that of Salze et al. [5,6]. Particular focus will be put on
practical issues that can arise.

II. Convolution

A. Wave-Number-Frequency Transform

Physically speaking, there exists a pressure fieldp�x,t�, which has
a wave-number-frequency transform p̃s that can be defined in a
ks − ω space referred to as the source space Ss. The antenna of
microphones samples this data from specific physical-space
positions, to be processed as time–Fourier transforms p̂. This
measurement space Sm is thus set in terms of x − ω. Once this space-
frequency data is sampled, the reconstructed wave-number-
frequency transform p̃ can be computed and shall be expressed in
terms of kf − ω in Sf. The goal is thus to understand how the
reconstructed transform p̃f is linked to the preexisting unbiased
transform p̃s.
Analytically, and without the sampling constraints, the links

between the mentioned transforms are expressed in terms of Fourier
pairs as follows:

p̃f�kf,ω� �
1

�2π�2
Z
Sm

p̂�x,ω�e−ikf ⋅xdx,

p̂�x,ω� �
Z
Ss

p̃s�ks,ω�eiks⋅xdks (1)

Hence,

p̃f�kf,ω� �
1

�2π�2
Z
Sm

Z
Ss

p̃s�ks,ω�eiks ⋅xdkse−ikf ⋅xdx

�
Z
Ss

�Z
Sm

1

�2π�2 e
−i�kf−ks�⋅xdx

�
p̃s�ks,ω�dks

The link between the source and reconstructed wave-number-
frequency transforms can thus be formulated as a convolution
product on k,

p̃f�k,ω� � �p̃s⋆h��k,ω� where h�k� ≡ 1

�2π�2
Z
Sm

e−ik⋅rdr (2)

is the antenna’s transfer function. In the analytical case, and assuming
the measurement space goes to infinity for both components of r, the
function h is equal to a Dirac distribution, h�kf − ks� � δ�kf − ks�.
As a result, one obtains the relation p̃f � p̃s. In practice, the
measurements are performedwith a finite number of points, set by the
antenna’s geometry, that will require a discretization of Eq. (2). In this
regard, the convolution function h is not a Dirac distribution anymore
and becomes the transfer function of the antenna’s geometry.

B. Wave-Number-Frequency Spectra

The wave-number-frequency spectrum Φpp is defined as the
space-time Fourier transform of the correlation function Rpp:

Φpp�k,ω� ≡
1

�2π�3
Z
Sm

Z �∞

−∞
Rpp�r,τ�e−i�k⋅r−ωτ�dτdr (3)

Two approaches can be taken to compute this spectrum. First, one
can start by performing the time–Fourier transform of the correlation

function to obtain the cross-spectral density, Spp�r,ω�. In practice, it
can be estimated by

Spp�x,r,ω� ≡ 2π E �p̂�x,ω�p̂��x� r,ω�� (4)

for broadband signals and assuming Spp�x,r,ω� � Spp�r,ω� for a
homogeneous wall pressure field. E stands for the expected value
operator and contains the limit for the time extent T going to infinity
and the 1∕T factor that one would use in a sample average
formulation. The wave-number-frequency spectra are then simply
computed by space-Fourier transforming the cross-spectra:

Φf,pp�k,ω� �
1

�2π�2
Z
Sm

Spp�r,ω�e−ik⋅rdr

A second approach [16] is to use a definition akin to that from
Eq. (4) that would yield

Φf,pp�k,ω� � �2π�3E�p̃�k,ω�p̃��k,ω��

While both approaches are theoretically equivalent, their
applicability differs from case to case, and they lead to distinct
convolution relations. Indeed, the latter requires two space-Fourier
transforms to be computed, and the former only one, which translates
into different formulations of the transfer functions.
In the present Paper, the wall pressure field cannot be

synchronouslymeasured at different angular positions of the antenna,
which prevents performing the space-Fourier transform first. In
addition, computing the expected value over time in Eq. (4) requires
long time signals, which are rather easy to record with microphones;
however, its equivalent formulation in space would have required a
larger measurement field than available. The first approach is thus
selected, and the following establishes the convolution relation for the
wave-number-frequency spectra within the frame of this study.
For ease of notation, one can consider the auxiliary function:

Qf�k,ω� �
Z
Sm

p̂�0,ω�p̂��r,ω�e−ik⋅rdr

Using Eq. (1), Qf�kf,ω� can be calculated as

Qf�kf,ω� � p̂�0,ω�
Z
Sm

�Z
Ss

p̃s�ks,ω�eiks⋅rdks
��

e−ikf ⋅rdr

� p̂�0,ω�
Z
Sm

Z
Ss

p̃�
s �ks,ω�e−iks ⋅rdkse−ikf ⋅rdr

� −p̂�0,ω�
Z
Sm

Z
Ss

p̃�
s �−ks,ω�e−i�kf−ks�⋅rdksdr

by the change of variable −ks to ks. One can now consider the
associated function in the source space

Qs�ks,ω� �
Z
Sm

p̂�0,ω�p̂��r,ω�e−iks⋅rdr

� −p̂�0,ω�
�Z

Sm

p̂�−r,ω�e−iks⋅rdr
��

� −�2π�2p̂�0,ω�p̃�
s �−ks,ω�

One has

Z
Ss

Qs�ks,ω�h�kf − ks�dks

� −p̂�0,ω�
Z
Ss

p̃�
s �−ks,ω�

Z
Sm

e−i�kf−ks�⋅rdrdks

� −p̂�0,ω�
Z
Sm

Z
Ss

p̃�
s �−ks,ω�e−i�kf−ks�⋅rdksdr
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Thus,

Qf�k,ω� � �Qs⋆h��k,ω�

The convolution problem for the wave-number-frequency spectra
is set as

Φf,pp � Φs,pp⋆h (5)

with h defined in Eq. (2) and Φs,pp being the unbiased spectra. It is
worth noting that the transfer function h is the same for both wave-
number-frequency spectra and transforms. At this stage, h is known
since r and k are given by the antenna’s geometry and the processing
scheme, respectively.Φf,pp ismeasured, and therefore onlyΦs,pp is an
unknown of this convolution problem. Note that by using the
symmetry of the antenna and the assumedhomogeneity of the pressure
field one finds, as expected, that both quantities h and Φf,pp are real.

III. Discrete Problem

The antenna of reference in the current study consists of 63
microphones aligned on a rotating disk, as detailed by Salze et al.
[5,6]. For each angular position θm, a separation vector rnm is
obtained from each possible combination of microphones and is used
to calculate Rpp as illustrated in Fig. 1. The spectrum defined in
Eq. (3) can thus be discretized on rnm,

Φf,pp�k,ω� �
1

�2π�2
X
m

X
n

wnSpp�rnm,ω�e−ik⋅rnmdsn (6)

along with the transfer function

h�k� � 1

�2π�2
X
m

X
n

wne
−ik⋅rnmdsn (7)

where dsn represents the local area around the point of summation
andwn represents a window function. The importance of windowing
is discussed later. A Cartesian k grid is then introduced, and the
element Hi,j corresponds to h�fk1�j�,k2�i�g� calculated with the
previous equation. This discretization is the cause of the geometric
bias introduced by the antenna and that needs correcting.
The obtained formulation is akin to that of a beam forming

approach, which is commonly used for acoustic sources localization.
In his study of deconvolution techniques for beam forming,
Dougherty [10] presented twomethods: one based on the application
of a spectral filter and the other being a new version of the common
iterative deconvolution process called DAMAS. Both methods are
introduced and applied to the wave-number-frequency spectra in the
following sections.

A. Algorithms for Deconvolution

In both deconvolution approaches presented hereafter, a dual
Fourier space is introduced to reduce computation efforts thanks to

the convolution theorem. For this space, the directF and inverseF−1

Fourier operators are defined as follows:

F�Φs,pp��ζ,ω� �
Z

Φs,pp�k,ω�e−ik⋅ζdk (8)

Φs,pp�k,ω� � F−1�F�Φs,pp���k,ω�

� 1

�2π�2
Z

F �Φs,pp��ζ,ω�eik⋅ζdζ

1. Wiener Filter

Equation (5) can be directly inverted by using a Wiener filtering
method in the dual Fourier space. A regularization term is commonly
introduced in the denominator [17], which yields

F�Φs,pp� �
�

F�h��
jF�h�j2 � γ

�
F�Φf,pp�

where γ is a scalar constant linked to the signal-to-noise ratio.

2. DAMAS2

Equation (5) can also be inverted by using an iterative algorithm.
The underlying mathematical idea is detailed by Schafer et al. [18]
and can be roughly summarized as follows, leaving aside important
considerations that the reader is encouraged to read. The convolution
from Eq. (5) can be written as an operator D and the constraints on
Φs,pp, i.e., positivity of the spectra, expressed by means of an
operator C:

�
Φf,pp � DΦs,pp

Φs,pp � CΦs,pp
(9)

A linear combination of those relations yields

Φs,pp � CΦs,pp � 1

a
�Φf,pp −DCΦs,pp� ≡ LΦs,pp (10)

where a is a relaxation parameter used to control the convergence of
an iterative series based on the latter equation. Indeed, if the operator
L is a contraction, there exists a unique fixed point, and any sequence
Φ�n�1�

s,pp � LΦ�n�
s,pp shall converge toward it.

This is the basis formany deconvolution approaches developed for
acoustic sources localization by microphones arrays [7–9,14]. The
DAMASalgorithmbyBrooks andHumphreys [19,20] iswidely used
in aeroacoustics, and its extension DAMAS2 [10] takes advantage of
the convolution theorem to perform multiplication in a Fourier space
instead of convolution product in the original space. In practice, the
process is as follows [10], but the Gaussian filter introduced in the
dual Fourier space is disregarded here.
The positive real constant a is computed as

a �
X
i,j

jHi,jj (11)

The iterative algorithm is then obtained from Φ�n�
s,pp to Φ�n�1�

s,pp by
calculating

8>>><
>>>:

b � F−1�F �Φ�n�
s,pp�F�h��

Φ�n�1∕2�
s,pp � Φ�n�

s,pp � 1
a �Φf,pp − b�

Φ�n�1�
s,pp � max�Φ�n�1∕2�

s,pp ,0�
(12)

B. Analytical Test Cases

For the purpose of testing the method and applicability of the
mentioned algorithms to the wave-number-frequency spectra of wall
pressure fluctuations beneath a turbulent boundary layer, analyticalFig. 1 Sketch of the rotating antenna.
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test cases are taken as a combination of an acoustic diffuse field and a
Corcos-like pressure field such that Spp � Sdif � Scor with

Sdif�r,ω� � A
sin�k0jrj�
k0jrj

Scor�r,ω� � e−kcjr1j∕αe−kc jr2j∕βeikcr1

where the constant A is linked to the energy ratio between the two
fields. The change of sign of the model’s imaginary part from its
original expression proposed by Corcos [3] is due to the current
Fourier transform convention. The analytical expressions of the
corresponding spectra are

Φdif �
� A

2πk2
0

1������������������
1−�jkj∕k0�2

p if jkj < k0

0 if jkj > k0

Φcor �
1

π2
αkc

k2c � α2�k1 − kc�2
βkc

k2c � β2k22

The array geometry that will be taken for this study is that of the
rotating antenna from Salze et al. [5,6]. To match with these previous
experimental campaigns, and unless stated otherwise in specific
sections of this Paper, the following parameters were used:
f � 3750 Hz, Uc � 0.7 ⋅ 75 m ⋅ s−1, c0 � 342.6 m ⋅ s−1, α � 8,
β � 1, and A � 0.01. Note that for a convenient use of the FFT and
iFFTalgorithms, the tests have been carried on square data matrices.
For ease of visualization, some datasets are then only displayed
for −200 < k1 < 800 m−1.

C. Windowing and Angular Resolution

Two important aspects of the discretization have voluntarily been
left unaddressed so far: the angular resolution of the antenna and the
window function used in Eq. (7). They play a role in the sampling and
processing of the data and directly affecth and thereforeΦf,pp.While
performing the space-Fourier transform, the extent over which data
has been sampled is inherently limited, and not using a window
function in the discrete sum would de facto correspond to applying a
rectangular window to the data. The minimum four-term Blackman–
Harris window is chosen for the rest of the Paper; it is commonly used
in many applications and has a relative sidelobe attenuation of
−92 dB [21]. The regularization of the window depends on the
method used to process data; in this Paper’s case, the wave-number-
frequency spectrum is obtained from the cross-spectral density with a
Blackman–Tukey method, which is a type of correlogram-based
method. In this case, no regularization is required so long as
w�r � 0� � 1. Naturally, in the present Paper, the data is not only
sampled over a limited physical extent but also nonuniformly
sampled, which will add to the outcome bias.
The transfer function h computed with and without windowing, at

an azimuthal resolution of π∕64, is depicted in Fig. 2a. When using
the minimum four-term Blackman–Harris window, the transfer
function shows a peak that monotonously falls to low values. On the
other hand, with no window applied, strong oscillations that arise

from the Fourier transform of the rectangular window are observed.
One also notices the offset for jkj > 500 m−1, clearly visible in the
case without windowing. That offset is linked to the azimuthal
discretization and not the radial one as per the oscillations.
Indeed, the angular resolution, that is to say, the azimuthal

discretization, is directly linked to radial spokes in the transfer
function. These spokes only appear for a high amplitude of jkj [22],
after a threshold that depends on the angular steps. Therefore, the
more refined the azimuthal discretization, the farther away these
spokes are pushed. Figure 2b shows indeed that for coarse azimuthal
resolutions h exhibits an offset from its low-value plateau. The
threshold value of jkj for this offset increases with refined resolutions
and is no longer within the range of interest at π∕127. It is worth
noting that h does not exactly reach zero values and that the plateau is
lowered with refined resolution, which will logically affect the
outcome of the convolution product. A resolution of π∕127 is thus the
coarser that should be used in the present case.
The effects of the azimuthal discretization observed on h are

directly impacting the estimated wave-number-frequency spectra,
according to Eq. (5). Figure 3 shows profiles of the wave-number-
frequency spectra estimatedwith various values of angular resolution
and their analytically calculated counterpart. One should note the
spectra are displayed before any form of deconvolution.
While the acoustic region does not seem to be affected by the

change in resolution, the convective ridge clearly is strongly affected.
The π∕32 calculation overestimates the value of the spectra by about
36% in the convective part. The overestimate appears to be reduced
by 3 from π∕32 to π∕64 and from π∕64 to π∕127; however, the π∕235
resolution slightly underestimates the level of the convective ridge. It
thus seems that π∕127 offers a good compromise. Given that in the
experimental campaigns motivating the present Paper [5,6] the
angular resolution was π∕64, the effect of sampling at this resolution
and then linearly interpolating the data to π∕127 is also displayed in
Fig. 3. While the outcome slightly differs from the case of directly
sampling at π∕127, the change is rather small, and this approach
should thus be taken for the processing of experimental data.

IV. Results

A. Results fromWiener Filter

Deconvolution with the Wiener filter can be applied to the test
cases, as previously presented, with the parameter γ still to be
adjusted to render the most accurate results possible. To this end,
Fig. 4 shows k2 � 0 and k1 � kc profiles of the spectra for the
synthetic data sampled as per the antenna geometry, before and after
deconvolutionwith different values of γ and the analytical profiles for
comparison.
The initial value γ � 0.1 clearly gives the worst results with a

strong underestimation of both the acoustic peaks and the convective
ridge. Lower values, from γ � 0.01 to 0.0001, show little effect on
the convective ridge, with a better estimation of the acoustic peaks.
The value 0.001 appears to be the best compromise, since it renders a
value close to the analytical solution on the convective ridge and

-500 0 500 -500 0 500
-1

0

1

2

3

4

5
10-3

2a)

10 -6

10 -5

10 -4

10 -3

2

h

b)
Fig. 2 Transfer functionh computed a) with a π∕64 angular resolution without and with windowing and b)with windowing at various angular
resolution: π∕32, π∕64, π∕127, and π∕253.
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limits highwave numbers’ oscillations, while satisfactorily rendering
the acoustic peaks.
Figure 5 shows the full spectra before and after deconvolutionwith

the Wiener filter. As was seen on the profiles, the convective ridge is
not affected, while the acoustic region is sharpened, at the cost of a
mild radial oscillation.

B. Initials Results from DAMAS2

WithDAMAS2 being an iterative process, it is important to define a
criterion to stop the loop. To this end, the value

P
i,j�Φf,pp − b�∕a

from the iterative steps shall be followed and henceforth referred to as
residual. The following sections look into some key aspects of the
algorithms and its applications, along with some potential limitations.

1. Relaxation Parameter

The relaxation parameter a sets the rate of convergence of the
iterative algorithm previously mentioned and can be freely chosen
with the constraint that the operator Lmust remain a contraction. For
DAMAS2, Dougherty [10] has used the definition given in Eq. (11).
Alternatively, Schafer et al. [18] suggest the use of max�F�H�i,j�.
The present Paper, however, requires the use of a dual Fourier space
that transforms the convolution in k space into a product in ζ space,
while the original algorithms move from x space to k space. With the
definition given in Eq. (8), there is a �2π�2 factor between the two
cases that is going to affect b in the iterative algorithm and in turn also
affect a; see Eq. (12). Dougherty’s definition gives a � 0.0648, and
multiplied by �2π�2, a � 2.5582. Schafer et al.’s definition gives
43.25 once multiplied by �2π�2.
The effect ofa on the convergence of thedeconvolution algorithm is

illustrated in Fig. 6 with the two previously discussed definitions and

an arbitrarily high value. The residual has beendefined previously, and
the energy refers to the integral over both k1 and k2 of the modified
spectra at each iteration. The former is normalized by its first value to
allow comparison, and the latter is normalized by its equivalent taken
from the analytical spectra. The lowest discussed value a � 0.0648
does not converge, and its erratic outcome is not depicted in Fig. 6 to
avoid confusion. In all three presented cases, the residual indeed
converges toward a plateau. While the lowest displayed value of a
satisfactorily converges and is kept for the remainder of the Paper, a
higher value could also be used without any expected change in the
results and at a cost in terms of additional required iterations that is
only a matter of seconds and is therefore not prohibitive.
Figure 7 shows profiles of the spectra deconvolved after a bespoke

number of iterations, based on the convergence observed in Fig. 6.
While the deconvolution does not affect the maximum value of the
convective ridge, the subconvective region is clearly improved, which
is of importance formatters of vibroacoustics [23]. The acoustic region
is also better rendered, at the cost of small oscillations; the peaks are
more accurately resolved, and their level is better estimated. The
different values of a lead to quasi-identical outputs, at the exception of
the small added oscillations which amplitude vary from case to case.
When too many iterations are applied, the outcome is downgraded
with strong spurious oscillations. In fact, although a plateau is reached
for the residual and the energy, it appears that a very slight divergence
starts at high values of iterations. One should therefore take the
smallest possible number of iterations that is on the plateau.

2. Filtering

In the original algorithm of DAMAS2, a Gaussian filter is
introduced in the dual Fourier space and has not been used in the

a)  pp at k2 = 0 b)  pp at k1 = kc

Fig. 3 Profiles of the spectrabeforedeconvolution fordifferentangularresolutions. analytic, π∕32, π∕64, π∕64 interpolated toπ∕127,
π∕127, and π∕253.

a) pp at k2 = 0 b) pp at k1 = kc

Fig. 4 Spectra deconvolved with Wiener filters: cross plots. analytic, array sampled, γ � 0.1, γ � 0.01, γ � 0.001,
and γ � 0.0001.
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present Paper. While it does not prevent the convergence, and only
changes the number of required iterations for a givenvalue of a, it has
not proven useful within the frame of this Paper. Indeed, the output of
the deconvolution is not qualitatively affected, and the same small
oscillations that have been previously discussed remain. The level of

the output, on the other hand, is strongly affected by the width
selected for theGaussian filter. In this regard, one should be careful to
use the proper normalization when including this filter in the
deconvolution algorithm.

C. Effect of Frequency: Deconvolution vs Bettered Azimuthal Resolu-
tion

All previous test cases were conducted at a frequency of 3750 Hz.
Figure 8 shows the k2 � 0 profiles of Φpp after deconvolution for
different frequencies. Although convergence of the deconvolution is
indeed reached in all cases, the number of needed iterations is
dramatically increased at low frequencies, with up to 10,000
iterations required for the 500 Hz case.
At this low frequency, one notices that the array-sampled profile

barely displays anything in the acoustic region and is underestimating
the peak value of the convective ridge by more than a factor of 2. It is
thus clear that the angular refinement previously discussed has
reached its limits and the deconvolution is more efficient at
recovering the narrowband peaks of both the acoustic and convective
regions. When increasing the frequency, the underestimation of the
convective ridge is reduced, and the acoustic region is detected,
despite its level being wrongly estimated; the deconvolution is still
useful for both the acoustic and convective regions. At 4 kHz, on the
other hand, the array-sampled convective ridge is not affected by the

Fig. 5 Φpp π∕127, before (left) and after (right) deconvolution with a Wiener filter γ � 0.001.
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Fig. 6 Normalized residual (left) and energy (right) during deconvolution of the π∕127 case for a � 2.558, a � 43.25,
and a � 200.

Fig. 7 Deconvolved Φpp profiles at k2 � 0, with analytic and
array-sampled ones for comparison. analytic, array-
sampled, a � 2.558, a � 43.25, and a � 200.
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deconvolution, its peak values being alsowell estimated thanks to the
refined azimuthal discretization. The subconvective region is
improved with deconvolution, however, and the narrow peaks of the
acoustic regions are more precisely estimated.
Since the deconvolution appears useful in most cases, and not

detrimental to the broadband ridge, one could wonder why it is not
directly applied without the refinement of azimuthal discretization.
Figure 9 shows profiles of the spectra estimated at π∕64 then
deconvolved alongside the results of deconvolution for π∕127 and
the analytical spectra for reference. The initial overestimation of the
convective ridge is partially corrected by the deconvolution; however,
the outcome is still higher than that obtained by deconvolution of the
π∕127 estimation. The subconvective and acoustic regions, on the
other hand, exhibit little difference between the two cases.
As side note, it should be said that the convergence of

deconvolution for the π∕64 case is not as straightforward as that

previously discussed. Indeed, while both residual and energy initially
tend toward a plateau, this stable state is only maintained for a short
extent of iterations and quickly diverges afterward. One should thus
be careful in that case to choose a suited number of iterations.
These observations show that for broadband components, such as

the convective ridge at high frequencies, the refinement of azimuthal
discretization is key, while the deconvolutionwill serve to correct the
estimation of narrowband peaks, more relevant for the acoustic
region or at relatively low frequencies. Naturally, the notion of low or
high frequency here is relative to the k grid on which the spectra are
projected, and defining a threshold would be a rather slippery
approach. A hybrid method of both azimuthal refinement and
deconvolution is thus recommended.

D. Acoustic Level

Another parameter that is not directly linked to the deconvolution
but rather to the ability of the antenna to resolve the spectra correctly
is the relative acoustic level, previously notedA. Figure 10 shows the
acoustic region for four values of this relative level. The previous tests
were conductedwithA � 0.01, and it is indeed shown to be correctly
resolved. However, when reaching A � 0.001, it is clear that the
acoustic contribution is more strongly affected by the tail of the
hydrodynamic one and that overall its resolution is of lesser quality.
The more extreme case of A � 0.0001 leads to the same conclusion
with a barely resolved acoustic contribution. It is thus safe to say that
below a threshold of A � 0.001 an attempt to look at the acoustic
region should be conducted with caution.

V. Application to Experimental Data

Datasets fromprevious experimental campaigns are used to test the
applicability of the discussed methods. Wall pressure measurements
were conducted, within the SONOBL project, in a test section
designed to create a zero-pressure gradient boundary layer, placed in
the anechoic chamber of the Centre Acoustique of Ecole Centrale de

a) 500 Hz b) 1 kHz

c) 2 kHz d) 4 kHz
Fig. 8 Profiles of Φpp deconvolved with DAMAS2 at various frequencies. analytic, array-sampled, and deconvolved.

Fig. 9 Profiles ofΦpp at two azimuthal resolutions, with deconvolution.
analytic, array sampled π∕64, π∕64 deconvolved,

and π∕127 deconvolved.
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Lyon. A rotating antenna of 63 microphones placed in line sampled
the data with a π∕64 angular resolution. Further details on the setup
can be found in the studies by Salze et al. [5,6]. The following is taken
at 3750 Hz for the zero-pressure gradient case at 75 m ⋅ s−1.
Following from the analytical test cases, the experimental data is

linearly interpolated to an azimuthal resolution of π∕127 and then
deconvolvedwithDAMAS2. The evolution of the residual during the
deconvolution is provided in Fig. 11a, which indicates that 3400
iterations are required. Similarly to the analytical cases, taking a
larger value for awould have also converged, simply requiring more
iterations. Figure 11b shows profiles of the spectra before and after
deconvolution. As noted before, the deconvolution has little effect on
the convective ridge, while the acoustic region is strongly affected
where themeasured peaks are sharpened. It isworth noticing, though,
that some peaks appear in the subconvective region; they are most
likely spurious ones due to an amplification of background
oscillations.
Both spectra are fully displayed in Fig. 12. While the

deconvolution makes the overall aspect noisier, its sharpening the
data makes the acoustic regionmore resolved. It is indeed possible to
see clear components, not only at k � 0 but also on or within the
acoustic circle.
Overall, the DAMAS2 algorithm appears to behave similarly

with the experimental data as it does with the analytical test cases
previously conducted.
A similar test is then conducted with the Wiener filter, setting

γ � 0.001 based on the analytical test cases. Figure 13 shows k2 � 0
profiles of the spectra before and after deconvolution. The convective
ridge is mildly affected, which is similar to the output of DAMAS2;
however, the acoustic region displays strong oscillations. The full
spectra map is displayed in Fig. 14, and shows features that are not as

sharp as those from DAMAS2, the overall aspect nonetheless being
smooth and sharper than the data before deconvolution.
The main drawback of the method lies in the choice of γ; since it

represents a signal-to-noise ratio and can only be selected from
analytical test cases, it is inherently unsuited for the experimental
data. Deconvolution of experimental data with the Wiener filter does
not seem as robust as using DAMAS2.

VI. Conclusions

Analytical test cases are used to assess the applicability of the
Wiener filter and DAMAS2 deconvolution methods to the wave-
number-frequency spectra of wall pressure fluctuations beneath a
turbulent boundary layer. The array used to sample the data is a
rotating antenna developed in previous studies, with 63 alined
microphones and an angular resolution of π∕64.
Deconvolution can be achieved with aWiener filter, which has the

advantage of not being iterative but requires the choice of a
regularization parameter. Such a parameter can be chosen from
analytical test cases, but its validity is not guaranteed for another set
of data, in particular, experimental data. DAMAS2 is seen to
satisfactorily converge as long as the relaxation parameter is correctly
chosen.While caution should be taken when choosing the number of
iterations to apply, the convergence criterion used in this study
provides satisfactory results. The antenna’s limits to resolving
the spectra low frequencies and low acoustic levels, despite
deconvolution, have been illustrated.
In light of the present study, a hybrid approach of azimuthal

interpolation and deconvolution with DAMAS2 is recommended to
better estimate both broadband and narrowband components of the
spectra.

Fig. 10 Spectra (k2 � 0) with various acoustic levels, zoomed in on the acoustic region and normalized by the local maximum. From left to right:
A � 0.01, A � 0.005, A � 0.001, and A � 0.0001. analytic, array sampled, and deconvolved.

b)     pp at k2 = 0a) Residual during deconvolution

Fig. 11 Deconvolution of experimental data: a) normalized norm of residual a � 2.558 and a � 43.25; b) interpolated to π∕127
deconvolved with a � 2.558.

PRIGENT, SALZE, AND BAILLY 171

D
ow

nl
oa

de
d 

by
 E

C
O

L
E

 C
E

N
T

R
A

L
 D

E
 L

Y
O

N
 o

n 
Fe

br
ua

ry
 7

, 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
82

03
 



Acknowledgement

This project has received funding from the Clean Sky 2 Joint
Undertaking under the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 717084. This work
was performed within the framework of the Labex CeLyA of the
University of Lyon, within the program “Investissements d’Avenir”
(ANR-10-LABX-0060/ANR-16-IDEX-0005) operated by theFrench
National Research Agency. The authors are grateful to Antonio
Pereira andDaniel Juvé, whowere kind enough to read themanuscript
and provide useful comments on matters of signal processing.

References

[1] Bull, M. K., “Wall-Pressure Fluctuations Beneath Turbulent Boundary
Layers: Some Reflections on Forty Years of Research,” Journal of

Sound and Vibration, Vol. 190, No. 3, 1996, pp. 299–315.
doi:10.1006/jsvi.1996.0066

[2] Willmarth, W. W., “Pressure Fluctuations Beneath Turbulent Boundary
Layers,”AnnualReviewofFluidMechanics,Vol. 7,No. 1, 1975, pp. 13–36.
doi:10.1146/annurev.fl.07.010175.000305

[3] Corcos, G. M., “Resolution of Pressure in Turbulence,” Journal of the
Acoustical Society of America, Vol. 35, No. 2, 1963, pp. 192–199.
doi:10.1121/1.1918431

[4] Arguillat, B., Ricot, D., Bailly, C., and Robert, G., “Measured
Wavenumber: Frequency Spectrum Associated with Acoustic and
Aerodynamic Wall Pressure Fluctuations,” Journal of the Acoustical

Society of America, Vol. 128, No. 4, 2010, pp. 1647–1655.
doi:10.1121/1.3478780

[5] Salze, É., Bailly, C., Marsden, O., Jondeau, E., and Juvé, D., “An
Experimental Characterisation ofWall PressureWavevector-Frequency
Spectra in the Presence of Pressure Gradients,” 20th AIAA/CEAS

Aeroacoustics Conference, AIAA Paper 2014-2909, 2909.
doi:10.2514/6.2014-2909

[6] Salze, É., Bailly, C., Marsden, O., Jondeau, E., and Juvé, D., “An
Experimental Investigation of Wall Pressure Fluctuations Beneath
Pressure Gradients,” 21st AIAA/CEAS Aeroacoustics Conference,
AIAA Paper 2015-2909, 2015.
doi:10.2514/6.2014-2909

[7] Ehrenfried, K., and Koop, L., “Comparison of Iterative Deconvolution
Algorithms for the Mapping of Acoustic Sources,” AIAA Journal,
Vol. 45, No. 7, 2007, pp. 1584–1595.
doi:10.2514/1.26320

[8] Tiana-Roig, E., and Jacobsen, F., “Deconvolution for the Localization
of Sound Sources Using a Circular Microphone Array,” Journal

of theAcoustical SocietyofAmerica,Vol. 134,No. 3, 2013,pp. 2078–2089.
doi:10.1121/1.4816545

[9] Lylloff, O., Fernández-Grande, E., Agerkvist, F., Hald, J., Tiana Roig,
E., and Andersen, M. S., “Improving the Efficiency of Deconvolution
Algorithms for Sound Source Localization,” Journal of the Acoustical
Society of America, Vol. 138, No. 1, 2015, pp. 172–180.
doi:10.1121/1.4922516

Fig. 12 Φpp from experimental data interpolated to π∕127, before (left) and after (right) deconvolution with DAMAS2.

Fig. 13 Φpp from experimental data interpolated to π∕127 and filtered
with a Wiener filter, γ � 0.001.

Fig. 14 Φpp from experimental data interpolated to π∕127 and filtered
with a Wiener filter, γ � 0.001.

172 PRIGENT, SALZE, AND BAILLY

D
ow

nl
oa

de
d 

by
 E

C
O

L
E

 C
E

N
T

R
A

L
 D

E
 L

Y
O

N
 o

n 
Fe

br
ua

ry
 7

, 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
82

03
 

http://dx.doi.org/10.1006/jsvi.1996.0066
http://dx.doi.org/10.1006/jsvi.1996.0066
http://dx.doi.org/10.1006/jsvi.1996.0066
http://dx.doi.org/10.1006/jsvi.1996.0066
http://dx.doi.org/10.1146/annurev.fl.07.010175.000305
http://dx.doi.org/10.1146/annurev.fl.07.010175.000305
http://dx.doi.org/10.1146/annurev.fl.07.010175.000305
http://dx.doi.org/10.1146/annurev.fl.07.010175.000305
http://dx.doi.org/10.1146/annurev.fl.07.010175.000305
http://dx.doi.org/10.1146/annurev.fl.07.010175.000305
http://dx.doi.org/10.1121/1.1918431
http://dx.doi.org/10.1121/1.1918431
http://dx.doi.org/10.1121/1.1918431
http://dx.doi.org/10.1121/1.3478780
http://dx.doi.org/10.1121/1.3478780
http://dx.doi.org/10.1121/1.3478780
http://dx.doi.org/10.2514/6.2014-2909
http://dx.doi.org/10.2514/6.2014-2909
http://dx.doi.org/10.2514/6.2014-2909
http://dx.doi.org/10.2514/6.2014-2909
http://dx.doi.org/10.2514/6.2014-2909
http://dx.doi.org/10.2514/6.2014-2909
http://dx.doi.org/10.2514/1.26320
http://dx.doi.org/10.2514/1.26320
http://dx.doi.org/10.2514/1.26320
http://dx.doi.org/10.1121/1.4816545
http://dx.doi.org/10.1121/1.4816545
http://dx.doi.org/10.1121/1.4816545
http://dx.doi.org/10.1121/1.4922516
http://dx.doi.org/10.1121/1.4922516
http://dx.doi.org/10.1121/1.4922516


[10] Dougherty, R., “Extensions of DAMAS and Benefits and Limitations of
Deconvolution in Beamforming,” 11th AIAA/CEAS Aeroacoustics

Conference, AIAA Paper 2005-2961, 2005.
doi:10.2514/6.2005-2961

[11] Gabriel, C.,Müller, S.,Ullrich, F., andLerch,R., “ANewKind of Sensor
Array for Measuring Spatial Coherence of Surface Pressure on a Car’s
Side Window,” Journal of Sound and Vibration, Vol. 333, No. 3, 2014,
pp. 901–915.
doi:10.1016/j.jsv.2013.09.045

[12] Cohen, E., and Gloerfelt, X., “Influence of Pressure Gradients on Wall
Pressure Beneath a Turbulent Boundary Layer,” Journal of Fluid

Mechanics, Vol. 838, March 2018, pp. 715–758.
doi:10.1017/jfm.2017.898

[13] Bahr, C. J., and Cattafesta, L. N., “Wavenumber-Frequency
Deconvolution of Aeroacoustic Microphone Phased Array Data of
Arbitrary Coherence,” Journal of Sound and Vibration, Vol. 382,
No. 10, 2016, pp. 13–42.
doi:10.1016/j.jsv.2016.06.044

[14] Haxter, S., and Spehr, C., “Infinite Beamforming: Wavenumber
Decomposition of Surface Pressure Fluctuations,” 2014, pp. 1–10,
http://www.bebec.eu/2014.

[15] Ehrenfried, K., and Koop, L., “Pressure Fluctuations Beneath a
Compressible Turbulent Boundary Layer,” 14th AIAA/CEAS Aero-

Acoustics Conference, AIAA Paper 2008-2800, 2008.
doi:10.2514/6.2008-2800

[16] Blake, W.,Mechanics of Flow-Induced Sound and Vibration—General

Concepts and Elementary Sources, Vol. 1, Academic Press, Orlando,
FL, 1986, pp. 109–111.

[17] Gonzalez, R. C., and Woods, R. E., Digital Image Processing, 2nd ed.,
Prentice Hall, New Jersey, 2002, pp. 261–264.
doi:10.1007/3-540-27563-0

[18] Schafer, R. W., Mersereau, R. M., and Richards, M. A., “Constrained
Iterative Restoration Algorithms,” Proceedings of the IEEE, Vol. 69,
No. 4, 1981, pp. 432–450.
doi:10.1109/PROC.1981.11987

[19] Brooks, T. F., and Humphreys, W. M., “A Deconvolution Approach for
the Mapping of Acoustic Sources (DAMAS) Determined from Phased
Microphone Arrays,” Journal of Sound and Vibration, Vol. 294, No. 4,
2006, pp. 856–879.
doi:10.1016/j.jsv.2005.12.046

[20] Brooks, T., and Humphreys, W., “Extension of DAMAS Phased Array
Processing for Spatial Coherence Determination (DAMAS-C),” 12th

AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics

Conference), AIAA Paper 2006-2654, 2006.
doi:10.2514/6.2006-2654

[21] Harris, F. J., “On the Use of Windows for Harmonic Analysis with the
Discrete Fourier Transform,” Proceedings of the IEEE, Vol. 66, No. 1,
1978, pp. 51–83.
doi:10.1109/proc.1978.10837

[22] Coggins, B. E., and Zhou, P., “Polar Fourier Transforms of Radially
Sampled NMRData,” Journal of Magnetic Resonance, Vol. 182, No. 1,
2006, pp. 84–95.
doi:10.1016/j.jmr.2006.06.016

[23] Maxit, L., “Simulation of the Pressure Field Beneath a Turbulent
BoundaryLayerUsingRealizations ofUncorrelatedWall PlaneWaves,”
Journal of the Acoustical Society of America, Vol. 140, No. 2, 2016,
pp. 1268–1285.
doi:10.1121/1.4960516

L. Ukeiley
Associate Editor

PRIGENT, SALZE, AND BAILLY 173

D
ow

nl
oa

de
d 

by
 E

C
O

L
E

 C
E

N
T

R
A

L
 D

E
 L

Y
O

N
 o

n 
Fe

br
ua

ry
 7

, 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
82

03
 

http://dx.doi.org/10.2514/6.2005-2961
http://dx.doi.org/10.2514/6.2005-2961
http://dx.doi.org/10.2514/6.2005-2961
http://dx.doi.org/10.1016/j.jsv.2013.09.045
http://dx.doi.org/10.1016/j.jsv.2013.09.045
http://dx.doi.org/10.1016/j.jsv.2013.09.045
http://dx.doi.org/10.1016/j.jsv.2013.09.045
http://dx.doi.org/10.1016/j.jsv.2013.09.045
http://dx.doi.org/10.1016/j.jsv.2013.09.045
http://dx.doi.org/10.1017/jfm.2017.898
http://dx.doi.org/10.1017/jfm.2017.898
http://dx.doi.org/10.1017/jfm.2017.898
http://dx.doi.org/10.1017/jfm.2017.898
http://dx.doi.org/10.1016/j.jsv.2016.06.044
http://dx.doi.org/10.1016/j.jsv.2016.06.044
http://dx.doi.org/10.1016/j.jsv.2016.06.044
http://dx.doi.org/10.1016/j.jsv.2016.06.044
http://dx.doi.org/10.1016/j.jsv.2016.06.044
http://dx.doi.org/10.1016/j.jsv.2016.06.044
http://www.bebec.eu/2014
http://www.bebec.eu/2014
http://www.bebec.eu/2014
http://dx.doi.org/10.2514/6.2008-2800
http://dx.doi.org/10.2514/6.2008-2800
http://dx.doi.org/10.2514/6.2008-2800
http://dx.doi.org/10.1007/3-540-27563-0
http://dx.doi.org/10.1007/3-540-27563-0
http://dx.doi.org/10.1109/PROC.1981.11987
http://dx.doi.org/10.1109/PROC.1981.11987
http://dx.doi.org/10.1109/PROC.1981.11987
http://dx.doi.org/10.1109/PROC.1981.11987
http://dx.doi.org/10.1016/j.jsv.2005.12.046
http://dx.doi.org/10.1016/j.jsv.2005.12.046
http://dx.doi.org/10.1016/j.jsv.2005.12.046
http://dx.doi.org/10.1016/j.jsv.2005.12.046
http://dx.doi.org/10.1016/j.jsv.2005.12.046
http://dx.doi.org/10.1016/j.jsv.2005.12.046
http://dx.doi.org/10.2514/6.2006-2654
http://dx.doi.org/10.2514/6.2006-2654
http://dx.doi.org/10.2514/6.2006-2654
http://dx.doi.org/10.1109/proc.1978.10837
http://dx.doi.org/10.1109/proc.1978.10837
http://dx.doi.org/10.1109/proc.1978.10837
http://dx.doi.org/10.1109/proc.1978.10837
http://dx.doi.org/10.1016/j.jmr.2006.06.016
http://dx.doi.org/10.1016/j.jmr.2006.06.016
http://dx.doi.org/10.1016/j.jmr.2006.06.016
http://dx.doi.org/10.1016/j.jmr.2006.06.016
http://dx.doi.org/10.1016/j.jmr.2006.06.016
http://dx.doi.org/10.1016/j.jmr.2006.06.016
http://dx.doi.org/10.1121/1.4960516
http://dx.doi.org/10.1121/1.4960516
http://dx.doi.org/10.1121/1.4960516

