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Wall pressure fluctuations beneath turbulent boundary layers subjected to a pressure gradient are studied in a

subsonic channel flow, up to 76 m ⋅ s−1, where the test section’s ceiling is adjusted to create the desired pressure

gradients with the Clauser parameter ranging from −0.45 to 0.8. A rotating antenna of 63 nonuniformly distributed

remote microphones enables a fine spatial resolution, down to 1 mm. The focus is put on the convective velocity,

coherence scales, and two-dimensional wavenumber–frequency spectra. The convective velocity is increased by

adverse pressure gradients, with values up to 14% higher than without gradient, which goes against the trend

reported in previous studies. Both anisotropy and wall friction are increased by a favorable pressure gradient. In the

subconvective region of the wavenumber–frequency spectra, classical models fail to match the data in terms of both

levels and decay rates. Finally, the aspect ratio of these spectra’s convective ridges is increased from adverse to zero,

and then favorable pressure gradients. These results are discussed in light of the literature on coherent motion in

boundary layers and how it is affected by pressure gradients. Mechanisms that could explain the observed pressure

gradients’ effects are finally proposed.

I. Introduction

OWING to the diverse nature of wall pressure fluctuations
beneath a turbulent boundary layer, their understanding is of

prime interest for the fields of aeroacoustics and vibro-acoustics.
Applications can be found in the automotive and aeronautical indus-
tries [1,2], as well as in hydroacoustics studies [3,4] focused on
marine technology, to cite only a few. In turn, intensive research
has been carried into the field over the past seventy years or so, at first
mostly in the absence of pressure gradient. Models for the spatial
structure of the fluctuations have been proposed [5,6], along with
some for the frequency spectra and are, to date, still commonly used
in the industry despite known limitations to their validity. Indeed,
measurements have been carried on that highlighted some of their
limits, in particular at low and high frequencies [7] for the former.
Some experimental [8] or numerical studies [9] had looked into
turbulent boundary layers with pressure gradient, but available data
has remained rather scarce for a long time, preventing a precise
account of their effects. Reviews of this field of research werewritten
at different stages [10,11] and offer a detailed account and discussion
of the understanding of the matter at their time.
Since these reviews, the last two decades have seen a growing

interest in the effects of pressure gradients. For instance, after Goody
[12] proposed a new model for the frequency spectra, numerous
studies have built onto it to extend its range of applicability, as
discussed by Lee [13]. In particular, these models aim at describing
the spectra for flows under adverse pressure gradients (apgs), since
this corresponds to conditions found on the suction side of lifting
airfoils, where diffraction of the pressure field at the trailing edge is a
source of noise. However, these models tend to be tailored to specific
flow conditions. As an illustration, measurements were conducted by

Prigent et al. [14] on a wind tunnel mock-up of a private jet cockpit at
velocities lower than cruise conditions. The reported spectra show
limitations to the applicability of the discussed models for boundary
layers developing on these industrial geometries. A better fundamental
understanding of the pressure field, in terms of both spatial structure
and frequency content, is thus needed, and research is still ongoing
with experimental (e.g., [15]) or numerical studies (e.g., [16]). Despite
the progress made thanks to various studies, previously discussed or
omitted for brevity, some key questions are still open to debate, two of
which are discussed hereafter and shall be addressed in the remainder
of this work. Those are the effects of pressure gradients on the con-
vective velocity and on the structure of the convective ridge of the
wavenumber–frequency spectra. The latter is also linked to the deter-
mination of the subconvective levels of said spectra.
There are various ways of defining a convective velocity, in terms

of phase velocity or group velocity for instance. The former requires
the computation of space derivatives of the phase of the cross-spectra,
which is often not available in experimental data due to a coarse
spatial resolution. In turn, authors often report a different quantity
directly computed from the phase of the cross-spectra at each fre-
quency and separation, without spatial derivative, and which there-
fore depends on both frequency and spatial separation. On the other
hand, the group velocity is usually computed by tracking the space-
time path of the maximum of correlation; often referred to as broad-
band convective velocity, it depends on the spatial separation.
While there is a consensus that pressure gradients do affect the

convective velocity, no clear quantitative description is reached. A
model such as that by Smol’yakov [17] offers a good prediction for
the frequency-dependent convective velocity in the case of zero-
pressure-gradient (zpg) turbulent boundary layers. In the presence
of pressure gradients, its coefficients must be adjusted, as pointed out
by Salze et al. [18]. Catlett et al. [19] reported that two of these
coefficients appeared to depend on the Clauser parameter and the
third one on the boundary-layer aspect ratio.
Broadband convective velocity, or group velocity, has also been

studied in the presence of pressure gradients. Schloemer [8] reported
a reduction of about 14% from zpg to apg condition, at small spatial
separation. However, only a few values of separation were available,
and favorable pressure gradient (fpg) conditions could not be com-
pared to either zpg or apg at a given normalized separation. Na and
Moin [9] conducted direct numerical simulations that matched the
data points of Schloemer [8] very well and were able to extent the
comparison between cases, thanks to the spatial resolution. A strong
reduction of the convective velocity was found from fpg to apg
throughout the whole range of separations, from 18% at the highest
separations to about 29% at the smallest. For a flat platewith pressure
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gradients imposed by an overhanging airfoil, Hu and Herr [15] found
a reduction of up to 18% from fpg to apg. The use of 12 probes indeed
allowed for comparison of the different cases. Recently, Fritsch et al.
[20] also used an overhanging airfoil, to study nonequilibrium flows
with two subsequent and opposite pressure gradients. The authors
reported lower convective velocities for apg conditions and higher
ones for fpg, but close to no variation of the convective properties
when normalized by outer variables. Interestingly, they [20] also
reported that the flow history had a strong influence: a given pressure
gradient leading to different results depending on whether it was the
initial or secondary gradient. Burton [21] conducted measurements on
the floor of awind channel with fpg conditions imposed by an inclined
ceiling and apg conditions by inclining the floor itself: a reduction of
about 24%from fpg to apgwas observed.Other studies focused on apg
conditions, such as Catlett et al. [19] with a beveled trailing edge, and
reported similar trends. However, a recent numerical study [16] found
much less significant variations between fpg, apg, and zpg conditions,
with variations of 5% at most and much smaller over a large range of
separation.
Experimental datameasuredwith a refined spatial resolution could

therefore add knowledge to the effect of pressure gradients, both for
the broadband convective velocity and for the frequency-dependent
one. In particular, the spatial evolution of the phase of cross-spectra
should enable the computation of the phase velocity.
The wavenumber–frequency formalism is a useful approach as it

allows the differentiation of a range of scales at a given frequency, and
it is therefore often used in academic applications [22]. Some exper-
imental studies have looked into the one-dimensional wavenumber
frequency spectrum (e.g., [14,23,24]), but data on two-dimensional
wavenumber frequency spectra is very scarce. For instance, Panton
andRobert [25] andArguillat et al. [26] have looked at such spectra in
laboratory conditions, with zero pressure gradient. Haxter and Spehr
[28] analyzed flight test data to compute two-dimensional spectra,
but the challenges of such an apparatus inherently lead to coarse
results. In their numerical simulation, Cohen and Gloerfelt [16]
observed a reduction of the convective ridge aspect ratio (for a given
frequency) under apg conditions. A set of finely resolved spectra,
with and without pressure gradient would be good to complement
these observations from an experimental point of view.
Furthermore, it is now understood that although the convective

ridge of the wavenumber spectrum clearly accounts for the majority
of its energy, other less energetic components such as the subcon-
vective range play a key role in vibroacoustics [28]. This is of
particular interest in applications where the turbulent boundary layer
developing on a fuselage induces a fluctuating pressure load that
radiates noise inside a cabin, for passenger aircraft, train, or even cars.
Despite several models having been developed for thewavenumber–
frequency spectra, their predicted levels differ by up to 20 dB in the
subconvective range as illustrated byGraham [1]. Little experimental
data is available in that range due to the difficulty tomeasure pressure
fluctuations across a wide range of scales and amplitudes without
significant measurement errors.
Arrays of remote sensors are a robust way of measuring wall

pressure fluctuations with a good spatial resolution and can be used
when rear access to the studied surface is not an issue. Such arrays
have gone a long way since initial two-point systems that were
incrementally rotated to cover awide range of separation [25]. Arrays
of microphones distributed along a line on a rotating disk [18,26]
offer the possibility to compute all cross-spectra at once for a given
angular position. This has inspired others to look into rotating disks
with spirals of microphones [29]. The antenna presented by Salze
et al. [18] contains a nonuniformly distributed line ofmicrophones that
increases the resolution of the co-array in the separation space. These
advances in microphones arrays, combined with deconvolution tech-
niques [30], could helpmake a step forward.Furthermore, the ability to
measure various quantities with the same setup and therefore the same
boundary layer should also allow for a more global view of the topic.
A preliminary analysis of the data has been presented by Salze

et al. [18]. The present study further analyses these experimental
measurements to tackle the issues raised in the above discussion.
After a description of the apparatus and flow conditions, Sec. III

focuses on the frequency spectra, comparing them to previous data
sets and looking at pressure gradients effects. Section IV then inves-
tigates the broadband and frequency-dependent convective veloc-
ities. Coherence and its length scales are detailed in Sec. V.
Wavenumber–frequency spectra are studied in Sec. VI, and conclud-
ing remarks are finally drawn.

II. Experimental Conditions

Each experimental point considered in the present study is denoted
by a configuration, namely zero-pressure gradient (zpg), adverse
pressure gradient (apg) or favourable pressure gradient (fpg), and
by a number associated with the local freestream velocity. For
instance, apg38 refers to the apg case where the outer velocity at
the measurement location is 38 m:s−1. Cases for which the free-
stream velocity is written in bold in Table 1 correspond to measure-
ments with a rotation of the antenna: these are used for the
computation of spatial quantities. The following sections detail the
apparatus and relevant flow quantities.

A. Wind Tunnel

Measurements have been conducted in a bespoke test section
mounted in the main anechoic subsonic wind tunnel of the Centre
for Acoustic Research of the Fluid Mechanics and Acoustics Labo-
ratory. The flow is generated by a 350 kW Neu centrifugal blower
delivering a nominal mass flow rate of 15 kg ⋅ s−1, and the fan is
powered by an electronically controlled Tridge-Electric LAK 4280A
motor. Air passes through a settling chamber including a honeycomb
and several wire meshes designed to reduce freestream turbulence.
Acoustic treatment on the wind tunnel walls and baffled silencers
allows to reduce the inlet noise level and to prevent contamination of
acoustic measurements performed in the anechoic chamber. This
results in an inlet air flow at ambient temperature with a low back-
ground noise and low residual turbulence intensity, less than 1%. The
reader is referred to Panton and Robert [25] and Arguillat et al. [26]
for a more detailed description of the facility.
The test section itself is mounted in the anechoic chamber and

connected to the inlet contraction as illustrated in Fig. 1. It is a closed
channel purposely built for the study of boundary layers subjected to
pressure gradients. The floor is a flat plate over which the boundary
layer of interest develops andwhere instrumentation can bemounted.
The boundary layer is not triggered and develops from the end of the
contraction. The side walls of the second part of the channel
(L∕2 < x1 < L) are made out of wire mesh and porous liner to reduce
noise generated by the jet at the channel outlet. Finally, the two parts
of the ceiling can be inclined to create a specific pressure gradient
at the measurement location, indicated as x1ref � 3h in Fig. 1, with h
being the channel height at the inlet.
Three ceiling positions, with angles �α1; α2� for the two sections,

have been investigated in this study. First, a zpg configuration has
been setwith the angles �0.3°; 3.9°� to account for the slowboundary-
layer growth. Second, a favorable or negative pressure gradient (fpg)
corresponds to angles of �−3.5°; 1.5°�. Finally, an adverse or positive
pressure gradient (apg) has been created with the angles set to
�4°; 4°�.
The boundary-layer thickness δ has been found to remain small

with respect to the channel height h in the test section, their ratio
being about δ∕h ≃ 0.08. Independent boundary layers therefore
develop on the floor and ceiling. Furthermore, mean pressure and
velocity fields have been found homogeneous in the middle part of
the channel, at least for−0.6h ≤ x2 ≤ 0.6h, with details given below.

B. Mean Pressure Gradient

A specifically instrumented floor has been used for the characteri-
zation of the boundary layer, and replaced with the one fitted with the
rotating antenna for the relevant measurements. The ceiling and there-
fore the pressure gradient were not modified during this process. This
instrumented floor is fittedwith static pressure probes distributed along
three rows at x2 � 0 and x2 � �0.6h to measure the mean pressure
distribution �p along x1. Mean static pressure data is recorded using a
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Scanivalve system connected to a single Validyne dp15 pressure
transducer.
The pressure coefficient is defined asCp � � �p − pamb�∕q0, where

q0 � ρ0U
2
0∕2 is the dynamic pressure at the channel inlet x1 � 0,

and pamb is the ambient pressure in the anechoic room. Without
pressure gradient, it remains constant in the first part of the channel
0 ≤ x1∕h ≤ 8, within a �0.008 variation. Its evolution along the
channel center line x2 � 0 is shown in Fig. 2 for the adverse (apg) and
favourable (fpg) pressure gradient configurations at different veloc-
ities. In the measurement region (around x1;ref), transverse variation
of the mean static pressure remains within 3% for apg cases and
within 1% for fpg32. With low values of Cp in zpg conditions these
variations are within 6% for zpg25 and 3% for zpg45 and zpg76.

Following the expression given by Dixit and Ramesh [31], the
derivative of the pressure coefficient can be expressed as

dCp

dx1
� −

2L2
0

�L0 − x1�3
(1)

where L0 is close to the length of the channel but must be adjusted
because of installation effects. The values obtained from this semi-
empirical law are also shown in Fig. 2. For the apg configuration
the present data gives L0 � −14h, except for apg74, for which
L0 � −12.8h, and L0 � 14.8h for the fpg configuration. The good
match between the current data and this law means that, as expected
for an inviscid flow, the streamwise derivative of the pressure coef-
ficient does not depend on the velocity.
UsingEq. (1) and the previous values ofL0, the relativevariation of

�dCp∕dx1� over the antenna’s diameter is evaluated to about 18% for
apg cases and 26% fpg. Following from Elsinga and Marusic [32],
one can estimate the eddy turnover time as T ≃ 14 × δ∕U∞. Assum-
ing, for the sake of the argument, that the convection velocity follows
Uc � 0.7 ×U∞ and defining the convection time of an eddy over the
antenna by the ratio between its diameter and said convection veloc-
ity, τc � D∕Uc, one has T ∕τc � 10 × δ∕D. Using velocity data,
which is detailed in the following section, this ratio is around unity for
the studied cases. In that regard, one can consider the boundary layer
to be out of equilibrium in terms of the effect of the pressure gradients,
especially for the largest and long-lived eddies.

C. Boundary-Layer Velocity Profiles

Velocity profiles have been measured with a Dantec 55P01 hot-
wire operating in constant voltagemode using a Streamline anemom-
eter. Each measurement is conducted at a sampling frequency fs �
102.4 kHz during 90 s. Spanwise variations of the outer mean
velocity did not exceed 1% at x ≃ x1;ref . Downstream thickening of
the boundary layer is particularly noticeable for apg flows, with
variations over the antenna’s diameter up to 37% for δ1 and 36%
for δ2. The frictionvelocitywas estimated by theClausermethod [33]
using the mean velocity profiles, and was also checked against the
output of a recent postprocessing method [34,35] based on a multi-
parameter optimization scheme, accounting for errors in the estimation
of the initial distance to thewall for instance. Variations did not exceed
2%.Theprofiles are fittedwith the constants κ � 0.41 andB � 4.9 for
the logarithmic law. Note that all the velocity profiles are located at
x1;ref in what follows. The obtained values are reported in Table 1. One
can notice that with the velocities of interest, Rexref ≃ 5.3 × 105 is the
lowest value obtained for the zpg cases. This indicates that the test
section was designed to produce fully turbulent boundary layers, even
more so since the latter ought to start developing upstream.
Thevelocity profiles inwall units for the three pressure gradients at

various velocities are plotted in Fig. 3. The root-mean-square profiles
exhibit the expected higher levels close to the wake region when the
Reynolds number is increased. This effect is particularly visible for
apg cases,which has been reported and discussed byHarun et al. [36].
The lack of a near-wall peak is due to the size of the hot-wire probe

a)

b)

Fig. 2 Longitudinal profile of the pressure coefficient Cp as a function

of the dimensionless distance x1∕h. a) For Δ, apg19; °, apg38; ⋄, apg57;
and�, apg74. b) For Δ, fpg32. The semi-empirical law (1) is also shown
in gray lines.

Fig. 1 Sketch of the test channel and notations. The height of the initial section is h � 250 mm, the length of the whole channel is L � 16h, and the
location of the disk antenna is xref � 3h. It should be noted thatU0 is the velocity at the channel inlet (x1 � 0), and thatU∞ is the local freestream velocity
of the boundary layer at the streamwise location of the measurement, that is, x1ref for the rotating array.
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being kept constant while varying the Reynolds number, which
filters out the smallest fluctuations as highlighted in the study by
Hutchins et al. [37]. The dimensionless sensing length of the wire,

l� � l × uτ∕ν, ranges from 40 to 226 for the zpg cases, 26 to 201 for
the apg ones, and 42 to 158 for the fpg ones.Manufacturing a bespoke
probe for each freestream velocitywould have been beyond the scope
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Fig. 3 Mean (a, c, e) and rms (b, d, f) profiles (at x1;ref) for zpg (a, b), apg (c, d), and fpg (e, f). Velocity order: ∘,�,□, ⋄,Δ, ▹, ◃, from lowest to highest in
Table 1.

Table 1 Boundary-layer parameters (velocities in m ⋅ s−1 and lengths in m)

U∞ δ1 × 103 H12 uτ Reδ1 Re� Π K × 107 β d�p
zpg 11 2.8 1.33 0.48 2.0 × 103 0.65 × 103 0.21 —— —— 16

25 2.6 1.30 1.04 4.3 × 103 1.3 × 103 0.42 —— —— 34

35 2.9 1.32 1.37 6.8 × 103 2.1 × 103 0.57 —— —— 45

45 3.3 1.32 1.65 9.9 × 103 2.7 × 103 0.71 —— —— 55

59 3.4 1.31 2.09 1.3 × 104 4.0 × 103 0.63 —— —— 69

76 2.8 1.27 2.74 1.4 × 104 4.8 × 103 0.60 —— —— 90

apg 8.1 7.2 1.44 0.33 3.9 × 103 1.0 × 103 1.0 −2.9 0.79 10

19 5.9 1.44 0.68 7.5 × 103 1.5 × 103 1.2 −1.2 0.73 23

27 4.7 1.38 0.98 8.5 × 103 2.0 × 103 1.0 −0.88 0.56 33

38 4.6 1.31 1.35 1.2 × 104 3.2 × 103 0.81 −0.64 0.59 45

45 4.8 1.37 1.56 1.4 × 104 3.5 × 103 0.55 −0.53 0.63 52

57 4.3 1.34 1.95 1.6 × 104 4.0 × 103 0.83 −0.43 0.60 64

74 4.4 1.33 2.45 2.1 × 104 4.6 × 103 0.82 −0.34 0.68 80

fpg 10 2.0 1.29 0.51 1.4 × 103 0.86 × 103 −0.06 7.6 −0.45 17

32 2.0 1.26 1.35 4.3 × 103 1.9 × 103 0.10 2.5 −0.59 45

45 1.6 1.24 1.89 4.8 × 103 2.2 × 103 −0.02 1.8 −0.49 63

For velocities indicated in bold font, the antenna has been rotated.
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of the present study. The mean velocity profiles are well collapsed in
the near-wall and logarithmic region for each pressure gradient. The
zero-pressure-gradient profiles are in excellent agreement with pre-
vious studies such as that by Österlund [38] at matched Reynolds
number, although the additional profiles are not shown here for
readability.
Figure 4 shows thevelocity profiles for the three pressure gradients

at a matched Reynolds number. As expected [36], the mean profiles
are similar in the near-wall and logarithmic regions but strongly differ
close to the wake region. The apg case deviates from the logarithmic
law at the smallest value of y� and has the highest wake value,
contrary to the fpg case. The increase of the root-mean-square
profiles at constant Reynolds from fpg to apg is clear in Fig. 4b.
The increase in thewake region level is akin towhat is observed for an
increasing Reynolds number without pressure gradient.

D. Boundary-Layer Parameters

The mean velocity profiles are used to compute the boundary-
layer parameters reported in Table 1: U∞ is the local freestream
velocity, δ1 the boundary-layer displacement thickness,H12 � δ1∕θ
the shape factor with θ the momentum thickness, uτ the friction
velocity, Reδ1 � δ1U∞∕ν the Reynolds number, and Re� � uτδ∕ν
the Kármán number (where ν is the kinematic viscosity), and β �
�δ1∕τw�d �p∕dx1 the Clauser parameter. The acceleration parameter
K is also introduced K � −�u2τ∕U2

∞��β∕Reδ1� and Π is the wake
parameter computed with the method of Esteban et al. [34] and
Rodríguez-López et al. [35], using the exponential wake definition
of Chauhan et al. [39].
The attention of the reader is brought to the small discrepancies, of a

few tenths of millimeters, in the evolution of δ1; however, the numer-
ous repetitions of measurements to determine the transverse and
downstream evolution of the boundary layer give confidence that this
does not come from an ill-operated wind channel. Furthermore, both
Reynolds number and friction velocity evolve in a consistent manner.

E. Pinhole Microphones

Apinhole microphone is used to measure thewall pressure spectra
with a high-frequency response. To this purpose, an 1∕8 in Brüel and
Kjær type 4138 microphone is fitted with a pinhole mask made of a
perforated cap, whose diameter is dp � 0.5 mm. This mounting’s
cutoff frequency is set by that of the cavity underneath the cap. Said
cavity can be regarded as a Helmholtz resonator, but the theoretical
determination of its resonance frequency would not be feasible. This
resonance frequency is measured at fr ≃ 21 kHz and the calibration
procedure is detailed in Appendix A.

F. Rotating Antenna

The pressure antenna is composed of 63 identical remote micro-
phone probes nonuniformly distributed along a line placed on a
flush-mounted rotating disk. Each remote probe contains a 1∕4 in
Brüel and Kjær type 4957microphone, whose cutoff frequency is of
about 15 kHz. Themicrophones are placed on the edge of steel tubes
of variable diameter as illustrated in Fig. 5. The diameter of the last
steel tube, flush fitted onto the surface of the rotating disk, is of

0.5 mm. A 2-m-long rear tube made of vinyl is used to dissipate
pressure fluctuations and therefore avoid acoustic reflections. The
antenna installed in the test section is shown in Fig. 6. This remote
mounting reduces the sensing area of the probe and hence the
averaging effect that damps the spectra at high frequencies and
requires a correction, such as that developed by Corcos [40]. This
correction is based on both the geometry of the sensor and the
pressure correlation model, and the smaller the sensing area, the
smaller the correction needed. A smaller sensing area also reduces
the spacing between two neighboring probes, which allows for
denser arrays of sensors.
For each measurement run, signal is recorded at 51.2 kHz during

90 s. Cross-spectra are computed for all combinations of sensors
leading to a unique separation vector, at each angular position of the
rotating disk. Details of the signal processing method used to com-
pute thewavenumber–frequency spectra can be found in Prigent et al.
[30]. The nonuniformity of themicrophone distribution along the line
increases the number of unique separations. While part of the data is
processed with reference to the center microphone and therefore
computed at 63 locations, space Fourier transformation is done under
the assumption of homogeneity of the pressure field over the antenna
and uses all 856 available positive unique separations. The antenna’s
disk is then rotated to 64 angular positions spanning 0 − π, the other
half of the full rotation being coveredby symmetry of the antenna; see
Appendix B for more details on the geometry.

III. Frequency Spectra

In order to compare the current results with previous studies, data
was collected from publications at similar values of Reθ by Schewe
[41] with Reθ � 1.4 × 103, Farabee and Casarella [7] with Reθ �
3.4 × 103 and 4.4 × 103, Olivero-Bally et al. [42] with Reθ �
5.6 × 103, Gravante et al. [43] with Reθ � 5.0 × 103 and 7.1 × 103,
Bull and Thomas [44] with Reθ � 7.0 × 103, Goody and Simpson
[45] with Reθ � 7.3 × 103, and Blake [46] with Reθ � 10 × 103.
Spectra from zpg flows at various values of Reθ, with and without

theCorcos correction for the pinhole diameter, are displayed in Fig. 7.
This correction takes into account the size and shape of the sensor as

Fig. 5 Sketch of a remote microphone probe used to build the disk
antenna (not to scale).
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Fig. 4 Mean a) and rms b) profiles (at x1;ref) for apg (⋄), zpg (□), and fpg (°) at matching Reynolds number Re� ∼ 2 × 103.
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Fig. 6 Rotating antenna in the wind tunnel, from left to right: side view of the test section, bottom view of the disk with vinyl tubes and remote
microphones, and top view of the disk.

Re Re

Re Re

Re

Fig. 7 Comparison of current datawith previous studies at similarReθ: zpg uncorrected, zpg corrected, Goodymodel,
L

Schewe [56],⊗
and♦Farabee andCasarella [23],◂ and□Gravante et al. [29],▴Olivero-Bally et al. [43],▸Goody andSimpson [25],▾Bull andThomas [8], and⊙Blake
[3]. Response of the microphone added for reference (dash-dotted). Vertical dotted lines indicate ω�

max.
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well as a model for the pressure fluctuations correlation. While more
advanced models have been developed, the resulting correction for a
moderate sensor size is not strongly affected, as illustrated by Prigent
et al. [14]. Following the approach ofMeyers et al. [47], the frequency
above which this correction is significant is assumed inversely pro-
portional to the nondimensional diameter of the pinhole d�, and data
from Gravante et al. [43] is used to compute it. The obtained value
ω�
max is indicated by a vertical line in Figs. 7 and 8. The spectra are

plotted against the previously mentioned experimental data and the
Goodymodel [12], for reference. In addition to the acoustic treatment
detailed in Sec. II.A, subtraction of the signal from two microphones
was performed to remove the longitudinal acoustic mode of the
channel; however this only affected the spectra at very low frequen-
cies, out of the range displayed in this study. This subtraction is thus
not done for the presented data.
At low Reynolds number, data from Schewe [41] is overall rather

close to the current data, particularly in the midfrequency range.
At Reθ ≃ 3.3 × 103, data from Farabee and Casarella [7] at Reθ �
3.4 × 103 is a close fit to the Corcos-corrected values up to
ω� ≃ 6 × 10−1, after which it falls onto the uncorrected curve. Data
from Farabee and Casarella [7] at Reθ � 4.4 × 103 depart further
from the current case, in particular in the midfrequency range. At
Reθ ≃ 5.1 × 103 again, data from Farabee and Casarella [7] is very
close to the corrected curve and fall to the uncorrected one
around ω� ≃ 4 × 10−1.
At Reθ ≃ 7.5 × 103, data from both Goody and Simpson [45] and

Gravante et al. [43] match the current one around ω� ≃ 10−1 and
differ at higher values, whereas only that fromGravante et al. [43] has
similar levels at low frequency. At the highest Reynolds number,
Reθ ≃ 9.9 × 103, data sets from Goody and Simpson [45] (despite a
lower Reynolds) and Blake [46] follow similar trends as the current
ones for the midfrequency region (a.k.a. “overlap”) and the high-
frequency one (a.k.a. dissipation range), although not at the same
levels. They also all differ for low frequencies, underω� ≃ 4 × 10−2.
It is worth noting the increase in difference introduced by the Corcos
correction, which is particularly noticeable at the two highest Reyn-
olds number.
Ahumpdeforms the present spectra aroundω� ≃ 0.2–0.8, between

the overlap region and the dissipation range, and its effect increases
with the value of Reynolds number. Its amplitude remains small,
around 1–2 dB, but the shape is clearly visible. The response of
the microphone is added to ensure that this is not due to the sensor
itself. The hump is indeed visible for Reynolds numbers where the
sensor’s response is still flat in that frequency range. Meyers et al.
[47] also reported this peculiar shape for smooth walls at Reynolds
numbers higher than the present ones, spanning Reθ ≃ 36 × 103 to
Reθ ≃ 69 × 103. Fritsch et al. [20] measured spectra for flows with
various mean pressure gradients that also exhibited this shape.
Meyers et al. [47] suggested that this inflection could be linked to
the energy bottleneck observed in the dissipative range of velocity
spectra for flows at high Taylor scale-based Reynolds number [48].

This bottleneck effect is very small and no evidence of its presence
could be found in the velocity spectra determined from the hot-
wire data acquired for the boundary-layer profiles.
Overall, the data collected fromprevious studies is rather scattered,

even in the dissipative range where no good collapse is found. This
goes to show the difficulty in comparing the data or semi-empirical
models, with discrepancies in the measurement techniques and
experimental conditions, and the challenge that measuring wall
pressure represents. That being said, the present data is in fair agree-
ment with the previously measured spectra across a large range of
Reynolds number.
The spectra at matching Re� for the different cases are plotted

in Fig. 8. The reader is reminded that S�pp � Spp × u2τ∕�τ2wν� and
ω� � ω × ν∕u2τ . The curvature of the midfrequency range is visibly
increased for the apg spectra. The levels are higher for apg than zpg
and then fpg. In fact, Salze et al. [18] and Cohen and Gloerfelt [16]
reported values of p 0�

rms as a function of Re� from previous studies,
and despite them being scattered one notices the trend for apg and fpg
to exhibit higher and lower values than zpg, respectively.

A. Discussion

The effect of an fpg on the velocity structures within boundary
layers has been the focus of several studies. For mildly accelerating
boundary layers, Piomelli et al. [49] reported that the friction coef-
ficientCf � τw∕q∞ remains constant whileU∞ increases, before an
offset of relaminarizationmechanism. This indicates thatuτ increases
in the fpg flow. Bourassa and Thomas [50] reported that vortices are
strongly elongated and that, by conservation of angular momentum,
their rotational motions must increase. Although fewer of those
vortices exist, potentially due to the straightening of the streak
vorticity, their increased intensity may be the reason for the rise of
friction velocity. Although the conditions of these studies are not
those of the present one, an increase of friction velocity at given
Reynolds numbers Re� is indeed reported in Table 1. This is most
likely a contributing factor to the reduction of p 0

rms and correspond-
ingly to the lowering of spectra measured for fpg cases.

IV. Convective Velocity

A classical definition of the frequency-dependent convective
velocity from velocity fluctuations [51] is based on two-point mea-
surements. This velocity is determined from the phase of the cross-
spectrum of the two time series. Renard and Deck [52] pointed out
that this first-order approximation could be refined. For Fourier
modes, the local convective velocity could be defined as the phase
velocity, which is computed as

Uc�f� � −
2πf

∂Θ
∂r1

����
r1�0

(2)

Fig. 8 Spectra from pinhole microphones for fpg (dash-dotted), zpg (solid), and apg (dashed). Vertical dotted lines indicate ω�
max.
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where Θ�r; f� is the phase of the cross-spectrum. Renard and Deck
[52] discuss the fact that using power spectral density (PSD) esti-
mates of the spectra leads to approximations in the derivation of the
convective velocity and develop amore rigorousmethod to copewith
this matter. However, this method requires the computation of space
derivatives of the fluctuations prior to Fourier transformation, which
is not available in the present study. In the following, the estimation of
the frequency-dependent convective velocity is thus based on the
evolution, in space, of the phase of the cross-spectra, making use of
the refined antenna’s spatial resolution. The reader should note that
several studies (e.g., [7,8]) computed a convective velocity directly
from the phase itself, and not its spatial evolution, giving a simulta-
neous dependence on both the frequency and the separation of the
measurement probes in space. This formally differs from the current
definition.
Another convective velocity can be defined from the analysis

of the space-time correlation of the pressure fluctuations, noted
Rpp�r1; 0; τ� along the streamwise direction. The path of slowest
correlation decay, either written ξ1�τ� or τmax�r1�, corresponds to
the trajectory of a reference frame in which the coherent structures
decay at the smallest rate for the moving observer. Willmarth and
Wooldridge [53] and Bull [54] have defined a convective velocity as
that of this reference frame, yielding

Uc�r1� �
dξ1
dτ

����
τ�τmax�r1�

(3)

Bull [54] has also looked at the average value

�Uc�r1� �
r1

τmax�r1�
(4)

often referred to as broadband convective velocity. Strictly speaking,
the smallest value of separation r1 should be used so that the quickly
decaying structures are accounted for. Renard and Deck [52] showed
that, in the limit of a vanishing separation, this correlation-based
convection velocity is equivalent to one obtained through a weighted
integration of the frequency-dependent one.
Both quantities are investigated in the following sections.

A. Frequency-Dependent Convective Velocity

Rather than computing the phase derivatives only on the smallest
separation values, a linear fit is done that is a fair approximation over
an extent of separation that varies with frequency. Figure 9a shows
the phase of a cross-spectrum at a given frequency, as a function of the
separation rwith regard to a referencemicrophone taken at the center
of the antenna. An automated routine iteratively excludes the outer
data points until a linear fit of the remaining ones gives a low error
resulting in ϵ2 < 10−4 with the coefficient of determination given by
1 − ϵ2. The obtained linear fit is also shown in Fig. 9a, and its slope is
used for the computation of the convectivevelocity as per Eq. (2). The
obtained value is then reported as a function of frequency in Figs. 9b–
9d for the three pressure gradient cases and various outer velocities,
smoothed with a simple 9-point running average. The Smol’yakov
model [17] is also added, according to the relation

Uc

U∞
� a

ωδ1∕U∞

1� b�ωδ1∕U∞�2
� c (5)

where the constants fa; b; cg are tailored to each pressure gradient
case: the original values f1.6; 16; 0.6g for zpg, the values
f0.8; 3; 0.65g for apg, and f1.4; 20; 0.7g for fpg. Catlett et al. [19]
reported that a and b appeared to depend on the Clauser parameter
and c on the boundary-layer ratio, which could explain why the
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Fig. 9 Phase of the cross-spectra against separation, a) for zpg45 at 2 kHz. Frequency-dependent convective velocity (solid), and corresponding
Smol’yakov models (dashed), for b) zpg25–zpg45–zpg76, c) apg19–apg38–apg57, and d) fpg32. Color order: black, blue, red.
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present values of a and b differ more than those of c. The model is in
good agreement with the data for the apg and fpg cases. For zpg
boundary layers, the disparity is larger than for apg cases, with zpg76
displaying the highest convection velocity throughout the entire
frequency range.
It is clear from Fig. 9 that the zpg cases exhibit the lowest

convective velocity values of all three, with the highest for apg cases.
The frequency corresponding to maximum convective velocity
appears to be shifted to higher values from fpg to zpg and then apg.
The latter indeed peaks at around ωδ1∕U∞ � 0.6, whereas the
former peaks at around ωδ1∕U∞ � 0.3. A classical argument [8] to
account for the variation of convective velocities between cases, with
and without pressure gradient, is to look at their effect on the mean
velocity profiles. One can associate each frequency with a length
scale and assume that it should correspond to half the local height
within the boundary layer. A pseudoconvective velocity is thus found
for each frequency that directly reflects the possible modification of
the profile. A refinement could bemade iteratively, by taking the new
velocity computed for a given frequency, and updating the corre-
sponding length scale, thus leading to an updated velocity and so on
until convergence is reached. This train of thoughts elegantly
explains some discrepancies between cases but it must be taken with
caution as the outcome of this approach is far from the measured
convective velocity.
Should the dispersion relation 2πf � −Uckc be strictly verified,

the convective velocity could also be computed via the convective
wavenumber. Using the one-dimensional wavenumber–frequency
spectrum, further discussed in Sec. VI, kc�f� can be estimated by
tracking the maximum value of the convective ridge for each
frequency. The convective wavenumber kc�f� is then smoothed
prior to the computation of Uc. The convective velocity obtained
with this convective wavenumber for zpg, along with the corre-
sponding previously discussed values, is plotted in Fig. 10. While
the peak values are fairly similar between the twomethods, the peak
itself appears to be narrower and shifted to lower frequencies for the
wavenumber method. Overall, despite those discrepancies the
curves remain similar.

B. Correlation-Based/Broadband Convective Velocity

In previous studies on the effect of pressure gradient [8,16], the
broadband convection velocity has been reported as �Uc�r1� with the
previous definition. For the sake of comparison, the same approach
shall be followed. Note that the calibration of pressure signals is done
in the frequency domain, using the transfer function of the remote
microphone as explained in Appendix A. Hence the time series are
not directly computed and correlation has instead been computed by
inverse Fourier transforming the cross-spectra. This velocity is plot-
ted in Fig. 11 for all gradients discussed in this study and normalized
by the local freestream velocity U∞.

By looking at finite separations of increasing amplitude, one filters
out the smallest scales that are short-lived. In turn, a large separation
mainly reflects the larger scales that are classically attributed to a
greater convectivevelocity, hence the increase observed in the curves.
Therefore, should one decide to filter out the high-frequency data
when computing �Uc, above the previously discussed f�max, the result
would marginally differ at small separations and not at larger ones.
The apg cases display the highest values, with apg19 and apg38 being
close within 1% except at the smallest value of separation; apg57
leads to higher values for r∕δ1 ≤ 10 but collapses well for larger
separations. At r∕δ1 ≃ 5, fpg32 is 3% smaller than apg19 and apg38
and this difference increases to 6% at r∕δ1 ≃ 20. The zpg25 and
zpg45 are within 5% of each other and are 13 and 14% smaller than
apg38 at r∕δ1 ≃ 5 and r∕δ1 ≃ 20, respectively; zpg76, however,
differs from the two previous ones and is closer to fpg32 at low
separations. Final values, at large separations, are 0.87 for apg19 and
apg57, and 0.86 for apg38; 0.73 for zpg25, 0.76 for zpg45, and 0.80
for zpg76; and 0.80 for fpg32. The same order is observed for the
frequency-dependent convective velocity, so it is not surprising that it
should be found in these broadband values. However, it is worth
noting that the variations observed between pressure gradients are not
in line with previous findings, discussed in the introduction, as apg
conditions have been reported to reduce the convective velocity in
several studies.

C. Discussions

The quantification of the pressure gradient’s effects on the con-
vective velocities greatly differs from study to study, which was
presented in the introduction. Overall, apg flows had been reported
to either reduce this velocity or have no significant influence, when
compared to zpg flows. On the other hand, fpg flows had been
reported to increase this convective velocity. Cohen and Gloerfelt
[16] had illustrated this scatter, which highlighted howmoderated the
variations found in their results were. Despite the spread of reported
values, the current results are at odds with previous findings.
As discussed before, Schloemer [8] proposed that the deforma-

tion of the mean profiles by pressure gradients could directly
explain variations in the convective velocity, arguing that the latter
could be estimated by the local mean velocity taken at a wall
distance of half an eddy size. However, such a simplification of
the eddy distribution in the boundary layer is a slippery slope.
Indeed, Hutchins and Marusic [55] highlighted the presence of
large-scale structures in the logarithmic region, whose length can
be up to 20 times the boundary-layer thickness and which have a
footprint on the near wall turbulence. Harun et al. [36] reported that
an increased pressure gradient lead to more large-scale outer-region
activity, although the superstructres are found to be shorter than in
zpg flows. In turn, the apg flows were shown to have stronger near-
wall footprint than for the zpg or fpg case. This goes along the
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Fig. 10 Convective velocity for zpg25 (black), zpg45 (blue), and zpg76
(red): comparison between data obtained from cross-spectra phase
(plain) and the convective ridge (dashed).
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Fig. 11 Broadband convective velocity for apg19 (▴), apg38 (Δ),
apg57 (Δ gray filling), zpg25 (□), zpg45 (□), zpg76 (□ gray filling), and
fpg25 (•).
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observation of Monty et al. [56] that the increase in turbulent
intensity across the boundary layer was in good part due to the
energized large-scale log-region structures.
Near the wall, these large scale structures usually move faster than

the local mean velocity [57–59]. This increased velocity near the
wall, combined with the footprint of farther motions, could be a
contributing factor to an increased convection velocity of wall pres-
sure fluctuations beneath apg boundary layers. While this train of
thoughts explains the trend observed in the present data, it cannot be
the sole explanation and conflicting mechanisms ought to coexist,
which would explain the discrepancies between reported studies.

V. Coherence and Its Length Scales

Discussing the different scales populating the boundary layer and
the footprint they have in terms of wall pressure raises the question of
the associated coherence. The coherence of pressure fluctuations
beneath a turbulent boundary layer rapidly decays with separation,
for a given frequency. This coherence, along the streamwise and
spanwise directions, is reported in Fig. 12a for zpg45 at 2 kHz.
Corcos [6] postulated that such decay should be exponential, depend-
ing on the ratio of separation to a coherence scale. The corresponding
exponential fit is also shown in Fig. 12a, in the form exp�−r∕Li�, i
being either 1 or 2. Following this approach for each available
frequency gives the evolution of the longitudinal (L1) and transverse
(L2) coherence scales, as a function of frequency, reported in the other
graphs of Fig. 12. At high frequencies, the antenna’s finite resolution
eventually prevents a satisfactory fit since not enough measurement
points are available. For this reason, the computation of the coherence
length scales is stopped at high frequencies when the r-square value
of the fit drops below 0.9.
Three domains are observed; first, at low frequencies the longi-

tudinal scales show little evolution and are within the range of

10δ1 − 20δ1. The transverse ones decrease at the lowest frequency
and reach a peak of 2δ1 − 3δ1. In fact, in Smol’yakov model, which
takes into account viscosity and finite thickness of the boundary layer
to build onto the Corcos model, these scales are found to tend to 32δ1
for the longitudinal one and 5δ1 for the transverse one, when the
frequency tends to zero. Such values are slightly higher than the
present data, but show a satisfactory agreement nonetheless.
In the midfrequency range, they do not exactly decay at the ω−1

rate found in the Corcos model. The expectation for this decay rate is
rooted in the assumption that the coherence should decay exponen-
tially and depend only on the single dimensionless parameterωr∕Uc.
Should this be true, curves of coherence as a function of separation r
obtained at different frequencies ω0 would collapse. Although this is
not shown for brevity, no satisfactory collapse is found in the present
data. The decay rate is visible in Fig. 12,where bothω−1 andω−1.5 are
plotted for reference. For ωδ1∕U∞ ∼ 0.2 − 0.7 the decay is rather
close to a ω−1 rate for the longitudinal length scale, but slightly
steepens afterward. The decay rate is slower for the transverse scale.
At high frequencies, the curves deviate from the power law and

tend toward a plateau.When expressed in terms of internal scales, this
plateau is of the order of 1.0 × 102ν∕uτ for zpg25, 1.7 × 102ν∕uτ for
zpg45, and 2.5 × 102ν∕uτ for zpg76 for the longitudinal and 20 ν∕uτ,
25 ν∕uτ, and 55 ν∕uτ, respectively, for the transverse scales. This
lower bound is also taken into account in the Smol’yakovmodel, with
a plateau at about 100ν∕uτ, to account for viscosity effects.
Figure 12d shows the ratio of both scales for the three cases, which

lies between 0.1 and 0.4. The attention of the reader is drawn on the
fact that contrary to the velocity coherence scales where a vector is
decorrelated along its transverse direction, L2 corresponds to the
decorrelation of a scalar that is moreover a nonlocal variable. The
ratioL2∕L1 gives an indication of the anisotropy of the pressure field,
as it would be equal to 1 in an isotropic case. A strong anisotropy is
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Fig. 12 a) Longitudinal and transverse coherence and their exponential fit for zpg45 at 2 kHz. b) Longitudinal and c) transverse length scales, and
d) their ratio for zpg25 (black), zpg45 (blue), and zpg76 (red) cases. −1 (dashed) and −1.5 (dash-dotted) power laws for reference in b).
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observed at low frequencies and it decreases with frequency. One
could argue that this is due to larger vortices or structures, roughly
speaking corresponding to lower frequencies, being elongated in the
turbulent boundary layer.
The coherence scales for the apg cases, displayed in Fig. 13,

exhibit the same three regions as the zpg cases. The upper bounds
are similar to those previously discussed and reach values of about
20δ1 and 2 − 3δ1 for the longitudinal and transverse (not shown
for brevity) scales, respectively. The power law decay is similar to
that of the zpg cases, as can be seen for L1 for which both ω−1 and
ω−1.5 are plotted. When normalized by the internal length scale,
the longitudinal coherence scale reaches 65ν∕uτ for apg19, around
1.4 × 102ν∕uτ for apg38, and 2.0 × 102ν∕uτ for apg57, and the
transverse one 17ν∕uτ, 22ν∕uτ, and 36ν∕uτ, respectively. While
the low-frequency scales do not exhibit clear variation from the zpg
to the apg, the high-frequency ones are indeed smaller in the apg
case. For fpg, the decay rate, seen in Fig. 13, is closer to ω−1 than in
the previously discussed cases. The upper bounds for fpg32 are 15δ1
for the longitudinal scale and 2δ1 for the transverse one. The corre-
sponding high-frequency values are 1.4 × 102ν∕uτ and 30ν∕uτ,
respectively.
The ratio L2∕L1 for apg cases is shown in Fig. 14a and exhibits

trends and values similar to the one measured for zpg cases. Fig-
ure 14b shows the ratio of length scales for the fpg case. This ratio is
consistently lower than for the other cases, and it is close to constant
over almost a frequency decade. The strengthening of the anisotropy
with comparison to apg or zpg cases supports earlier discussions on
the stretching of vortices. Piomelli et al. [49], among others, studied
the turbulence in fpg boundary layers and reported stretching and

straightening of both streaks and coherent vortices, with an increased
effect for stronger pressure gradients. These effects could be contrib-
uting factors to both the reduction of L2 with less meandering of
coherent structures and the increase of L1.

VI. Wavenumber–Frequency Spectra

The wavenumber–frequency spectrum Φpp is obtained by taking
the space-time Fourier transform of the correlation function Rpp:

Φpp�k;ω� ≡
1

�2π�3
Z
Sm

Z �∞

−∞
Rpp�r; τ�e−i�k⋅r−ωτ� dτ dr (6)

In practice, Φpp is computed by Fourier transforming, in space,
the cross-spectra Spp�r;ω� that are estimated with a periodogram
method. More specifically, for a given angular position of the
rotating antenna, each pair of microphones associated to a unique
value of separation vector is used to compute the cross-spectra.
The antenna is then rotated to cover a full disk. Space Fourier
transform is applied to the cross-spectra using all separation vec-
tors in the disk. A window is applied on the amplitude of separa-
tion, to limit oscillations in the spectra. The geometry of the
antenna introduces a bias in the measurement, and the measured
spectra are in fact a convolution product of the true spectra with the
transfer function of the antenna. Deconvolution methods can be
applied to recover this true spectra. More details on both the signal
processing and the deconvolution method can be found in Prigent
et al. [30].
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Fig. 14 Transverse-to-longitudinal length scales ratio: a) apg19 (black), apg38 (blue), and apg57 (red), and b) comparison between apg19 (black), zpg25
(green), and fpg32 (purple).
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Fig. 13 Longitudinal length scales, for a) apg19 (black), apg38 (blue), and apg57 (red), andb) fpg32 cases.−1 (dashed) and−1.5 (dash-dotted) power laws
for reference.
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A. One-Dimensional Wavenumber–Frequency Spectra

Most of the data available in the literature is one-dimensional
because it has been sampled by a linear array of microphones. Since

Spp�r;ω� �
ZZ

∞

−∞
Φpp�k;ω�e�ik:r dk

one has

Spp�r1; r2 � 0;ω� �
Z

∞

−∞

�Z
∞

−∞
Φpp�k1; k2;ω� dk2

�
e�ik1 :r1 dk1

and therefore

Z
∞

−∞
Φpp�k1; k2;ω� dk2 �

1

2π

Z
∞

−∞
Spp�r1; r2 � 0;ω�e−ik1:r1 dr1

Thus, the Fourier transform of the cross-spectra along r1 only is
formally equivalent to the integral of Φpp over k2. The one-dimen-
sional wavenumber–frequency spectra is herein written as

Φpp�k1;ω� �
Z

∞

−∞
Φpp�k1; k2;ω� dk2 (7)

The one-dimensional form of the classical models by Corcos [6]
and Chase [5] can be expressed as follows. For the Corcos model,

ΦCor cos
pp �k1;ω� �

Z
∞

−∞

Spp�ω�
π2

α1kc
k2c � α21�k1 − kc�2

α2kc
k2c � α22k

2
2

dk2

� Spp�ω�
π

α1kc
k2c � α21�k1 − kc�2

The Chase model can be recast as

ΦChase
pp �k;ω� � ρ2u3τ

�
CMk

2
1

�K2� � �bMδ�−2�5∕2
� CT jkj2

�K2� � �bTδ�−2�5∕2
�

with

K2� � �ω − Uck1�2
h2u2τ

� jkj2

associated with the following numerical values of the constants
CM � 0.0745, CT � 0.0475, bM � 0.756, bT � 0.378, and h � 3.
The one-dimensional form of this spectrum is thus
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Fig. 15 MeasuredΦpp�k1;ω� × U∞∕�q2∞δ21� for zpg45: a) k1 − ωmap with the maximum of the convective ridge (dashed), and b) comparison between
experimental data andCorcos (α1 � 5,α2 � 1.2) (blue) andChase (red)models atωδ∕uτ � 98:models estimated over ak-grid of finite size and integrated
over k2 (dashed) and analytic expression (solid).
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Fig. 16 Measured Φpp�k1;k2 � 0;ω� × U∞∕�q2∞δ31� for zpg45 at a) ωδ∕uτ � 98 and b) ωδ∕uτ � 201. With (⋄) and without (□) deconvolution,
comparison with Chase (dashed) and Corcos (plain) models, with α1 � 5 and α2 � 1.2 for the latter.
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ΦChase
pp �k1;ω� � ρ2u3τ ×

0
BBB@

4CMk
2
1

3

��ω −Uck1�2
h2u2τ

� �bMδ�−2 � k21

�
2
�

2CT

��ω −Uck1�2
h2u2τ

� �bTδ�−2 � k21

�

3

��ω −Uck1�2
h2u2τ

� �bTδ�−2 � k21

�
2

1
CCCA

The one-dimensional wavenumber–frequency spectrum for the
zpg45 case is shown in Fig. 15a. The convective ridge is clearly
visible; its maximum is highlighted and serves to compute the con-
vective velocity discussed in Sec. IV. This spectrum is plotted in
Fig. 15b at a fixed frequency, along with the corresponding Corcos
andChasemodels. As defined in Eq. (7), this spectrum is obtained by

integrating over the second dimension of thewavenumber space. The
computation of the full wavenumber frequency spectra is donewith a
specific grid of k vectors. The size of this grid can therefore influence
the level of the integrated spectra. This effect is shown in Fig. 15b, for
the models, by the difference between the analytic expression of the
one-dimensional spectra and their two-dimensional form integrated
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Fig. 17 Measured Φpp�k1;k2 � 0;ω� × U∞∕�q2∞δ31�, for apg19 (a, b), zpg25 (c, d), and fpg32 (e, f), with (⋄) and without (□) deconvolution. Left:
ωδ∕uτ ∼ 50;100;150;200;300; right: ωδ∕uτ ∼ 150. Comparison with Chase (dashed) and Corcos (plain) models.
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over a grid of finite size. The decay rate of the model is naturally the
key factor in the dependence on grid size. While the Corcos model
has an exponential decay and is merely affected, the Chase model is
polynomial and exhibits strong discrepancies. One of the prime
interest of displaying this data is the study of spectral level in the
sub- and superconvective regions, which requires an accurate com-
parison betweenmodels and experimental data. This approach is thus
not satisfactory.

B. Two-Dimensional Wavenumber–Frequency Spectra

To avoid the previously mentioned numerical difficulty, one can
directly look at section views of two-dimensional spectra by simply
taking their values at k2 � 0.
The wavenumber–frequency spectra for zpg45 at k2 � 0 are

plotted in Fig. 16 at two frequencies along with the Corcos and
Chase models for comparison. Spectra are given with and without
deconvolution. While it can correct the spectrum level, in particular
for the convective ridge and better the rendering of acoustic com-
ponents, it can also introduce some oscillations. Out of fairness for
the comparison, both datasets are thus shown simultaneously. The
asymmetry of the convective ridge is clearly visible, where the
spectra decay faster toward the lower wavenumber than toward
the higher ones. Despite correctly matching the convective ridge
maxima, Corcos model rapidly fails to predict the decay, in particu-
lar in the subconvective region where the experimental data decays
much faster, before this decay slows down and the level remains
around a decade lower than the model. On the other hand, Chase
model appears to satisfactorily predict the decay rate for wave-
numbers lower than but close to the convective one. However, this
latter model fails to match criteria that are the high wavenumber
decay rate, the level of the ridge itself, and the slower decay rate in
the subconvective region.
The spectra at k2 � 0 at lower velocities and for the three pressure

gradient cases are plotted in Fig. 17. Deconvolution appears particu-
larly interesting for the low frequencies, for which the convective
ridge is the narrowest, before the k1∕kc normalization, and hence the
most affected by thewidth of the antenna’s transfer function. Overall,
the different cases exhibit similar trends, with a rapid decay of the
ridge toward the low wavenumbers and a slower decay toward the
high ones. Relatively to its convective wavenumber, the apg cases
have wider convective ridges. Comparison with Chase and Corcos
models shows that both fail to describe the behavior of the spectra, for
the three cases. While the rapid decay of the Chase model is certainly
interesting on the low wavenumber edge of the convective ridge, it
fails to predict both the slower decay when reaching even lower
wavenumbers and the maximum of the ridge. Corcos model better
predicts the ridge maximum and its high wavenumber edge, even
more so in the fpg case, but fails in the subconvective range with an
overestimation of about 10 dB.
Cohen and Gloerfelt [16] showed spectra obtained from numerical

simulations with five values of the pressure gradient, with both

adverse and favorable cases, normalized using alternatively δ and δ1
for comparison. They found that δ offered the best collapse of the
convective ridge, regarding its level and the position of its maximum
on the k1δ axis. On the contrary, the values were found to slightly differ
with δ1. Working with experimental data, however, its determination is
more reliable than that of δ itself, hence the choice of the current
normalization. The authors found the ridge to be wider in apg cases
than inboth zpgand fpgones,whatever thenormalizationused.With δ1,
fpg data showed a slightly narrower ridge than the zpg case. This trend is
also found in the present results, with a wider convective ridge for apg
than the two others, in particular, fpg, which exhibits the narrowest with
a difference more striking than in Cohen and Gloerfelt [16].
Figure 18 shows the two-dimensional wavenumber–frequency

spectraΦpp�k1; k2;ω� atωδ∕uτ ∼ 150 for the three pressure gradients
at inlet velocity U0 � 25 m ⋅ s−1. While the asymmetry of the con-
vective ridge is not as obvious as in the k2 � 0 plots, one notices the
characteristic elongated shape. The aspect ratio is smaller for the apg
case than for zpg and even more so than for the fpg. The latter is
indeed relatively more elongated along k2. Once more, these obser-
vations support the numerical findings from [16] about the smaller
aspect ratio for apg.
The modification of the aspect ratio of the convective ridge could

be explained by the discussion on the straightening and stretching of
coherent structures and the observed variation of the ratio of coher-
ence length scales. Although there is no direct observation of such
mechanism in the flows currently studied, these repeated observa-
tions are well in line with this possibility.

VII. Conclusions

Measurements have been conducted in turbulent boundary layers
subjected to various pressure gradients. Velocity profiles collapse
onto existing experimental data, and the well-known effects of pres-
sure gradients are found with an increase of both mean velocity and
turbulence intensity in the outer region, going from favourable to
adverse pressure gradients. The main focus of the study is on spatial
structure and wavenumber spectra of wall pressure fluctuations.
Recent advances in measurement technology and data processing
offer reliable data, and enable the computation of two-dimensional
wavenumber frequency spectra.
Owing to the spatial resolution of the antenna, the coherence scales

have been finely computed and their decay rate discussed. The ratio
of transverse to longitudinal scales is significantly reduced for the
fpg case.
For all pressure gradients, wavenumber frequency spectra exhibit

the known asymmetry of the convective ridge with a faster decay
toward the low wavenumbers than toward the high ones. Corcos
model satisfactorily matches the maximum of the convective ridge
and offers a fair estimate of the initial decay toward the high wave-
number. However, it fails at rendering the low wavenumber or sub-
convective range of the spectra. The Chase model, while being closer
to the decay rate found in the low-wavenumber part of the ridge, fails

Fig. 18 Φpp�k1;k2;ω� × U∞∕�q2∞δ31� after deconvolution at ωδ∕uτ ∼ 150 for apg19 (a), zpg25 (b), and fpg32 (c).
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to render the correct levels. While no clear plateau is found in the
subconvective range, there is a change in the decay rate that leads to a
much slower one. The aspect ratio of the two-dimensional wave-
number frequency spectrum’s convective ridge increases from
adverse to zero- and favourable pressure gradients.
In the current results, apg flows lead to a significantly higher

convection velocity, by up to 14%, compared to the zpg flows. This
result differs from what had been reported in the literature, where
despite the scatter of reported values, all apg flows had been reported
to reduce the convection velocity to some extent.
Mechanisms have been discussed that could account for those

results, based on previous findings onvelocity structures and vortices
within the boundary layer. Favorable pressure gradients were
reported to straighten and stretch near-wall structures and vortices,
leading to fewer but longer and more intense vortices. As a result, the
friction velocity is increased, which is seen in the present study both
in measurement of uτ and in the levels of the normalized spectra.
Furthermore, both the straightening and stretching effects should lead
to a reduction of the ratio of transverse to longitudinal coherence
scales. Adverse pressure gradients were reported to increase the large
scale content of the turbulent boundary layers. Given that these scales
are associated with higher convective velocity, the wall pressure
fluctuations’ convective velocity should in turn increase from zpg
flows to apg ones. This explanation for apg is compelling, but a
physical mechanism that could explain the effect of fpg, and perhaps
the variations between studies, is still to be found.

Appendix A: Microphone Calibration Procedure

A. 1. Pin-Hole Calibration

The calibration of the pinhole microphone is divided into a low-
frequency and a high-frequency parts. The low-frequency calibra-
tion itself is done in two steps. First, the pinhole microphone is
compared to a reference microphone. More precisely, a calibration
tube is placed above the pinhole microphone and the reference
microphone is mounted near its open end, as sketched in Fig. A1.
A loudspeaker is then used to generate a white noise over a wide
range of frequencies, from 10 Hz to 15 kHz, which propagates
through the tube. The transfer function between the pinhole and
the referencemicrophone,writtenF1 � Hp∕Href , is thusmeasured.
Secondly, the same setup is placed above a flush-mounted 1∕8-inch
Bruel and Kjaer microphone type 4138 (see Fig. A2), and the new

transfer function F2 � Hfl∕Href is measured. Under the assump-
tion that the flush-mounted microphone response is flat in this
frequency range, that is, Hfl ≡ 1, one obtains the frequency
response of the pinhole microphone by dividing the two measured
transfer functions: Hp � F1∕F2. Such method is valid up to the
cutoff frequency of the calibration tube, around 17 kHz.
The high-frequency part of the calibration covers the range of

frequencies that lie above the calibration tube’s cutoff. To reach high
frequencies, up to 30 kHz, a short-duration and high-pressure shock
wave is generated by an electric spark source [60,61]. The spark
source is made of two tungsten electrodes, separated by a gap of
20 mm, connected to a high voltage supply. Both pinhole and flush-
mounted microphones are then placed at an equal distance from the
spark source, as depicted in Fig. A1. The frequency response of the
pinhole microphone is obtained by assuming again that the flush-
mounted one has a flat response. Finally, the two calibration curves
are combined to derive the whole transfer functionHp of the pinhole
microphone.
Although the calibration has been conducted without flow, the

hump associated with the cavity beneath the pinhole cap depends on
themeanvelocity. The final calibration curve has been parameterized
with a second-order low-pass filter [62] to correct for this:

H�f� � S0
1� �i∕q��f∕fr� − �f∕fr�2

where i2 � −1,q � q�U∞� is the quality factor set so that there be no
discontinuity in the spectra slope, fr � fr�U∞� is the resonance
frequency, and S0 is a constant.

A. 2. Remote Microphone Calibration

The remotemicrophones have a cutoff frequency lower than that of
the calibration tube. Therefore, only a low-frequency calibration is
performed to get the transfer function H of each remote probe,
following the previously discussed method.

A. 3. Transducer Resolution Correction

The geometrical characteristics of the chosen pin-hole impose a
sensing area that dampens the high-frequency part of the measured
spectra, because of spatial integration of the fluctuations. Such
averaging attenuates the spectra for frequencies as low as ω� ≃ 1
for d�p ≥ 19 [41,43]. A correction has therefore been applied, follow-
ing the methodology presented by [40], using the dimensionless
frequency Sp � ωdp∕�2Uc�, withUc � 0.6 ×U∞. With the present
data, the dimensionless pinhole diameter falls in the interval 16 ≤
d�p ≤ 90 for the zero-pressure-gradient boundary layers and
Sp ≤ 2.1.

Appendix B: Antenna Geometry

B.1. Transducer Resolution Correction

As mentioned in Sec. II.F, the antenna is composed of 63 remote
microphones positioned along a line placed on a rotating disk. The
distribution of the microphones is shown in Fig. B1. A nonuniform
placement is used to maximize the number of unique separation
vectors, and the symmetry with respect to the origin is preserved
to reduce the measurement time by allowing a half rotation of
the disk.
Fourier transformation in space is carried out by using all possible

separation vectors and assuming homogeneity of the pressure field.

Fig. A1 Left: sketch of the calibration tube used up to the cutoff
frequency of the tube. Right: high-frequency calibration using a spark
source.

Fig. A2 Sketch of the pinhole microphone and of the flush-mounted
microphone used for the calibration.

-0.1 -0.05 0 0.05 0.1

Fig. B1 Microphone positions on the rotating line.
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These vectors form the so-called co-array of the antenna, with a
minimum separation of 1 mm. Each angular position leads to 856
positive separation values. This density enables a satisfactory com-
putation of the wave-number frequency spectra, although some dis-
tortion remains that are due to the transfer function of the antenna.
Details of the computation method and of the deconvolution can be
found in [30].
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