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ABSTRACT:
In this study, we report recent theoretical and experimental developments dealing with the axisymmetric flow

surrounding non-spherically oscillating microbubbles. A wide variety of microstreaming patterns is revealed using a

theoretical modeling providing exact analytical solutions of the second-order mean flows. The streaming pattern is

highly dependent on the modal content of the bubble interface oscillation, including possibly spherical, translational,

and nonspherical modes, as well as any combination of these modes. Experimental results on fluid flow induced by a

single, non-spherically oscillating bubble in an unbounded fluid are presented and successfully compared to the theo-

retical predictions. VC 2021 Acoustical Society of America. https://doi.org/10.1121/10.0005821
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I. INTRODUCTION

Spherical, translational, and nonspherical bubble

dynamics are significant phenomena in themselves, which

are coupled in a nonlinear way at the timescale of the acous-

tic driving.1,2 Many studies have been devoted to the impact

of the interaction of spherical and translational oscillations

on the bubble motion3,4 or the organization of bubble

clouds.5 The triggering of nonspherical modes through the

process of parametric instability was mainly considered the-

oretically.2,6,7 Experimental investigations of nonspherical

bubble oscillations have been performed on free gas bubble

or ultrasound contrast agents, and allowed capturing some

of the complex nonlinear phenomena arising when a bubble

interface deviates from sphericity. This includes bubble coa-

lescence8 or fragmentation processes,9 nonlinear coupling

between nonspherical modes,10 or the influence of a nearby

wall.11 Another interesting feature resulting from bubble

shape oscillations is the ability to generate steady circulation

in the fluid near the vibrating bubble interface.12 This circu-

lation, whose explanation lies in the nonlinearity of the fluid

dynamical equations, is usually called cavitation micro-

streaming. This fluid flow is slow in comparison to the

acoustic timescale (the one of the bubble interface motion).

Along with this mean flow come shear stresses and con-

straints in the presence of boundaries, as well as bubble self-

propulsion.13 Even if the steady stress may not be really

large, it may serve as a continuous effect promoting the

removal of surface-attached particles,14 the permeabilization

of biological cell membranes,15 or the manipulation of liv-

ing organisms.16

The physical origin of acoustic microstreaming is the

interaction between at least two modes of the bubble oscil-

lations. These modes include the breathing (purely spheri-

cal) mode, the bubble center translational mode or any

nonspherical mode occurring along the bubble contour.

Nyborg17 demonstrates that this coupling generates a

second-order flow in the thin viscous layer surrounding the

bubble, which then extends to the outer medium through

viscous effects. Early theoretical studies were devoted to

the analysis of microstreaming flows induced by the combi-

nation of spherical oscillations and the translation mode

only,18 as this situation is likely to occur when a bubble

oscillates near a wall. Later, the interactions between spher-

ical and nonspherical oscillations13 or self-interaction of a

single parametric shape mode19 have revealed a wide vari-

ety of streaming patterns that may arise when considering

shape oscillations. All the above-mentioned theoretical

works are based on the same approximation method that

assumes a small viscous penetration depth in comparison to

the bubble radius. This assumption limits the theoretical

findings to the case of large bubbles or low-viscosity fluids.

Recently, these limitations have been overcome in a theo-

retical modeling that includes all possible interactions

between axisymmetric shape modes (including the spheri-

cal and translational ones) and provides exact solutions to

the second-order mean flow.20–23
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From an experimental point of view, microstreaming

has been mostly investigated in the case of substrate-

attached bubbles.24,25 The positional stability of the bubble

is therefore ensured, hence facilitating the observation of the

bubble-induced microstreaming. Maintaining the spatial sta-

bility of the bubble is crucial when studying microstreaming

as it is a phenomenon occurring at a timescale that is much

smaller than the characteristic time of the bubble oscilla-

tions. Microstreaming therefore requires a sufficient time to

settle. However, the analysis of the interface dynamics of a

wall-attached bubble is made complicated by the physics of

the contact line dynamics,26 or the triggering of asymmetric

shape modes.27 According to this, the analysis of micro-

streaming is usually not correlated to the bubble interface

dynamics and consists of fairly qualitative observations.

This drawback was recently raised using an acoustic levita-

tion chamber,28 in which a single trapped, non-spherically

oscillating bubble, was kept stable for several minutes. Such

a levitation system is commonly used when studying vol-

ume or shape oscillations of acoustically trapped bubbles or

drop.29,30 This experimental setup allowed the quasi-

simultaneous investigation of bubble nonspherical dynamics

and induced microstreaming. A remarkable result was the

capture of a large variety of microstreaming patterns

induced by shape modes with order n¼ 2, 3, or 4.

Surprisingly, various streaming patterns were obtained even

when they were associated with an identical predominant

shape mode. This feature was illustrated by the modification

of the pattern shape for a bubble passing through the reso-

nance size of a given shape mode. The origin of this modifi-

cation was discussed along the change of phase shift

between modes and the existence of secondary shape modes,

but the exact cause of pattern evolution remained unclear.

In this work, we reveal the link between the bubble

interface dynamics and the obtained liquid flows. In Sec. II,

the theoretical modeling of the microstreaming induced by a

bubble undergoing arbitrary axisymmetric shape oscillations

is described theoretically and numerically. In Sec. III, the

experimental setup allowing the measurement of both the

bubble interface dynamics and the induced microstreaming

is presented. In Sec. IV, experimental microstreaming pat-

terns are compared to the theoretical model. The temporal

evolution of microstreaming patterns is discussed in the case

when the bubble size evolves from below to above the reso-

nance size of a surface mode, or inversely. The importance

of controlling the bubble interface dynamics for ensuring

time-stable microstreaming is discussed in Sec. V.

II. THEORETICAL APPROACH

A. Microstreaming induced by a bubble undergoing
axisymmetric shape oscillations

The system under study is a single gas bubble in an

unbounded fluid. This bubble is driven by a uniform acous-

tic field, and its interface can undergo either spherical

oscillations, a translational motion, or non-spherical defor-

mations, as well as any combination of all of these modes.

These oscillation modes are, respectively, referred to as the

zero-th order, the first order, and the n-order shape modes.

Many theoretical works on nonspherical bubble dynamics

have limited the mathematical derivation to the case of axi-

symmetric shape modes,13,19 an assumption that agrees with

several experimental observations.31 Shape modes are

known to be parametrically excited by the acoustically

driven spherical oscillations of the bubble.6 Therefore, the

predominant shape mode oscillates at half the driving fre-

quency when triggered at its first parametric resonance.

Several modes can coexist when being parametrically

excited under the same acoustic conditions. In addition,

when the onset of nonspherical oscillations is reached for a

unique mode, several secondary shape modes can be excited

at different angular frequencies through the process of non-

linear mode coupling.2 As a consequence, the prediction of

the modal decomposition of the bubble interface is not

straightforward and contains many surfaces instabilities that

evolve with different angular frequencies. According to this,

the bubble surface rsðh; tÞ is expressed by

rsðh; tÞ ¼ R0 þ
XN

n¼0

ane�ixntPnðcos hÞ; (1)

where R0 is the radius at rest, an and xn are respectively the

amplitude and the angular frequency of the n-th mode, N is

the number of considered axisymmetric modes, and h refers

to the polar angle of the spherical system of coordinates

(r, h, /) whose origin is at the bubble center. The hypothesis

of axisymmetry allows one to disregard the /-dependence

in the problem. The function Pn refers to the Legendre poly-

nomial of degree n that corresponds to the axisymmetric

reduction of any spherical harmonics. In the modeling, the

modal amplitudes an are supposed to be known and serve as

input data for the theory. In comparison to previous theoreti-

cal works of Longuet-Higgins,18 Spelman and Lauga,13 or

Maksimov,19 the present modeling does not consider the

concept of viscous boundary layer whose interest lies in the

splitting of the fluid domain surrounding the bubble into two

regions where different simplified models of fluid motion

can be applied. In the present mathematical derivation, we

solve the equations of fluid motion all at once in the fluid

domain surrounding the bubble. The only constraint on the

shape mode amplitude is their smallness in comparison to

the bubble radius, i.e., jjanjj=R0 � 1. As a consequence, it is

not important in our theory if the oscillation amplitudes of

the radial or shape modes are larger than the boundary layer

thickness.

It is first required to calculate the first-order liquid

velocity v1 by solving the linearized Navier-Stokes equa-

tions of an incompressible viscous unbounded liquid. The

existence of the bubble interface imposes boundary condi-

tions that are (i) the equality between the normal component

of v1 at the interface r¼R0 and the normal component of

the velocity of the bubble wall and (ii) the condition of slip-

page on the gas-liquid interface for an uncoated bubble,

such that the tangential stress vanishes on the bubble
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surface. If one assumes that the bubble interface contains a

pair of modes n and m, hence the velocity field is written as

v1 ¼ v1n þ v1m; m 6¼ n: (2)

From a mathematical point of view, acoustic streaming is a

second-order, time-averaged effect. The streaming velocity

field v2 ¼ $� w2 is therefore derived by solving the nonlin-

ear incompressible Navier-Stokes equations up to the

second-order terms with respect to the linear solutions. Here,

only the vortical part of the velocity field is kept in order to

describe the recirculation vortices.18 After averaging over

time, the streaming vector potential is obtained by solving

D2hw2i ¼ �
1

�
$� hv1 � $v1i; (3)

where � is the kinematic liquid viscosity and hi denotes the

time average. In view of the time-averaging process in Eq.

(3), nonzero contributions to acoustic streaming can come

either from pairs of modes that oscillate at the same fre-

quency xn ¼ xm, or from the interaction of a mode with

itself.20 Therefore, the vector potential w2 that characterizes

the Eulerian streaming can be split into three parts

hw2i ¼ hwnm
2 i þ hwnn

2 i þ hwmm
2 i; (4)

where hwnm
2 i is produced by the interaction of modes n and

m and hwnn
2 i is produced by mode n alone, and equivalently

for hwmm
2 i. In the process of deriving the streaming velocity

v2, boundary conditions are applied: (i) zero streaming

velocity is imposed at infinity and (ii) normal velocity com-

ponents and tangential stress of the Lagrangian streaming

must vanish at the mean position of the bubble interface. To

calculate the Lagrangian velocity, it is required to derive the

Stokes drift velocity vS, such that the Lagrangian streaming

velocity vL is

vL ¼ v2 þ vS: (5)

Due to the multiple components existing into the vector

potential in Eq. (4), a wide variety of streaming patterns

arise from different mode interactions. When considering

the interaction between the spherical mode and any shape

mode oscillating at the driving frequency, meaningly the

0� n interaction,20 the streaming pattern looks like a lobe-

type pattern whose lobes number equals 2n. When the bub-

ble translation interacts with any nonspherical mode n,21

streamlines form lobes whose number is equal to 2ðn� 1Þ.
In the self-interacting case,22 a two-scale streaming field

appears with lobes in the near-field of the bubble interface,

while the far-field pattern exhibits a cross-like shape. When

mode n> m interacts with mode m � 1,23 2jn� mj lobes

arise in the far field. A MATLAB code for the calculation of

the Eulerian, Stokes drift, and Lagrangian velocity fields, as

well as the computation of the streamlines, is provided.32

The variety of streaming patterns is illustrated in Fig. 1 for

ðn;mÞ 2 ½0; 1; 2; 3; 4; 5�2. The calculations are performed for

a bubble in water, whose radius is R0 ¼ 50 lm, and for

modes oscillating �a f ¼ 30 kHz. The phase shift between the

modes is set to Dn�m
/ ¼ p=4, if n 6¼ m. The left lower part

illustrates the deformation of the bubble interface for the

considered (n, m) pair of modes. In mirror to the diagonal

n¼m, the right upper part provides the corresponding

streaming pattern. The diagonal contains streamlines com-

ing from the self-interacting case. The higher the mode

number, the higher the possibility of lobe-type patterns. In

addition, the higher the mode number, the higher the number

of mode interactions that arise because of nonlinear cou-

pling. This makes the prediction of the resulting flow pattern

particularly complex.

B. Numerical prediction of bubble-induced
microstreaming

When subject to a locally uniform ultrasound wave, a

gas bubble exhibits nonspherical deformations if it is excited

above a given pressure threshold.6 As the equations govern-

ing the shape mode oscillations are nonlinearly coupled, a

rich modal spectrum may arise on the bubble surface. To

depict the resulting microstreaming pattern, we compute the

steady-state amplitudes of axisymmetric shape modes by

using the mathematical formulation of Shaw.2 This model is

accurate up to the second order of the small parameter

� ¼ an=a0 � 1. Good agreement was previously evidenced

between this modeling and experimental investigations

of nonspherical bubble dynamics.8,10 Simulations of the

temporal evolution of the bubble interface are performed

with the following initial conditions: Rð0Þ ¼ R0 and

aið0Þ ¼ 0:1 lm. A harmonic driving field is considered,

pðtÞ ¼ Pac sin ðxactÞ, where Pac is the acoustic amplitude

and xac is the angular frequency. Figure 2 provides the evo-

lution of shape mode amplitudes over two acoustic periods,

their spectral analysis and the resulting fluid flow pattern in

the case of a bubble of equilibrium radius R0 ¼ 45 lm

driven at the pressure amplitude Pac ¼ 20 kPa. Such forcing

conditions allows one to trigger the shape mode 2 at its first

parametric resonance. Figure 2(a) describes the rich modal

content of the bubble interface motion resulting from non-

linear coupling. The most unstable mode (n¼ 2) reaches the

largest amplitude a2 � 6 lm and oscillates at half the driv-

ing frequency. Due to mode coupling, the even shape modes

n¼ 4, 6, 8 are excited. Considering their small amplitudes,

modes 6 and 8 are disregarded in the following. It is worth

noting that mode 4 oscillates at the driving frequency, with

the phase shift D0�4
/ ¼ 0:89 rad with respect to the radial

mode. The spectrum of the interface motion is summarized in

Fig. 2(b), where the mode amplitudes are plotted as a function

of the angular frequency. For each oscillation mode, its non-

linear behavior is disregarded in the calculation of the result-

ing microstreaming. This means that the main frequency

component of each shape mode is only kept in the following.

We remind that microstreaming comes only from the interac-

tion of modes oscillating at the same angular frequency or

through self-interacting modes. Therefore, the fluid flow is

described by the Lagrangian velocity
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vL ¼ v0�4
L xacð Þ þ v4�4

L xacð Þ þ v2�2
L xac=2ð Þ: (6)

The resulting streaming pattern as well as the ones

induced by every modal interaction appearing in Eq. (6) are

displayed in Fig. 2(d). The overall streaming flow is gov-

erned mainly by the 2� 2 interaction that consists in a long

range, cross-like pattern with four lobes confined nearby the

bubble interface. In comparison with the case 2� 2 alone, a

slight decrease in the radial extension of the lobes is

observed. This effect is explained when considering the con-

tribution coming from the interaction 0� 4. In order to

illustrate the relative weight of each interaction in the over-

all pattern, Fig. 2(c) shows the average value of the

Lagrangian velocity jjvn�m
L jj on a circle surrounding the bub-

ble center as a function of the normalized distance r=R0 for

the three predominant interactions. The interaction 2� 2

dominates, but the one coming from the interaction 0� 4

cannot be neglected, particularly close to the bubble

interface [see inset of Fig. 2(c)]. This is partly due to the

high value of the phase shift between modes 0 and 4.

In Sec. IV, experimental streaming patterns will be

investigated in a similar way. In addition, analysis of the

bubble interface motion will serve as input data for the theo-

retical modeling and allow numerical comparison of the

microstreaming patterns.

III. EXPERIMENTAL APPROACH

The experimental setup and methods were already

described in detail in a previous study.28 Therefore, we

describe shortly the acoustic levitation chamber, the mode

triggering by a coalescence technique, and measurements of

fluid flows. Figure 3 depicts the experimental setup allowing

the nucleation and trapping of gas microbubbles, before cap-

turing quasi-simultaneously (i) their nonspherical oscilla-

tions [Fig. 3(a)] and (ii) the induced fluid flow [Fig. 3(b)].

FIG. 1. (Color online) Microstreaming patterns generated by different mode interactions. The right upper part displays the streaming pattern predicted for

interactions between mode m (0 	 m 	 5) and mode n (0 	 n 	 5). Mirror to the diagonal n¼ m, the corresponding bubble shape deformation is displayed.

The diagonal contains streaming patterns coming from the self-interaction of an axisymmetric mode.
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A. The acoustic levitation chamber

A 8 cm-edge cubic tank is filled with filtered water (Carlo

Erba, Water for analysis). Single bubbles are nucleated by

short laser pulses using a Nd: YAG pulsed laser (k ¼ 532 nm

NewWave Solo PIVIII), focused through a lens-set. In gen-

eral, every laser pulse leads to the generation of a single bub-

ble with a radius ranging from 20 to 50 lm. A 31:25 kHz

standing wave is set inside the tank using a Langevin

(SinapTec
VR

, 31 kHz resonance frequency) transducer. The

driving frequency corresponds to one acoustic mode of the

cavity. Care has been taken to consider a resonance mode

containing at least one pressure antinode inside the tank, at

which the bubble will be trapped as it is smaller than the reso-

nant size Rres ’ 110 lm. Being positionally stable at the pres-

sure antinode, the bubble experiences spherical oscillations in

the driving field. The dynamics of the bubble interface is

recorded using a CMOS camera (Vision Research
VR

, V12.1,

180 kfps frame rate at 128� 128 pixel size) equipped with a

12� objective lens (Navitar
VR

with an additional 1.5� lens).

B. Triggering of bubble nonspherical oscillations

A coalescence technique8 is used in order to trigger bub-

ble nonspherical oscillations. This technique has

demonstrated efficiency for the induction of steady-state,

symmetry-controlled, shape modes. A first bubble is laser-

nucleated and trapped at the pressure antinode. The driving

pressure amplitude is chosen in such a way that this bubble

exhibits only radial oscillations. Then, a second bubble is

nucleated and moves towards the same pressure antinode,

where the first one is already trapped. When reaching the

trapping location, the two bubbles attract each other and

merge into a single one. Nonspherical oscillations are trig-

gered if the coalesced bubble size and the applied acoustic

pressure fulfill the conditions for shape mode excitation. If

not, multiple coalescences are performed following the same

procedure. It has been shown that the symmetry axis of the

shape mode corresponds to the approaching axis of the two

coalescing bubbles. If the rectilinear motion of the coalescing

bubbles belongs to the focal plane of the camera, then the axi-

symmetric shape modes are perfectly defined from a two-

dimensional recording. Therefore, the bubble interface can be

decomposed into the set of Legendre polynomials

rðh; tÞ ¼
X1
n¼0

anðtÞPnðcos hÞ; (7)

where the modal coefficients anðtÞ are extracted from the

orthogonality relationship

FIG. 2. (Color online) Microstreaming predictions in the case of a 45 lm

bubble excited by a 31.25 kHz utrasound field of amplitude 20 kPa. The

bubble interface motion is obtained from the model of Shaw (Ref. 2). (a)

Temporal oscillations of the predominant shape modes over two acoustic

periods. (b) Fourier analysis of the shape modes. (c) Radial evolution of the

velocity profile for every predominant interaction m� n. jjVLjjhhi is the

norm of the Lagrangian velocity averaged along a circle of radius r=R0. A

closer look at the velocity near the bubble interface is provided in the insert.

(d) Overall streaming pattern resulting from the summation of the consid-

ered interactions.

FIG. 3. (Color online) Schematics of the experimental set-up used to capture both the temporal dynamics of a bubble and its associated microstreaming. (a)

The bubble is created using a focused pulsed-laser and then trapped at an antinode of a 31:25 kHz standing wave. The oscillations are recorded with a high

frame rate camera (180 kfps). (b) A thin laser sheet (about 150 lm in depth) alights the focal plane of the camera. Micrometric fluorescent markers are mixed

in the fluid and allows following the fluid motion. Their motion is recorded at a lower frame rate (600 fps).
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anðtÞ ¼
2nþ 1

2

ð1

�1

rðx; tÞPnðxÞdx; x ¼ cos h: (8)

C. Measurement of bubble-induced microstreaming

The fluid flow generated around the oscillating bubble

is visualized using fluorescent tracers (R700 ThermoFisher,

diameter 0:71 lm) injected inside the tank. The particles are

illuminated by a continuous wave laser (CNI

400 mW; 532 nm) coupled to a cylindrical lens in order to

form a thin laser sheet (thickness 150 lm). Care has been

taken to choose fluorescent particles that are able to follow

accurately the fluid flows (Stokes number � 1) and small

enough so that they are not subjected to primary radiation

force.33 The motion of the particles is captured with an

acquisition rate of 600 Hz, frame size 1024� 768 pixels.

The laser sheet is adjusted to match the focal plane of the

camera. This experimental set-up is depicted in Fig. 3(b).

In order to assess quasi-simultaneously both the bubble

interface dynamics and the induced fluid flow, recordings of

acoustofluidic phenomena acting on the fast (180 kHz frame

rate) and slow (600 Hz) timescale are alternately performed.

Two consecutive identical recordings of the bubble interface

ensure the stability of the bubble dynamics during the fluid

flow measurement. The obtained microstreaming is hence

confidently correlated to the measured bubble dynamics.

The motion of the particles is post-processed in two ways.

The first one consists in superimposing all the snapshots of

the recording by keeping the maximum value of every pixel.

This leads to a streak imaging of the streaming pattern. The

second one consists of a particle tracking velocimetry (PTV)

analysis of the flow. The particle displacement between

every frame is analyzed using the Trackmate tool34 on the

IMAGEJ software. Their trajectories allow quantifying the

velocity field in the Lagrangian formalism.

IV. EXPERIMENTAL RESULTS

A large variety of microstreaming flows has already

been reported by Cleve et al.28 In the following, we first

compare experimental flows to those obtained by the model-

ing20–23 before analysing the resulting velocity field.

Second, we demonstrate that the theoretical work allows

retrieving the modification of the patterns structure for a

bubble passing through the shape resonance size.

A. Analysis of the microstreaming pattern

Following the procedure detailed in Sec. II B, experi-

mental microstreaming flows are compared to theoretical

predictions.

Experimental and theoretical results are compared in

Figs. 4(a)–4(c) for a bubble of radius R0 ¼ 65 lm driven at

FIG. 4. (Color online) Comparison between experimental and theoretical microstreaming patterns for bubbles oscillating on the predominant mode 3 (a)–(c)

or 4 (d)–(f). (a), (d) Snapshot series of the bubble interface and spectrum of the predominant shape oscillations. (b), (e) The predicted microstreaming pat-

tern, and (c), (f) the experimental one.
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the acoustic pressure Pac ¼ 9 kPa. The dynamics of the bub-

ble interface and its modal decomposition [Fig. 4(a)] reveal

that this bubble exhibits predominantly the shape mode with

n¼ 3 excited at its first parametric resonance. Due to nonlin-

ear coupling, a secondary shape mode n¼ 6 is triggered

with a significantly smaller oscillation amplitude. The com-

puted theoretical flow is shown in Fig. 4(b). This pattern

matches successfully with the experimental one, provided in

Fig. 4(c). It consists of a large-scale cross-with four recircu-

lation vortices regularly distributed around the bubble inter-

face. Both shape and radial extensions of the vortices are in

good agreement. The direction of velocity along streamlines

is also recovered by the theoretical modelling. The results

indicate that the main modal interaction contributing to the

overall pattern is the 3� 3 interaction (see Fig. 1).

The second case is a bubble of equilibrium radius

R0 ¼ 54 lm driven at the acoustic pressure Pac ¼ 25 kPa.

Snapshot series of the bubble contour reveal the predomi-

nant mode 4 that is triggered at its second parametric reso-

nance, hence oscillating at the driving frequency [Fig. 4(d)].

Only the 0–4 interaction and the self-interaction 4–4 con-

tribute to the streaming flow, and the streaming velocity is

described by

vL ¼ v0�4
L xacð Þ þ v4�4

L xacð Þ: (9)

The predicted streaming pattern is displayed in Fig. 4(e). A

lobe-type pattern is obtained, consisting of eight lobes regu-

larly distributed around the bubble. A fairly good agreement is

obtained with the experimental results shown in Fig. 4(f). In

this case, the dominating contribution to the streaming flow is

the cross-interaction 0–4. Videos of the bubble oscillations

and induced fluid-flow, for the two above-mentioned cases are

provided in Mm. 1, Mm. 2, Mm. 3, and Mm. 4.

Mm. 1. High-speed recording of the bubble shown in

Fig. 4(a). The bubble oscillates on a main mode 3. This

is a file of type “mov” (584 KB).

Mm. 2. Flow induced by the bubble shown in MM. 1. This

is a file of type “mov” (61.4 MB).

Mm. 3. High-speed recording of the bubble shown in

Fig. 4(d), The bubble oscillates on a main mode 4. This

is a file of type “mov” (451 KB).

Mm. 4. Flow induced by the bubble shown in MM. 3. This

is a file of type “mov” (32 MB).

B. Evolution of the microstreaming velocity

PTV analysis of the flow has been performed for the

two experimental cases presented in Sec. IV A. Figure 5

shows experimental and theoretical values of the magnitude

of the Lagrangian velocity along the axis h¼ 0 (correspond-

ing to the horizontal line passing through the bubble center

in Fig. 4(b), for instance). Figure 5(a) corresponds to the

case of the predominant mode 3 while Fig. 5(b) accounts for

mode 4. Lagrangian velocities are plotted as a function of

the normalized distance r=R0 in a log-log representation. In

Fig. 5(a), the amplitudes are well recovered, while in Fig.

5(b), the theoretical prediction has been adjusted in order to

match the experimental amplitudes. As pointed out in Fig. 5,

a good agreement is obtained between the velocity profiles.

If the measured experimental values of shape mode ampli-

tudes and phase delay are injected in the numerical simula-

tions, then the velocity amplitude is quantitatively recovered

in Fig. 5(a) (for n ¼ 3), but is overestimated by a factor of 5

in Fig. 5(b) (for n ¼ 4). For this last case, experimental

streaming velocities reach 1.5 mm/s at the distance 2R0 from

the bubble interface while the value of �7 mm/s is theoreti-

cally predicted. Such a discrepancy can be explained by sev-

eral experimental limitations. From an experimental point of

view, the accurate measurement of the Lagrangian stream-

ing velocity cannot be ensured, particularly in the vicinity of

the bubble interface. Indeed, next to the bubble interface,

the flow-tracking particles are subjected to drag forces and

to secondary Bjerknes forces that are not negligible. In addi-

tion, theoretical streaming velocities are scaled quadratically

with the shape mode amplitudes. As a consequence, an over-

estimation of the parameters resulting from the modal

decomposition (mode amplitude, phase delay) of the bubble

interface motion can lead to an overestimation of the pre-

dicted streaming velocity amplitude. Therefore, at this stage,

we limit our analysis to the radial evolution of the streaming

velocity amplitude. A more quantitative investigation that

considers all the above-mentioned experimental restrictions

will be the object of further considerations.

C. Temporal evolution of the microstreaming pattern

Most of the conducted experiments concerned bubbles

whose sizes were approximately stable over time, such that

the resulting microstreaming flows were time-stable.

However, in a few cases we have observed bubbles growing

or shrinking over time. Shape oscillations have also been

shown to fasten bubble growth by the enhancement of recti-

fied diffusion.35 In this case, the bubble size might change

from above to below the resonance size of a surface mode,

or inversely. One example is shown in Fig. 6. In that case,

we managed to record the relatively fast switch between a

FIG. 5. (Color online) Evolution of the amplitude of the Lagrangian veloc-

ity along the axis h¼ 0 as a function of the normalized distance r=R0.

Theoretical (solid line) and experimental (dots) results are displayed in a

log-log scale for (a) the case of the predominant mode 3 and (b) the pre-

dominant mode 4.
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cross-type pattern [Fig. 6(b)] to a lobe-type pattern [Fig.

6(f)]. The corresponding bubble dynamics before and after

the recording of the streaming flow reveals a growth of the

bubble size. Initially around the resonant radius R � 52 lm

of the surface mode 4, its size evolves to nearly 57 lm,

remaining in the instability zone of mode 4 [Fig. 6(d)].

When moving away from the resonance size, the modal con-

tent of the bubble interface motion significantly changes.

Near the resonance of the surface mode, the interface

motion exhibits several secondary modes (namely, modes 2

and 8) in addition to the predominant unstable mode 4

[oscillating at the driving frequency, see Fig. 6(a)]. Many

modal interactions occur and lead to the predicted streaming

pattern shown in Fig. 6(c) that coincides well with the

experimental one. When moving away from the resonance

size, the modal content restricts only to the radial oscillation

and the unstable mode 4 [Fig. 6(e)]. In this case, the pre-

dicted pattern shown in Fig. 6(g) is a lobe-type pattern that

only results from the 0–4 interaction. This pattern correctly

describes the experimental one.

V. DISCUSSION

Most studies on acoustic microstreaming are performed

with substrate-attached bubbles, so that the positional stabil-

ity of the bubble is maintained. This configuration facilitates

the observation of the induced flow surrounding the

bubble.25,36–38 However, the behavior and the interpretation

of the bubble interface are more complex due to the symme-

try breaking induced by the substrate. The contact of the

bubble with a surface facilitates the triggering of asymmet-

ric modes,27 with fast transition to chaotic surface

regimes.39 Apart from the experimental convenience of

using wall-attached bubbles, their study is fundamental in

the context of therapeutic drug delivery applications in

which oscillating microbubbles might be poked to the cell

membrane.40,41 Even if they are not bound to the cell mem-

brane, it is clear that microbubbles must be brought in the

close vicinity of the target cells or vessels in order to induce

a significant mechanical action on the surrounding living

material. In this perspective, an alternative approach for the

investigation of microbubble-induced effects can be per-

formed in two stages: (i) the interface dynamics and induced

flows are investigated in the case of a free microbubble (far

from any boundary) and (ii) nearby spherical bodies (such

as cells) or rigid or elastic walls (mimicking vessels or bio-

logical barriers) are appended. The advantages arising from

this approach are twofold: nonspherical microbubbles

dynamics is well documented in the case of free bubbles

exhibiting axisymmetric interface motion, both theoreti-

cally1,2 and experimentally,10 and theoretical studies on cav-

itation microstreaming only concern free bubbles.13,20 Still,

even the axisymmetric oscillations of an acoustically driven

bubble are a complicated matter due to nonlinear mode

FIG. 6. (Color online) Evidence of streaming pattern evolution for a growing bubble, subject to an acoustic pressure of about 20 kPa, and oscillating on

mode 4. (a) and (e) show the modal content of the bubble before and after the growth, respectively. The size evolution is depicted in (d), where the red zone

corresponds to that of mode 4 triggered at the secondary parametric resonance (Ref. 6). When the bubble size is close to the resonance, the modal content is

richer. The experimental fluid flow patterns obtained before and after the growth are shown in (b) and (f). Similarly, predicted patterns are shown in (c) and (g).

A good agreement is found between experimental patterns and theoretically predicted ones.
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coupling.10 Many nonspherical modes may exist simulta-

neously once an unstable parametric mode is triggered.

Theoretical modeling of cavitation streaming has revealed

that unique flow patterns are obtained depending on the

interaction between two nonspherical modes (including

the radial and the translational ones), as depicted in Fig. 1.

The knowledge of the bubble interface dynamics is hence of

primary importance in the understanding of streaming flows.

For instance, a bubble oscillating on a predominant unstable

mode triggered at its first parametric resonance induces a

microstreaming dictated by the nonpsherical mode self-

interaction, as shown in Fig. 4(c) for the predominant mode 3.

This pattern significantly differs from the one obtained in

the case of an unstable mode triggered at its second para-

metric resonance. When the surface mode oscillates at the

driving frequency and excites secondary shape modes, many

interactions have to be considered for the determination of

the flow pattern. A large variety of patterns arises (Fig. 1)

with clear differentiation between cross-like and lobe-type

patterns. The latter is obtained here in the case of the pre-

dominant mode 4, as shown in Fig. 4(f).

To confirm the importance of correlating the bubble

interface dynamics and the induced flows, the case of a

time-evolving streaming flow is depicted in Fig. 6. The tran-

sition of the bubble-induced flow took place during the

recording, and evolved from a cross-like to a lobe-type pat-

tern. Such transitions have already been observed for

substrate-attached bubbles,25,42 but they were the result of

variation of the shape mode order. Here, the predominant

triggered mode remains the same over the duration of the

recordings, as the bubble size evolves within the instability

zone of a given surface mode [Fig. 6(d)]. The change of the

streaming pattern is therefore only related to the modifica-

tion of the bubble interface dynamics. When passing

through the modal resonance frequency, phase inversion

occurs for the nonspherical instability.43 It is known that the

intensity of the microstreaming strongly depends on the

phase shift between two interacting modes,20 and reaches a

maximum when the phase shift equals p=2. It is worth not-

ing that the intensity of microstreaming produced by the

self-interacting shape mode only depends on the mode

amplitude. As a consequence, the relative weight of several

contributions participating in the streaming flow is modified

when the bubble size evolves. We believe that these obser-

vations can have practical use in bubble-mediated medical

and engineering applications. In therapeutic applications,

bubbles are known to act as vectors for permeabilizing tight

junctions between cells and the cell membrane itself.44 In

the case of stably oscillating microbubbles, such phenomena

may occur due to the shear stress or shear stress gradients45

acting on the biological membranes. Such stresses are

induced by the generation of microstreaming flows around

bubbles. In this context, differentiating large-scale or small-

scale vortices in the vicinity of oscillating bubbles matters

for a safe prediction of the mechanical action of bubbles in

their vicinity. We point out that we have adapted here the

spatiotemporal scale in the experimental studies with respect

to those used in therapeutics due to experimental limitation.

The investigated bubbles are one or two orders of magnitude

larger than the coated micrometric bubbles used in medical

applications. However, a similar observation of shape modes

triggering and dynamics were performed by Dollet et al.46

on ultrasound contrast agent microbubbles: a shape mode

n¼ 4 was triggered in a 1.7 MHz field at 200 kPa pressure

amplitude. Therefore, after frequency and size scaling, it is

reasonable to assume that the main features of bubble shape

modes dynamics and resulting microstreaming are similar in

the here-presented experiments and in the case of smaller

bubbles. In engineering applications, bubbles are known to

be a key mechanism underlying ultrasound-induced surface

cleaning.14 Common ultrasonic techniques rely on the use of

the inertial cavitation regime in which bubble collapses are

favored in order to clean sub-micron particles from surfaces.

These ultrasonic cleaning methods can be too severe for sen-

sitive cleaning applications. The soft cavitation regime, such

as stably oscillating microbubbles at the surface boundary,

has been shown to be partly able to remove contamination

particles under damage-free conditions.47 We expect that a

better understanding of the microstreaming phenomenon as

well as its correlation to the microbubble dynamics will help

in the improvement of such bubble-mediated techniques.

VI. CONCLUSION

In this work, we reported recent developments of theo-

retical and experimental analysis of bubble-induced micro-

streaming. Depending on the bubble dynamics, a large

variety of microstreaming patterns is expected. Two classes

of patterns appear: the cross-type (large scale) patterns and

the sunflower-like (small scale) ones. The condition of

appearance of one class of each class of pattern relies on the

number and order of shape modes that develop on the bub-

ble interface. For different predominant shape modes, this

behavior is experimentally demonstrated and successfully

compared to a theoretical modeling providing the exact

solution of the second order liquid flow. These results sug-

gest that a safe prediction of streaming flows requires a

good control of the bubble size and dynamics of nonspheri-

cal oscillations over time.
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