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a b s t r a c t

A new analytical approach is proposed to predict sound transmission through a row of outlet guide
vanes taking into account the curvature and the inclination of the vanes. The approach couples two
analytical tools, namely a mode-matching procedure iteratively applied at the leading-edge and trailing-
edge interfaces, and an approximate transmission model inside the inter-vane channels. Both curvature
and inclination are shown to have a significant effect on the reflection and transmission coefficients. They
are addressed separately for the sake of a better understanding of the involvedmechanisms. The complete
chaining of the models is out of the scope of the paper. The interest of the approach is that it could
be extended in a three-dimensional annular geometry to address sound generation and transmission
problems.

© 2016 Elsevier Masson SAS. All rights reserved.
0. Introduction

Aerodynamic noise from rotating blade architectures is a
matter of concern in many areas of engineering sciences, such as
aeronautical propulsion systems, ventilation and air conditioning
units and so on. Facing more and more stringent regulations,
its reduction is a crucial need for manufacturers, which also
motivates the development of efficient prediction methods. In
ducted axial-flow turbomachines the simplest configuration to
deal with is made of a rotor and a stator, with often large numbers
of blades and vanes. Two kinds of aeroacoustic mechanisms are
involved, namely sound generation by the rotor and the stator
because of their mutual interaction or the interaction with inflow
distortions, and sound transmission through one element from
sources located on the other element. This complexity makes the
numerical solving of gas-dynamics equations for acoustic purposes
a considerable task, well beyond the scope of affordable efforts in
many practical cases. At the preliminary design stage or for the
sake of a better physical understanding, addressing only a part of
the physics with analytical approaches at the price of acceptable
simplifications is a relevant alternative. Goldstein’s formulation
of the acoustic analogy derived by Ffowcs Williams & Hawkings
[1,2] is generally used tomodel the sound-generationmechanisms
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by a two-step procedure. The analogy states that the dominant
sources of aerodynamic noise are the lift fluctuations induced
on the blades and the vanes by the aerodynamic unsteadiness,
acting as equivalent dipoles. The first step is therefore to determine
the strength of the dipoles. The second step is to calculate
their radiation by using the formalism of Green’s functions. In
contrast addressing sound transmission is only amatter of acoustic
propagation in the presence of obstacles, which is equivalent
to solve a diffraction problem in the presence of flow. In that
context, the present work is aimed at deriving analytically the
response of a row of outlet guide vanes (OGV) to incident acoustic
waves, taking into account as many design features as possible.
Considering only the response of the stator to acoustic excitation
apparently reduces the scope of the study to the downstream
transmission of rotor noise, caused for instance by the passage
of the rotating blades through some inflow distortion or ingested
turbulence. But the same formulation can be used to model the
noise generated as boundary-layer turbulence is scattered at the
trailing edges of the stator vanes, referred to as trailing-edge
noise. Indeed the actual sources of that noise can be reproduced
by acoustic dipoles approached very close to the trailing edges
from downstream, as shown by Roger et al. [3]. By virtue of
this equivalence trailing-edge noise radiation is interpreted as
the upstream transmission of acoustic waves through the stator.
Generalizing this idea makes the present formulation promising
and versatile. Itmust be understood as a first step towards a unified
approach for sound-generation and sound-transmission modeling
in turbomachinery stages.
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Fig. 1. (a) Typical configuration of axial-flow outlet guide vanes. (b) Unwrapped two-dimensional cascade representation introducing all notations used in the paper.
Curvilinear abscissa along the dashed arc.
The addressed stator design is fully subsonic and depicted
in Fig. 1(a). It is representative of the fan-OGV system of most
turbofan engines in approach conditions or of subsonic fans used
in aircraft air-conditioning systems. The vanes are cambered in
such a way that they have a significant stagger at the leading-
edge whereas they are axially oriented at the trailing edge, as
emphasized by the two-dimensional unwrapped representation
in Fig. 1(b). As a result the individual inter-vane channels are
featuring bent ducts. This configuration allows recovering the swirl
induced by the upstream rotor. The point is that analytical models
used in the literature usually assimilate the vanes to flat plates
of zero camber for mathematical tractability, which introduces
arbitrariness in the choice of the equivalent flat-plate stagger
angle and associated inaccuracy. For the assessment of wake-
impingement noise generation the induced lift forces are known to
concentrate at the leading edges of the vanes. Therefore the latter
are staggered according to the obliqueness of their mean camber
line at leading-edge, accepting a nonrealistic representation of the
trailing edge. A reasonably good agreement can be found between
predicted and measured sound spectra upstream of the stator but
substantial discrepancies are sometimes found downstream, as
reported by Posson et al. [4] using a cascade response function
derived by the Wiener–Hopf technique. If the dominant induced
lift forces concentrate at the trailing edge, the vanes are better
assumed aligned with the axis. This choice was made in a problem
statement based on a mode-matching technique by Roger et al. [3]
dealing with the trailing-edge noise of a cascade of outlet guide
vanes (see also Bouley et al. [5]). But the sound transmission
upstream of the stator is not reproduced accurately. To cope
with this ambiguity, de Laborderie et al. [6] proposed a simple
but quite empirical correction to Posson et al.’s model which
confirms that the chosen flat-plate angle is a crucial parameter.
This motivated the authors in re-addressing the problem of stator
response in such a way that the aforementioned shortcomings
are solved, in particular by accounting for different stagger angles
at leading edge and at trailing edge on a more reliable basis.
The theoretical background is now based on an iterative mode-
matching procedure, considering the inter-vane channels as a
periodic array of curved bifurcated waveguides. It can be outlined
as follows. The open areas upstream and downstream of the stator,
on the one hand, and the inter-vane channels, on the other hand,
are considered as subdomains in which the local acoustic field is
described by a sum of characteristic modes. The continuity of the
complete field is imposed at the interfaces between subdomains
in accordance with linearized conservations laws of gas dynamics.
This provides systems of linear equations relating the modal
coefficients. The transmission of themodes through the inter-vane
channels is estimated with a model that accounts for variations
of the modal parameters between the inlet and outlet cross-
sections of the channels. Based on the geometrical approximations
introduced in Section 1, the procedure involves three models,
two of which are addressed in the paper. As a first original
contribution, the formulation of the mode-matching at the stator
inlet is presented in Section 2. The mode-matching at the stator
outlet for a zero stagger is not addressed here because it has been
fully described in the Ref. [3]. But the case of staggered flat plates of
finite length is also discussed in Section 2. The second contribution
is the simplified sound-transmission model through the inter-
vane channels of variable cross-section, detailed in Section 3.
Sample results are given to highlight separately the effects of vane
inclination and vane curvature but the chaining of themodels is out
of the scope of the paper. Its implementation is still in progress.

1. Geometrical simplifications and general solving procedure

The unwrapped representation of a cylindrical cut of the stator
at some radius r0 is shown in Fig. 1(b) as an infinite rectilinear
cascade. Each vane is assumed of zero thickness and perfectly rigid;
it is reduced to its mean camber line. The tangential vane-to-vane
distance is a1 = 2πr0/V , V standing for the number of vanes. The
stagger angles are α at the leading edge and zero at the trailing
edge. In this ideal view the incident mean-flow direction has the
angle α at the inlet and is parallel to the axis at the outlet. The
inter-vane channels largely overlap. Their actualwidth is a0 at inlet
and a1 at outlet with a0 = a1 cosα. At the leading edge and down
to point C in Fig. 1(b) the mean-camber lines of the vanes can be
assimilated to the tangent staggered semi-infinite plates, the small
error being negligible with regard to the ignored thickness of the
vanes (see Section 3 for details). The local continuity of the sound
field at this interface ignoring the complementary one can be
described using the specific mode-matching technique presented
in the Section 2. At the trailing edge the mean-camber lines can
be assimilated to a cascade of zero-stagger plates parallel to the
axis. The continuity is also ensured by solving a mode-matching
problem, as already reported by Roger et al. [3]. Coupling both
interfaces is made possible by inserting the sound-transmission
model of Section 3.
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Fig. 2. References frames for matching equations at the leading-edge interface.

When downstream transmission of acoustic waves such as
generated by rotor-associated noise sources is considered, the
present two-dimensional approach is declined as follows.

1. The incident sound field is expanded in a series of acoustic
plane-wave modes. The leading-edge response is derived for
each mode using the mode-matching technique as if the vanes
were semi-infinite staggered plates (Section 2). This gener-
ates upstream (reflected) modes and downstream (transmit-
ted) modes inside the channels.

2. The downstream propagation of the transmitted modes is re-
produced using Rienstra’s slowly-varying duct formulation [7].

3. At the trailing-edge interface the transmitted modes are par-
tially reflected back in the channels and transmitted down-
stream of the stator. This is modeled by solving another
mode-matching problem taking a Kutta condition into account
(Bouley et al. [5]).

4. The upstream propagation of the reflected modes in the inter-
vane channels is described with the same slowly-varying duct
approach, now accounting for possible cut-on to cut-off transi-
tions (Ovenden [8], see details in Section 3).

5. Another staggered-plate mode-matching problem is solved to
compute the secondary leading-edge scattering of the upstream
traveling channel modes. Now upstream waves in the free-
space and new downstream-traveling channel modes are gen-
erated.

Steps 2–5 are repeated iteratively, leading to a converged uniform
solution.

The complementary problem of upstream sound transmission
through the stator from hypothetical sources located downstream
is also needed, for instance to model stator trailing-edge noise. In
this case the procedure is initialized by deriving the response of
the trailing-edge interface to upstream-propagating waves, which
generates downstream reflections and upstream transmission in
the channels. This is a variant of the mode-matching of step 3,
fromwhich the iterative procedure is now to repeat steps 3–4–5–2
until convergence. The present work is focussed on the separate
effects of vane curvature and vane stagger angle, aimed at showing
that these parameters cannot be ignored for a relevant analytical
modeling of the OGV row. The effect of a constant stagger angle for
flat-plate vanes is discussed in Section 2.4. The effect of camber
is analyzed in Section 3 independently for the sake of a better
understanding. In this case upstream propagating waves that
would correspond to trailing-edge noise sources are considered in
order to highlight the effect of cut-on to cut-off transitions.

2. The staggered array of flat plates

As a first step this section addresses the reflection-and-
transmission of an incident oblique acoustic plane wave at
the leading-edge interface of the stator, assuming channels of
constant pitch bounded by semi-infinite staggered plates as
featured in Fig. 1(b). A similar problem has been formulated for
electromagnetic waves in a medium at rest by Whitehead [9],
leading to a closed-form solution. The formulation is transposed to
acoustic waves in the presence of a uniform flow along the plates
by means of simple changes of variables. In a second step plates
of finite length are considered in order to simulate a cascade of
staggered vanes more consistently. It is worth noting that this part
of the method could be transposed in a moving reference frame to
formulate the problem of sound transmission through the blades
of a rotor.

2.1. Scattering in a medium at rest

The acoustic scattering problem at the leading edge is solved
here for a prescribed incident wave from upstream, using
Whitehead’s approach with rigid-wall boundary conditions. The
incident, reflected and transmitted waves are described by their
velocity potentials. Two reference frames are introduced, one of
coordinates (x, y) with the y axis along the leading-edge interface,
as shown in Fig. 1(b), and another one (X, Y ) with origin at the
edge of a plate taken as reference and the X axis along the plate
(see Fig. 2).
Formulation of the potentials. If θi denotes the angle of incidence
with respect to the x direction, the potential of the incident wave
is written as φi = Aeik(sin θiy+cos θix) = Aei(kyy+kxx) with

ky = k sin θi =
j2π
a1V

=
j
r0

, j ∈ Z.

The number of channelsV defines the periodicity of the systemand
j is the index of the azimuthal order of the incident wave. k = ω/c0
is the acoustic wave number, c0 is the constant sound speed and
ω the angular frequency. The width of the inter-vane channels is
a0 = a1 cosα. Therefore, the incident axial wavenumber can be
noted

kx =


k2 −


j2π
a0V

cosα

2
1/2

= kj.

The phase shift between adjacent channels only depends on the
excitation and is u = j2π/V . The potential in the homogeneous
region with reflected waves reads

φr =

+∞
q=−∞

RqeiαqyeiKqx, (1)

with

αq =
2π
a1V

(j + qV ), Kq = −


k2 − α2

q ,

introducing the reflection coefficients Rq. The transmitted wave in
the reference channel is better expressed in the coordinates (X, Y )
as

φt =

+∞
p=0

Dp cos

pπY
a0


eiKpX , (2)

with

Kp =


k2 − (pπ/a0)2,

Dp standing for the transmission coefficients.
Matching Equations. For a zero-stagger cascade the matching
equations are simply deduced from the continuity of pressure and
axial velocity as proposed by Bouley et al. [5] because explicit
modal expressions are available on both sides of the interface. For
a staggered cascade a different statement is chosen here. The field
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inside the so-called matching triangle ABC in Fig. 2 does not need
to be expressed. Green’s reciprocal theorem,

C


G

∂φ

∂n
− φ

∂G
∂n


dη = 0,

is applied on the triangle to connect the open space and the
channels, whereC denotes the triangular contour, η the coordinate
along the contour, ∂/∂n the normal derivative and G any function
that satisfies the rigidity condition at thewalls. The theorem can be
applied with φ = φi +φr on the left-hand side AB andwith φ = φt
on the right-hand side BC. Two sets of functions G are selected as:

G±m(X, Z) = cos

mπZ
a0


e±iKmX

; m ∈ N,

with

Km =


k2 − (mπ/a0)2.

Both fulfill the boundary conditions at the walls so that the
contribution of the side AC to the integral is exactly zero. The
application of Green’s theorem leads to a set of linear equations
on the modal coefficients of the upstream (reflected) waves and
the downstream (transmitted) channel waves, written as
A+

1


[R] +


B+


= [0] (3)
A−

1


[R] +


B−


=

D′


(4)

where R is the vector of coefficients Rq and where

A±

1 (m, q)/A

=
k2 cosα sinα ± Kmαq cosα ∓ KmKq sinα − Kqαq

±Km sinα + αq
2

− (mπ/a0)2
,

B±(m, 1)/A

=
k2 cosα sinα ± Kmα0 cosα ∓ KmK0 sinα − K0α0

(±Km sinα + α0)
2
− (mπ/a0)2

,

D′(m, 1) =
±ia0(1 + δm,0)Kq

(−1)mei(±a0Km tanα+u) − 1
Dm.

The reflection coefficients are obtained by solving Eq. (3)
by matrix inversion. The transmission coefficients are directly
deduced from Eq. (4). The same technique can be applied to
calculate the scattering of a set of prescribed phase-shifted
modes propagating upstream in the channels and being partially
transmitted in the open space; in this case no incident wave
from upstream is involved. Furthermore, at the price of a simple
change of variables, a similar formulation can be written in the
complementary case of the trailing-edge interface of staggered
plates extending to infinity upstream. This has been implemented
to produce the results of Section 2.4.

2.2. Scattering in a uniform mean flow

In the presence of a uniform mean flow, the Prandtl–Glauert
transform is used to derive an equivalent sound diffraction
problem in a stationary fluid, withmodified parameters. Themean
flow is assumed of Mach number M0, so that the wave potentials
have to be solutions of the convected Helmholtz equation:

∂2φ

∂Y 2
+ (1 − M2

0 )
∂2φ

∂X2
+ 2ikM0

∂φ

∂X
+ k2φ = 0

in the coordinate system (X, Y ) of Fig. 2 with β2
= 1 − M2

0 and
with the boundary conditions
∂φ

∂Y
= 0, X ∈ [µa0 tanα, +∞[, Y = µa0, µ ∈ Z.
The transform is written as X̃ = X/β , k̃ = k/β and Φ = eik̃M0X̃φ
and leads to the ordinary Helmholtz equation

∂2Φ

∂Y 2
+

∂2Φ

∂ X̃2
+ k̃2Φ = 0

and the boundary conditions:

∂φ

∂Y
= 0, X̃ ∈ [µa0 tan α̃, +∞[, Y = µa0, µ ∈ Z

introducing tan α̃ = tanα/β . In the modified variables, the
incident wave reads:

φi = Aeik̃(cos θ̃i x̃+sin θ̃i ỹ).

If the incident wave is of angle θi with respect to x in the original
diffraction problemwith flow, the modified angle of incidence θ̃i is
defined as:

sin θ̃i =
β sin θi

1 + M0 cos θi
; cos θ̃i =

M0 + cos θi

1 + M0 cos θi
.

As a result, the Prandtl–Glauert transform allows solving an
equivalent sound diffraction problemwithout flow for a cascade of
vanes with a larger stagger angle α̃ > α and a larger wave number
k̃ > k. The same procedure as described in the previous subsection
can therefore be applied. Next performing the inverse transform,
the diffracted potential fields are obtained.

2.3. Extension to a staggered array of finite-length flat plates

The samemethodology can be applied to a cascade of staggered
plates of finite chord length by adding the effect of the trailing-
edge interface. For this it is assumed that adjacent vanes overlap
significantly so that both interfaces can be treated separately in an
iterative procedure. Another non-overlapping triangle is defined
at the trailing edges, symmetric of the triangle ABC in Fig. 2.
The downstream-traveling channel waves generated by the initial
scattering are scattered at the trailing-edge interface, producing
reflected waves upstream in the channels and transmitted oblique
waves downstream of the stator in open field. The back-and-forth
propagation of waves in the channels is reproduced this way, the
convergence being obtained after a couple of iterations. This flat-
plate assumption ignores the effect of vane curvature but the effect
of stagger angle with finite chord can be investigated quite simply.
Moreover the flowmust be assumed uniform in thewhole domain,
which would be acceptable in a relative reference frame for a rotor
of very small camber but is not compatible with the swirl recovery
of OGV. Typical results are discussed in the next section.

2.4. Sample results

As a test case, the mode-matching technique based on Green’s
reciprocal theorem and the Prandtl–Glauert transform is applied
in this section for two periodic cascades of flat plates, one with a
zero stagger and the other one with a stagger angle of 20°. Both
are impinged by the same oblique acoustic wave. The parameters
of the simulation, selected to expectedly generate the axial plane-
wave mode of order zero, are given below:

– Number of vanes: V = 10
– Vane chord: c = 4.5 cm
– Vane-to-vane spacing: a1 = 2 cm
– Radius of the unwrapped cascade: r0 = 80 mm
– Mach number:M0 = 0.2
– Dimensionless incident wavenumber (Helmholtz number):

kc = 6.8 (at 19 kHz)
– Equivalent azimuthalmode order of the incidentwave (number

of lobes): j = V = 10.
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Fig. 3. Results for the sound-transmission test case of a cascade of flat plates. (a–b) Instantaneous acoustic pressure fields. (c–d) Upstream (up) and downstream (down)
modal coefficients for the unstaggered (c) and staggered (d) configurations (j = 10, V = 10). Effective orders j + qV as abscissa in diagrams (c) and (d).
The results are shown in Fig. 3. The instantaneous acoustic pres-
sure patterns of the combined incident and scattered waves are
presented in Fig. 3(a) and (b). The amplitudes of the reflected and
transmitted modes propagating upstream and downstream of the
stator, |Rq| and |Tq| respectively, are displayed as bar-graphs in
Fig. 3(c) and (d). The white triangles in Fig. 3(b) correspond to
the matching triangles. They reduce to infinitesimal areas for the
zero-stagger configuration in Fig. 3(a). The acoustic pressure in the
triangles is not needed when calculating the scattered field
of interest, similarly to previous cascade-response studies from
Glegg [10]. Both configurations exhibit the same qualitative pat-
tern of reflected and transmittedwaves: the scattered cut-onmode
orders j + qV are −10, 0 and 10 (q = −2, −1, 0). All other
modes are cut-off, decaying exponentially. However the magni-
tudes of the cut-on modes significantly differ, as shown by the
bar-graphs in Fig. 3(c) and (d). The reflected acoustic field for the
zero-stagger case is a symmetric pattern with respect to the
tangential direction: the magnitudes of the scattered orders j +

qV = ±10 (q = −2 or 0) are equal and that of the axial plane-wave
mode (q = −1) is zero. Because the equivalent acoustic sources
of the cascade of vanes are dipoles oriented in the normal direc-
tion of the plates, phase-shifted by j2π/V , the axial plane-wave
mode cannot be excited. In contrast Fig. 3(d) confirms that the
staggered cascade is able to produce this mode because the equiv-
alent dipoles are now inclined: they have a non-zero axial projec-
tion. The reflected acoustic pattern is no longer symmetric and the
major part of the reflected energy propagates in the tangential di-
rection opposite to the incidentwave,which seems to be quite con-
sistent with the stagger angle. Concerning the transmitted waves,
the dominant mode of azimuthal order −10 propagates in the op-
posite tangential direction with respect to the incident wave for
the zero-stagger case, whereas the cut-on mode of order j + qV =

10 propagates in the same direction. For the staggered case, the
modes combine differently in such a way that the two modes
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Fig. 4. Illustration of the unbent inter-vane channel and of the turning point of a
channel mode. Primary and reflected waves featured by arrows.

j+ qV = ±10 have nearly equal amplitudes, on the one hand, and
that the axial plane-wave mode has a noticeable contribution, on
the other hand. Finally it has been verified that the channel modes
of ordersm = 0, 1 and 2 are cut-on in both configurations and that
all higher-order modes are cut-off.

The present analysis confirms that the stagger angle of a
cascade of flat plates has a significant impact on the scattered
pressure field. However both configurations displayed in Fig. 3(a)
and (b) could be considered as acceptable simplifications of the
true stator geometry. More precisely each is more realistic at
only one interface. This suggests that the most relevant strategy
is to treat the scattering problem at the leading-edge with an
array of semi-infinite staggered flat plates and at the trailing-
edge with an array of semi-infinite zero-staggered flat plates.
The only way of making both compatible is to introduce the
curvature of the inter-vane channels in the sound propagation
model, for the sake of completeness and consistency. In fact,
ignoring the blade curvature would be acceptable in the tip region
of a fan or compressor rotor formany axial-flow designs. But outlet
guide vanes are always significantly curved because they have
to ensure the mean-flow deviation that corresponds to the swirl
recovery. The proposed technique to introduce the curvature in the
formulation is presented in Section 3 as a separate topic.

3. Transmission through inter-vane channels

The results of the previous section stress that the inclination of
the vanes is a crucial parameter in the mode-matching technique
based on the assumption of equivalent flat plates. The next step
is to include the true curvature of the vanes as shown in Fig. 1(b)
into account. This is achieved at the price of an approximation
with a multiple-scale analysis, considering the overlapping part
of the inter-vane channel (excluding the matching triangle ABC
in Fig. 1(b)) as an equivalent straight duct of slowly varying
cross-section, the actual curvilinear coordinate s being assimilated
to an axial coordinate as illustrated in Fig. 4. In this section
sound transmission is considered for an upstream propagating
wave that originates from the stator trailing-edge interface (‘TE’
in the figure). This choice is made to highlight some effects of
the channel expansion, such as the possible total reflection of an
upstream-traveling wave at some turning point, involved in the
upstream transmission of cascade trailing-edge noise. The same
analysis could be developed for incident waves in the opposite
direction.

For a channel height a1 at the outlet (trailing edge), the channel
height between points B and C in Fig. 1(b) at the inlet (section ‘LE’
in Fig. 4) normal to the vanes is a′

0 such that:

a′

0

Rc
=


1 +

a1
Rc

cosα


−


1 −


a1
Rc

sinα

2

= a0 + e
for a curvature radius Rc of the vane arc, e being the small error
mentioned in Section 1, and the effective length of an unwrapped
inter-vane channel is approximated as

L ≃


Rc −

a0
2


α.

Over this length the channel height varies continuously. The
approximation neglects bent-duct effects on the propagation of
acoustic modes but accounts for the diverging flow in the channel
induced by the curvature of the vanes. It is accepted as the simplest
way of accounting for a realistic stator geometry, based on the
idea that the variable channel height is the dominant feature. The
longitudinal variation of cross-section is then written as

a(s) =
a0

cosα
cos


s
Rc

− α


if the origin of s is taken at the section BC.

In this model the chord length c of the vanes is expressed as
c =

√
2Rc

√
1 − cosα, which means that the radius of curvature

can be of the same order of magnitude as the radius r0 of the
unwrapped cut for typical values of V and of the ratio c/a1.

Rienstra’s multiple-scale analysis [7] can now be applied. Only
the key steps are summarized in this work for conciseness. The
transverse modes are the same cosine modes as for the two-
dimensional channel of constant height except that now the
amplitude varies according to the factors

N(s) = Q /

kσ(s),

σ (s) =


1 − β2(s)


mπ

ka0

2  a0
a(s)

2

.

Their shape varies according to the local channel height noted a(s).
Q is an amplitude parameter related to the factor A in the previous
section. The relationship between a(s) and other quantities allows
determining the wavenumber parameter as

µ(s) = −
kM(s)
β2(s)

±
1

β2(s)


k2 −


mπβ(s)
a(s)

2 1
2

= µc ± µp

with β(s) =

1 − M2(s), µc and µp standing for the convective

and propagating parts, respectively. If the mean flow is assumed
incompressible the local Mach number is simply

M(s) =
Ua

c0 cos α

a0
a(s)

.

A more general statement could be proposed for a compressible
mean flow by introducing variable density and speed of sound
depending on the coordinate s [7]. In a turbomachinery stage
this requires that the mean-flow is previously determined. This
refinement is discarded from the present work dedicated to the
feasibility of the approach.

Neglecting the curvature of the inter-vane channels is a ques-
tionable simplification that has been justified by an approximate
analysis. The latter is not detailed for conciseness but its principle is
briefly outlined in this paragraph. A portion of a bent duct defined
by concentric walls of limited arcs has been considered to mimic
an inter-vane channel ignoring its height variation. Sound propa-
gation in the bent duct was described by the Helmholtz equation
in polar coordinates. Assuming that the radial distance from the
mean centerline of the bent duct remains small when compared
to its mean curvature radius, the ordinary Helmholtz equation was
recovered by a factorization and a change of variables, assimilating
the radial and tangential coordinates to Cartesian coordinates. The
standard solving led to an analytical expression for the transverse
bent-ductmodes. Expanding thesemodes on the set of usual cosine
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modes showed that only onemode strongly dominateswhereas all
others are generated at a negligible level, at least for a set of param-
eters representative of the technology of Fig. 1. Furthermore the
curvature was shown to cause a slight shift of the cut-off frequen-
cies of the modes, also found negligible. This confirms that the co-
sine modes can still be used to describe the sound field in the bent
duct, simply projecting from the unwrapped Cartesian coordinates
onto the polar coordinates. The same simplification has been ac-
cepted for a slowly varying channel height in the presence of flow.
It is worth noting that the curvature could be combined with the
varying channel height using Brambley & Peake’s analysis [11] or
the multimodal expansion proposed by Félix & Pagneux [12]. The
straight-duct approximation is preferred for its simplicity.

If an upstream-propagating mode experiences transition at
some location st it is reflected back and the transmission farther to
the right takes the form of an evanescent wave. The corresponding
field before the turning point (s > st ) reads

φ = N(s) cos

mπ y
a(s)


A0 e

−i
 s
st

µc dξ

×


e−i

 s
st

µpdξ
+ iei

 s
st

µpdξ


(5)

and the transmitted field beyond the transition (s < st ) is
expressed as

φ = N(s) cos

mπ y
a(s)


A0 e

−i
 s
st

µc dξe−
 s
st

µpdξ , (6)

A0 = e−i
 st
s0

µ(ξ)dξ
,

the abscissa s0 being taken at the channel trailing-edge interface.
This means that the reflection and transmission coefficients
associated to the transition are i and 1, respectively. The solution is
singular at the transition because of the definition of N(s) in which
the denominator goes to zero. If the transition takes place close
to one end of the channel the singularity can give the mode an
abusively high amplitude. This is why the singularity needs to be
removed by implementing the uniformly valid solution proposed
by Ovenden [8] for a cut-on to cut-off transition, as

φ =
2
√

πQeiπ/4

√
ka1

cos

mπ y
a(s)


×


−3

2 σ 3(s)

 s

st

(ka1)σ (ξ)

β2(ξ)
dξ
1/6

× Ai


3i
2

 s

st

(ka1)σ (ξ)

β2(ξ)
dξ
2/3

e−i
 s
st

µc dξ (7)

in which Ai is the Airy function. A slightly different expression is
found in the reference paper, valid for a compressible mean flow.
Note that cut-off to cut-on transitions are not considered in the
present work. They would correspond to sound-energy pumping
by an equivalent acoustic tunnel effect from the upstream open
field. No consistent formulation is available for this effect but no
evidence of it has been reported. It is therefore assumed that the
excitation of a cut-offmode at the stator leading-edge does not give
rise to effective propagation farther downstream.

Sample results (in arbitrary amplitude units) in cases for which
cut-on to cut-off transition occurs are presented in Figs. 5 and 6 for
two sets of parameters. The first one reproduces the test in Fig. 3;
it corresponds to a low-speed ducted fan at very high frequency
(19 kHz). The second one is more representative of the outlet
guide vanes of a turbofan engine at reduced power. The upper
plots (a) show instantaneous pressuremaps and the lower plots (b)
display the associated pressure-amplitude profiles along the wall,
showingmaxima andnodes of the standingwavepattern produced
Fig. 5. Transition of the upstream channel mode m = 2 for ka1 = 7.02, M0 = 0.2.
(a) Instantaneous pressure map. (b) Amplitude profile along the wall. Initial (black)
showing the peaks at the transition abscissa; regularized (red). (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 6. Transition of the upstream channel mode m = 3 for ka1 = 9.79, M0 = 0.5.
(a) Instantaneous pressure map. (b) Amplitude profile along the wall. Initial (black)
showing the peaks at the transition abscissa; regularized (red). (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

by the combined primary and reflected waves. The black lines of
the plots (b) stand for the initial, singular solutions that exhibit a
strong divergence around the abscissa of the transition (combined
Eqs. (5) and (6)). In contrast the uniformly valid Ovenden’s solution
(Eq. (7)) plotted in red produces smoothed profiles. The transition
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is indicated by the dashed lines. In the first case (Fig. 5) dealing
with the mode m = 2 the transition takes place quite close to the
inlet of the channel and the exponential decay is only moderate.
Thismeans that themode contributes significantly to thematching
at the leading edge, even though it is cut-off. Moreover the initial
and regularized solutions differ at the inlet, which means that
ignoring the regularization would lead to a bad estimate of the
mode amplitude. It must be noted that this mode was cut-on all
along the channels in the test case of Fig. 3 assuming equivalent flat
plates,which is an abusive simplification. In the second case (Fig. 5)
the evanescent wave upstream of the transition has significantly
decayed at the inlet cross-sectionwhere the initial and regularized
solutions coincide. The mode contributes weakly to the matching
at the leading edge; but its reflection is anyway determinant for
the matching at the trailing-edge interface. Obviously the possible
transition of the primary wave must be included for a correct
statement of the matching problem. At the outlet this is typically
achieved by always considering the upstream and downstream
waves together with equal amplitude and the proper phase shift,
when a transition is predicted for a mode.

4. Conclusions

Two aspects of a newmethodology for the analytical prediction
of sound transmission through axial-flow outlet guide vanes have
been presented in this work, aimed at reproducing the effects
of both vane stagger and vane camber. Adjacent vanes must
significantly overlap in order that a true waveguide behavior takes
place in the overlapping part of the inter-vane channels. A standard
mode-matching technique is applied at the trailing-edge interface
where the vanes are assumed semi-infinite plates of zero stagger.
Another mode-matching formulation is applied at the leading-
edge interface to cope with the area where adjacent vanes do
not overlap; here the vanes are assumed staggered semi-infinite
plates. Bothmatching problems are solved iteratively to reproduce
the back-and-forth wave motions associated with the finite chord
length. Between both interfaces the curved inter-vane channels
are assimilated to straight ducts of slowly varying width and
the effect of that variation on sound propagation is taken into
account by means of a multiple-scale analysis. The latter acts as
a transfer function between the leading-edge and trailing-edge
interfaces. It is shown by separate inspection that both the vane
inclination and the vane camber have a significant effect on sound
transmission. Though only detailed for acoustic wave transmission
in a two-dimensional context the approach is believed promising
because of its large possibilities of extension. For instance the
mode matching can be formulated in a three-dimensional annular
geometry. Furthermore incident hydrodynamic excitations can be
considered instead of acousticwaves to also formulate the problem
of sound generation by wake impingement on a stator. These
extensions are presently under development. It is worth noting
that away from the cascade upstream and downstream and locally
in the vicinity of each interface, the mean-flow conditions must
be uniform; but the slowly-varying duct approach tolerates mean-
flow conditions that vary continuously along the curved channel
axis even though they have to be constant over a cross-section
normal to that axis. This typically allows taking into account
compressibility effects and not only the deviation from swirling
flow to axial flow.
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