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The aerodynamic noise of a thin rigid annulus (referred to as the ring here)
placed in the mixing layer of a subsonic circular jet is investigated in the paper,
both theoretically and experimentally. From the experimental point of view, the
jet–ring configuration is understood as an axisymmetric alternative to more usual
ones involving a rectangular aerofoil held between parallel side plates, dedicated to
the study of the noise due to the impingement of upstream turbulence. The main
advantages of the circular geometry are a minimum background noise, the absence of
tip effects and more specifically the account for all radiation angles from the surface
in the far-field acoustic signature. The circular set-up is well suited for the study
of pure broadband interaction noise only if the flow remains free of self-sustained
oscillations. This is ensured by keeping a sufficient interaction distance between the
nozzle and the ring, and by shaping serrations on the nozzle lip. From the theoretical
point of view, an analytical model is derived as a straightforward extension of existing
formulations. The induced unsteady lift forces on the ring are first inferred from a
linearized unsteady aerodynamic theory and the far field is calculated in a second
step by a radiation integral. This relates the far-field acoustic pressure power spectral
density (PSD) to the two-wavenumber spectrum of the radial turbulent velocity at
the ring location, by means of an aeroacoustic transfer function. The latter is shown
asymptotically identical to the one detailed in the Appendix for a rectangular aerofoil,
in the limit of relatively high frequencies. The analytical acoustic predictions are found
to agree well with the measurements over an extended frequency range, provided that
the model is fed with turbulent velocity input data measured by a hot-wire probe.
Indirectly, this agreement validates the transfer function for a rectangular aerofoil at
oblique radiation angles, which is not achievable in a set-up involving side plates and
a rectangular nozzle.

1. Introduction
Noise radiation due to the impingement of upstream turbulence on a thin aerofoil

is a generic mechanism involved in most topics of industrial interest, such as fan
broadband noise, wake-interaction noise in turbomachines, high-lift device noise and
so on. In order to meet more and more stringent noise reduction requirements,
manufacturers generally need fast-running prediction methods that could be used
extensively within a design cycle. Analytical techniques inherited from the pioneer
work achieved by various authors in the seventies are still well suited for that goal,
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(a)

(b)

Figure 1. Pictures of the experimental set-ups in the open-jet anechoic wind tunnels of the
École Centrale de Lyon. (a) Instrumented aerofoil mounted between horizontal side plates on
a rectangular nozzle (Moreau & Roger 2005). (b) Jet–ring arrangement, showing the sharp
serrated nozzle lip in white and the horizontal strut holding the ring.

at least until the numerical methods become reliable enough at reasonable cost. In
contrast they introduce drastic simplifications in the geometry and the flow field.
For instance, the aerofoil is assimilated to a rigid flat plate with zero thickness and
camber, and the mean flow is assumed uniform, at zero angle of attack. Therefore the
closed-form solutions derived analytically must be carefully assessed against dedicated
experimental studies for the sake of validation, before being used with confidence.
Up to that point, the models do not aim at simulating all the very details of the
aeroacoustic phenomena. On the one hand, they are just expected to reproduce the
correct directivity patterns and spectral envelopes with typical errors not exceeding
3 dB. On the other hand, they have to predict the correct changes with respect to
variations of the main parameters of interest.

Previously published investigations refer to basic experiments performed in more
or less anechoic open-jet wind tunnels of rectangular cross-section, with rectangular
aerofoils held between side plates fixed to the nozzle lips (Paterson & Amiet 1976;
Moreau & Roger 2005), as shown in figure 1(a). The aerofoil is embedded in the
potential core of the undisturbed jet and additional incident turbulence is generated
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by an upstream grid located inside the nozzle. The angle of attack is easily varied
by means of disks included in the plates and fixed to the aerofoil tips. Another
possible set-up consists in placing directly the aerofoil in one of the lateral shear-
layers of the wind-tunnel jet, as recently reported by Ross et al. (2008). The interest
is to avoid the self-noise that would be generated by the turbulence grid. Several
drawbacks are inherent to these rectangular-shape protocols. Firstly, noise can be
unambiguously investigated only in the aerofoil mid-span plane and in the far field,
because measurements off the mid-span plane would suffer from some masking or
from sound scattering by the side-plate edges. As clearly pointed out by different
authors (Amiet 1975; Paterson & Amiet 1976), this geometrical constraint makes the
space-Fourier components of the incident turbulence with phase surfaces parallel to
the leading edge, called parallel turbulent gusts, contribute dominantly. The effect of
the oblique gusts cannot be assessed because they radiate preferentially at oblique
directions from the aerofoil surface. Consequently the experimental validation of
theoretical response functions of rectangular aerofoils is at best incomplete. Secondly,
the sound emitted from the aerofoil in the mid-span plane is scattered by the nozzle lips
perpendicular to the side plates, and the measured directivity pattern slightly differs
from the natural directivity corresponding to the direct aerofoil noise only. This is
prejudicial to a clear comparison with the predictions and justifies the development
of ad hoc corrections (Moreau, Schram & Roger 2007). A third drawback is that
the flow developing on the side plates generates a significant background noise,
including trailing-edge noise at the plate ends, and a possible emission by the horse-
shoe vortices formed at the junctions between the aerofoil and the plates. For these
reasons, boundary-layer suction devices, lined end-plates and trailing-edge serrations
are possibly designed in some experimental set-ups in order to control the spurious
noise sources, or arrays of microphones are used to focus on the investigated aerofoil
noise sources (Brooks & Humphreys 2003; Oerlemans & Migliore 2004; Ross et al.
2008).

Other specific features of the usual rectangular set-ups are that the aspect ratio of
the aerofoil L/c, L being the span and c the chord length, can be varied using aerofoils
of various chord lengths, and that the turbulence parameters are defined by the grid
design. Reliable results have been obtained this way in the past and more recently
(Amiet 1975; Paterson & Amiet 1976; Moreau & Roger 2005), giving confidence to
their use as a validation basis for analytical models. However, the validation off the
mid-span plane is still missing. This is why some interest was found here to develop
an alternative approach based on an equivalent experiment in circular geometry,
taking all benefits of the axisymmetry of a circular jet, according to figure 1(b). In
this experiment, the aerofoil is replaced by a thin annulus, typically a short slice of
a hollow cylinder, referred to as the ring later on in the paper. The ring is placed in
the mixing layer of the nozzle jet. The main advantages offered by this arrangement
are listed below.

The first point is that all spurious noise sources associated with the side plates in
the rectangular design are suppressed, since the ring is equivalent to a rectangular
aerofoil that would have been curved so that its ends coincide. As a result, the
frequency range over which the experimental results carry clear information about
true turbulence-interaction noise is eventually extended.

The second point is about oblique radiation. Noise is symmetrically radiated around
the axis, because both the geometry and the statistical properties of the turbulence
in the jet mixing region are axisymmetric. However, the noise measured at a given
location includes contributions from all possible angles of radiation from the surface
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with respect to the spanwise/azimuthal direction, due to the curvature of the ring.
This provides a way of indirectly and globally assessing the effect of oblique radiation,
a task not achievable with a rectangular-aerofoil set-up.

The third point is that the amount of scattering surfaces close to the real source to
investigate is reduced to its minimum, so that the ring set-up is nearly free of spurious
scattering effects.

It is worth noting that the statistical parameters of the turbulence interacting with
the ring can be varied by changing the axial distance between the nozzle lip and
the ring leading edge, or by using rings of different sizes. Here the major results
are obtained with a reference ring which has the same diameter as the nozzle. Two
other rings with diameters smaller and larger than the nozzle diameter by 20 % are
used occasionally for the sake of completing the study. In contrast the effect of the
angle of attack cannot be easily investigated with the circular set-up. This limitation
is not believed a serious drawback, because the angle of attack has been found to
have a weak effect on the turbulence-interaction noise from a thin aerofoil in studies
reported elsewhere (Paterson & Amiet 1976; Moreau & Roger 2005), at least within
a range of moderate Reynolds numbers and of subsonic Mach numbers. A possible
drawback of the circular set-up and of the rectangular set-up of Ross et al. (2008)
is that the incident turbulence is not homogeneous and isotropic. This point will be
discussed later on.

A major contribution of the paper is that the question of whether or not the
conclusions of a validation study in circular geometry also hold for a rectangular
aerofoil is positively answered, provided that some approximations are accepted.
The main simplification underlying the analysis of § 3 is that the streamwise
aerodynamic transfer function between the velocity statistics in the oncoming flow
and the induced lift fluctuations (function � in the equations) is the same in both
cylindrical and Cartesian coordinates. Intuitively, this is only true in the limit of a
large curvature radius of the ring with respect to relevant scales in the linearized
unsteady aerodynamics analysis, for instance, the azimuthal aerodynamic wavelength
of the incident disturbances or the ring chord length. In that sense the present
analysis is dedicated to sufficiently high frequencies. Practically the effective range of
validity of the assumption will be determined by the final comparison between the
model predictions and the experimental results. In fact the agreement will be found
surprisingly good as shown in § 4. It is to be noted that the use of a ring aerofoil in a
jet to infer the noise from turbulence impinging on rigid obstacles has already been
reported, for instance by Olsen (1976), only in the case of a compact chord length.
The present study considerably extends the results by fully accounting for the effects
of non-compactness, and by providing an accurate analytical model. Anyway, apart
from its didactical interest and from validation purposes, the jet–ring tandem is also
representative of configurations encountered in industrial applications, such as slotted
nozzles, or the edge of the by-pass splitter cylinder in a turbofan engine swept by
the turbulent wakes from the fan blades, or the blade-tip annulus of an automotive
cooling fan ingesting turbulence. Finally, from the point of view of computational
aeroacoustics, the jet–ring arrangement is a possible test case for the future validation
of existing codes.

As a preliminary insight into well-known aeroacoustic mechanisms declined in
circular geometry, the present study of jet–ring interaction noise is based on
global simple experimental techniques such as far-field measurements using a single
microphone and one-dimensional hot-wire anemometry. Furthermore the ring is not
instrumented because of its small thickness (1 mm). More sophisticated techniques
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involving flush-mounted sensors, arrays of microphones for near-field modal analysis
and cross-wire probes could be used in a further research. The set-up and far-field
measurements are presented in § 2 in order to emphasize on the main features of
the sound field without going into the details. The self-sustained oscillations observed
with the reference circular nozzle are mentioned but not detailed. They are suppressed
by means of serrations on the nozzle to focus the study on pure broadband noise
radiation. An analytical model dedicated to the broadband noise is derived in § 3,
based on linearized theories of unsteady aerofoil aerodynamics. In § 4, the model
equations are fed with the hot-wire measurements and the predictions are tested
against the far-field data. A very good agreement is found, both in terms of directivity
and frequency content.

2. Experimental study
2.1. Experimental set-up

The experimental set-up is shown in figure 1(b). The ring is held in the mixing layer
of the jet by means of a small-diameter (10 mm) rod placed horizontally, normal to
the jet axis. The rod is attached to a movable support that can be translated in the
streamwise direction to vary the interaction distance d between the nozzle lip and
the ring leading edge. The nozzle diameter is D = 10 cm and three different rings
with diameters 2r0 = 8, 10 and 12 cm and the same chord length c = 3 cm have been
tested. The reference (middle-size) ring of diameter 2r0 = D is always exactly facing
the nozzle. The other two are used to investigate the response to turbulent eddies
from the inner and outer layers of the mixing region as d is increased. The exit flow
speed U0 ranges up to 60 m s−1, corresponding to a maximum Reynolds number based
on the jet diameter ReD = U0D/ν = 4 × 105, and a maximum chord-based Reynolds
number Rec = U0c/ν = 1.2 × 105. The results reported in this paper are obtained at
38 m s−1. Noise is measured in the horizontal plane containing the rod, at a distance
Rm = 1.3 m from a reference point that coincides with the ring centre point when
d = D. This ensures both acoustic and geometric far-field conditions in the sense that
2 π Rm � λ where λ is the acoustic wavelength and Rm � D.

2.2. Far-field results – effect of nozzle serrations

The a priori knowledge of aeroacoustic mechanisms suggests that introducing a ring
in a jet strongly increases the broadband noise radiation, because the impingement of
the turbulence on the rigid surface of the ring generates dipole-like sources, which are
much efficient than the quadruple-like sources of the jet-alone mixing noise, especially
at subsonic Mach numbers (Curle 1955; Ffowcs Williams & Hawkings 1969). Both
sources are by-products of the same turbulence dynamics occurring in the flow region
where the ring is introduced. The ring acts as a converter scattering a larger part of
the kinetic energy of the turbulent field as sound. Thus only a strong enhancement
of the contribution of that region to the jet mixing noise would be expected, over an
extended frequency range. Actually, introducing the ring of diameter 2r0 = D in the
flow is found to result in the additional emission of high-intensity discrete-frequency
tones for separations d typically shorter than 1.5D (shown in figure 2, dotted line).

The tones are an undesirable effect when resorting to the jet–ring set-up to
investigate turbulence-interaction noise. Though not studied in the present paper,
the corresponding flow regime has been characterized elsewhere by Roger & Serafini
(2005) for completeness, as a short contribution to the existing literature on self-
sustained oscillations. The tones are attributed to an acoustic feedback mechanism
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Figure 2. Typical far-field pressure PSD for jet-alone noise and ring noise, measured with
the reference nozzle (dashed line) and with the serrated nozzle (dark continuous line). Short
interacting distance d/D = 0.4. Rm/D = 13, observer at 90◦ to the jet axis.

briefly outlined as follows (for a review of the literature on acoustic feedback
phenomena, see Rockwell & Naudascher 1978). The shear layer initiated at the nozzle
lip oscillates according to instability modes, either axisymmetric (also called varicose
modes) or non-symmetric (Schram 2003). These modes are amplified downstream
and naturally give rise to shear layer roll-up, vortex pairing and three-dimensional
breakdown, which cause the transition to turbulence. In a non-excited free jet at a
sufficiently high Reynolds number, the transition extends over a very short length
and the jet mixing layer turns fully turbulent quite close to the nozzle lip. The vortex
pairing and instability mode dynamics do take place but they are randomly modulated.
With an external properly tuned acoustic excitation, however, the mechanism is made
more coherent (Schram 2003). In the present experiment with a regular nozzle and a
short interaction distance, the forcing acoustic waves are provided by the ring itself.
A growing instability mode induces acoustic sources when impinging on the ring.
The corresponding acoustic wave propagating upstream is able to force the instability
at its starting point close to the lip if the both of them are in phase relationship. The
enhanced instability causes a stronger sound generation on the ring in return, and
so on.

The feed-back loop must be broken in order to suppress the tones and observe more
clearly the direct broadband radiation from the ring. This has been achieved here by
empirically cutting the sharp-edged nozzle lip as a saw-tooth edge and increasing the
interaction distance d . The serrations are about 8 mm deep and 3 mm wide, so that a
hundred of them are distributed along the circular nozzle lip. Their effect on the noise
spectra measured in the presence of the ring is highlighted in figure 2, continuous line.
First, the serrations definitely suppress the tones and the ring-noise spectra turn fully
broadband. Furthermore, below 600 Hz, the broadband noise radiated by the ring is
reduced by an amount of 3–6 dB with the serrated nozzle. Now the sound radiation
involves both the amplitude and the azimuthal correlation length of the large-scale
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radial unsteady motion associated with the lower frequencies in the mixing layer. The
saw-tooth cut is not expected to strongly reduce the amplitude at low frequencies.
Therefore the sound reduction is attributed to a smaller correlation length. The jet-
alone noise obtained by just removing the ring spreads between 20 and 30 dB lower
over a wide frequency range, though still well above the level measured when the
wind tunnel is off, not shown here. The difference goes to zero only around the
100 Hz limit, where both jet noise and ring noise are lost in the background noise of
the wind tunnel, and remains larger than 10 dB at the highest frequency investigated
in the experiment, 25 kHz. The jet-alone noise is slightly modified with the serrated
nozzle. An additional high-frequency hump around 5–10 kHz is observed, as well as
an increase of a couple of decibels above that range. This extra noise is attributed
to aerodynamic sources located in the immediate vicinity of the serrations but not
farther downstream. Indeed no evidence of a corresponding signature is found in
the broadband spectrum measured with the ring installed. By the way, no noticeable
change can be seen in the jet-alone noise spectrum below 600 Hz: the aforementioned
reduced coherence of the initial large-scale motion has no apparent effect on the
sound radiation of the reference jet.

Part of the jet-alone noise could be due to trailing-edge noise from the nozzle lip
associated with the scattering of turbulent eddies convected in the boundary layers
upstream of the nozzle. This contribution has not been quantified here with respect to
the true mixing noise, the emphasis being on the noise radiated by the ring. In other
words, the jet noise measured in the absence of the ring is considered the effective
background noise in the present experiment dedicated to ring noise.

Figure 3 gathers an extended set of far-field measurements, the noise level being
displayed as a function of frequency and angle of radiation, so that the two
configurations with and without serrations can be compared globally. The directivity
patterns of the self-sustained tones exhibit well-defined multiple lobes in the angular
range covered in the experiment, between 20◦ and 120◦ from the jet axis. The
broadband noise is more uniformly radiated, preferentially normal to the jet axis. The
corresponding results will be compared to analytical predictions in § 4.

2.3. Mean-velocity profiles

As a necessary step for a proper interpretation of the results, the mean flow profiles
have been determined using Pitot measurements at different axial locations. Major
results are plotted in figure 4, referred to the radial location where the local speed
is half the jet speed U0 on the nozzle exit centreline. Figure 4(a) displays the non-
dimensional profiles measured closely downstream of the nozzle lip with the reference
nozzle and the serrated nozzle. The serrations are found to make the free shear layer
significantly thicker than what it would be with a regular nozzle. This is attributed to a
radial flow developing around the serrations and responsible for some contamination
of the undisturbed region, more fluid being dragged into the mixing layer. Since all
the subsequent measurements are performed with the serrated nozzle, no comparison
with the reference nozzle at farther distances is provided. The radial velocity profiles
at downstream locations d/D = 2 and d/D = 3 are plotted in figure 4(b). They are
almost independent of the flow speed, especially in the constant-shear middle part
of the mixing layer where the ring of diameter 2r0 = D is placed subsequently. The
effective oncoming flow speed on the ring is around 60 % of the speed U0.

The measurements are well fitted by the theoretical hyperbolic tangent profiles
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Figure 3. Typical angle-frequency plots of jet–ring interaction noise for directivity inspection.
(a) Self-sustained oscillations with the reference nozzle (d = 4 cm), directivity envelopes of
the tones shown by thick lines. (b) Broadband noise with the serrated nozzle (d = 20 cm).
U0 = 38 m s−1, c = 3 cm, r0 = 5 cm, Rm = 2 m.
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Figure 5. (a) Relative momentum thickness δ∗/D at 38 m s−1 in the present experiment
(symbols), as a function of the axial location along the jet. Continuous and dashed lines stand
for the measured trends from Fleury et al. (2008). (b) δ∗/D at x1 = 2D as a function of the
Reynolds number based on the diameter, including the data of Bradshaw et al. (1964).

in which y is 0 for U = U0/2 and y = − D/2 on the jet axis. δ∗ denotes a momentum
thickness of the shear layer tuned for a best fit at each axial location. The values
of δ∗ for the serrated nozzle are reported as symbols in figure 5(a) and compared
to the trends measured by Fleury et al. (2008) on a jet from a regular nozzle of
5 cm diameter at the jet-exit Mach numbers M0 of 0.6 and 0.9, and the associated
Reynolds numbers ReD = U0D/ν of 6.8×105 and 6.8×106. The momentum thickness
is larger in the present case as expected from the lower flow speeds, corresponding
to a Mach number of 0.11 and a Reynolds number of 2.5 × 105. The decrease of the
relative thickness δ∗/D with the jet Reynolds number is emphasized in figure 5(b),
also including an evaluation from the data reported by Bradshaw, Ferris & Johnson
(1964). The symbols follow a R−0.17

eD law, suggesting that the amount of shear is a
slightly increasing function of the Reynolds number. The present results are in the
continuation of previously reported studies, despite the different initial jet dynamics
due to the serrations.

2.4. Extended broadband noise measurements

The measurements with the serrated nozzle, free of self-sustained oscillations, have
been performed at different flow speeds, different interacting distances, with the three
rings of diameters 0.8D, D, 1.2D. To begin with, as shown in figure 6(a), for a fixed
distance d , the noise level increases with the jet velocity U0 and/or equivalently the
local velocity at the ring radius U . The reduced acoustic PSD Spp/U 5

0 are plotted in
figure 6(b) as functions of the Strouhal number based on the jet diameter, St = f D/U0.
The results almost collapse, which indicates a scaling law for the mean square pressure
in the far field with the sixth power of the local flow speed. The sixth-power law is
expected from dimensional arguments, for compact dipoles at low speeds, provided
that the oncoming velocity fluctuations are proportional to the mean flow speed. The
last point is ensured by the self-similarity of the flow. The chordwise compactness
condition expressed on the Helmholtz number ignoring the convection effect reads
kc � 1, where k = ω/c0 is the acoustic wavenumber and c0 the speed of sound. It
holds reasonably for frequencies lower than, say, 1700 Hz. The same condition in the
radial direction reads kD � 1 and is fulfilled at frequencies lower than 500 Hz. Thus it
is not surprising that the best fit with the sixth-power law in figure 6(b) is achieved at
the low Strouhal numbers (St = f D/U < 1) roughly corresponding to the rising slope
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Figure 6. (a) Typical measured sound spectra at 90◦ to the flow, for the reference ring of
radius r0 = D/2 and an interaction distance d = 2D, at various flow speeds (21.4, 25.6, 31.1,
34.8, 39.5, 44.4) m s−1 corresponding to increasing loudness. (b) Approximate data collapse
according to the sixth-power law.

of the low-frequency bump. More scattering is observed on the high-frequency part
of the spectra. Larger discrepancies are also seen in the middle range 1 < St < 10.
Some of them are due to the slightly different transition frequencies between the
dominant bump and the secondary one at different flow speeds. Some other, such
as the small peak around 3300 Hz visible on all plots of figure 6(a) and the series
of spikes and small-amplitude oscillations at higher frequencies, might be attributed
to residual resonant frequencies inherent to the installation. Typically, successive
reflections of sound waves between ring surface elements diametrically opposed are
likely to produce such patterns. The small oscillations will not be addressed in the
analysis.

The noise spectra measured with the three different rings in the same jet cross-
section at the exit flow velocity of 38 m s−1 are plotted in figure 7(a). The radiated
noise is not very different with the rings of radii r0 = 4, 5 cm, except for an increased
level at high frequencies for the smallest. In contrast, the spectrum measured with
the larger ring (r0 = 6 cm) drops more rapidly in the high-frequency range. This is
a joint effect of the radial variations of the local mean flow speed and of the local
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Figure 7. Effect of ring size and of interaction distance d on broadband jet–ring interaction
noise. U0 = 38 m s−1. (a) d = 2D, different ring sizes. (b) Ring 2r0 =D, different separations d
in cm. The arrows indicate increasing distance.

rate of fluctuation. Points closer to (respectively farther from) the jet axis correspond
to a higher (resp. lower) speed and to higher (resp. lower) frequencies for the same
eddy size of the convected turbulence. The velocity profiles of figure 4 show that
because of the jet expansion, the larger and smaller rings placed at the downstream
distance 2D approach the boundaries of the mixing layer. Therefore the locations of
the leading and trailing edges of the rings correspond to very different flow conditions.
The acoustic signatures of figure 7(a) cannot be interpreted unambiguously with the
analysis of § 3. Yet the smaller and larger rings will be used later on to assess the
limitations of the prediction model.

Finally, noise spectra measured at different axial locations with the reference ring
(r0 = D/2), for the same jet velocity, are shown in figure 7(b). As the ring is moved
away from the nozzle lip, the noise level radiated in the low-frequency range increases
significantly, whereas the middle-and-high frequency part of the spectrum decreases of
only a couple of decibels. At the radial ring location facing the lip, and for the range
of values of d investigated, the local mean flow speed is nearly constant (see figure 4).
Therefore the different acoustic radiation is mainly attributed to the formation of
larger eddies; small-scale turbulence is rather distributed more uniformly.

3. Broadband noise predictions
3.1. Analytical model

In the model, the ring is assumed perfectly rigid and with zero thickness. Its chord
length is c and its diameter D = 2 r0. The origin is at the ring centre point. A source
point on the ring surface is defined either by its Cartesian coordinates y = (y1, y2, y3)
or by the cylindrical coordinates (y1, θ) with reference at the mid-chord perimeter,
shown on the sketch of figure 8. The observer is in the acoustical and geometrical far
field, thus at large distances when compared to both the acoustic wavelengths and
the ring radius. His location is defined by the coordinate vector x = (x1, x2, x3). The
contribution of a ring element to the far-field sound is first assimilated to the noise
from a point dipole in a fluid moving uniformly with the velocity U , here along the
x1 direction, U being the local mean velocity at the exact radius where the ring lies
in the jet. This simplification will be discussed later on. The contribution of the point
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Figure 8. Set of coordinates for ring noise calculations. The oncoming flow
is in the x1 direction.

dipole to the acoustic pressure reads

dp′(x, t) =
Rt

4 π c0R2
s

·
[
∂ (dF)

∂t ′

]
t−Rt /c0

,

where Rt is the modified distance vector ((R1 − MRs)/β
2; R2; R3), with R = x − y,

R2
s = (x1 − y1)

2 + β2 [(x2 − y2)
2 + (x3 − y3)

2] and β2 = 1 − M2, M = U/c0 being the
Mach number based on a constant sound speed c0. The corresponding distance
reads Rt = (Rs − M (x1 − y1))/β

2. The ring element of area dS is the support of a
fluctuating force dF corresponding to the local unsteady lift per unit area � induced
by the oncoming disturbed flow: dF = �(y1, θ, t) n dS, n standing for the normal unit
vector pointing outwards. The far-field assumption yields simplified expressions for
the corrected distance Rs:

Rs � S0

(
1 − x1y1 + β2 r0 [x2 sin θ + x3 sin θ]

S2
0

)
,

S2
0 = x2

1 + β2
(
x2

2 + x2
3

)
,

1

R2
s

� 1

S2
0

.

With the aforementioned conventions, the elementary acoustic field is written as

dp′(x, t) =
R2 sin θ + R3 cos θ

4 π c0S
2
0

[
∂ (dF )

∂t ′

]
t−Rt/c0

,

with dF = �(y1, θ, t) r0 dθ dy1. This expression must be integrated over the ring surface
to provide the total acoustic pressure p′, and the corresponding Fourier transform is
expressed as

p̃(x, ω) =
−iω

4 π c0 S2
0

∫ 2 π

0

∫ c/2

−c/2

(x2 sin θ + x3 cos θ) �̃(y1, θ, ω) ei k Rt r0 dθ dy1,

�̃ being the Fourier transform of �. In the acoustic calculations, the guided-wave
effect due to multiple sound reflections on the inner walls of the ring is neglected. The
approximation becomes exact only in the limit of vanishing ratio c/r0 corresponding
to an arbitrary large aspect ratio, and is expected accurate enough in the present
application with the typical value c/D = 0.3. Furthermore at low Mach numbers
(M2 � 1) the modified distance S0 can be taken as equal to the geometrical distance
R without significant error.
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The incident turbulence responsible for the unsteady lift � is assumed frozen during
its convection time over the ring surface. It is expressed as a sum of spatial Fourier
components or gusts with all possible spanwise aerodynamic wavenumbers. In the
present cylindrical geometry, helical gusts with discrete azimuthal wavenumbers are
taken to ensure the condition of 2 π periodicity in the θ direction. The streamwise
aerodynamical wavenumber k1 is imposed by the angular frequency of interest ω, as
k1 = K1 = ω/U . Thus a relevant expression for �̃ is

�̃(y1, θ, ω) = 2 π ρ0

∞∑
n=−∞

w̃n (K1) g (y1, K1, κn) ei n θ ,

where g is a response function to be derived separately. Here κn = n/r0 is the spanwise
or azimuthal wavenumber related to the curvilinear coordinate s and defined by
κn s = κn r0θ = n θ . w̃n (K1) denotes the radial velocity amplitude of the gust of order
n. Each gust forces a spinning pressure pattern on the ring with phase variations
tuned by the exponential ei (nθ−ω t). It is equivalent to an oscillatory mode of the jet
shear layer and the integer n will be called the order of the gust or of the mode.
A gust will be said subcritical or supercritical, as stated in Appendix, depending
on either its azimuthal phase speed ω/n is subsonic or supersonic with respect to
the moving fluid at speed U . The key point is the determination of �̃ or of the
response function g for any gust. In principle, this should be achieved by solving
the linearized equations of gasdynamics in cylindrical coordinates. Instead of doing
so and because the analysis addresses high frequencies, the unsteady response of the
ring to a helical gust is assumed the same as the one of a thin rectangular plate to
an oblique gust in Cartesian coordinates, for which different expressions are already
available in the literature. This simplification is discussed in Appendix. More precisely,
the present rectangular-aerofoil aerodynamic responses for arbitrary oblique gusts are
a generalization of Amiet’s original high-frequency solution for parallel gusts (Amiet
1976; Mish & Devenport 2006). They are also reminded in Appendix. In principle,
the high-frequency assumption holds for a non-compact chord c, thus typically a
Helmholtz number kc larger than 1. Nevertheless the application will prove that it
remains reliable at much lower values.

The power spectral density of the acoustic pressure in the far field is expressed as

Spp(x, ω) =

(
ω

4 π c0S
2
0

)2 ∫ ∫ 2 π

0

∫ ∫ c/2

−c/2

S��(y1, y
′
1, θ, θ ′, ω) ei k (Rt −R′

t )

× (x2 sin θ + x3 cos θ) (x2 sin θ ′ + x3 cos θ ′) r2
0 dθ dθ ′ dy1 dy ′

1,

where S�� is the cross-spectral power density of the local unsteady lift, expressed as
the ensemble average

lim
T∞→∞

{
π

T∞
E[�̃(y1, θ, ω) �̃∗(y ′

1, θ
′, ω)]

}
.

As pointed out by Amiet (1975), the incident turbulent field is assumed to extend
over an arbitrary large domain from −R∞ to R∞ in the streamwise direction and
corresponding time integrations are defined from −T∞ to T∞, with R∞/T∞ = U . The
random nature of the unsteady lift results from that of the oncoming velocity and
the expected value must be displaced onto the product w̃nw̃

∗
m. This quantity can be

shown to be related to the two-dimensional wavenumber spectrum of the turbulent
velocity component normal to the ring surface Φww , accounting for the statistical
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orthogonality of the azimuthal wavenumbers, as

lim
T∞→∞

{
π

T∞
E

[
w̃n(K1) w̃∗

m(K1)
]}

= 2 π
U

r0

δ(n − m) Φww(K1, κn).

In this expression r0 is the scaling factor between the mode order n and the
corresponding wavenumber κn. Φww will be given the same formal expression as
the equivalent quantity for model turbulence in Cartesian coordinates. No specific
development in terms of axisymmetric turbulence is attempted since the formalism
is mainly dedicated to the assessment of Amiet’s response function for oblique gusts.
Finally,

S��(y1, y
′
1, θ, θ ′, ω) = (2 π ρ0)

2 2 π U

r0

×
∞∑

n=−∞
Φww (K1, κn) ei n (θ−θ ′)g (y1, K1, κn) g∗(y ′

1, K1, κn). (3.1)

The projected coordinates (T , Θ) of the observer in the plane (x2, x3), such that
x2 = T sinΘ , x3 = T cos Θ , are now used in the derivations (see figure 8), so that the
difference in modified distance reads

Rt − R′
t =

1

β2 S0

[(x1 − M S0) (y ′
1 − y1) + β2 r0 T (cos(θ ′ − Θ) − cos(θ − Θ))].

Introducing this and the net result for S�� in the expression for the far-field sound
yields

Spp(x, ω) =

(
k ρ0 c

4 S2
0

)2

2 π r0 U

∞∑
n=−∞

Φww (K1, κn) |L(x1, K1, κn)|2 |J|2 ,

where L stands for the normalized aeroacoustic transfer function

L(x1, K1, κn) =

∫ 1

−1

g(y∗
1 , K1, κn) e− i [k c(x1−MS0)y

∗
1 ]/[2β2S0] dy∗

1 ,

with y∗
1 = 2y1/c, given in the Appendix, and where J is the integral

J = ei nΘ

∫ 2 π

0

[T cos(θ − Θ) ] e−i kr0 T cos(θ−Θ)/S0 ei n (θ−Θ) dθ,

readily put in the form i T ei n Θ ∂I/∂a with (Abramowitz & Stegun 1970)

I =

∫ 2 π

0

e−i a cos ξ ei n ξ dξ = 2 π (−i)n Jn(a), a =
kr0 T

S0

.

Multiplying by the complex conjugate of J, this yields the factor

|J|2 = (2 π)2 T 2

(
J ′

n

(
kr0 T

S0

))2

.

The final expression for the PSD of the acoustic pressure in the far field is

Spp(x, ω) =

(
π k c ρ0

2 S2
0

)2

2 π r0 U

∞∑
n=−∞

Φww (K1, κn)

× |L(x1, K1, κn)|2
(

J ′
n

(
kr0 T

S0

))2

. (3.2)



Jet–ring interaction noise 351

Equation (3.2) is the cylindrical equivalent of the formula derived by Amiet (1975)
for a rectangular aerofoil, reproduced as (A 1) in Appendix. The squared derivative of
the Bessel function is specific to the circular geometry and replaces the ‘sinc’ function
typical of the radiation from sources distributed on a rectangle. Another difference
is that the summation over all possible spanwise wavenumbers is discrete in (3.2)
whereas it is continuous in Amiet’s formulation. As expected, the angle Θ has no
effect on the solution, since the sound field is statistically axisymmetric. Closed-form
expressions for the function L are given in the Appendix.

4. Application results and discussion
4.1. Input data

Equation (3.2) is aimed at predicting the far-field broadband noise radiated from
the ring but requires that the wavenumber velocity spectrum Φww be known as
input. This quantity is available at the price of dedicated experimental techniques,
typically hot-wire measurements with at least a cross-wire probe in order to evaluate
different components of the fluctuations and the anisotropy of the incident turbulence.
From a practical point of view, the interest of the analytical approach is to provide
fast prediction tools for manufacturers or end users who generally cannot afford
to supply a model with very accurate data on the flow field in industrial context.
Only a minimum information such as the turbulent kinetic energy and the dissipation
rate deduced from Reynolds-averaged Navier–Stokes (RANS) computations may be
available, together with a model of homogeneous and isotropic turbulence, assuming
that the actual turbulent field is not far from the model one. For the sake of acoustic
applications with an expected accuracy of a couple of decibels, the function Φww

can thus be given its closed-form expression according to the von Kármán or the
Liepmann model. Useful definitions and formulae are found in the classical literature
on turbulence (Hinze 1975) and are reminded for instance by Paterson & Amiet
(1976). The model is tuned by fitting the root mean square value

√
w̄2 =

√
ū2 and

the integral length scale Λ on the RANS data. In the present study, a more accurate
description of the flow features is needed in principle. However the focus is rather
limited to a minimum characterization of the turbulence properties involved in the
aeroacoustic model. Therefore only the frequency spectrum Suu of the streamwise
velocity component is measured. This is achieved on the set-up of figure 1(b) with
a single-wire probe traversing the mixing layer of the jet, at the exact axial location
to be given the ring leading edge but with the ring removed. Other related statistical
quantities are deduced from complementary results reported in the literature. The
assumption of equivalent homogeneous and isotropic turbulence made in the model
is apparently questionable and crucial in a work made for validation purposes. It is
acceptable if the statistical properties of the real flow involved in the aeroacoustic
model are close to the corresponding properties in model turbulence. In the following
the departures from isotopy and/or homogeneity are accounted for by corrections to
be included in the model.

The anemometry results are reported in figure 9(a), for an axial distance d =2 D

and radial distances from the jet axis r ranging from 2r/D = 0.8 to 2r/D = 1.2. This
corresponds to values of the local mean flow velocity U ranging from 31 m s−1 at
the inner measuring point to 11 m s−1 at the outer one, for the exhaust flow speed
U0 = 38 m s−1. In such conditions, the turbulence cannot be strictly homogeneous
and a particular attention must be paid to the statistical properties of the flow in
the vicinity of the ring location. Obviously, the spectral content increases in low
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Figure 9. (a) Measured velocity spectra at different radii across the mixing layer and at a
distance d =2D = 20 cm. Values of 2r/D: (0.8, 0.9, 1, 1.1, 1.2), corresponding root mean square
values of the axial fluctuations: (5.66, 6.49, 6.73, 6.14, 5.7) m s−1. Arrows indicate increasing r .
(b) Same data in reduced variables, featuring the theoretical (−5/3) law.

frequencies and decreases in high frequencies as the probe is moved from the inner
part to the outer part of the mixing layer. Next plotting the velocity spectrum Suu

multiplied by the local mean flow speed U as a function of the Strouhal number
f D/U based on that speed and on the jet diameter produces a good collapse of
the data, as shown in figure 9(b). This suggests that the turbulent intensity only
weakly depends on the local mean velocity around the centre of the mixing layer.
More precisely, the root mean square of the axial velocity fluctuations takes the
values (5.66, 6.49, 6.73, 6.14, 5.7) m s−1 as r goes from 0.8 D/2 to 1.2 D/2 by steps
of 0.1 D/2 and has a maximum at the centre of the shear layer, r = D/2. The
characteristic scale L0 defined by L−1

0 = ∂
√

ū2/∂r × (1/
√

ū2) is arbitrary large at this
location, thus exceeds any integral scale of the turbulent field. This is a first indication
of local homogeneity. Furthermore, the theoretical high-frequency slope with the −5/3
exponent according to the von Kármán model is featured on the figure.

The corresponding model spectra are superimposed on the measurements in
figure 10, where the plots are shifted from each other by steps of −5 dB for clarity.
The integral length scale is tuned to Λ = 1.5 cm, and a Gaussian correction is applied
to reproduce the drop to the Kolmogorov scale at the highest frequencies, by just
multiplying the model expressions by the factor e−(9/4) (f/fK )2 , fK being a Kolmogorov
frequency adjusted for the fit. A close look reveals that the spectrum measured at
r = D/2 is more accurately fitted by the model over an extended frequency range. In
contrast spectra measured elsewhere depart from the models by amounts of up to
3 dB, essentially because of a small hump around the cutoff frequency. Again the
centre part of the mixing layer appears as closer to homogeneity.

The streamwise velocity spectra are next plotted in different reduced variables in
figure 11(a) for comparison with the more extended data base reported by Bradshaw
et al. (1964) in the case of a subsonic jet of Mach number 0.3 and Reynolds number
3.8×105. Both sets of results are obtained at two diameters downstream of the nozzle
exit and at the same radial locations 2r/D =0.8, 1, 1.2. They are in a good agreement
in the middle-and-high frequency range but a typical 3 dB higher fluctuating level
is observed at low frequencies in the present experiment. This higher level makes
the spectral shape in the shear-layer centreline closer to a model spectrum. The
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Figure 10. Same data as in figure 9, vertically shifted by −5 dB from each other, from
2r/D = 0.8 (upper) to 2r/D = 1.2 (lower). Theoretical fit according to the von Kármán model
in dotted lines.
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Figure 11. (a) Normalized velocity spectra for the streamwise component from Bradshaw
et al. (1964) (symbols), versus present measurements of figure 9 (lines). Data at different radii
are shifted by ±10 dB for clarity. 2r/D = 0.8 (*), 1 (o) and 1.2 (×). (b) Reference normalized
spectra for the radial component (symbols) and proposed modified homogeneous-turbulence
spectra used for the acoustic calculations (thick lines). Original von Kármán spectrum on the
centre layer in dashed-dotted line.

discrepancies between both experiments are attributed to a different development
of the mixing layer because of the serrations. The overall qualitative agreement
suggests that the missing spectra for the radial velocity component in the serrated-
nozzle jet can be deduced from the normalized spectra measured by Bradshaw et al.
(1964). The corresponding data are shown in figure 11(b). The spectrum on the
centreline of the shear layer (symbol o) is first compared to a model von Kármán
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spectrum (dashed-dotted line). The agreement is good for reduced frequencies 4ωD/U0

ranging from 6 to 200, suggesting that the assumption of an equivalent homogeneous
turbulence is relevant in the corresponding frequency range. However the fluctuations
are clearly overestimated at low frequencies. This departure from ideal homogeneous
and isotropic turbulence is prejudicial to the analytical aeroacoustic model and
must be corrected. An ad hoc correction is provided by damping the low-frequency
amplitude down to a value which remains 3 dB above the measured spectrum
of Bradshaw et al. (1964) as in figure 11(a), and by adjusting the high-frequency drop.
The resulting corrected spectrum to be used in the noise predictions is also plotted
in figure 11(b), and similar corrections proposed for the other radial locations. It
must be noted that the same low-frequency decrease and bump in the radial-velocity
spectrum are reported by Ross et al. (2008) for the plane mixing layer.

Measurements performed on a high-speed subsonic jet and reported by Fleury
et al. (2008) provide arguments according to which the turbulence in the shear-
layer centreline is not isotropic. The reference experiment was made on a smaller
jet (diameter of 5 cm) at higher speeds (Mach numbers 0.6 and 0.9) thus the
Reynolds numbers are sufficiently close to each other in both experiments for
extending the observed trends to the present case (especially if the trends are not
significantly Reynolds-dependent). The maximum root mean square values of the
velocity fluctuations were found as 15 % and 11 % of the jet exit velocity for the
streamwise and radial components, respectively. The data for the lateral mixing
layer of a rectangular jet reported by Ross et al. (2008) exhibit the slightly higher
values 18 % and 12.5 %, respectively. These values give an indication of the amount
of anisotropy in the flow. It is therefore relevant to consider that the streamwise
fluctuating amplitude exceeds the radial one by a typical factor 1.4. For the sake
of consistency this factor is applied later on when deducing the dimensional spectra
used as input data in the aeroacoustic model. Additional statistical parameters also
made available by Fleury et al. (2008) using Laser Doppler anemometry show that
the turbulence in the centre part of the mixing layer exhibits some features of
isotropic turbulence. First the contour plots of the space correlation functions were
determined. The pattern of the function R11 for the streamwise fluctuation was found
slightly inclined in the plane of streamwise and radial separation variables (ξ1, ξ2).
In contrast the pattern for the function R22 associated with the radial fluctuations
was aligned with the axes. The length scales L

(j )
ii with respect to ξj were deduced by

integration of the correlation functions Rii . The ratios of correlation lengths L
(1)
11 /L

(2)
22

and L
(2)
11 /L

(1)
22 on the one hand, and L

(1)
11 /L

(2)
11 and L

(2)
22 /L

(1)
22 on the other hand, were

found almost exactly equal to the theoretical values for isotropic turbulence, 1 and
2 respectively, for axial locations around two or three diameters downstream of the
jet nozzle. Significant departures from isotropy were observed at larger downstream
distances. This suggests that the turbulence would exhibit some isotropic features in
the conditions of the present experimental configuration with a regular nozzle. The
additional serrations are not expected to make any other difference than increasing
the mixing process and possibly still enforce the isotropy.

As pointed out by Ross et al. (2008) for the plane shear layer, the departure
from isotropy also affects the correlation length for low frequencies corresponding to
values of the parameter f δ∗/U smaller than 0.1, the actual length being larger than the
model one. If the same is supposed to occur in the present experiment, discrepancies
are expected below 300 Hz. However, the azimuthal correlation length is probably
reduced in the initial mixing region due to the serrations, as suggested by figure 2.
Furthermore the very low frequencies escape the range for which the aeroacoustic
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Figure 12. Theoretical far-field noise spectra (dashed lines) compared with the measurements
(cont. lines). Input data from the point 2r/D = 1 of figure 9. Reference ring of radius
r0 = D/2, interaction distance d =2 D, microphone distance Rm = 1.3 m, jet exhaust velocity
U0 = 38m s−1. Radiation angles from the downstream jet axis 30◦, 60◦, 90◦, 120◦. Couples of
predicted and measured spectra shifted vertically for clarity.

response function is reliable. For these reasons, the model fit obtained here with an
integral length scale Λ = 1.5 cm on the streamwise-velocity spectrum is retained for
the intended acoustic purpose. The theoretical expression for the correlation length
is taken as such and the aforementioned correction on the radial-velocity spectrum
is applied. The frequency 300 Hz is considered the typical validity threshold of the
analytical model with regard to the aerodynamic input data.

4.2. Comparison of measured and predicted spectra

Typical acoustic predictions are plotted in figure 12, for a jet exhaust velocity
U0 = 38 m s−1 and the reference ring at a distance d = 20 cm = 2D. The microphone is
at a fixed distance Rm =1.3 m and at different angles from the jet axis. The modes of
orders ranging from −10 to +10 are taken into account, which is more than enough
to ensure fully converged results over the investigated frequency range. Except for
some over-prediction at the lowest frequencies, the agreement is all surprisingly good,
since some questionable simplifications have been made in the analysis. Sound is first
assumed to propagate in a medium uniformly moving at the local mean flow speed,
here U = 23 m s−1 at the ring radial location, whereas the fluid is at rest outside the
jet. Thus convective amplification effects are artificially introduced and the sound
refraction by the jet shear layer profile is neglected. Corrections could be included for
applications at higher Mach numbers but would make no sense in the present case. In
fact, since at the low speeds investigated in the experiment the corrected distance S0

is very close to the geometrical distance R =
√

x2
1 + x2

2 + x2
3 , the convective distortion

is negligible. This is a general result for dipoles the axis of which is normal to the
flow direction. The sound refraction cannot be simply included in the analysis but
it is also expected to be weak. According to Amiet (1975) the solution based on the
two-step Schwarzschild’s technique holds for sufficiently high frequencies such that
kc/(2 β2) > 0.4. The lower frequency limit of 300 Hz in the present case corresponds
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Figure 13. Theoretical far-field noise spectra compared with the measurements. Corrected
input data from the points 2r/D =0.8 and 2r/D = 1.2 of figure 9. Rings of radii r0 = 0.4 cm
and r0 = 0.6 cm, interaction distance d = 2D, microphone distance Rm = 1.3 m, jet exhaust
velocity U0 = 38 m s−1. Radiation angle from the downstream jet axis 90◦.

to kc/(2 β2) � 0.12 and the technique should be extended with further iterations. Such
a refinement is not tractable analytically. Similar investigations of the trailing-edge
noise of an aerofoil also based on Schwarzschild’s technique suggest that the solution
remains reliable for values of kc/(2 β2) lower than 0.25 (Roger & Moreau 2005).
Therefore the predictions at the lowest frequencies might be inaccurate because the
model starts to deviate from the exact ring response function below, say 800 Hz. In the
absence of exact theoretical results for comparison, acceptable results are expected
in terms of decibels at even lower frequencies remaining well above the 300 Hz
threshold. For this reason, the present experimental results between, say 100 Hz and
500 Hz cannot be used to test the high-frequency response model because they are
clearly out of its validity range. A possible extension of the study would be to derive
alternative expressions based on a low-frequency analysis. This is out of the scope of
the paper.

Further results obtained with the smaller and larger rings of diameters 2r0 = 0.8D

and 2r0 = 1.2D are reported in figure 13. The agreement is poor in these cases when
the model is assessed against the measurements, even though the same procedure
including the corrections for the radial-velocity spectra is applied. The sound level
is underpredicted for the larger ring and overpredicted for the smaller one. Yet the
slope modification in the spectral shape at high frequencies is reproduced correctly.
The discrepancies occur over the low-and-middle frequency range, irrespective of the
aforementioned limitation of the analytical model. The inaccuracy of the predictions
is possibly explained by the non-homogeneity of the developing jet flow. Along the
centre sheet of the mixing layer of radius D/2, the mean-flow speed is nearly constant
as shown in figure 4. Thus as the ring of diameter D is placed facing the nozzle,
it encounters homogeneous conditions and the model assumptions are reasonable.
In contrast a cylindrical cut in the mixing layer at other diameters corresponds
to mean-flow parameters which significantly vary with the axial location (see the
difference in figure 4 between the profiles at d = 2D and d =3D). The mean flow
slows down axially in the inner region of the mixing layer and accelerates in the
outer region. This variation may not be negligible along the chord length c. It
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makes the chordwise averaged relative flow over the ring of diameter 2r0 = 0.8D

smaller than a reference value taken at the ring leading edge. In the same way
the averaged value for the ring of diameter 2r0 = 1.2D is larger than the reference
value. Thus calculations using values referenced at the leading edge as input data are
somewhat expected to produce the aforementioned wrong estimates. No correction
has been introduced, essentially because the effect of the non-homogeneity depends
on frequency. Indeed the lift fluctuations induced by turbulence on an aerofoil are
known to progressively concentrate towards the leading-edge as frequency increases.
Another source of discrepancies could be due to the intermittency of the turbulent
flow at the edges of the mixing layer.

The present comparison of measurements and predictions with the reference ring
validates the use of the transposed Amiet’s theory for ring noise calculations, except
at low frequencies. As a consequence the response functions of a rectangular thin
aerofoil to oblique, either subcritical or supercritical gusts are also validated. Oblique
radiation from a thin aerofoil is preferentially forced by incident aerodynamic gusts
the wavefronts of which make a finite angle with the spanwise direction (Amiet 1975).
Such oblique gusts correspond to the helical gusts (or higher-order modes) in the
present analysis. In contrast, sound radiation in the mid-span plane of a rectangular
aerofoil is rather selected by gust wavefronts parallel to the span, which correspond
to the symmetric mode in cylindrical coordinates.

4.3. Interpretation of results

A numerical splitting of the full analytical solution into modes or sets of modes is
shown in figure 14, for two radiation angles and the same input data as for figure 12,
in order to get more information on the dominant modes (or corresponding gusts).
The contributions of the subcritical and supercritical gusts are featured separately, in
thick continuous line and in dotted line respectively. The supercritical gusts alone are
found to determine the sound field in the middle-and-high frequency range, whereas
the subcritical gusts determine the low-frequency high-level part of the spectrum.
Both curves cross each other at a point around 1 kHz where the solution has a small
jump. Additional jumps or discontinuities are observed on the subcritical solution
set at higher frequencies, with no effect on the total result. The jumps occur at
transition frequencies for which a given isolated mode turns from the subcritical to
the supercritical regime. At such a frequency, the Schwarzschild’s technique used in
Amiet’s solving procedure breaks down and a regularization should be applied to
match continuously the solutions calculated on each side. A possible smoothening
technique has been described and applied by Roger & Moreau (2005) in a similar
study, dealing with a three-dimensional model of the trailing-edge noise of an aerofoil.
No equivalent attempt is made in the present paper, since the full solution remains
satisfactory apart from the residual jump around 1 kHz. The latter is responsible for
only a possible local error of a couple of decibels, depending on the radiation angle
for which the calculations are performed. It is remarkable that, despite the multiple
jumps, the subcritical gusts improve the regularity of the full solution where they give
a significant contribution, as shown particularly in figure 14 for the angle of 120◦

around 10 kHz: the physically consistent hump in the full solution, mainly reproduced
by the supercritical gusts and due to chordwise non-compactness, is smoothed.

The very significant contribution of the subcritical gusts in the circular geometry
is a major result of the present study. In contrast, the subcritical gusts interacting
with a rectangular plate in Cartesian coordinates would be much less efficient than
the supercritical gusts, as pointed out by Graham (1970). In principle, the potential
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Figure 14. Gust breakdown of the predictions of figure 12 at 30◦ and 120◦, emphasizing
the relative contributions of the subcritical (thick continuous line) and supercritical (dotted
line) sets of gusts. First transition occurs at the vertical cut. Thin continuous line: total field.
Calculations with the isolated modes n= 0 or n= ±1 (dashed-dotted lines) are pointed by
arrows.

induced by these gusts with subsonic azimuthal phase speeds is solution of an elliptic
equation (Appendix). As such, it would not produce any sound in the far field in
the limit of infinite span or aspect ratio. Their non-zero radiation for a rectangular
plate only results from the finiteness of the span. Not only the subcritical helical
gusts are clearly responsible for the low-frequency high-level bump below 1 kHz in
the noise spectrum within the range of parameters investigated, but more precisely,
the bump is essentially produced by the first non-symmetric mode n= ±1. This is
emphasized when the predictions are made with this mode only, and plotted as the
black dashed line of figure 14(b). The mode n= ±1 is definitely the most efficient one
in the subcritical range. This result is expected from the asymptotic behaviour of the
Bessel function for small arguments. In the limit of very low frequencies for which
kr0 � 1, only the function J1 contributes because of its non vanishing derivative.
The same mode has no trace above 1 kHz where it experiences transition, suddenly
contributing the set of the supercritical gusts. It is worth noting that the symmetric
mode n= 0 featured by the thin dashed-dotted line on the figure cannot be in the
subcritical range. It is always supercritical since its angular phase speed is infinite.
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The symmetric mode becomes dominant only in the middle frequency range, above
2 kHz, but the higher-order modes contribute as well. The experimental evidence of
the dominant role of the azimuthal modes of orders 0 and ±1 in the dynamics of
subsonic free jets has been already reported by many authors (e.g. Lau & Fisher
1975; Fuchs & Michel 1978). It is confirmed indirectly in the present study through
the acoustic signature of the modes, by both the analysis and the measurements.

The different efficiencies of the modes 0 and ±1 can be intuitively understood
as follows. The varicose mode n= 0 impinging on the ring generates equivalent
distributed dipoles which are perfectly in phase all along the perimeter in the sense of
the cylindrical coordinates, both the excitation and the response being axisymmetric.
Two point dipoles, diametrically opposite, radiate in phase opposition with respect
to a given direction of propagation taken in the same plane. Thus the signals they
produce at a far-field observer tend to cancel each other at low frequencies, for which
the differences in propagation time, related to the differences in the source-to-observer
distance, remain small when compared to the period of oscillation. The lower the
frequency is, the better the cancellation. As a result the couple of dipoles acts as a
less efficient quadruple at frequencies for which the ring diameter is much smaller
than the wavelength. Then the diameter is said acoustically compact. In contrast
the mode n= ±1 induces equivalent dipoles which oscillate in phase opposition on
two points diametrically opposite on the ring, again from the point of view of the
cylindrical coordinates. But with respect to a given direction of propagation in the
plane of the diameter, the two dipoles oscillate in phase. The net result at very low
frequencies is a dipole of doubled strength since no cancellation can be expected from
the too small differences of retarded time or of propagation distance. This explains
why the contribution of the mode n= ±1 can exceed the one of the mode n= 0 by
typically 20 dB at low frequencies on the plots of figure 14. As frequency increases,
less and less cancellation occurs between two diametrically opposite dipoles forced
by the symmetric mode due to the increase of retarded time differences. Therefore
the symmetric mode becomes more efficient. The frequency of its maximum efficiency
depends on the direction of propagation since the retarded-time differences do. It is
around 2 or 3 kHz in figure 14. At even higher frequencies for which the ring is not
compact anymore, and again for the symmetric mode, the retarded time differences
along a diameter can result in the exact cancellation of the two interfering sounds
received by the observer. Though the analysis is to be completed by all other couples of
dipoles for which the observer is not in the plane of the diameter, the modal extinction
is an expected feature. It occurs in figure 14 around 8500 Hz at 30◦ and 5000 Hz at
120◦. In the same way, increasing the frequency up to the first transition for the
first azimuthal mode progressively reduces its efficiency by introducing cancellation
between the sounds coming from diametrically opposite dipoles.

5. Conclusions
A circular jet–ring configuration has been investigated in the paper as an alternative

to rectangular configurations addressing the turbulence-interaction noise of an aero-
foil. The self-sustained oscillations excited for small jet–ring distances and a regular
nozzle lip have been avoided by increasing the jet–ring distance and by using a serrated
nozzle. Pure broadband noise is generated this way, the ring scattering the natural jet
turbulence as sound. The partially measured statistical properties of the turbulence
have been found in agreement with previously reported works and the missing
quantities have been inferred from these works by rescaling non-dimensional data.
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A statistical analytical prediction model based on the acoustic analogy has been
derived, involving the splitting of the incident turbulence into helical gusts. The
model is dedicated to high frequencies, for which the local unsteady aerodynamic
response of the ring in the streamwise direction can be assumed identical to the one
for a rectangular aerofoil in Cartesian coordinates. The radial-velocity spectrum and
the associated azimuthal correlation length are used as input data. Since the model
is initially derived assuming homogeneous and isotropic turbulence, a correction is
applied to account for the anisotropy found in the mixing layer of a jet. The literature
on jet turbulence suggests that the centre part of the mixing layer, in the continuation
of the nozzle lip, exhibits some properties that are also found in homogeneous and
isotropic turbulence. These properties are believed to make the proposed correction
reliable but they are not satisfied when approaching the inner and outer boundaries of
the mixing layer. For this reason the far-field noise predictions are found in excellent
agreement with the acoustic measurements when the ring has the same diameter as
the nozzle, except at the lowest frequencies for which the model assumptions do not
hold anymore. In contrast, the prediction methodology with a smaller and a larger
ring failed.

For the Mach numbers and Reynolds numbers covered in the study, the subcritical
gusts, with subsonic azimuthal phase speeds, are responsible for a low-frequency
high-level bump in the acoustic spectrum, for which the ring is acoustically compact.
The supercritical (supersonically spinning) patterns contribute to the middle-and-high
frequency range, for which the ring is not compact anymore. By the way, important
conclusions are drawn from the good agreement found between the predictions and
the measurements in the present ring geometry. Firstly, the results validate the high-
frequency three-dimensional transfer functions, both supercritical and subcritical,
derived analytically. Secondly, they suggest that the subcritical gusts would play an
important role in other configurations as well, typically for a curved surface and/or
when considering sound radiation in directions which are not perpendicular to the
surface. They would contribute to the radiation off the mid-span plane of a rectangular
aerofoil, for instance, and to the free-field radiation from a fan with swept and leant
blades. To the author’s knowledge, this has not been pointed out clearly before, nor
confirmed by experimental evidence.

The author is grateful to Stella Serafini (Politecnico di Torino, Italy) for her precious
help in the experiment and her interest for the study of the self-sustained oscillations.

Appendix. Subcritical and supercritical aeroacoustic response functions of a
rectangular aerofoil

The aeroacoustic response or transfer function L of the ring to incident helical
gusts is now to be derived to complete the analysis of § 3, from the expression of the
unsteady lift �̃. For that goal, the additional disturbance introduced by the ring into
the turbulent flow is described at the angular frequency ω by a potential φ e−iω t . This
potential is solution of the linearized equations of compressible non-dissipative fluid
dynamics, eventually recast as the convected Helmholtz equation

∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2

∂2φ

∂θ2
+ β2 ∂2φ

∂z2
+ 2i k M

∂φ

∂z
+ k2 φ = 0

in cylindrical coordinates. Once determined, φ provides the expressions of the
disturbance pressure, and the induced lift is defined as the pressure jump across
the surface. Solving the equation directly in the reference frame of figure 8 is not
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attempted in the paper, for the sake of simplicity on the one hand, and precisely
because the aim is to assess the validity of assimilating the exact response to the
model response of a rectangular aerofoil, on the other hand. Without going into deeper
arguments, the simplification is partly justified as follows. Under the assumption of
small incident disturbances, the unsteady aerodynamic phenomena leading to the
onset of lift fluctuations concentrate in an annular slice of fluid of mean radius r0

close to the ring surface. Let h be the characteristic radial thickness of this slice. In
the non-dimensional variables X = (r − r0)/h, Y = r θ/h, Z = z/h introduced to assess
the limit for small values of h/r0, the Helmholtz equation reads

∂2φ

∂X2
+

h

r0

∂φ

∂X
+

∂2φ

∂Y 2
+ β2 ∂2φ

∂Z2
+ 2i (kr0)

h

r0

M
∂φ

∂Z
+

[
(kr0)

h

r0

]2

φ = 0.

Therefore, at high frequencies for which the parameter kr0 is large enough for kh

to be of order 1, the second term of the differential operator can be discarded and
the equation reduces to the Helmholtz equation in Cartesian coordinates, which is
the background of most linearized thin-aerofoil theories (Graham 1970). In other
words, the unsteady response of the ring to a helical gust can be evaluated by solving
the simpler problem of the response of a thin rectangular plate to an oblique gust
in Cartesian coordinates. This high-frequency approximation a priori holds above
1 kHz in the present study. If proved reliable by comparison with measurements, it
provides an indirect way to validate the response functions of a rectangular aerofoil
for radiation off the mid-span plane. Now the compressible, unsteady aerodynamic
response of a thin rigid plate of infinite span to turbulence has been investigated
mainly in the seventies (e.g. Graham 1970; Amiet 1975, 1976). According to the
linearized theory, based on a Fourier decomposition of the turbulent field in sinusoidal
gusts, only the velocity fluctuations normal to the plate surface contribute to the
unsteady lift. The latter depends on the three parameters of a gust, namely the
convective Mach number M and the two aerodynamic wavenumbers k1 and k2 in
the chordwise and spanwise directions, respectively. Apart from other pioneer works
not cited here for conciseness, Amiet (1975) derived a closed-form high-frequency
solution for compressible parallel gusts (k2 = 0) by means of an elegant application of
the Schwarzschild’s procedure also discussed by Landahl (1961). Other solutions were
provided, for instance, by Filotas (1969) for oblique incompressible gusts (M =0). In
principle, the general solution can be obtained from the aforementioned ones using
similarity rules derived by Graham (1970). Alternatively, the problem of the three-
dimensional compressible gust can be solved directly by applying Schwarzschild’s
theorem to a transformed set of variables and equations (Amiet 1976). Finally, the
induced lift is used to evaluate the far-field pressure by calculating a radiation integral.
The main steps of the analysis are rapidly outlined in this Appendix since they are
nothing but straightforward extensions of Amiet’s original work, and the reader is
invited to go to the reference paper for more details (Amiet 1976). A Cartesian
coordinate system is attached to the rectangular plate as shown in figure 15. The
source coordinates (y1, y2, y3) in the streamwise, spanwise and normal directions
respectively are made non-dimensional by the half chord length:

y∗
1 = 2

y1

c
, y∗

2 = 2
y2

c
, y∗

3 = 2 β
y3

c
.

The observer coordinates are noted x = (x1, x2, x3).
Expressions of the induced fluctuating lift or local pressure jump across the plate

are given, for instance, by Mish & Devenport (2006), following Amiet (1976). When
the phase speed of the trace of a gust on the plate leading edge, with respect to
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Figure 15. Reference frame centred on a rectangular aerofoil of aspect ratio L/c.

the moving fluid, is supersonic, the gust is said supercritical. In this case Graham’s
parameter Θ0 = k∗

1M/(β k∗
2) is larger than 1. The complementary gusts for which Θ0 < 1

and the trace speed is subsonic are said subcritical. The local induced unsteady lift
can be written as �̃A = �̃A

1 + �̃A
2 where the subscripts (1, 2) stand for the dominant

leading-edge scattering and for the Kutta-condition correction, respectively. For the
subcritical gusts, the result is

�̃A
1 (y∗

1 , y
∗
2 , ω) =

−2 ρ0 U0 w0 ei π/4√
π (k∗

1 + iβ2 κ̄ ′) (1 + y∗
1 )

e− (κ̄ ′+i M µ̄) (1+y∗
1 ) ei k∗

2 y∗
2 ,

�̃A
2 (y∗

1 , y
∗
2 , ω) =

2 ρ0 U0 w0 ei π/4√
2 π (k∗

1 + iβ2 κ̄ ′)
e− (κ̄ ′+i M µ̄) (1+y∗

1 ) ei k∗
2 y∗

2
{
1 − erf

(√
2 κ̄ ′ (1 − y∗

1 )
)}

,

where erf is the ordinary error function, and

κ̄ ′ =

√
k∗2

2

β2
− µ̄2, κ̄ ′2 = µ̄2

(
1

Θ2
0

− 1

)
, µ̄ =

kc

2 β2
=

k∗
1M

β2
, k∗

j =
kjc

2
.

The last step is the calculation of the radiated far field according to the
acoustic analogy (Ffowcs Williams & Hawkings 1969), in which the lift stands
for the equivalent source distribution, using the same background as in § 3. In this
calculation propagation path differences from the source points towards the observer
are introduced. It must be noted that, if determined in whole space, the potential
disturbance field φ would provide the acoustic field. However, calculating the induced
lift or the trace of the potential on the plate surface is a more tractable task, achieved
assuming that the span is of infinite extent to get rid of end effects. The acoustic
radiation is evaluated in a second step from the induced lift by integrating over
the actual span. This simplification leads to closed-form expressions at all steps of
the analysis. The power spectral density of the far-field acoustic pressure is formally
obtained as

Spp(x, ω) =

(
k ρ0 c x3

2 S2
0

)2

π U0

L

2

∫ ∞

−∞
Φww

(
ω

U0

, k2

)

×
∣∣∣∣L

(
x1,

ω

U0

, k2

)∣∣∣∣
2 sin2

[(
k x2

S0

− k2

)
L

2

]

π
L

2

(
k x2

S0

− k2

)2
dk2, (A 1)
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where L is the non-dimensional chordwise aeroacoustic transfer function

L
(

x1,
ω

U0

, k2

)
=

∫ 1

−1

�̃A e−i k∗
2 y∗

2

2 π ρ0 w0

e
−i µ̄

(
x1
S0

−M
)

y∗
1 dy∗

1 .

This transfer function is found the sum of two contributions related to �̃A
1 and �̃A

2 , as
L = L1 + L2 with the expressions

L1 = − 1

π

√
2

(K∗
1 + i β2 κ̄ ′) (i κ̄ ′ − µ̄ x1/S0)

e−iΘ2 E

[
2

(
i κ̄ ′ − µ̄

x1

S0

)]
, (A 2)

L2 =
e−i Θ2

π
√

2 π (K∗
1 + i β2 κ̄ ′) Θ3

{
1 − e−2Θ3 − erf(

√
4 κ̄ ′)

+ 2 e−2Θ3

√
κ̄ ′

i κ̄ ′ + µ̄x1/S0

E[2(i κ̄ ′ + µ̄x1/S0)]

}
, (A 3)

where

Θ3 = κ̄ ′ + i µ̄
x1

S0

, Θ2 = µ̄ (M − x1/S0) − π/4.

In the formulae, the complex error function U 0(Z) is used to extend the Fresnel-
integral function E introduced by Amiet to complex arguments:

U 0(Z) =
1√
π

∫ Z2

0

e−z

√
z

dz = (1 − i) E(iZ2), E(ξ ) =

∫ ξ

0

ei t

√
2 π t

dt.

The alternative expressions for a supercritical oblique, compressible gust (Θ0 > 1
and κ̄ ′2 < 0) are deduced from the preceding ones by simply changing i κ̄ ′ in κ̄ = [µ̄2 −
(k2

2/β)2]1/2 and by replacing the error function erf (
√

.) by the function (1 − i) E. This
yields

L1 = − 1

π

√
2

(K∗
1 + β2 κ̄) Θ4

e−i Θ2 E [2 Θ4] , (A 4)
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e−i Θ2

π Θ4
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2 π (K∗

1 + β2 κ̄)
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i (1 − e2i Θ4 ) − (1 + i)

×
[
E(4 κ̄) − e2i Θ4
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2 κ̄

κ̄ + µ̄x1/S0

E[2 (κ̄ + µ̄x1/S0)]

]}
(A 5)

with

Θ4 = κ̄ − µ̄
x1

S0

.

Supercritical gusts would be the only radiating patterns for a rectangular plate in
the limit of infinite span (large aspect ratio approximation). However, the subcritical
gusts contribute as well in the case of a finite span, as already pointed out in a similar
formulation for the trailing-edge noise of an aerofoil by Roger & Moreau (2005).

The preceding results are finally transposed to helical gusts in cylindrical geometry.
For this the spanwise coordinate y2 is just replaced by the curvilinear coordinate in
the tangential direction, and a periodicity condition is applied as explained in the
main text. The solution for the supercritical regime is given by expressions (A 4)
and (A 5) in which κ is replaced by the parameter κ̄n defined from κn instead of k2.



364 M. Roger

In the case of the subcritical gusts, (A 2) and (A 3) hold with κ̄ ′
n = [(κn/β)2 − µ̄2]1/2

instead of κ̄ ′. The modified versions of (A 2), (A 3), (A 4) and (A 5) are used as such
in the analytical predictions of § 4.
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