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Exact analytical solutions for the scattering of sound by the edge of a rigid half-plane and
by a rigid corner in the presence of a uniform flow are considered in this work, for
arbitrary source and observer locations. Exact Green's functions for the Helmholtz equa-
tion are first reviewed and implemented in a quiescent propagation space from reference

step and the properties of the field are discussed for point dipoles and quadrupoles. The
asymptotic regime of a source close to the scattering edge/wedge and of an observer far
from it in terms of acoustic wavelengths is derived in both cases. Its validity limits are
assessed by comparing with the exact solutions. Typically the asymptotic directivity is
imposed by Green's function but not by the source itself. This behaviour is associated with
a strong enhancement of the radiation with respect to what the source would produce in
free field. The amplification depends on the geometry, on the source type and on the
source distance to the edge/wedge. Various applications in aeroacoustics of wall-bounded
flows are addressed, more specifically dealing with high-lift device noise mechanisms,
such as trailing-edge or flap side-edge noise. The asymptotic developments are used to
highlight trends that are believed to play a role in airframe noise.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The role of solid surfaces in aeroacoustics is twofold. Firstly they participate in the generation of sound by direct
interaction with flows. Secondly they redistribute the sound radiated by sources possibly located elsewhere. In that sense
they act as either sources of sound or scattering obstacles and can be artificially classified as active or passive surfaces,
respectively. The physical understanding and the modeling of both aspects are key issues in the definition of noise reduction
strategies in many engineering applications. Pure sound scattering is usually investigated using the classical theory of
diffraction in linear acoustics. Aerodynamic sound production in the presence of solid surfaces can be formulated from the
standpoint of linear acoustics by resorting to the acoustic analogy. According to Lighthill's original statement [1] and related
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Nomenclature

Italic symbols

A0 Kutta-correction factor
c chord length
c0 speed of sound
D directivity factor
E Fresnel integral
F complex function for the 2D half-plane

Green's function
F dipole strength vector
G Green's functions for the Helmholtz equation
GK correction to Green's function for the Kutta

condition
GM0 Green's functions with uniform flow
G1 2D asymptotic Green's function in free field
h flap side-edge thickness
H Heaviside function
Jν;H

ð1Þ
ν Bessel and Hankel functions of the first kind

k¼ω=c0 acoustic wavenumber
K ¼ k=β modified wavenumber
k�1 dimensionless aerodynamic wavenumber
Kn modified Bessel functions
ℓ unsteady lift on a flap
lmax size of quadrilateral elements
M0 Mach number
p acoustic pressure
P dipole strength
Pμ
ν general Legendre functions

q monopole strength
Q quadrupole strength tensor
ðr ; θ ; zÞ corrected observer cylindrical coordinates
ðr0; θ0; z0Þ corrected source cylindrical coordinates
r4 ¼maxðr̂ ; r̂0Þ maximum distance
ro ¼minðr̂ ; r̂0Þ minimum distance
r , r1;2, r1;2 corrected 3D and 2D scattering distances
S1;2, s1;2 3D and 2D integral bounds in convected

Green's functions
S0 convection-corrected distance
Ti;j quadrupole strength components
U0 flow speed

x¼ ðx; y; zÞ observer Cartesian coordinates for an edge
x0 ¼ ðx0; y0; z0Þ source Cartesian coordinates for

an edge
x¼ ðr; θ; zÞ cylindrical observer coordinates for an edge
x0 ¼ ðr0; θ0; z0Þ cylindrical source coordinates for

an edge
x¼ ðx1; x2; x3Þ observer Cartesian coordinates for

a corner
x0 ¼ ðy1; y2; y3Þ source Cartesian coordinates for

a corner
x¼ ðr̂ ;Θ;ϕÞ observer spherical coordinates for a corner
x0 ¼ ðr̂0;Θ0;ϕ0Þ source spherical coordinates for

a corner
X0;X ¼ x0=β; x=β modified streamwise coordinates for

an edge
X1;Y1 ¼ x1=β; y1=β modified streamwise coordinates

for a corner

Greek symbols

αd dipole inclination angle

β¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

0

q
compressibility parameter

εm constant in Green's function for rigid wedge
θ1 angle in the correction to Green's function for

the Kutta condition
θ0; θ corrected spherical source and observer angles
λ acoustic wavelength
ϕ2D;ϕ3D two-or three-dimensional acoustic potentials
Φ wedge aperture angle
φ projection angle for the half-plane Green's

function
ρ0 fluid density
ω angular frequency

Subscripts/superscripts symbols

κ;m summation indices
K Kutta-condition correction
M0 flow-corrected quantity
(1/2) half-plane

M. Roger et al. / Journal of Sound and Vibration 362 (2016) 252–275 253
works by Howe [2] and Ffowcs Williams and Hall [3], for instance, unsteady flow patterns interacting with solid surfaces can
be interpreted as equivalent quadrupoles distributed in the fluid, the direct sound of which is scattered by the surfaces. This
view is developed in some asymptotic theories of high-lift device noise [4,5]. According to Ffowcs Williams and Hawkings'
statement of the analogy [6], surfaces explicitly involved in noise generation can also be mathematically interpreted as
equivalent sources of lower orders. A priori the latter point of view is well suited for active surfaces and the former for
passive surfaces. But the distinction is questionable when two bodies in close vicinity of each other are embedded in a
disturbed flow region. The present analysis is dedicated to the high-lift devices that are deployed when the wing of an
aircraft operates in approach and landing conditions. The source and scattering surfaces are implicitly assumed to be well
separated, which only covers a part of the complete physics in most cases of interest. For instance a deployed flap (Fig. 1) can
be interpreted as a distribution of equivalent sources, the sound of which is scattered by the main part of the wing. The
underlying mechanism partly contributes to the airframe noise that also includes landing-gear associated sources. Airframe
noise in itself is recognized as a major contributor to the total noise of an aircraft at approach, essentially because the
modern high by-pass ratio engines are much quieter at idle power.

Going into the details, High-Lift Device (HLD) noise involves distributed sources along the leading or trailing edges of the
wing ((2) in Fig. 1), the slat and the flap ((1) and (4) in Fig. 1), as well as sources that concentrate around the span ends of
wing elements such as flap side-edges ((3) in Fig. 1) or slat corners. In the present study two contributions in which sound



Fig. 1. High-lift device architecture including a wing and a trailing-edge flap (no leading-edge slat). Breakdown of areas of aerodynamic sound generation.
Sources (1) and (2) are not addressed in the present work. Flap leading-edge sources (4) addressed in Section 2.5; flap side-edge sources (3) addressed in
Section 3.
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scattering is a key mechanism are addressed. One arises from the spanwise-distributed sources induced on a flap leading
edge by impinging vortical disturbances produced in the wing-flap gap ((4) in Fig. 1). The other one is associated with the
initial high-frequency oscillations of the detaching shear layers from flap side-edge corners; it is only a part of the roll-up
that leads to the side-edge vortex. In the first case the mean flow parameters do not vary significantly in the spanwise
direction. The sound sources have two-dimensional features, even though they radiate in a three-dimensional space. In the
second case the strong three-dimensional character of the flow responsible for the sound production makes the investi-
gation of the mechanism more challenging with analytical means. Yet the analytical approach is chosen in the present work
to point out some features of interest.

The prediction of HLD noise generation and radiation can also be achieved by numerical methods. The high Reynolds
numbers of these devices (greater than 106 based on a typical chord length) however still preclude using full compressible
Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES) methodology to yield the acoustic field directly. A hybrid
technique coupling the determination of the sources by an unsteady compressible simulation and a propagation technique
is applied instead. Unsteady Reynolds-Averaged Navier–Stokes (RANS) computations were first used by Khorrami et al. [7,8].
RANS coupled with Linearized Euler Equations (LEE) and RANS/LES methodologies were later applied by Terracol et al. [9]
and Deck et al. [10] respectively. More recently König et al. proposed a hybrid methodology combining LES and linearized
equations [11]. Finally the first complete direct noise simulation of a high-lift device was achieved by Satti et al. with a
Lattice Boltzmann Method [12].

Numerical approaches have the advantage of accounting for the exact geometry, though they usually consider a limited
span and often still ignore details that might contribute to the sound generation such as slat tracks, de-icing vents and flap
track fairings. They reproduce realistic flow features, but are very demanding in terms of computational resources. Alter-
natively, analytical investigations have some mathematical interest and provide fast-running approximate predictions at the
price of drastic assumptions. Even though the underlying geometrical simplifications may be a shortcoming, the simplicity
of the solution provides key insight into the scattering mechanisms. Furthermore exact analytical solutions in simple
configurations are also a reference for the validation of numerical techniques that can be applied next to more
complicated ones.

From the methodological standpoint the present work is addressing model problems that can be solved analytically
based on the use of exact tailored Green's functions. Geometrical configurations for which such Green's functions are known
are very few in the mathematical theory of waves. Nevertheless a wide class of them can be generated by associating two
half-planes sharing the same edge and featuring a wedge. The wedge angle Φ is defined as the aperture angle of the
available propagation space. If Φ is an acute angle such that π=Φ is an integer, the method of images provides the exact
solution [13]. The half-space bounded by an infinite plane and the quarter of space bounded by two perpendicular half-
planes are just classical special cases of the method (Φ¼ π and Φ¼ π=2, respectively). More general configurations and
especially wedges of obtuse aperture angles require more sophisticated theoretical developments. The present paper is
dealing with two particular analytical expressions of Green's function. One is for a rigid corner, corresponding to the special,
non-integer value π=Φ¼ 2=3. It is suited to the analysis of some asymptotic aspects of flap side-edge noise. The other one is
for a rigid half-plane and corresponds to π=Φ¼ 1=2. It is used for instance to describe the scattering by the trailing edge of a
wing. Both are based on general formulations derived by MacDonald [14] for arbitrary source and observer locations in a
medium a rest.

Because the exact expressions of Green's functions are rather complicated and require numerical implementation, they
have been seldom used as such. Most applications in acoustics and aeroacoustics only resort to asymptotic expansions
[13,3]. Indeed for some declinations of the generic configurations the observer is in the acoustic far field ensured by the
condition kR⪢1, where k¼ω=c0 is the acoustic wavenumber and R is the source-to-observer distance, and the source is at a
very short normal distance r0 from the edge/wedge, so that kr0⪡1. This asymptotic regime justifies approximations that lead
to simplified, closed-form solutions. Now comparing exact and asymptotic formulations appears as the only way of
assessing the validity range of the latter. Furthermore in many cases the full expression of Green's function is required, and
the function itself must be extended to account for the presence of flow so that flight effect is included in the analysis. This
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motivated the authors for implementing the exact expressions of Green's functions with flow and applying them to infer
important features of the sound radiation.

The sound scattering by a rigid half-plane in the presence of a uniform flow is first addressed in Section 2, in the case of a
trailing edge. The sound field of point dipoles and quadrupoles is analyzed and the effect of imposing a Kutta condition is
discussed from previous works [15,16], in connection with the asymptotic behaviour. Two-dimensional and three-
dimensional expressions are compared and applied to the scattering of flap-noise sources by the trailing edge of a wing.
The need for including the diffraction effect when predicting the sound radiation from the flap is pointed out. The scattering
by a rigid corner is then investigated in Section 3. The exact Green's function is implemented and the asymptotic regime is
used to model the high-frequency contribution of flap side-edge noise. In both sections, the specific directivity patterns and
the amplification rates associated with the asymptotic regime are quantified.
2. Scattering by a rigid half-plane with flow

After a short survey in Section 2.1 various aspects of edge scattering are addressed.

� The 2D Green's function with flow is presented in Section 2.2. The importance of the Kutta condition is discussed for flow
speeds representative of the approach conditions on an aircraft wing or of a subsonic fan blade.

� The 3D Green's function is introduced in Section 2.3. A transposition between the 2D and the 3D fields is also discussed
for a far-field observer in the mid-span plane.

� The asymptotic regimes of a source close to the edge and a far-field observer are presented in Section 2.4 where a specific
dipole configuration is identified.

� The formalism is applied to a configuration representative of a trailing-edge flap in Section 2.5. The 2D reduction of the theory
is also assessed against a 3D formulation. The discussion is made here for dipole sources only, ignoring the Kutta condition.

2.1. State of the art

The scattering of acoustic sources by the edge of an extended flat surface in the presence of flow is a mechanism involved
in many aeroacoustic problems. First it is important when assessing the effect of aircraft wings on the sound propagation
from engine or propeller-associated sources, and is part of what is called the acoustic installation effect. The primary sources
are quadrupoles for jet noise according to Lighthill's acoustic analogy. They are typically equivalent dipoles for rotating blade
noise, according to Ffowcs Williams and Hawkings' formulation of the analogy. Dealing with shorter edge-source distances,
edge scattering is also expected to play a major role in high-lift device noise, for instance, when the primary sound from the
dipole-like sources induced on a deployed flap is diffracted by the main part of the wing. Finally, at even smaller scales, the
scattering of boundary-layer turbulence as sound at the trailing-edge of an airfoil is another declination of the same physical
process. In this case the sources are equivalent quadrupoles defined by the turbulent mixing and stretching in the boundary
layer and the edge-source distance can become much smaller than the acoustic wavelengths. In any case the main flow is
responsible for the convection of the acoustic wavefronts radiated from the sources. Furthermore the behaviour of the
trailing edge is possibly modified by the formation of a wake.

Many reported works dealing with edge scattering, including the trailing-edge noise theory proposed by Ffowcs Williams
and Hall [3], are based on the asymptotic regime for which the observer is in the acoustic far field ðkR⪢1Þwhereas the source
point is assumed close to the edge in terms of acoustic wavelengths ðkr0⪡1Þ. The limit case of a source close to the edge
involves a strong amplification and the well-known cardioid directivity pattern, with wavefronts of opposite phases on both
sides of the screen [3,17]. Even though this seems justified as a first sight for the quadrupole sources of airfoil trailing-edge
noise, no clear evidence of the precise threshold for this regime has been documented yet. The analysis of wing-flap noise
reported by Roger and Pérennès [17] and related works [18,19] are also based on the same asymptotic regime for distributed
dipoles close to an edge. In this case the approximation is even more questionable, except at the lowest frequencies of
interest, because the flap sources are at least several centimeters away from the scattering edge and distributed over the flap
chord. The behaviour in the acoustic near-field is also useful for the understanding of the scattering mechanisms; but it
cannot be reproduced with the far-field approximation. The asymptotic analyses and the more recent numerical simulations
of either trailing-edge noise or sound scattering by an edge finally appear as two opposite approaches, but no or few
intermediate investigations are reported, at least to the authors' knowledge.

For all these reasons the present work readdresses edge scattering with arbitrary source and observer locations. It is
aimed at quantifying some assumptions often made without precise justification, such as the effect of imposing a Kutta
condition, the relevance of a two-dimensional (2D) computation of the acoustic field compared with a more realistic three-
dimensional (3D) computation, and the effect of the edge-source distance. The analysis is based on exact half-plane Green's
functions for the convected Helmholtz equation.

It is worth noting that, unlike the case of a wedge discussed in Section 3.5, the assumption of uniform fluid motion is
here compatible with both a flow parallel to the edge and a flow normal to it in the continuation of the half-plane. The latter
configuration corresponds to the classical trailing-edge noise mechanism. The former could be used to investigate the
scattering of the boundary-layer turbulence driven in the formation of a tip vortex at the side-edge of a thin flap, at least



Fig. 2. Reference frame and cylindrical coordinates attached to a half-plane trailing-edge. The surrounding flow of speed U0 is assumed in the Cartesian x
direction. The deployed flap shifted by h downward and considered as equivalent sources distributed on a flat plate is featured in grey.
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when the characteristic flow scales remain smaller than the chord but much larger than the actual thickness of the flap (see
Section 3.4 and [20]).

The set of cylindrical coordinates for the present derivations is shown in Fig. 2, for intended further application to wing-
flap scattering. The flat-plate mimicking the flap is only considered as the location of distributed sources, not as a scattering
surface. Cartesian coordinates ðx; y; zÞ are also introduced for convenience with x in the direction of the flow; they will be
used for the derivations based on the convected Green's functions. The declination in two dimensions is simply obtained by
putting z¼ z0 ¼ 0.

2.2. Two-dimensional half-plane Green's function

The two-dimensional Green's function for the rigid half-plane in the presence of a uniform mean flow has been derived
by Jones [15] and readdressed by Rienstra [16] starting from its expression in a quiescent medium first proposed by
MacDonald [14]. The formulation includes an optional correction accounting for a full Kutta condition at the trailing edge.
For a trace of the half-plane at y¼0 and xo0 in Cartesian coordinates (see Fig. 2) and for a uniform flow of Mach numberM0

in the positive x direction, the expression reads

GM0 x; x0; kð Þ ¼ 1
β
e� iKM0ðX�X0Þ Gð1=2Þ

M0
ðx; x0; kÞþGK ðx; x0; kÞ

h i
;

where x¼ ðx; yÞ and x0 ¼ ðx0; y0Þ are the observer and source vectors respectively. The dependence e� iωt of monochromatic
waves is implicitly assumed. The first term in the square brackets Gð1=2Þ

M0
is the classical half-plane Green's function corrected

for the convection by the flow, written as

4πGð1=2Þ
M0

x; x0; kð Þ ¼
Z s1

�1
eiKr 1

ffiffiffiffiffiffiffiffiffiffi
1þu2

p duffiffiffiffiffiffiffiffiffiffiffiffiffi
1þu2

p þ
Z s2

�1
eiKr2

ffiffiffiffiffiffiffiffiffiffi
1þu2

p duffiffiffiffiffiffiffiffiffiffiffiffiffi
1þu2

p : (1)

In Eq. (1) r21;2 ¼ r2þr20�2rr0 cos ðθ8θ0Þ, the subscript 0 referring to the source location. K ¼ k=β, β¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

0

q
;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2þy2

q
is the corrected observer distance to the edge with X ¼ x=β and

s1 ¼
2

ffiffiffiffiffiffiffi
r0r

p
r1

cos
θ�θ0
2

; s2 ¼ �2
ffiffiffiffiffiffiffi
r0r

p
r2

cos
θþθ0
2

:

The angles θ and θ0 are defined as the corrected angles from the wake direction x40 such that

cos θ ¼ Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2þy2

q ; cos θ0 ¼
X0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
0þy20

q :

The second term is the correction needed to account for the Kutta condition at the edge. It reads

4πGK x; x0; kð Þ ¼ A0

2
e� iπ=4ffiffiffi

π
p eiKr F�

ffiffiffiffiffiffiffiffiffi
2Kr

p
sin

θ�θ1
2

� �
þF�

ffiffiffiffiffiffiffiffiffi
2Kr

p
sin

θþθ1
2

� �� �
�A0

2
2 eiKX=M0 cosh

βK
M0

y
� �

H �yð Þ; (2)
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where the factor A0 is given by Jones as

A0

2
¼ sign y0

� � ffiffiffiffiffiffiffiffi
2π
Kr0

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�X0

r0

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0

1þM0

s
eiKr0 þ iπ=4

and where θ1 is an imaginary angle such that cos θ1 ¼ 1=M0. H is the Heaviside function and F is the complex function of
complex argument defined by

F zð Þ ¼ eiz
2
Z 1

z
e� it2 dt ¼

ffiffiffi
π

p

2
e� iπ=4 eiz

2
erfc eiπ=4 z

	 

and better expressed in terms of the complementary error function for computations [21]. Eq. (2) is referred to as the Kutta
correction later on. It must be noted that Eqs. (1) and (2) include the additional factor 4π with respect to the original
expressions in [15,16] because Green's function is defined as the response to a unit impulse in the Helmholtz equation.

In the present context of aerodynamic noise sources, the sound field is needed only for dipoles and/or quadrupoles,
depending on the resorted formulation of the analogy. The acoustic pressure of a point dipole of strength F is related to the
gradient of Green's function with respect to the source coordinates, as pðω; rÞ ¼∇Gðx; x0Þ � FðωÞ. When applied to Eq. (1), this
involves the numerical evaluation of integrals of the typesZ s1

�1
eiKr1

ffiffiffiffiffiffiffiffiffiffi
1þu2

p duffiffiffiffiffiffiffiffiffiffiffiffiffi
1þu2

p and
Z s1

�1
eiKr1

ffiffiffiffiffiffiffiffiffiffi
1þu2

p
du:

Unlike the integrals of the first type, the integrals of the second type have no definite value, except if the wavenumber K is
given a small negative imaginary part. This artificial damping is assumed here implicitly and the limit of the result as the
imaginary part goes to zero is taken at the end of the derivations. For both integrals the integration range is split into two
ranges from �1 to 0 and from 0 to s1. Eventually performing the change of variable u0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þu2

p
in the negative range of u

yields the results [22] Z s1

�1
eiKr1

ffiffiffiffiffiffiffiffiffiffi
1þu2

p duffiffiffiffiffiffiffiffiffiffiffiffiffi
1þu2

p ¼
Z s1

0
eiKr1

ffiffiffiffiffiffiffiffiffiffi
1þu2

p duffiffiffiffiffiffiffiffiffiffiffiffiffi
1þu2

p þK�
0 iKr1ð Þ;Z s1

�1
eiKr1

ffiffiffiffiffiffiffiffiffiffi
1þu2

p
du¼

Z s1

0
eiKr 1

ffiffiffiffiffiffiffiffiffiffi
1þu2

p
duþK�

1 iKr1ð Þ; (3)

where K�
n stands for the complex conjugate of the modified Bessel function, related to the Hankel function as

K�
n ixð Þ ¼ iπ

2
einπ=2Hð1Þ

n xð Þ:

The remaining parts of the integrals are computed by numerical quadrature over the constant interval ½0;1� using the
change of variable u¼ s1t.

In the same way the field of a point quadrupole is given by the double scalar product of the quadrupole strength tensor Q
and of the second gradient of Green's function with respect to the source coordinates, say pðω; rÞ ¼Q ðωÞ � �∇∇Gðx;x0Þ. This
leads to an integral with a diverging oscillatory integrand. But performing an integration by parts in this integral yieldsZ s1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þu2

p
eiKr1

ffiffiffiffiffiffiffiffiffiffi
1þu2

p
du¼

Z s1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þu2

p
eiKr 1

ffiffiffiffiffiffiffiffiffiffi
1þu2

p
duþK�

2 iKr1ð Þ�K�
1 iKr1ð Þ
iKr1

:

This splitting has been used for the implementation. Though the derivatives generate cumbersome expressions they can be
implemented in a straightforward way to predict the radiated field of arbitrary source distributions by linear superposition.
This ensures the maximum accuracy by avoiding a numerical treatment of the derivatives, on the one hand, and makes the
analytical solutions a reference for the validation of numerical techniques developed elsewhere, on the other hand. Fur-
thermore exact Green's functions give accurate access to the sound field in the shadow zones of obstacles, unlike simplified
approaches. The shadow zones are defined as the areas from where the source cannot be seen.

Sample results for point dipoles in the vicinity of a trailing edge are reported in Fig. 3. The Mach number is 0.29 and the
dipole inclination angle is αd ¼ 7501 as measured from the flow direction. The Kutta correction is taken into account. It is
responsible for a concentrated contribution along the wake in the continuation of the half-plane. The downstream
expansion of the corresponding trace is only an artefact of the plotting program on a polar mesh. It exhibits the space
periodicity of a pure convected pattern, with an aerodynamic wavelength smaller than the acoustic wavelength. In all plots
the characteristic wavefronts of the free-field dipole remain recognizable, with distortions induced by the diffraction. The
dashed lines indicate the boundaries of the shadow zones. When the main lobe of the dipole impinges on the edge sig-
nificant sound is regenerated in the shadow zone of the half-plane (cases with θ0 ¼ 451, αd ¼ 501). In contrast as the dipole
source is located well away from the edge such as in the case of the upper right plot ðαd ¼ 501; θ0 ¼ 1351Þ, the half-plane
behaves like a reflecting screen: interference patterns are seen in the upper half-space and sound extinction is very effective
in the lower half-space. For the parametric tests reported in Fig. 3 it has been verified that Jones' solution for the Kutta
correction does not affect significantly the acoustic wavefront structure away from the wake. As the dipole approaches the
edge at distances much shorter than the wavelength, the radiated field progressively experiences a fundamental change of
the wavefront structure. This is illustrated in Fig. 4 for the dipole inclined by αd ¼ 501 and at the source angle θ0 ¼ 451.



Fig. 3. Instantaneous wavefronts of point dipoles close to a scattering edge in the presence of uniform flow. Mach number 0.29, flow from left to right. Half-
plane featured by the thick horizontal line. Kutta correction included. Bounds of the shadow areas indicated by dashed lines.
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Wavefronts of opposite phases tend to form on both sides of the half-plane. Furthermore the radiation is enhanced
upstream and goes to zero downstream in the wake. This corresponds to the cardioid far-field sound directivity diagram
classically reported according to the basic factor sin ðθ=2Þ relevant at vanishing Mach numbers (see Section 2.4 and for
instance [23]). At the same time the sound radiation is amplified as the asymptotic regime is entered. Indeed the amplitude
was divided by 3 for the plot in Fig. 4b in order to compare the wavefront structures of Fig. 4a and b.

Typical wavefront patterns of a mixed quadrupole in the vicinity of the edge of a half-plane are shown in Fig. 5. The
quadrupole strength is defined by the components T11 ¼ ð1þ iÞ2=4, T22 ¼ ð1� iÞ2=4 and T12 ¼ �2ð1þ iÞð1� iÞ=4. This source
produces a characteristic wavefront pattern with four spiral branches in free field. It is representative of the leapfrogging of
vortices as described by Bogey et al. [24]. Angles θ0 ¼ 7451 and θ0 ¼ 1351, and two source-edge distances kr0 ¼ 1:57 and
kr0 ¼ 0:157 are selected. For the largest distance the amplitude of the sound field is close to what would be found without
scattering. For θ0 ¼ �451 the resulting sound field appears as very similar to the free-field spiral-like pattern. Two dark
branches and two light ones can be identified. One of them is indicated by the white arrows in Fig. 5a. The pattern rotates in
the counterclockwise direction. This result means that the scattering is ineffective, essentially because the incident acoustic
wavefronts propagate upstream normal to the half-plane. In contrast a clear shadow zone is found below the half-plane for
θ0 ¼ 1351 because the primary sound from the quadrupole is reflected upstream. It gives rise to a slight reinforcement above
the half-plane instead of interference patterns because the distance from the source to its image remains smaller than the



Fig. 4. Asymptotic sound field for a dipole approaching the edge in the presence of uniform flow. Mach number 0.29, flow from left to right. Half-plane
featured by the thick horizontal line. Kutta correction included. Same grey scale as in Fig. 3, attenuated by a factor 3 in plot (b).
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wavelength. For a ten times smaller source-to-edge distance the pressure field again exhibits the characteristic cardioid
pattern of the asymptotic regime, irrespective of the source angle θ0. The quadrupole behaviour of the source is lost at the
benefit of the phase opposition between both sides of the plate. Furthermore the amplitude scale has been divided by the
factor 5 before plotting, which again means that the radiation is also much stronger. No Kutta condition is applied in this test
in order to focus on the effect of reducing the parameter kr0 on the integrals involved in Green's function.

Now the asymptotic range ðkr0⪡1Þ precisely involves the maximum effect of the Kutta condition. This is emphasized by
the numerical test made with the exact 2D solution and reported in Fig. 6 for the aforementioned point quadrupole at the
two flow Mach numbers of 0.06 and 0.35. These values would typically correspond to a low-speed fan blade and to the
maximum speed over an aircraft wing at approach, respectively. The ratio Δ of the amplitudes of solutions with and without
Kutta correction is plotted as a function of the dimensionless distance kr0 in equivalent decibels. This makes sense because
both directivity diagrams exhibit the same cardioid pattern in this limit behaviour. Δ roughly increases from 1 dB to 12 dB as
kr0 drops from 0.26 to 0.026 at the lowest speed, and from 5 dB to 23 dB at the highest speed. The expected value for larger
kr0 is about 0 at M0 ¼ 0:06, suggesting that the Kutta condition has no effect. Though these indicative results are far from
complete, it can be concluded that the amplification by the Kutta condition generally increases with increasing Mach
number and decreasing source-to-edge distance in terms of wavelengths. At vanishingly small values of kr0, the amplitude
ratio in decibels goes proportional to the inverse distance.

In all applications for which trailing-edge noise is a significant contribution, the amplification by the Kutta condition as
formulated by Jones appears a crucial mechanism. As an example for a boundary-layer thickness of 4 mm and a frequency of
2 kHz typical of low-speed fan noise in air-cooling technology, kr0 roughly ranges from 0 to 0.15. The upper bound corre-
sponds to eddies well removed from the edge, for which the asymptotic behaviour is not likely to take place. In contrast
much smaller values enter the asymptotic regime of amplification. At the same time the amplitude of the velocity fluc-
tuations, thus the strength of the quadrupole sources is expected to drop to zero at the wall due to viscosity. As a con-
sequence, a practical lower bound for the parameter kr0 is expected from physical considerations, and the over-
amplification by the Kutta correction is probably limited.

2.3. Three-dimensional half-plane Green's function

The results of Section 2.2 and other tests not reproduced in this study suggest that, as long as a dipole or a quadrupole is
not very close to the edge, the effect of the Kutta correction can be ignored for subsonic flows of Mach numbers up to 0.3. In
such cases the 2D Green's function accounting for the presence of a uniform flow is simply obtained from the corresponding
Green's function in a quiescent fluid by stretching the streamwise coordinate according to X ¼ x=β and by multiplying by the
factor e� iKM0ðX�X0Þ. The same transform holds in a three-dimensional space for a fluid motion normal to the spanwise
direction. Therefore, edge scattering in 3D can be simply assessed from a direct extension of the expression given by
MacDonald [14] for a medium at rest. Green's function for the convected Helmholtz equation now reads
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; (4)



Fig. 5. Instantaneous wavefronts of point leap-frogging quadrupoles close to a scattering edge in the presence of uniform flow. Mach number 0.29, flow
from left to right. Half-plane featured by the thick horizontal line. Evidence of the asymptotic cardioid regime for kr0 ¼ 0:157; grey scale attenuated by a
factor 5 in plots (c) and (d). No Kutta correction.
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where the notations ðr j; SjÞ are similar to ðr j; sjÞ of Section 2.2, except that the spanwise quantity ðz�z0Þ2 is added to the
definition of r2i , z and z0 denoting the spanwise locations of the observer and of the source, respectively. Provided that the
observer lies in the mid-span plane assuming z¼ z0 and that the source terms have no component in the spanwise direction,
the derivations of the acoustic field for dipoles or quadrupoles are similar to the ones made in previous sections. This is more
obvious for high-lift device noise sources if they are precisely interpreted as dipoles normal to the flap surface. Thus
comparing the radiated dipole fields according to both the 3D-midspan and 2D models makes sense. In contrast, quadru-
poles could justify imposing a Kutta condition since they are possibly distributed very close to the edge of the wing. Deriving
a 3D Kutta correction which would extend Jones' analysis has not been attempted here. This could be the matter for a
future work.

It is worth noting that the 3D and 2D half-plane Green's functions are related to each other. The cylindrical wave field of
the 2D function is exactly reproduced from the 3D function by continuously distributing the same point source from
z0 ¼ �1 to z0 ¼ þ1 and integrating between these two limits. Indeed it is found that
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Fig. 6. Kutta-condition amplification on a lateral quadrupole in the limit of small kr0. Δ: amplitude ratio of the solutions with and without Kutta correction
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with η¼ z�z0, by first introducing the following identities:

K�
1 iξð Þ ¼ 1

2

Z 1
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eiξ
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p
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and next permuting the integrations with respect to the variables t and η.
The first application of the present formalism is the derivation of the field of a point dipole, as the theoretical background

for addressing High-Lift Device noise. In forming the scalar product of the dipole source strength and the first gradient of
Green's function, the following integrals are found:Z 1
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and the complementary parts between 0 and Si are computed numerically using the same method as in Section 2.2.
The special case of an observer both in the acoustic far field and in the mid-span plane of the wing of an aircraft is a

configuration of primary interest. It corresponds to ðr j; SjÞ ¼ ðr j; sjÞ if the wing is modelled by a rigid scattering half-plane. In
this case a possible approach for simulating the sound field in 3D from a 2D computational procedure is known as Oberai's
transposition formula [25], applied to long-span bodies by other authors [26]. This transposition relates the distant 3D field
to the 2D field evaluated with the same source. It is based on a splitting of the 3D field into cylindrical harmonics and on the
theorem of stationary phase. The extension of the formula initially derived for a stationary propagation medium to the case
of a uniformly moving one is straightforward and reads

ϕ3DCϕ2D e� iπ=4

ffiffiffiffiffiffiffiffi
K
2πr

r
; (6)

where ϕ3D and ϕ2D stand for the acoustic potentials, with the present notations. Its practical use in connection with HLD
noise is relevant for an observer in the distant field and in the mid-span plane of an aircraft wing segment. Because the
underlying asymptotic development is not very accurate, the validity of the transposition formula needs to be assessed; this
is achieved in Section 2.5, for dipole sources only.

The application to the scattering of quadrupoles requires deriving the second gradient of Green's function, which leads to
cumbersome developments and additional integrals that must be reduced using the same principle as for Eq. (5). Details of
the implementation are given in the Appendix. Sample results are shown in Fig. 7 for the same leapfrogging quadrupole as
in Section 2.2, other source coefficients Tij being zero. The sound field is analyzed in the plane normal to the edge and
containing the source. The mean-flowMach number is 0.29. Two configurations involving different locations with respect to
the edge are considered. For the dimensionless distance kr0 ¼ 5 the spiral wavefronts are still recognized in the upper part of
the plot. Because the quadrupole is located above the half-plane a significant reflection occurs in this region, where
the interfering wavefronts feature a travelling wave along the upper surface. The shadow region receives a low-level
contamination from the trailing-edge scattering. The diffraction is much more critical in the case of a lower dimensionless



Fig. 7. Typical instantaneous wavefront patterns for a leapfrogging quadrupole close to the edge of a half-plane, according to the three-dimensional
Green's function. Mach number 0.29, flow from left to right. (a) Distant source. (b) Source close to the edge.

M. Roger et al. / Journal of Sound and Vibration 362 (2016) 252–275262
distance kr0 ¼ 0:5. The configuration approaches the asymptotic regime for which a cardioid pattern is again observed,
except for the relative extinction angle in the upper half-space. Negligible sound is heard in the wake and out-of-phase
waves travel upstream on both sides of the half-plane. The results confirm the behaviours observed with the two-
dimensional Green's function. They are believed to be representative of some of the installation effects on jet noise. The
sound from the primary sources of a turbofan engine jet under the wing of an aircraft is scattered by the edge of the wing. If
the source-to-wing distance is larger than the acoustic wavelengths the effect reduces to ordinary reflection and diffraction
at the edge with no crucial change in the efficiency and the fundamental radiating properties of the source (Fig. 7a). The
effect could be approximately reproduced with geometrical arguments. In contrast if the sources are very close to the edge
their quadrupole nature is completely restructured by the scattering (Fig. 7b). This rather corresponds to a jet which
interacts aerodynamically with part of the wing or with a trailing-edge flap. In this case the wing strongly modifies the
development of the jet in practice. Furthermore it becomes questionable to independently consider fluctuations coming
from the jet mixing and from boundary-layer turbulence. Mathematically both contributions are described in the same way
except that characteristic scales such as turbulent eddy sizes are larger for the jet in the downstream fully developed region
than for the boundary-layer flow.

2.4. Asymptotic analysis and zero-amplification dipole configuration

The asymptotic cardioid radiation pattern and the associated amplification are observed as a point dipole gets closer and
closer to the edge in terms of acoustic wavelengths. Yet, this general behaviour admits exceptions for special combined
values of the dipole angle αd and of its angular location θ0. The exceptions correspond to a total cancellation of the con-
tribution coming from the definite integrals involved in Green's function. This aspect is independent of the Kutta condition
and is the only remaining one if A0 is set to zero in Eq. (2). Evidence of such a deviation from the asymptotic cardioid regime
is shown in Fig. 8 where the solutions with and without Kutta correction are compared for kr0 ¼ 0:0924 with αd ¼ π=4 and
θ0 ¼ π=2. The Kutta-corrected solution exhibits the high-amplitude cardioid pattern with opposite phases on both sides of
the half-plane (the grey scale is divided by a factor 3 for the comparison). In contrast the no-Kutta solution turns to another
dipole-like pattern aligned with the direction θ¼ 0, free of any amplification; therefore imposing the Kutta condition or not
produces dramatically different solutions. The origin of this special behaviour is explained now based on an asymptotic
analysis, from which the Kutta correction is discarded.

The asymptotic expressions of the 2D and 3D Green's functions are derived from the exact ones by simple developments,
briefly outlined here. First the modified Bessel functions are expanded for large arguments as
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Fig. 8. Wavefront patterns for an oblique dipole very close to the edge, according to the solutions with (a) and without (b) Kutta correction; critical
configuration αd ¼ ðπ�θ0Þ=2. Grey scale of plot (a) attenuated by a factor 3. Parameters indicated on the plot.
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provided that ðz�z0Þ remains small. Equivalently the observer is assumed not approaching the plane z¼0. As a result the
integrals are approximated as
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for the 3D and 2D cases, respectively, and similar expressions with S2 and s2. S1;2 and s1;2 are small quantities in the limit of
sources very close to the edge, therefore the integrals can be assimilated to their upper bounds. This leads to the asymptotic
forms of the 3D and 2D Green's functions as
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respectively. φ denotes the angle of the projection of the observer in the plane (y,z) with respect to the y axis.
The 2D asymptotic Green's function in free field would be obtained from the limit of the Hankel functions for large

arguments as

G1 x; x0ð Þ � eiπ=4

4β

ffiffiffiffiffiffiffiffiffi
2

πKr

r
eiKðr �M0XÞ:

Therefore the factors in front of the curly brackets in Eqs. (7) and (8) coincide with the far-field approximations in free field.
The same expression is found in the brackets as soon as φ¼ π=2, which stresses the fact that the scattering is funda-

mentally a cylindrical process even in a three-dimensional space. Furthermore the ratio of both functions is identical to
Oberai's transposition formula (Eq. (6)). Because source-associated space derivatives of Green's function are involved in the
radiation by multi-pole sources, the term 1 in the brackets has no effect and factors ðKr0Þ�1=2 and ðKr0Þ�1 are produced, for
dipoles and quadrupoles respectively. Since Kr0 is a small parameter, the net result is some amplification of the natural
radiation by the sources. Furthermore the asymptotic directivity is determined by the factor sin ðθ=2Þ and features a cardioid
pattern in the limit of low Mach numbers, no sound being radiated in the continuation of the half-plane and the maximum
sound being radiated along the half-plane. These asymptotic results are confirmed by the exact simulations in (Figs. (4) and
5). Though the derivations are not detailed here, the 3D sound field of a dipole of strength P and of angle αd is easily obtained
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from the asymptotic formulation, Eq. (7), as
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As a result the acoustic pressure drops to zero if αdþθ0=2¼ π=2 in a quiescent fluid or close to that condition in a
subsonic flow. This means that the dominant term according to the asymptotic analysis is exactly zero. Sound is still pro-
duced by all terms neglected in the developments, at a much lower level of the same order of magnitude as the free-field
radiation. The cancellation of the dominant term is not believed to occur in real HLD systems because the flap is positioned
below the wing trailing edge. Therefore amplification is always expected at the lowest frequencies.

2.5. Distributed flap-noise sources

The edge-scattering model of Section 2.3 is now used jointly with a source model of the lift induced on an airfoil by
incident turbulence in order to illustrate the scattering of flap noise by the wing of an aircraft. Complementary trailing-edge
noise sources that take place at both trailing edges of the wing and of the flap are discarded from the analysis. The interest is
focussed on the amount of scattering and the subsequent free-field and installed radiation features for distributed sources
that concentrate at the leading edge of the flap.

The induced unsteady lift on the flap acting as sources at a given frequency is modeled using Amiet's theory [27]. A single
parallel gust (Fourier component) is considered, for which the unsteady lift distributes as
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and ~w is the upwash amplitude of the gust. The quantity ℓðy�1Þ provides a consistent description of the source amplitude and
phase distributions on the flap. It features an inverse-square root singularity at the leading edge. The latter is integrable and
has been removed by replacing the continuous distributions by a set of discrete dipoles of finite amplitudes. In standard
applications of Amiet's theory ℓðy�1Þ is considered along the chord line of angle αf (see Fig. 9). According to classical linearized
theories of unsteady aerodynamics it can also be displaced on the mean-camber line of the flap, of angle αLE at the leading
edge, as long as the camber remains moderate. This modifies the orientation of the equivalent dipoles.

First computations based on the 2D model and on the transposed 3D model according to Oberai's transposition formula,
Eq. (6), are compared in Fig. 10, where directivity diagrams are reported for various observer distances from the edge. In all
plots the amplitude is scaled by the distance for an easier comparison. The parameters are representative of a real aircraft.
The polar plots have their origin on the scattering edge so that the flap is shifted towards the negative angles; as a result the
lobes are artificially distorted with respect to what would appear with a more conventional origin taken at the leading-edge
of the flap. The chord length is 0.4 m. Oberai's transposition formula, Eq. (6), is found fully relevant for non-dimensional
distances larger than kr¼ 16 at the frequency of 500 Hz (note that the relative lobe expansion in Fig. 10(a) at kr ¼ 8 is caused
by the relative proximity of the flap). At the higher tested frequency of 1 kHz, Oberai's transposition is found relevant only
for kr¼ 32. This value is retained as an acceptable threshold for validating the transposition. In typical small-scale wind-
tunnel testing of a HLD mock-up scaled to 1/10, with the realistic Mach number value of 0.2 and the microphone distance of
Fig. 9. Typical wing-flap configuration representative of landing conditions. Straight lines: half-plane approximation of the wing and mean-camber flap
surface.
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Fig. 10. Flap-noise directivity patterns with wing scattering, for various edge-observer distances. Corrected 2D calculation (—) versus 3D calculation (- - -).
No Kutta correction. Mach number 0.35. (a) 500 Hz; (b) 1000 Hz. Chord length c¼0.4 m, leading-edge distance to the edge ðx0; y0ÞLE ¼ ð�0:05 m;0:07 mÞ,
flap deflection angle 30°.
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r¼2 m, the condition kr432 is ensured above a frequency of 800 Hz, representative of 80 Hz at full size. Significant errors
are expected at even lower frequencies if two-dimensional models or simulations are compared with measurements.

Fig. 11 compares the total 3D field in the presence of the scattering edge with the free field at different frequencies, for the
same basic parameters as in Fig. 10. The distance to the edge is set to kr¼ 16 for 63 Hz and 250 Hz, and to kr¼ 32 for 500 Hz and
1000 Hz to ensure satisfactory geometrical far-field conditions with respect to the volume of fluid embedding the flap and the
edge. The calculations are repeated for two symmetrical positions of the flap leading edge, either 5 cm upstream (grey) as in the
reference case of Fig. 10 or 5 cm downstream (black) of the scattering edge, and for the same vertical distance. Edge scattering
starts to force the cardioid pattern below 250 Hz in this example, as shown by Fig. 11a and b. According to the asymptotic trend of
point dipoles discussed in Section 2.2, the amplitude of the sound field also increases significantly (Fig. 11a). At 1000 Hz in
Fig. 11d, the free field and the edge-scattered field coincide when the flap is shifted downstream. In contrast both diagrams
significantly differ when the flap is shifted upstream. The net effect is an enhanced radiated sound towards the ground around
the angles �1101 to �1151 and some reduction in the opposite directions. This is attributed to the masking-and-reflection effect
on the dominant flap sources, caused by the overlap between the flap leading edge and the wing trailing edge. It is worth noting
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Fig. 11. Flap-noise directivity patterns of a deployed flap at various frequencies according to free-field radiation (- - -) or including the 3D model of wing
scattering (—). No Kutta correction. Dimensionless gap size indicated on the plots. Mach number 0.35. Chord length c¼0.4 m, flap deflection angle 30°.
Edge distance kr¼ 16 ((a) and (b)); kr¼ 32 ((c) and (d)). x0 ¼ �5 cm (grey) and x0 ¼ þ5 cm (black).
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that because of the inverse-square root singularity the leading-edge sources experience more pronounced scattering than sources
distributed farther downstream. At 500 Hz (Fig. 11c), the scattering is responsible for a different directivity: the main lobe around
�1301 is shifted below the screen and focuses upstream. At the same time the sound radiation is globally reduced, especially in
the case of the overlap. In usual configurations of a deployed flap and at low frequencies for which the non-dimensional distance
is smaller, the presence of the wing makes more sound expected to radiate toward the ground and in the upstream direction.
Wing-scattering affects the frequency distribution of flap noise depending on the radiation angle, or equivalently depending on
the precise location of the observer. The present calculations exhibit intermediate behaviours between the free-field radiation of
an airfoil in a turbulent flow and the low-frequency cardioid approximation. This makes the derivations based on the exact
Green's functions crucial for a correct modeling of the scattering effect.
3. Scattering by a rigid corner

This section is dealing with localized aeroacoustic phenomena at the corners of a flap side-edge. The formation of vortical
patterns from the corners and the associated sound radiation have been addressed by vortex methods and numerical



Fig. 12. Flap side-edge sketch and equivalent corner reference frame.
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approaches (see for instance [28,29] and more recently [30]). The present work provides a complementary view based on
the use of the corner Green's function.

� Preliminary considerations on the source-to-corner distance are given in Section 3.1.
� The exact Green's function for a stationary propagation medium is detailed in Section 3.2.
� A sample implementation is presented in Section 3.3.
� The asymptotic regime for a far-field observer and a source close to the corner is investigated in Section 3.4.
� The effect of a uniform flow is finally considered in Section 3.5.

3.1. Flap side-edge noise – preliminaries

Side edges of lifting surfaces such as high-lift flaps exhibit two corners, on the pressure side and the suction side, as
depicted in Fig. 12. Free shear layers detach from the corners before rolling up and merging to form a structured tip vortex.
This complicated flow is unsteady and fully three-dimensional with varying features along the chord, as thoroughly
described by Angland [34] and Brooks and Humphreys [20], for instance. At relatively low and moderate frequencies in the
sense that kh⪡1 where h is the thickness of the flap, the side-edge behaves like the edge of a large plate of very small
thickness. The physics is similar to that of trailing-edge noise except that the surrounding uniform flow is parallel to the
side-edge instead of being perpendicular. The equivalent sources are convincingly interpreted as dipoles defined by the
unsteady pressure jump between the pressure side and the suction side and radiating in free space, following Ffowcs
Williams and Hawkings' statement of the analogy [20]. This first asymptotic view holds for the large-scale oscillatory
motion of the tip vortex. That motion dominantly contaminates the aft region of the flap, near the tip/trailing-edge corner.
Oppositely the initial small-scale oscillations of the shear layers that take place close to the side-edge corners are a high-
frequency motion for which kh41. In this case both corners tend to decouple. Vortex dynamics developing in the very
vicinity of one corner is not significantly influenced by the other corner which is quite far away in terms of aerodynamic
wavelengths. For this other asymptotic regime, the dominant physics is interpreted as equivalent scattering of quadrupoles
by a rigid corner of infinite sides according to Lighthill's original point of view. Of course this interpretation only makes
sense for sources such that kr0⪡1.

High-lift device noise is also analyzed from the standpoint of a distant observer. Therefore Green's function needs to be
considered only in the limit of a source in the acoustic near field of the corner and an observer in the acoustic far field such
that kr̂⪢1. Now the flight Mach number of an aircraft in approach can reach 0.3, suggesting that sound convection effects
must be included in the analysis for physical consistency. Within the scope of a simplified analytical approach, this is
achieved by assuming a uniform flow of some Mach number M0 aligned with the edge of the corner, along the direction x1
according to the sketch in Fig. 12 and by considering Green's function for the convected Helmholtz equation. Note that
Cartesian coordinates will be preferred when uniform flow is considered (Section 3.5).

3.2. Wedge and corner Green's functions

Green's function of the space limited by a wedge for the Helmholtz equation, referred to as the wedge Green's function,
has been derived first by MacDonald [14] in spherical coordinates in the case of rigid walls, for source and observer located
in the same plane normal to the wedge. Another expression for soft walls and arbitrary source–observer configurations has
been derived by Mel'nik and Podlipenko [31]. The case of the rigid wedge with arbitrary source and observer locations is
obtained by combining both. As seen in Fig. 13 for the corner ðΦ¼ 3π=2Þ, the source and observer coordinates are ðr̂0;Θ0;ϕ0Þ
and ðr̂ ;Θ;ϕÞ, respectively. MacDonald's formulation assumes Θ0 ¼Θ¼ π=2.

Green's function for a rigid wedge with an apex angle Φ reads

G x; x0ð Þ ¼ �πi

4Φ
ffiffiffiffiffiffiffi
r̂ r̂0

p X1
m ¼ 0

εm cos m0ϕ0
� �

cos m0ϕð Þ
X1
κ ¼ 0

2m0 þ4κþ1ð ÞΓð2m
0 þ2κþ1Þ

Γð2κþ1Þ

�P�m0
m0 þ2κð cos Θ0ÞP�m0

m0 þ2κð cos ΘÞJm0 þ2κþ1=2ðkro ÞHð1Þ
m0 þ2κþ1=2ðkr4 Þ; (9)

where εm is 1 for m¼0 and 2 for m41 [13], 0oΦo2π and m0 ¼mπ=Φ. P�m0
m0 þ2κ is the general Legendre function. Jυ and Hð1Þ

υ



Fig. 13. Cartesian and spherical reference frames attached to a corner, with arbitrary source and observer locations. Parallel-and-meridian mesh shown for
clarity.

M. Roger et al. / Journal of Sound and Vibration 362 (2016) 252–275268
are the Bessel and Hankel functions of the first kind and of order υ, respectively. Depending on relative source and observer
locations, r4 ¼maxðr̂ ; r̂ oÞ and ro ¼minðr̂ ; r̂ oÞ.

The geometrical expansion of the Legendre function P�m0
m0 þ2κð cos ΘÞ

P�m0
m0 þ2κ cos Θð Þ ¼ 21�m0 ð sin ΘÞ�m0ffiffiffi

π
p

Γð1=2�m0Þ �
X1
n ¼ 0

Γðnþ1=2�m0ÞΓð2κþnþ1Þ
Γðnþ1ÞΓð2κþnþm0 þ3=2Þ sin 2nþ1þ2κð ÞΘ½ � (10)

is used in the paper for the computations [21].
Taking Φ in Eq. (9) as 3π=2 provides the corner Green's function as

G x;x0ð Þ ¼ � i

6
ffiffiffiffiffiffiffi
r̂ r̂ o

p X1
m ¼ 0

εm cos 2mϕ0=3
� �

cos 2mϕ=3
� �� X1

κ ¼ 0

4m=3þ4κþ1
� �Γð4m=3þ2κþ1Þ

Γð2κþ1Þ

�P�2m=3
2m=3þ2κð cos Θ0ÞP�2m=3

2m=3þ2κð cos ΘÞJ2m=3þ2κþ1=2ðkro ÞHð1Þ
2m=3þ2κþ1=2ðkr4 Þ: (11)
3.3. Scattered field of a quadrupole

For the sake of validation, analytical results for simple point sources in a quiescent medium at a single frequency are
compared with numerical simulations in this section. The reference numerical solution is obtained from a commercial
Boundary-Element Method (BEM) solver LMS Virtual Lab. The solver is known to be able to handle diffraction problems for
unbounded domains [32]. Since the BEM technique requires at least 10 mesh points per wavelength, the tests are performed
at two reasonably low frequencies with regards to the configuration. A lateral quadrupole and a longitudinal quadrupole
with axes along the radial direction are tested. The quadrupoles are located at ð1:24λ; π=2; π=4Þ, with the source strength
Q ðωÞ ¼ ð0:01þ i0:01Þ kg m2=s2. In order to minimize the effect of the free ends of the computational domain along the
direction Θ¼ 0, the corner is featured by two flat plates of size 7λ� 7λ and the radiated field is considered in the mid plane
at Θ¼ π=2. The total number of acoustic elements is equal to 7200. The size of the quadrilateral elements, lmax 	 0:06λ at the
first frequency, is satisfying the BEM criteria [33]. The directivity diagrams of the two quadrupole-corner configurations are
plotted in Fig. 14a and b. The line and symbols stand for the analytical and BEM predictions, respectively, at a distance of 3λ
from the corner. The very good agreement validates the implementations. For both quadrupoles, the discrepancies between
the analytical and numerical results are less than 1 dB. They are attributed to the domain truncation inherent to the
numerical method.

In order to avoid mathematical complexity, the present investigation is split into two steps. A parametric analysis is first
performed on Green's function with no flow in order to determine the range of practical values of the parameters kr̂0 and kr̂
for which the asymptotic regime is ensured. In a second step the effect of uniform flow is introduced in the asymptotic
Green's function only.
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Fig. 14. Directivity patterns of lateral (a) and longitudinal (b) quadrupoles in the vicinity of a corner. Sound levels in dB. Analytical model (—) versus BEM
results (- � -). Source coordinates ðr̂0 ;Θ0 ;ϕ0Þ ¼ ð1:24λ; π=2; π=4Þ; observer distance 3λ.
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3.4. The asymptotic regime

Accounting for a source located in the immediate neighborhood of the wedge, kr̂0⪡1, and for a far-field observer, kr̂⪢1,
the Bessel and Hankel functions can be replaced by their asymptotic forms [21]:

Jm0 þ2κþ1=2 kr̂0
� ��

ffiffiffiffiffiffiffiffiffiffi
2kr̂0
π

r
ð2kr̂0Þm

0 þ2κþ1=2 Γðm0 þ2κþ1Þ
Γð2m0 þ4κþ2Þ;

Hð1Þ
m0 þ2κþ1=2 kr̂

� �� � i

ffiffiffiffiffiffiffiffi
2
πkr̂

r
eikr̂ e� iðm0 þ2κÞπ=2: (12)

Furthermore the κ¼ 0 term of Eq. (9) obviously dominates and the other terms can be discarded [13]. Therefore, com-
bining the asymptotic definitions Eq. (9) becomes

G x; x0ð Þ ¼ �eikr̂

2r̂

X1
m ¼ 0

εm cos m0ϕ0
� �

cos m0ϕð ÞP�m0
m0 cos Θ0ð ÞP�m0

m0 cosΘð Þ � ð2kr̂0Þm
0
Γ m0 þ1ð Þ e� im0π=2: (13)

The decrease of sound with observer distance for a point monopole located at the dimensionless distance to the wedge
kr̂0 ¼ 0:1 is plotted in Fig. 15. The source and observer angles are ϕ0 ¼ π=6 and ϕ¼ 5π=4, respectively, with Θ0 ¼Θ¼ 0. The
strength of the monopole is selected as qðωÞ ¼ ð0:01þ i0:01Þ kg=s2. The solid and dashed lines stand for the exact analytical
solution, Eq. (11), and the asymptotic formulation, Eq. (13), respectively. Both solutions nearly coincide above kr̂ ¼ 3, where
the far-field decay 1=r̂ is reached. The same test for a longitudinal quadrupole is also reported in Fig. 15. The strength of the
quadrupole is again Q ðωÞ ¼ ð0:01þ i0:01Þ kg m2=s2 and the plot is shifted down by 90 dB for the sake of comparison. Both
the exact and asymptotic solutions are now found to converge beyond the indicative threshold kr̂ ¼ 20.

Eq. (13) still includes a summation over all mode orders m. Since spatial derivatives with respect to source coordinates
will be applied with the constraint kr̂0⪡1 in the asymptotic regime, the field will be dominated by the smallest orders
leading to negative values of m0 �1. Therefore, only m¼0 and m¼1 need to be retained in Eq. (13). Now P0

0ð cos ΘÞ ¼ 1, and

P� ν
ν cos Θð Þ ¼ 2� ν sin Θ½ �ν

Γðνþ1Þ :

Finally the expression of the asymptotic Green's function follows as G¼ G0þG1, with

G0 x; x0ð Þ ¼ �eikr̂

3πr̂
;

G1 x; x0ð Þ ¼ �2eiðkr̂ �π=3Þ ðkr̂0Þ2=3
3πr̂22=3Γð5=3Þ

cos 2ϕ0=3
� �

cos 2ϕ=3
� �

sin Θ0½ �2=3 sin Θ½ �2=3: (14)

For source and observers located in the plane Θ0 ¼Θ¼ π=2, the expressions still reduce to the ones given in the refer-
ences [35,13] and can be seen as a complete 3D extension of the latter.



Fig. 15. Near-field to far-field sound pressure level decrease of a monopole and of a longitudinal quadrupole located nearby a corner. kr̂0 ¼ 0:1. Exact (—)
and asymptotic (- - -) solutions.
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3.5. Effect of uniform flow – application to flap side-edge noise

As the uniform flow induces anisotropy, the physics is better addressed in Cartesian coordinates ðx1; x2; x3Þ, with x1 along
the flow direction ðΘ¼ 0Þ and x2 along the direction normal to the edge ðϕ¼ 0Þ. Because the boundary conditions of the
Helmholtz problem in the presence of the corner are independent of the coordinate x1 along the edge, the effect of a
uniform flow is simply included in the analysis by performing the same change of variable as used in Section 2.2 for the
scattering by a trailing edge. The present case is simpler in the sense that no Kutta condition needs to be considered. Green's
function with flow GM0 is obtained from the one in a stationary medium G by the formula

GM0 x;x0; kð Þ ¼ 1
β
G x;Y;Kð Þ eiKM0ðX1 �Y1Þ (15)

with ðX1;Y1Þ ¼ ðx1; y1Þ=β, K ¼ k=β, β¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

0

q
. x¼ ðX1; x2; x3Þ and Y¼ ðY1; y2; y3Þ stand for the observer and source coor-

dinate vectors, respectively. Eq. (15) applies to both exact and asymptotic Green's functions. Only the latter is addressed
here. It is worth noting that when calculating the double gradient with respect to source coordinates, the terms corre-
sponding to cos ð2ϕ0=3Þ are not affected by the flow.

The asymptotic Green's function with flow reads, combining spherical and Cartesian coordinates for convenience,

GM0 x; x0ð Þ ¼ �eikðS0 þM0x1Þ=β2

4πS0
�2�2=3 e� iπ=3 eikðS0 þM0x1Þ=β2

πS0Γð2=3Þ

� cos 2ϕ0=3
� �

cos 2ϕ=3
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x22þx23
q

S0

2
4

3
5
2=3

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y22þy23

q� �2=3
; (16)

with S0 ¼ x21þβ2ðx22þx23Þ
 �1=2

. The cosine terms of angles ϕ and ϕ0 only involve coordinates ðx2; x3Þ and ðy2; y3Þ. The final
expression exhibits the property

∂GM0

∂y1
¼ ∂2GM0

∂y21
¼ 0:

Therefore dipole or quadrupole components aligned with the streamwise direction will produce no scattering, as expected.
The far-field directivity of the sound field is determined by Green's function via the observer coordinates, whereas the

amplitude is determined by the source parameters only. Introducing the emission angle θ0 such that

cos θ0 ¼
x1
S0
; sin θ0 ¼

β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22þx23

q
S0

leads to the expression of the directivity function

D xð Þ ¼ �eiðk=β
2ÞS0 1þM0 cos θ0½ �

ð2βÞ2=3πS0Γð2=3Þ
e� iπ=3 cos

2ϕ
3

� �
sin θ0

 �2=3
:



Fig. 16. (a) Directivity pattern of the sound from a source close to a rigid corner: asymptotic regime. (b) Directivity diagrams in the plane Θ¼ π=2 as a
function of the source-edge distance, according to the exact and asymptotic formulations, for a longitudinal quadrupole Qrr. Sound pressure level scaled by
the factor ðkr̂0Þ�4=3. M0 ¼ 0.
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This function is plotted in Fig. 16a. It is found that in the asymptotic regime radiation goes to zero at the angle ϕ¼ 3π=4.
The same trend would be followed by any kind of source because it is imposed by Green's function itself. As a result the
initial shear-layer oscillations developing from the pressure-side corner of a flap side-edge radiate no sound at the side-line
angle of 45° from the vertical (fly-over) plane. Because of the factor sin θ0, no sound is radiated along the direction of the
corner line that is moderately inclined with respect to the flight-path direction for an aircraft. Even in the presence of
uniform flow symmetrical sound amplitudes are radiated upstream and downstream, which is typical of equivalent dipole
sources perpendicular to the flow direction. The maximum sound is radiated along the sides of the corner, normal to the
edge. These features are similar to the cardioid pattern of the asymptotic Green's function for the edge of a rigid half-plane,
characteristic of trailing-edge noise sources (Section 2).

The amplitude is given by the term Qij∂2G=∂yi ∂yj with summation on the indices 2 and 3 only. The double space
derivatives of the leading term ðkr0Þ2=3 of Green's function with r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y22þy23

q
make an expected amplification scaling as

ðkr0Þ�4=3. The amplification is less pronounced than that reported by Ffowcs Williams and Hall, scaling as ðkr0Þ�3=2, in the
similar problem of quadrupole sound scattering by the edge of a half plane [3]. It is worth noting that for shear layers
detaching from the corners of a side-edge, the fluctuating velocity components are precisely large in the directions y2 and y3
and small along y1.

In the amplified asymptotic regime the sound level at large distances is expectedly constant when scaled by the factor
ðkr0Þ�4=3. This is checked in Fig. 16b, where the directivity as deduced from the exact solution is computed for small source-
to-corner distances. All scaled plots tend to collapse and coincide with the theoretical dependence cos ð2ϕ=3Þ as the source



Fig. 17. Qualitative iso-contour structure of Lighthill's stress tensor around a flap side-edge at high frequency, showing dominant contribution from the
lower corner. Plots in a plane normal to main flow direction U0, at 50 percent chord. Reproduced from reference [36].
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parameter kr0 vanishes. The results suggest that the asymptotic regime is entered when kr0o0:1. This means that quad-
rupole sources located farther away from the corner nearly radiate with the same efficiency as in free field, experiencing no
amplification. As such they do not contribute significantly to the sound field at low Mach numbers because they remain
much smaller than dipole sources distributed elsewhere. In contrast quadrupoles in the very vicinity of the corner are
amplified. Their quadrupole nature is overwhelmed by the scattering process which produces more efficient dipole-like
radiation.

The same discussion holds as well for the disturbances originating from the upper (suction-side) corner, at the price of a
change of axes. Therefore that contribution radiates significant sound in the aforementioned side-line direction. But both
corners do not produce identical flows at the same chordwise location, as suggested by flap-side edge flow and noise
investigations reported in the literature [36]. A typical distribution of Lighthill's stress tensor Tij in a plane normal to the
side-edge at 50 percent chord according to numerical simulations is plotted as iso-value contours in Fig. 17, from Streett
[36]. A high-amplitude quadrupole field is developing from the lower corner where the flow separates mainly because of the
spanwise outboard secondary flow from the flap pressure side. In contrast the secondary vortex sheet starting from the
upper corner is very weak. More generally the local contributions along the chord line depend on the relative states of the
separating shear layers, as well as on the angle of attack of the flap. As a consequence the lower corner is expected to
produce the highest contribution to the sound in the example. More precisely the dominant sound comes from the parts of
Tij close enough to the corner to enter the asymptotic regime characterized by amplification. For this contribution at suf-
ficiently high frequencies and for observer locations facing the pressure side, ignoring the effect of the upper corner and
resorting to the present Green's function makes sense.

The expected extinction at 45° is indeed observed, at least qualitatively, in the computations by Streett [36] at very high
frequencies. In contrast the author also reports a cardioid directivity pattern in a plane x1 ¼ 0 normal to the flap and
containing the span at lower frequencies. No mention of the Helmholtz number kh is made in the referenced paper, hence
no precise bounds can be defined for the asymptotic regime. Nevertheless the present analysis is believed to hold at least
within a small circle around the bottom corner of the plot of Fig. 17.

It must be noted that the boundary layers developing on the pressure side of a flap also possibly carry small-scale
turbulence that is convected in the spanwise direction over the corner, independent of any other disturbances developing in
the free shear-layers. Noise radiation similar to trailing-edge noise is expected to take place for this boundary-layer tur-
bulence. This aspect of flap side-edge noise could also be described using the present corner Green's function.
4. Conclusion

Exact Green's functions for the Helmholtz equation and for rigid half-plane and wedges have been implemented from
the literature and used in this work, in order to highlight fundamental aspects of sound diffraction by edges and corners in
high-lift devices. This could also be used for jet–wing interaction problems. Furthermore the effect of uniform fluid motion
has been included in the formulations. In most cases and for both configurations fluid motion only causes distortions
without fundamental changes in the general physics, at least for the moderate Mach numbers of interest in the technology
of high-lift devices.
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In the case of trailing-edge scattering the relative flow direction is considered normal to the edge. Both the exact half-
plane Green's function and its asymptotic reduction for a source very close to the edge in terms of acoustic wavelengths
have been investigated. The main outcomes are listed below.

� The characteristic radiation pattern of the asymptotic regime is a cardioid, with zero sound in the wake and maximum
sound in the opposite direction. The regime is continuously approached when progressively reducing the source
Helmholtz number kr0; it typically holds for kr0o0:1 for both dipoles and quadrupoles and corresponds to a strong
amplification, with phase opposition between both sides of the half-plane.

� The Kutta condition still significantly enhances the acoustic radiation in this regime. The effect increases with the
Mach number.

� Both effects expectedly play a role in the scattering of flap noise by the wing of an aircraft for the first third-octave bands
involved in the calculation of the EPNL (Effective Perceived Noise Level used to quantify the noise exposure around airports).

� When the observer is moved to the far field and for small values of kr0 Green's function reduces to the simple closed-form
expression used in the literature of trailing-edge noise.

� The main features of the scattered fields in the two-dimensional and three-dimensional formulations are identical. A
classical transposition formula relating the former to the mid-span plane reduction of the latter in the far field has been
extended to account for the effect of mean flow. It is shown to be valid for Helmholtz numbers based on the observer
distance beyond kr¼ 30.

The exact Green's function for the rigid corner in a medium at rest has been implemented and extended to account for
the presence of a mean flow. In this case the mean flow is assumed uniform and parallel to the wedge. The formulation has
also been specified in the asymptotic regime of a near-field source and a far-field observer. This simplification is relevant to
investigate the high-frequency flap side-edge noise generated by initial oscillations of the shear layers detaching from the
side-edge corners, during approach and landing operation. The main results are as follows.

� The asymptotic sound radiation again involves strong amplification of the equivalent quadrupoles as typically kr0r0:1. In
this regime the radiation is maximum normal to the edge along the sides of the corner and exactly zero along the
bisectrix of the corner apex angle.

� The asymptotic analysis is reliable whenever the conditions kr0⪡1 and kh41 are fulfilled together, with h being the flap
thickness. It is more likely to make sense in the modern very large aircraft architectures, for oblique side-line radiation.

� The amplification means that the radiation efficiency of the sources increases, in other words that their equivalent polar
order is reduced by one unit. This general property is similarly pointed out by Howe [2] using the formalism of compact
Green's functions.

The present exact formulations of Green's functions for the Helmholtz equation cover all possible configurations. In
particular they are the only relevant way of quantifying the sound in the shadow region of simple obstacles. They also
provide reference solutions, dedicated to the validation of numerical simulations, on the one hand, and to the assessment of
the validity range of simpler, asymptotic formulations, on the other hand.
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Appendix A. Implementation of the integrals

A.1. Splitting formulae

All components of the first and second gradients of the three-dimensional half-plane Green's function involve the same
infinite-bound integrals with derivatives of K�

1 in the integrands. Classical relationships between modified Bessel functions
and their derivatives can be used to reduce the integrals. From [21]

K�0
1 iξð Þ ¼ K�

0 iξð Þþ i
ξ
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1 iξð Þ; K�0

0 iξð Þ ¼ K�
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K�00
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ξ
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for any positive value of ξ, then
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Since equivalent expressions hold with u1 and r 0, this will not be repeated later on in the Appendix.
Noting that the integrands are symmetric functions, the following identity is useful for practical implementation [37]:
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Similarly Z 1
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Furthermore, by identifying the formal derivatives of both sides of Eqs. (17) and (18) with respect to r or K, other formulae
are obtained as Z 1
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Finally Z 1
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These identities allow splitting the infinite integrals into two parts, so that one of them has a closed-form expression
whereas the remaining one must be computed numerically but is bounded.

A.2. Quadrature of bounded parts

Introducing the function Q ¼ Kr
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þu2

p
for simplicity, the bounded parts of the integrals involving derivatives of the

modified Bessel functions can be written in a convenient way for numerical implementation asZ u0

0
K�00
1 iKr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þu2

p	 
 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þu2

p
du¼ 1

Kr

Z u0

0
� iK0 iQ

	 

þK1 iQ

	 

Q 1� 2

Q
2

" #( )�

du;

Z u0

0
K�0
1 iKr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þu2

p	 

du¼

Z u0

0
K0 iQ

	 

� i
Q
K1 iQ

	 
� ��
du:

Finally, routine instructions are only needed for the functions K0 and K1. It must be noted that because the integrands are
even functions the negative bounds u0;1 can be replaced by their absolute values provided that the signs of the integrals are
changed.
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