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a b s t r a c t

An original analytical approach is proposed to model the broadband trailing-edge noise
produced by high-solidity outlet guide vanes in an axial turbomachine. The model is
formulated in the frequency domain and first in two dimensions for a preliminary
assessment of the method. In a first step the trailing-edge noise sources of a single vane

is expanded in a series of plane-wave modes. A criterion for the distance of the dipole to
the trailing-edge and a scaling of its amplitude is defined to yield a robust model. In a
second step the diffraction of each plane-wave mode is derived considering the cascade as
an array of bifurcated waveguides and using a mode-matching technique. The cascade
response is finally synthesized by summing the diffracted fields of all cut-on modes to
yield upstream and downstream sound power spectral densities. The obtained spectral
shapes are physically consistent and the present results show that upstream radiation is
typically 3 dB higher than downstream radiation, which has been experimentally
observed previously. Even though the trailing-edge noise sources are not vane-to-vane
correlated their radiation is strongly determined by a cascade effect that consequently
must be accounted for. The interest of the approach is that it can be extended to a three-
dimensional annular configuration without resorting to a strip theory approach. As such it
is a promising and versatile alternative to previously published methods.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The design of many axial-flow fan stages involves a rotor and a downstream row of stationary outlet guide vanes called
stators as shown in Fig. 1. The aerodynamic noise of the rotor–stator stage is caused by various aerodynamic interactions, all
responsible for unsteadiness of the velocity relative to the blades/vanes. According to Ffowcs Williams and Hawkings'
acoustic analogy and for subsonic Mach numbers, sound mainly originates from the fluctuating lift forces that result from
this unsteadiness, all acting as equivalent dipoles [1].

The main manifestation of this generic mechanism is the wake-interaction noise produced as the wakes of the rotor
blades impinge on the stator vanes. The mean velocity deficit and the turbulence in the wakes generate tonal noise and
broadband noise, respectively, the sources of which are distributed on the vanes. Similarly, stationary inflow distortions and
ingested turbulence at inlet are the origin of tonal and broadband noise generated by the rotor blades. Independently the
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Nomenclature

a constant
aj; aj pressure and potential coefficients for plane

waves
Aj
m;B

j
s transmitted and reflected mode amplitudes,

single interface
c chord length
c0 sound speed
D0
m;U

0
m downstream and upstream mode amplitudes

in the channels
E; F Fresnel integral and related function
h inter-vane channel height
k¼ω=c0 acoustic wavenumber
K ¼ k=β scaled wavenumber
K ðjÞ axial wavenumber in the channels
Km incident axial wavenumber
K

j
s effective axial wavenumbers of reflected/

transmitted waves
ℓy wall-pressure spanwise coherence length
L vane spanwise extent
M0 axial Mach number
p; p0 acoustic pressure
rc radius of the unwrapped cut of the stator
ðr0; θ0Þ; ðr; θÞ source and observer cylindrical coordi-

nates around an edge
ðr0; θ0Þ; ðr ; θÞ same coordinates corrected for convection
R corrected source-to-observer distance
Rs; Ts reflected and transmitted mode amplitudes,

double interface
R1;R2 hub and tip radii
t time
Ur ;Ua inlet and outlet velocities of a stator vane
U0 reference freestream velocity

V vane number
vx acoustic axial velocity
vhK hydrodynamic velocity associated to the Kutta

condition
ðx; yÞ axial and transverse Cartesian coordinates
X ¼ x=β scaled coordinate
αs
j

scattered transverse wavenumbers of trans-
mitted/reflected waves

β¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

0

q
compressibility parameter

Γ pressure and axial-velocity vector
δ1 displacement thickness
ϕ acoustic potential
Φpp wall-pressure power spectral density
Ψpp dimensionless wall-pressure power spectral

density
ρ0 fluid density
σ constant
ω angular frequency
ω dimensionless angular frequency
ΩK vorticity vector generated by the Kutta

condition

Subscripts and superscripts

ð�Þ0 source-point coordinate
ð�Þ0 reference channel
ð�Þj incident wave index
ð�Þm channel mode index
ð�ÞK Kutta-condition associated quantity
ð�Þs reflected or transmitted wave index
ð�Þi;r;t;u;d incident, reflected, transmitted, upstream and

downstream potentials
ð�Þ7 for downstream/upstream wavenumbers
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turbulent boundary layers developing on the blades and the vanes are scattered as sound at the trailing edges, also con-
tributing to the broadband noise. Finally secondary flows such as tip-leakage vortices generate their own unsteadiness and
associated noise. The aforementioned trailing-edge noise sources are not blade-to-blade or vane-to-vane correlated, which
means that the sound is generated in the same way as for an isolated airfoil. But the sound radiation away from the trailing-
edge area is more or less dramatically restructured by multiple scattering on adjacent blades/vanes. This restructuration
referred to as the cascade effect is the main motivation of the present work. The emphasis is on the trailing-edge noise of the
stator, though the same approach could be transposed to a rotor as explained later on.

In most architectures such as depicted in Fig. 1 the outlet guide vanes are moderately cambered and staggered at leading
edge, and nearly parallel to the axis at trailing edge. Indeed they are designed to restore an axial mean flow of speed Ua from
the incident swirl produced by the rotor and emphasized by the oblique relative speed of magnitude Ur in the figure. As a
result the vanes have a large overlap and can be viewed from downstream as an array of parallel and zero-stagger plates.
When trying to reproduce aeroacoustic phenomena using analytical approaches, the cascade effect of the stator appears as a
key feature to deal with. The cascade effect is not only involved in the sound generation process but also when the sound
generated by the rotor blades is transmitted downstream in the exhaust duct, especially for stators with a large number of
vanes and quite large hub-to-tip ratios R1=R2. Many studies contributed to the development of analytical or semi-analytical
cascade response functions for sound generation or transmission in blade rows [2–24]. The approach developed by Glegg
[15] and later improved by Posson et al. [23] is selected here for the discussion. But only wake-interaction noise or
turbulence-impingement noise is generally considered. The cascade effect on the trailing-edge noise mechanism is more
difficult to formulate even though an attractive and elegant approach has been proposed by Glegg and Jochault [25]. The
issue is that trailing-edge noise sources are localized and poorly correlated, which makes them difficult to describe in a
cascade context. Though only outlet guide vanes are considered in the present work, the same would hold for the blades of a
rotor except that most often the overlap is smaller, at least in the tip region of the blades, and that the number of blades is
also smaller. Furthermore the stagger angle of the blades is quite large. The case of the stator is chosen here because the
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Fig. 2. Unwrapped representation of a stator as an equivalent infinite rectilinear cascade of plates, in arbitrary Cartesian coordinates. Cylindrical cut of
radius R0. Rotor blades featured in dashed lines.

Fig. 1. Typical axial-flow fan architecture. ðR1;R2Þ: hub and tip radii, Ur: oblique relative velocity on the stator leading edge, Ua: axial flow velocity at outlet.
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equivalent cascade can be more reasonably assumed with zero stagger, both for the sake of simplicity and for the sake of
demonstrating the feasibility of a new approach. As will be pointed out in several instances later on in the text, the approach
can be extended quite easily to more realistic configurations; this however is beyond the scope of the paper.

The aforementioned approach by Glegg [15], Glegg and Jochault [25] and Posson et al. [23] relies on an extensive use of
the Wiener–Hopf technique formulated in a Cartesian reference frame for a rectilinear cascade. This means that the
investigated annular cascade must be split into a series of thin annuli that are unwrapped and treated separately. Arbitrary
stagger angle, sweep and lean can be accounted for by changing the parameters in each strip. In contrast no simple
equivalent in cylindrical coordinates is available and as a result adjacent blades or vanes are artificially considered as parallel
plates. The present approach is proposed as an alternative. It is based on a mode-matching technique, considering a blade/
vane row as a periodic array of bifurcated waveguides. It can be transposed in a three-dimensional context in cylindrical
coordinates for the analysis of annular cascades. This versatility is an attractive advantage since the splitting of a machine
into strips is avoided, but it is balanced by the limitation that blade/vane twist or other design features cannot be simply
considered. The two-dimensional extension to staggered vanes is straightforward as suggested by similar works in elec-
tromagnetic wave theory [26]. Finally the Wiener–Hopf technique and the mode-matching technique are mathematically
equivalent when addressing rigid-plate cascade problems in two dimensions. But one or the other is presumably better
suited depending on the design features that must be preserved when three-dimensional blade/vane rows are modeled.
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The present investigation remains two-dimensional as in the preliminary study by Roger et al. [27] but it must be understood
as the first step of a methodology that will be progressively generalized and implemented in a unified three-dimensional model of
axial-flow turbomachine. The stator vanes are assumed parallel, axially aligned and zero-stagger plates (Fig. 2). They are
equivalent to a periodic array of bifurcated waveguides with rigid walls. As a principle, it is stated that the trailing-edge noise
sources of an isolated vane can be reproduced by introducing an equivalent lift dipole very close to the trailing edge from
downstream, the direct field of which is diffracted by the edge. This intuition is a key step of the approach. Its validity is confirmed
in Section 2.1 and is guided by the fact that trailing-edge noise physics develops in the very vicinity of the trailing edge and
radiates waves of opposite phases on both sides of the plate. The equivalent excitation of the trailing-edge interface of the stator in
terms of acoustic plane-wave modes is derived in Section 2.2. The response of the stator as a waveguide system is then addressed
for isolated incident modes and for the complete field of the trailing-edge dipole in Section 3, where fundamental scattering
properties are discussed. Finally the application of the methodology to predict power spectra of the broadband trailing-edge noise
is introduced in Section 4, where an indicative statistical model of the hydrodynamic wall-pressure is used as input.
2. Edge-dipole formulation

2.1. Expression of the equivalent dipole

The underlying interpretation of the proposed model is that cascade trailing-edge noise radiation can be formulated as
an equivalent upstream-to-downstream sound-transmission problem that will be solved using a mode-matching procedure.
In this view an incident acoustic excitation of the stator is defined, following the intuition that the trailing-edge noise
sources of an isolated vane can be reproduced with an equivalent point dipole approaching the edge from downstream at a
very close distance. Therefore key points of the model are to justify the relevance of this dipole and to determine its strength
from the basic knowledge of the sound generating mechanism. Trailing-edge noise results from the scattering of boundary-
layer turbulence as sound at the trailing edge under the effect of the Kutta condition. Various interpretations have been
proposed in the literature, most of which were reviewed by Howe [28]. Though a complete discussion is out of the scope of
the present work, some points can be retained. Following the original statement of Lighthill's analogy the sources of the
sound can be considered equivalent quadrupoles essentially defined by the velocity fluctuations distributed in the
immediate vicinity of the trailing-edge, including the boundary-layer and the near wake. These quadrupoles experience
scattering by the edge, leading to specific sound radiation. In view of the involved fluid scales in the boundary-layer the edge
is equivalently considered as a semi-infinite rigid plate. The properties of the sound field are explained by the asymptotic
behavior of the associated Green's function, referred to as the half-plane Green's function, for sources located at very short
distances to the edge with respect to the acoustic wavelengths. This view was first exposed in a pioneering work by Ffowcs
Williams and Hall [29], ignoring the effect of the mean flow. The asymptotic analysis shows that the amplitude of the sound
field is strongly amplified with respect to what the quadrupoles would radiate in free field, by a factor ðkr0Þ�1 if r0 is the
distance to the edge and k the acoustic wavenumber, and that the directivity is a cardioid pattern with zero sound in the
wake and a maximum sound in the opposite direction. The radiated field also exhibits opposite phases on both sides of the
half-plane. Amiet's formulation of trailing-edge noise [30] is also cited here as an alternative interpretation rather based on
Ffowcs Williams and Hawkings's statement of the analogy [31]. According to it the boundary-layer turbulence is considered
via its pressure trace. That trace, of hydrodynamic nature, is forced to zero at the trailing-edge by the Kutta condition,
generating an additional pressure jump distributed on the wall and concentrated at the trailing-edge. This pressure jump
radiates as equivalent dipoles. Both interpretations must be equivalent and should provide similar results if applied cor-
rectly, even if they rely on different quantities, turbulent velocity and hydrodynamic fluctuating pressure, respectively.
Amiet's model is currently used to predict the trailing-edge noise of isolated thin airfoils and has been proven to be accurate
when fed with reliable wall-pressure statistical data [32]. In its original form the sound radiation is calculated by an integral
of the pressure jump distribution over the actual chord length whereas the derivation of the induced pressure jump
assumes a semi-infinite plate. Therefore performing the integration up to infinity upstream in Amiet's model produces the
same aforementioned cardioid pattern. This confirms the identity of both interpretations.

An essential point is that as soon as the asymptotic regime of the half-plane Green's function is entered the cardioid
pattern with phase opposition is obtained for any dipole or quadrupole source, irrespective of its exact location or orien-
tation (except for some very restrictive conditions [33]); in other words it is not imposed by the source physics but by
Green's function itself. This suggests that an equivalent single lift dipole located downstream of the trailing-edge in the
continuation of the wall and at a very small distance can be used, quite arbitrarily, to describe the sources of trailing-edge
noise. The normal orientation of the lift dipole is chosen for simplicity and its downstream location is essential for the
mode-matching procedure. Now its exact distance to the edge is a free parameter; the smaller it is the weaker the strength
of the dipole must be, as a result of the amplification, so that a constant wall-pressure trace is ensured. In fact the final
tuning of the dipole is achieved by comparing the acoustic wall-pressure distribution obtained from Green's function on the
half-plane to the induced pressure jump in Amiet's model.

The field of the dipole in the presence of the half-plane is derived from the exact two-dimensional half-plane Green's
function in the presence of flow, introduced by Jones [34] and re-addressed by Rienstra [35]. Only the transverse component
of the first gradient of Green's function with respect to source coordinates is needed because the dipole of interest is
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oriented normal to the flow direction. If no additional Kutta condition is imposed at the edge Green's function reads, for a
flow of Mach number M0 in the positive x direction

GM x; y; kð Þ ¼ 1
β
e� iKMðX�X0ÞGð1=2Þ X; y;Kð Þ

with

Gð1=2Þ X; y;Kð Þ ¼
Z s1

�1
eiKr1

ffiffiffiffiffiffiffiffiffiffi
1þu2

p duffiffiffiffiffiffiffiffiffiffiffiffiffi
1þu2

p þ
Z s2

�1
eiKr2

ffiffiffiffiffiffiffiffiffiffi
1þu2

p duffiffiffiffiffiffiffiffiffiffiffiffiffi
1þu2

p : (1)

In this expression r21;2 ¼ r2þr20�2rr0 cos ðθ8θ0Þ, with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2þy2

q
being the corrected observer distance to the edge

involving the stretched coordinate X ¼ x=β, with β¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

0

q
, and K ¼ k=β. The angles θ and θ0 are defined as the corrected

angles from the wake direction x40, and

s1 ¼
2

ffiffiffiffiffiffiffi
r0r

p
r1

cos
θ�θ0
2

; s2 ¼ �2
ffiffiffiffiffiffiffi
r0r

p
r2

cos
θþθ0
2

:

Though it admits a simplified expression for a point source approaching the edge in such a way that kr0 takes arbitrary
small values, the exact implementation has been used here. The equivalent dipole is set at zero θ0 angle. Only the trace of
the pressure field at the wall is needed in the present study. It is plotted as the thick dashed line in Fig. 3 for a Mach number
of 0.29 and a source-to-edge Helmholtz number of 0.1. It is worth noting that Jones [34] and Rienstra [35] also consider an
optional Kutta condition in the form of the additional correcting term

GK x; y; kð Þ ¼ AK

2
eiπ=4ffiffiffi

π
p e� iKr F

ffiffiffiffiffiffiffiffiffi
2Kr

p
sin

θ�θ1
2

� �
þF

ffiffiffiffiffiffiffiffiffi
2Kr

p
sin

θþθ1
2

� �� �

�AK

2
2e� iKX=M0 cosh

βK
M0

y
� �

H �yð Þ (2)

where the factor AK is given by Jones as

AK

2
¼ sign y0

� � ffiffiffiffiffiffiffiffi
2π
Kr0

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�X0

r0

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0

1þM0

s
e� iKr 0 � iπ=4

and where θ1 is an imaginary angle such that cos θ1 ¼ 1=M0. H is the Heaviside function and F is the complex function of
complex argument defined by

F zð Þ ¼ eiz
2
Z 1

z
e� it2dt ¼

ffiffiffi
π

p

2
e� iπ=4eiz

2
erfc eiπ=4z

	 

:

This correction is known to cause amplification of the radiated field for very small values of kr0 and significant values of the
Mach number [36]. The complete result including it is also plotted for completeness in Fig. 3, where a phase shift is noticed
with respect to the no-Kutta solution.
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Amiet's formulation of trailing-edge noise in the frequency domain [30,37] provides directly an expression for the
radiating wall-pressure produced by the primary scattering of boundary-layer vorticity into sound at the edge. This pressure
field must be distinguished from the incident hydrodynamic pressure associated with the convected turbulence in the
boundary layers. The latter is the origin of the former but does not enter the problem statement explicitly. Assuming an
infinite chord, that pressure is distributed according to the expression

P1ðxÞ ¼ AeiαK1X ð1� iÞE � αK1þð1þM0Þμ½ �Xð Þ�1½ � (3)

if the same convention e� iωt is chosen everywhere for monochromatic waves. Eq. (3) refers to the two-dimensional
response for a single gust or Fourier component of the incident hydrodynamic pressure, of complex amplitude A. α, esti-
mated here around 1.25, is the flow-speed to convection-speed ratio, K1 ¼ω=ðβU0Þ is a modified aerodynamic wavenumber
and μ¼ K1M0=β. E is the Fresnel integral defined as

E ξð Þ ¼
Z ξ

0

eitffiffiffiffiffiffiffiffi
2πt

p dt:

A ¼ Aeiφ is a scaling parameter used to make the expression of Eq. (3) coincide at best with the field calculated from Eq. (1)
by adjusting the amplitude A and the phase φ. The tuned Amiet's solution is plotted as the thin continuous lines in Fig. 3,
where it is found in a good agreement with the trace of the equivalent point dipole. For the test the amplitude 470 is used
with a phase factor eiπ=4 to fit with the no-Kutta solution and the amplitude 780 with a phase factor e�0:2iπ=4 to fit with the
solution including the Kutta correction. In fact in a statistical declination of Amiet's trailing-edge noise model the amplitude
of the edge dipole would be imposed by the gust amplitude A in Amiet's formulation. The latter would be related to the
hydrodynamic wall-pressure spectrum taken closely upstream of the trailing-edge and to its spanwise correlation length
[38]. The phase φ would play no role. The result confirms that a point dipole can indeed be used to accurately describe the
sources of trailing-edge noise.

2.2. Expression of the excitation

The direct sound field radiated from a point lift-dipole is also given by the scalar product of the dipole strength with the
first gradient of the free-space Green's function with respect to the source coordinates. In the two-dimensional space of the
study, Green's function is expressed with the Hankel function. For a unit dipole strength the field reads

∂G
∂y0

¼ ikð y0�yÞ
4βR

e� iKM0XHð1Þ0
0 KR
� �¼ iKð y�y0Þ

4R
e� iKM0XHð1Þ

1 KR
� �

where ðx0; y0Þ and ðx; yÞ stand for source and observer coordinates, respectively. R¼ ½ðx�x0Þ2þðy�y0Þ2�1=2 is the source to
observer distance and R its expression with X instead of x. In the present case the trailing edge of a reference vane is located
at the origin of coordinates. Because the unwrapped representation of the annular stator at radius rc must be periodic of
period Vh where V is the number of vanes and h¼ 2πrc=V is the channel width, the same point source must be repeated
every V channels. This leads to the periodized field

p0 ¼
iK
4
e� iKM0X

X1
n ¼ �1

yþnVh

X2þð yþnVhÞ2
h i1=2Hð1Þ

1 K X2þð yþnVhÞ2
h i1=2� �

(4)

This two-dimensional field can be expanded as an infinite discrete set of oblique plane-wave modes in the form

p0 ¼ e� iKM0X
X1

j ¼ �1
a7
j eiðKx;jXþKy;jyÞ (5)

with

Ky;j ¼
j2π
Vh

; Kx;j ¼ 7 K2� j2π
Vh

� �2
" #1=2

:

Indeed each plane wave must also be periodic in the y direction with the period Vh. The þ sign holds for propagation in the
downstream direction (x40), the � sign for the upstream direction (xo0). A true plane wave is obtained only if Kx;j is real
and positive, which corresponds to the cut-on condition K4 j2π=ðVhÞ. Otherwise the mode is said cut-off and the necessary
condition of exponential decay is ensured by putting

Kx;j ¼ 7 i
j2π
Vh

� �2

�K2

" #1=2
:

Downstream propagation is considered first. Identifying both expressions of p0 and making use of the orthogonality
integrals of exponential modes leads to the expression of aþ

j as

aþ
j ¼ iK

4Vh
e� i K2 �ð j2π=ðVhÞÞ2½ �1=2X
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�
X1

n ¼ �1

Z Vh

0

yþnVh

X2þð yþnVhÞ2
h i1=2Hð1Þ

1 K X2þðyþnVhÞ2
h i1=2� �

e� ij2πy=ðVhÞdy

¼ iK
4Vh

e� i K2 �ð j2π=ðVhÞÞ2½ �1=2X
Z 1

�1

tHð1Þ
1 K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2þt2

p	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2þt2

p e� ij2πt=ðVhÞdt:

The antisymmetric part of the integrand can be ignored since it integrates to zero. Integrating by parts then leads, after a
further change of variable, to the simplified form

aþ
j ¼ jπX

ðVhÞ2
e� i K2 �ðj2π=ðVhÞÞ2½ �1=2X

Z 1

0
Hð1Þ

0 KX
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þu2

p	 

cos j

2πX
Vh

u
� �

du:

The integral is readily calculated by using the connection between Hð1Þ
0 and the modified Bessel function K0 such that [39]

K0 � iξð Þ ¼ iπ
2
Hð1Þ

0 ξð Þ

and the result [40] Z 1

0
K0 α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2þβ2

q� �
cos γξ dξ¼ π

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2þγ2

p e�β
ffiffiffiffiffiffiffiffiffiffiffi
α2 þ γ2

p
(6)

valid for complex numbers α and β of positive real parts and for any real number γ. Finally the coefficient is found as

aþ
j ¼ jπ

ðVhÞ2
K2� j2π

Vh

� �2
" #�1=2

: (7)

As expected the expression does not depend on the coordinate x, which is ensured by a proper choice of the square root
in Eq. (6). For the coefficient a�

j the developments are the same except that x is negative and that now the � sign is taken
for Kxj. Since X can be replaced by jXj in the integrals the same expression is found in the end, so that a�

j ¼ aþ
j ¼ aj. This is

also expected from the upstream/downstream symmetry of the sources in the absence of flow. Eq. (7) for the upstream-
propagating waves allows defining a relevant excitation of the trailing-edge interface of a stator. Because they are plane
waves, the classical matching procedure for two-dimensional bifurcated waveguides [41] applies, whatever the cut-on or
cut-off conditions might be.

Instantaneous pressure fields as calculated from Eq. (4) with the infinite sum of Hankel functions and from the sum of
plane-wave modes with the coefficients of Eq. (7) are compared in Fig. 4. The instantaneous pressure field, identical for both,
is illustrated in Fig. 4a, where the dipoles corresponding to the repetitions of a single trailing-edge source are indicated by
the white circles and arrows. In this map and all subsequent maps in the paper the light and dark spots correspond to
negative and positive deviations from the mean pressure. The flow is from left to right and the flat plates mimicking the
vanes are not shown since the figure only deals with the direct field of the dipoles. The periodicity Vh is that of the
unwrapped circular cut of the stator. Away from the near-field region surrounding the line of dipoles and not paying
attention to the interference fringes, the sound field is of overall uniform amplitude in both directions. In contrast higher
pressure fluctuations are seen in the vicinity of the sources. This is expected since the field is made of cut-off modes
discernable close to the sources and cut-on modes which propagate without attenuation. A typical pressure profile along the
line y¼0.08 is plotted in Fig. 4b, where the continuous line stands for the sum of Hankel functions and the dashed line for
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Fig. 4. (a) Simulated instantaneous sound pressure produced by a series of point dipoles indicated by arrows; (b) pressure profiles predicted with the sum
of Hankel functions (plain) and with the sum of plane waves (dashed). Helmholtz number kVh¼ 17:4, U0¼100 m/s.
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the sum of plane-wave modes. The agreement confirms that the plane-wave expansion is relevant and can be used for the
mode-matching technique. Moreover a large number of Hankel terms are needed to converge in Eq. (4) (300 in the present
example) whereas a much smaller number of plane-wave modes are sufficient to reach the same convergence (with few
differences between 10 and 30 terms). Yet residual discrepancies attributed to sum truncations, not prejudicial for the
present application, are seen in the figure. The smaller number of required plane waves is in favor of the present model and
can be explained as follows. The Hankel functions are the expressions of cylindrical waves but they are not appropriate to
reproduce the periodicity in the y-direction. In contrast oblique plane waves already have an inherent periodicity in this
direction through the wavenumber Ky in Cartesian coordinates.

It is worth noting that only one lift dipole associated with a single stator vane is needed for the present analysis, because
the sources of trailing-edge noise are not vane-to-vane correlated. The present section was aimed at describing the field that
this dipole would radiate in the absence of the vanes. The multiple sources in Fig. 4a result from the unwrapped repre-
sentation of the original 2π-periodicity and correspond to the same vane/dipole.
3. Plane-wave scattering at trailing edge

3.1. General procedure

Once the trailing-edge dipole is defined and its direct field expanded in plane-wave modes, the scattering of each upstream-
propagating plane wave by the trailing-edge interface of the stator is calculated using a mode-matching procedure. The theoretical
background is found in the literature about bifurcated waveguide systems in a medium at rest, especially in the handbook byMittra
and Lee [41]. The transmission of an acoustic plane wave through an array of zero-stagger parallel plates has also been solved by
Linton and Evans [42] in the range of low frequencies for which only the plane-wave mode can propagate inside the individual
channels. The formalism has been extended by Ingenito and Roger [43] in the case of semi-infinite channels to account for a
uniform fluid motion parallel to the walls and to allow for arbitrary frequencies and higher-order modes in the channels. The
extension was used to address some aspects of the upstream sound transmission at the axial inlet of a simplified centrifugal
compressor. A further generalization including vortical disturbances as incident waves and a Kutta condition at the trailing edges of
a cascade of finite-chord flat plates has also been performed by Bouley et al. [44], dealing with wake-interaction noise generation in
axial-flow rotor–stator stages and downstream sound transmission through the stator. The same formulation is used here. It is
shortly outlined in this section for the upstream transmission of an isolated oblique acoustic wave through the stator and key steps
of the approach are detailed in the Appendix. The complete cascade trailing-edge scattering will be obtained by summing the
contributions of all oblique waves defined in Section 2.2.

The developments of the appendix address the initial response of the stator trailing-edge interface disregarding the
effect of the leading-edge interface. Multiple higher-order scattered waves must be added following a sequential process to
reproduce the complete physical behavior of the cascade. The primary upstream-travelling waves forced in the inter-vane
channels are next scattered at the leading-edge interface of the stator. This is accounted for by formulating there another
mode-matching problem with the same continuity conditions. Part of the sound is transmitted upstream and part is
reflected back in the channels. That part experiences another trailing-edge scattering, which produces transmitted waves
downstream and reflected waves in the channels, and so on. Finally four sets of waves are produced, namely open-space
waves away from the stator upstream and downstream and internal waves in both directions in the channels. Of course the
phase-shift between adjacent channels imposed by the excitation is preserved in the full sound field so that only a single
reference channel needs to be considered. The multiple scattering must be reproduced accurately to ensure relevant pre-
dictions of the cascade response and to identify possible resonances.

The matching equations are summarized as follows (see details in [44]). The trailing-edge interface is located at x¼c
where c is the chord length of the vanes and the leading-edge interface is located at x¼0. The four sets of waves are
described by their acoustic potentials: the potentials of the exhaust/reflected and inlet/transmitted waves in the unbounded
domains, referred to as ϕr and ϕt, and those of the upstream and downstream waves in the inter-vane channels referred to
as ϕu and ϕd, respectively. The potential ϕr is written as

ϕr ¼
Xþ1

s ¼ �1
RseiαsyeiK

þ
s ðX� c=βÞ; XZc=β (8)

and the potential ϕt as

ϕt ¼
Xþ1

s ¼ �1
TseiαsyeiK

�
s X ; Xr0; (9)

with K
7
s ¼ �MK7K

j
s.

The potentials ϕu and ϕd in the reference inter-vane channel are expressed as

ϕu ¼
Xþ1

m ¼ 0

U0
m cos

mπ

h
y

h i
eiK

�
m ðX� c=βÞ; ϕd ¼

Xþ1

m ¼ 0

D0
m cos

mπ

h
y

h i
eiK

þ
m X ;
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0rXrc=β; K7
m ¼ �MK7Km: (10)

For convenience, a vector Γq with the pressure and axial velocity as components is introduced, the indices q¼ i; r; t; d;u
denoting the incident (i), reflected (r), transmitted (t), downstream channel (d) and upstream channel (u) acoustic waves,
respectively:

Γqðx; yÞ ¼
pðx; yÞ
vxðx; yÞ

 !
: (11)

The continuity of pressure and axial velocity is imposed at the leading-edge interface (x¼0) and at the trailing-edge
interface (x¼c). The matching equations result as

Γiðc; yÞþΓrðc; yÞ ¼ Γdðc; yÞþΓuðc; yÞ; 8y; (12)

Γdð0; yÞþΓuð0; yÞ ¼ Γtð0; yÞ; 8y: (13)

The system involves four unknown generic vector variables (R, D0, U0, T) and four matching equations. Solving it at once
would require the inversion of a large matrix. A sequential method is preferred for the sake of physical understanding. Two
distinct matching problems are thus considered, one for each interface, and solved iteratively. In the first step of the iterative
procedure the first equation is solved with Γd ¼ 0 and the solution is obtained for Γu and Γr . This step is the one described in
the Appendix. In a second step the second equation is solved using Γu as excitation and now Γt and Γd are calculated. The
first equation is solved again with all terms and so on. At every step a single interface is considered and only two vectors of
coefficients (R, U0) or (D0, T) have to be determined, which makes the solving easier by matrix inversion. Furthermore the
relative contributions of successive scattering orders can be more easily identified if needed. The iterative process is con-
tinued until all coefficients are converged, which is typically achieved in four iterations.

3.2. Implementation of the Kutta condition

The aforementioned procedure would be the same in a medium at rest and requires introducing the effect of the vane
wakes for physical consistency. Indeed in the presence of a mean flow, the fluctuating motion has to comply with the Kutta
condition that imposes zero pressure jump at the trailing edges of the vanes. This condition significantly redefines the
strengths of the scattered waves produced by the mode-matching technique, especially as the mean-flow Mach number
increases, as pointed out by Bouley et al. [44]. In the mode-matching procedure the zero pressure jump between both sides
of a vane must be enforced just upstream of the trailing edges inside the inter-vane channels, which is equivalent to a new
constraint on the modes. An additional equation involving the vectors of modal amplitudes in the reference channel is
written as

X1
m ¼ 0

ðK�K �
mMÞ½1�ð�1Þme� iu�U0

m ¼ �
X1
m ¼ 0

eiK
þ
m c=β½1�ð�1Þme� iuÞðK�K þ

mM�D0
m: (14)

Without any further modification this would end up with an over-determined linear system. But the Kutta condition results
in the continuous shedding of vorticity in the wake. This is accounted for by distributing lines of concentrated vorticity in
the continuation of the vanes. The strength of the vorticity vector in the direction normal to the unwrapped plane is
expressed in the sense of generalized functions and reads

ΩK ðx; yÞ ¼Ω0eiKX=M0
Xþ1

ν ¼ �1
eiνuδð y�νhÞ; XZc=β (15)

where Ω0 is a magnitude factor introduced as a new unknown. This vortical field is also expanded as a series of oblique
gusts, in the form

ΩK x; yð Þ ¼Ω0

h

Xþ1

q ¼ �1
bqeiKX=M0 eiαqy; XZc=β: (16)

The associated velocity field vhK is obtained from the definition of the vorticity ΩK ¼∇� vhK and from its incompressibility
(∇ � vh

K ¼ 0). The expression of the axial velocity becomes

vhx;K x; yð Þ ¼
Xþ1

q ¼ �1

iΩ0αq

h α2qþðK=M0Þ2
	 
eiKX=M0 eiαqy: (17)

This hydrodynamic contribution is included in the matching equation for the axial velocity at the trailing-edge interface
as an additional term in the Γ vector of Eq. (11). Because the hydrodynamic field is pressure-free, the matching equation for
the pressure remains unchanged when the Kutta condition is imposed.
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Fig. 5. Scattering of the incident plane-wave mode j¼9. (a) Instantaneous sound pressure pattern. (b) Modal coefficients, grey for cut-off and black for cut-
on. M0 ¼ 0:15, V¼23, frequency: 9 kHz.
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Fig. 6. Scattering of the incident plane-wave mode j¼11. (a) Instantaneous sound pressure pattern. (b) Modal coefficients, grey for cut-off and black for cut-
on. M0 ¼ 0:15, V¼23, frequency: 9 kHz.
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3.3. Scattering of elementary waves

Prior to full computations of edge-dipole scattering, inspecting the response of the cascade to elementary incident plane-
wave modes from downstream allows highlighting fundamental properties of the cascade. This is achieved in this section
for the unwrapped model stator shown in Fig. 2, with a number of flat-plate vanes V¼23 and an axial-flow Mach number of
0.15. The reference radius is rc¼0.08 m. The selected frequency is 9 kHz, corresponding to Helmholtz numbers based on the
channel height and on the vane chord of 3.6 and 7.5, respectively. At this frequency the channel modes of orders m¼0 and
m¼1 are cut-on but higher-order modes are cut-off. This set of parameters typically corresponds to the small-size fans used
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in air-conditioning systems for aircraft. The results for the incident plane-wave modes j¼9 and j¼11 are investigated first
and reported in Figs. 5 and 6. The left-side part of each figure shows an instantaneous pressure wavefront pattern and the
right-side part displays the amplitudes of all modal coefficients as bar-graphs. Conventionally the incident mode has an
upward phase speed.

The mode j¼9 (Fig. 5) is scattered into the modes n¼ 9723s both in the reflection and in the transmission, so that the
lowest generated order except n¼9 is n¼ �14, noting that this mode is the first cut-off one in the present conditions.
Therefore the upstream-transmitted wave is made of the mode 9 (or s¼0) only. The field (Fig. 5a) is typical of the vicinity of
the transition between a low-frequency regime for which only one mode is cut-on and a high-frequency regime for which
two modes are cut-on away from the cascade. The reflection is quite strong and the field in the upstream vicinity of the
cascade clearly exhibits an evanescent part. The example of the mode j¼11 (Fig. 6) is featuring a clear transfer from the
incident mode into another dominant mode in the upstream transmission, with inversion of the phase-speed direction.
Indeed the scattered modes n¼ 11 and n¼ �12 are both cut-on but the latter (s¼1) is of much larger amplitude than the
former (s¼0) in the upstream domain, as indicated by the diagram in Fig. 6b. Reminding that the cascade is an unwrapped
representation of a stator, this means that the dominant component of the transmitted wave is spinning in the opposite
direction with respect to the incident wave. Still different behaviors could be described for other modes, not detailed here.

Because the excitation of the trailing-edge interface is produced by dipoles at a vanishing distance from the edges in the
present model, even the evanescent components of the oblique-wave expansion of Section 2.2 contribute to the radiated
field, as a result of modal scattering. But the same analysis as above in terms of isolated incident plane-wave modes for
evanescent waves would be misleading because they would increase exponentially away from the cascade downstream.
Such excitation modes need to be analyzed by combining the opposite of the component of index � jwith the component of
index j . Furthermore the downstream part of the excitation must be removed and replaced by the complementary
downstream-emitted decaying wave. Such a test is reported in Fig. 7 for the doublet of modes (j¼ �17, j¼ þ17), again at
the frequency of 9 kHz. Looking for the periodicity 17, the plot does not exhibit any radiating pattern but only a trace
localized in the very vicinity of the vanes. Yet the scattering produces all modes of orders n¼ 717–23s and in particular the
modes n¼ þ6 and �6 (s¼ 71) that are cut-on at this frequency. This is why the latter modes contribute to the radiated
field both upstream and downstream. For this reason a substantial number of cut-off modes must be included in the plane-
wave expansion of the series of edge dipoles according to Eq. (5).
4. Stator broadband noise formulation

4.1. Scattered field of an edge dipole

The complete response of the cascade for an edge-dipole at a single vane is determined by summing all plane-wave
mode contributions according to Eq. (5). An a priori questionable point is that the coefficients aj of the pressure waves do



Fig. 8. Instantaneous sound pressure pattern for the diffraction of a single edge-dipole at the center vane (ε¼ 0). Flow from left to right, M0 ¼ 0:15, V¼23,
frequency: 9 kHz.
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not tend to zero for arbitrarily increasing values of j (see Eq. (7)). This is not prejudicial when synthesizing the direct
pressure field in Fig. 4 since large values of j correspond to evanescent waves with increasing damping rates. These waves
cannot be seen away from the interface. But incident modes of large orders contribute when calculating the response of the
stator because of the modal scattering. This is why a small but finite distance ε of the edge dipole to the trailing edge has
been introduced and tested, the effect of which is to multiply the expression of aj by the factor eiKM0εeijπε=½ajðVhÞ2 �. The small
parameter εmust be such that kε⪡1 to ensure a proper tuning of the edge dipole by invoking the asymptotic behavior of the
half-plane Green's function. Indeed the latter produces a strong amplification of the radiated field of the dipole with the
factor ðkεÞ�1=2 [36]. In contrast the coefficients aj of the potential waves involved in the calculation of the acoustic powers of
the scattered waves do vanish for large values of j. It has been found that the results are not sensitive to the value of ε as long
as it remains small (much less than one percent of chord in the present case), proving the robustness of the proposed
approach.

A typical result combining all modes of orders j between �20 and 20 is plotted in Fig. 8 in terms of instantaneous
pressure, again for the same frequency of 9 kHz. As shown in Section 2.2, 20 incident modes are sufficient to reproduce the
dipole excitation. The trailing-edge dipole is located on the center vane in order to emphasize the scattering by neighboring
vanes. The two directly excited channels as well as the next two adjacent ones respond dominantly, whereas the pressure
field is of much lower amplitude in more distant channels. As a result the upstream field exhibits two main oblique lobes
that are fed by the four most excited channels, with secondary interference fringes. The obliqueness corresponds to spinning
patterns in the annular space. The field downstream is substantially different because the dominant direction of radiation of
the edge-dipole is tangent to the trailing-edge interface.
4.2. Predicted power spectra

The same two-dimensional approach is now applied to illustrate the feasibility of trailing-edge broadband noise pre-
dictions using the mode-matching technique, provided that the strength of the edge dipole is determined. For this some
similarity is recognized with Amiet's model of isolated-airfoil trailing-edge noise, according to which the far-field sound is
related to the statistical properties of the hydrodynamic wall-pressure field closely upstream of the trailing edge. More
precisely the far-field sound intensity is found proportional to the product LΦppðωÞℓyðωÞ where L is the spanwise extent,
ΦppðωÞ is the hydrodynamic wall-pressure spectrum and ℓyðωÞ the associated spanwise correlation length near the trailing
edge [38]. The same holds for the in-duct power at any frequency and the classical definition of the axial acoustic intensity
in a uniform base flow [45] is used to compute the acoustic power. For a potential of generic expression

ϕ¼
X1

j ¼ �1
Cjeij2πy=ðVhÞe� ið7KðjÞ þM0KÞX



Fig. 9. (a) Test-case wall-pressure statistical data: spectrum in dB/Hz, spanwise correlation length scaled by the displacement thickness. (b) Downstream
and upstream power spectra (per unit span and per vane). All plane-wave modes up to jjj¼100. Cut-off frequencies of the first two channel modes
indicated as dashed lines.
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away from the cascade the expression of the intensity reads

I¼ 8kβ2ρ0c0
X1

j ¼ �1
jCjj2RefK ðjÞg

where the þ and the � signs correspond to downstream and upstream propagation, respectively. The real part of the axial
wavenumbers in the expression highlights that only the cut-on modes carry acoustic energy. The intensity is uniformly
distributed over the duct cross-section and the power is simply obtained by multiplying by the cross-section area. The latter
is 2πR0L with L¼ R2�R1 in the unwrapped cascade representation. In the present test case the hub and tip radii are not
specified. Furthermore the two-dimensional reduction is equivalent to assume homogeneously distributed sources along
the span. Calculations are only aimed at providing values for the acoustic power per unit span. In other words the squared
amplitude of the edge dipole is proportional to the product ΦppðωÞℓyðωÞ. Furthermore trailing-edge noise is not vane-to-vane
correlated, so that the total acoustic power is the power from one vane multiplied by the number of vanes.

Both Φpp and ℓy are now required as input data. When they are unknown, empirical expressions proposed by many
authors can be used, in terms of either outer or inner boundary-layer variables, accounting or not for the adverse pressure
gradients characteristic of loaded airfoils (for a review see [46]). The present test is addressing a family of fans rather than a
precise real fan; as such it cannot produce true quantitative results. Therefore only relative decibel levels are targeted, with
emphasis on the intrinsic efficiency with which the cascade radiates upstream and downstream as a function of frequency. A
corrected form of the expression proposed by Gliebe et al. [47] for ΦppðωÞ and an empirical fit tuned on data reported by
Guédel et al. [48] for ℓyðωÞ are retained here for simplicity, essentially because they only require an estimate of the dis-
placement thickness δ1 as a minimum information. The corresponding formulae read

Ψpp ωð Þ ¼ ΦppðωÞ
ρ20δ1U

3
0

¼ 10�4

1þ0:3ω2
� �5=2; ℓyðωÞ

δ1
¼ e�2ω þ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π
p

σω
p e�ðlnω� ln0:44Þ2=ð4σ2Þ;

introducing the dimensionless frequency ω ¼ωδ1=U0, with σ ¼ 0:55, a¼1.5. The quantities Ψpp and ℓyðωÞ=δ1 are plotted in
Fig. 9a. The wall-pressure spectrum drops beyond 10 kHz with the classical high-frequency roll-off ω�5. The maximum
correlation length is reached around 3 kHz and decreases very fast at higher frequencies. Both trends combine as a coun-
terpart to the increased radiation efficiency resulting from higher modal content at high frequencies.

It must be kept in mind that only the cut-on modes contribute to the power transmitted through the duct but that such
modes can be generated by cut-off modes of the expansion in Section 2.2. The cut-off frequency of the first oblique wave in the
unwrapped perimeter 2πrc is 676 Hz for the mean radius rc of 80 mm in the present test case. Therefore no trailing-edge noise
can be predicted below this frequency because the edge dipole is oriented normal to the duct axis and cannot excite the axial
plane-wave known to be always cut-on (the absence of any contribution from this wave can be recognized in Fig. 8). This
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limitation is inherent to the zero-stagger simplification. For staggered outlet guide vanes modeled by inclined flat plates the
edge dipole would be inclined accordingly and would also excite the axial plane-wave mode. The limitation is not a serious
issue because trailing-edge noise sources are weak at low frequencies, for which other sources would dominate in a real
turbomachinery stage. In addition, the scattered axial plane wave is not expected in the present application for two reasons.
First, the incident axial plane-wave mode has a zero magnitude because of the dipolar nature of the excitation. Secondly, only
the incident waves of azimuthal orders that are multiples of the number of vanes (V¼23) can generate scattered axial plane
waves. For these large azimuthal orders (above 20 or 100), the amplitude of the excitation is expected to be negligible, so is the
associated acoustic response. Furthermore the excitation of the axial plane wave is expected more upstream than downstream
where the vanes are actually aligned with the axis. Accounting for different stagger angles at the trailing edge and at the
leading edge is a possible extension of the iterative mode-matching procedure not addressed in the present work. This could
be achieved by coupling the model of sound propagation through bent ducts of slowly varying cross-section developed by
Brambley and Peake [49] and Whitehead's theory of staggered waveguides [26]. In the present investigation the axial plane
wave is considered to negligibly contribute in the middle and high frequency range of major interest.

Predicted power spectra in a relative decibel scale, again for the same cascade configuration, are shown in Fig. 9b.
Repeated calculations with different number of modes did not produce any difference, which indicated that the convergence
is reached. The plotted quantity is the power per unit span, radiated either downstream or upstream. The wall-pressure
statistics is only used here to reproduce a realistic spectral envelope over the range 1–20 kHz, even though considering a
spanwise correlation length within the scope of a two-dimensional theory is questionable. The chord length is 45 mm and
the displacement thickness at the trailing-edge is arbitrarily taken as 0.8 mm (typical of significantly loaded vanes). In
practice it would depend on the vane design and on the operating point of the considered fan. The axial flow speed is of
50 m/s. The radiated power first increases with frequency and then decreases, as a result of the combined increasing
acoustic efficiency and high-frequency energy drop in the involved hydrodynamic excitation. The cut-off frequencies of the
first two transverse modes in the inter-vane channels of height 22 mm are 7730 Hz and 15460 Hz; they are indicated in
Fig. 9b as vertical dashed lines. As expected from the analytical expression of the axial wavenumbers aj, Eq. (7), peak
responses are found at cut-off frequencies of the plane-wave modes away from the cascade. The peaks are especially marked
downstream. It is guessed that these resonances are artificially emphasized by the two-dimensional model and its geo-
metrical simplifications. As a result the dips of the spectral shape are more representative than the peaks, so that giving
more confidence to the former probably provides a better estimate of the true sound. Finally the overall power level is
predicted higher upstream than downstream by about 3 dB. This imbalance is somewhat expected from the asymptotic
cardioid radiation pattern of the trailing-edge noise of isolated airfoils at high frequencies. Yet it could be questioned by
cascade scattering. Furthermore considering staggered vanes would possibly redistribute the energy differently in the
upstream and downstream directions because of the inclination of both the edge dipoles and the vanes. Indeed different
trends are reported in the literature, based on experimental studies. For instance in the Boeing 18-in Fan test rig, Ganz et al.
[50] report broadband noise spectra for the rotor alone where the inlet radiation is lower than the aft radiation. Glegg
showed that the difference can be up to 10 dB between 10 kHz and 20 kHz at low loading and a small tip gap of 0.02 in [51].
Yet as shown in Ganz et al. [50] or Rozenberg [52], this difference can be much lower at other loading conditions and tip
clearance. Similarly, Woodward et al. [53] showed in the fan noise Source Diagnostic Test (SDT) case that the forward-
radiated noise was slightly larger that the aft-radiated one. In all these cases, the rotors had significantly staggered blades,
and the experimental results were available for the rotor self-noise only. If the latter was assumed to be essentially trailing-
edge noise nearly the same power would be expected upstream and downstream in view of the present investigation
because the blades would be almost perpendicular to the axis. Finally the present results remain compatible with existing
databases.

With the present input data the acoustic power spectrum exhibits an overall high-frequency decrease with the power
(�4) of the frequency, emphasized by the dashed oblique line in Fig. 9b. This trend must be understood as only indicative; it
could differ with other wall-pressure statistics.

It is worth noting that the present two-dimensional model could be used to estimate the trailing-edge noise of a real
stator from some knowledge of the boundary-layer displacement thickness at the vane trailing edges, ignoring all other
detailed flow features, which is of large engineering interest. Nevertheless the methodology is only relevant for large
numbers of outlet guide vanes and large hub-to-tip ratios. In more general configurations an approach currently used in the
literature consists in splitting the annular cascade into a series of strips and unwrapping each strip to describe it as a two-
dimensional cascade. Even if the radial extent of each annulus is defined in such a way that adjacent annuli are not cor-
related such an approach neglects the scattering of sources located at a radius by the walls at other radii. This is why the
present formulation is only considered as a preliminary step. The mode-matching procedure can be easily transposed to a
true annular cascade in cylindrical coordinates, precisely taking benefit from the fact that the spanwise correlation length of
the sources is generally much smaller than the duct height. Edge dipoles could still be defined and distributed along the
trailing edges with their individual direct fields expanded in a series of modes, referring to Green's function of the annular
duct [45]. The scattering of each mode by the full annular cascade could be determined exactly as long as the inter-vane
channels can be considered as three-dimensional bifurcated waveguides with radial walls. Such an extension is presently in
progress [54]. It will have the advantages of running without any splitting in strips and of avoiding the artificial parallelism
of adjacent vane walls.
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5. Conclusion

The new formulation proposed in this study provides a simple way of solving the trailing-edge noise problem for a row of
outlet guide vanes in an axial turbomachine. The vanes are considered as a rectilinear cascade of zero-stagger plates in an
unwrapped two-dimensional representation ensuring the periodicity of the stator. The first key step is the definition of a so-
called edge dipole that is shown to be equivalent to the trailing-edge noise sources of a single vane at a given frequency. This
dipole is approached at a vanishing distance to the edge from downstream. Its direct field is expanded into a series of plane-
wave modes. In a second step the diffraction of each mode by the cascade is calculated considering the cascade as a periodic
array of bifurcated waveguides and using a mode-matching technique. For this the mean flow is assumed uniform and a full
Kutta condition is applied at the trailing edges. The total field of the dipole is obtained by summing all diffracted fields of the
aforementioned plane-wave modes. It is also expressed as a series of modes, amongst which only the cut-on modes carry
energy away from the cascade. The total acoustic power emitted by the stator is simply the power from one vane multiplied
by the number of vanes. The finite chord length of the stator is a parameter of the model and the formulation holds for any
arbitrary subsonic Mach number and frequency.

A first evaluation of the newly developed model taking empirical wall-pressure statistics available in the literature as
input data has been made in a configuration of small-scale and low-speed axial fan. The results show that upstream
radiation is typically 3 dB higher than downstream radiation, which has been experimentally observed previously. The
practical calibration of the amplitude of the edge dipole is made by comparing the wall-pressure distributions produced by
Amiet's model and by the half-plane Green's function for a lift dipole close to the edge, which implies that the actual
distance of the dipole to the edge is an important parameter entering the model. Moreover this distance is not uniquely
defined: the shorter it is, the smaller the amplitude of the edge dipole is. It has been verified that the sound power pre-
dictions do not significantly change if the edge dipoles are located at some finite distance ε instead of exactly at the trailing-
edge interface, as long as the Helmholtz number kε remains much smaller than 1. This ensures the robustness of the model.
Instantaneous acoustic pressure contours also stress the significant diffraction cascade effect which has not been accounted
for previously. Yet the present estimates neglect the stagger angle of the vanes at the leading edge. Including this parameter
in the analysis is identified as a first necessary extension.

The main advantages of the mode-matching technique are its formal simplicity and exactness in the considered geo-
metry. It has large possibilities of extension that motivated the present effort. The two-dimensional extension to the case of
staggered flat-plates is straightforward as long as adjacent vanes significantly overlap. The method can also be generalized
in a three-dimensional context to address annular cascades of vanes in cylindrical coordinates without any need to resort to
a strip theory, at least for unswept and untwisted vanes, which is a reasonable simplification in many designs. Finally, it is
worth noting that channel modes or duct modes can also be defined for absorbing walls by replacing the present underlying
rigid-wall boundary condition by an impedance condition, which makes the mode-matching technique even more
attractive.
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Appendix A. Mode-matching procedure

The mode-matching procedure dedicated to sound-generation and sound-transmission problems has been thoroughly
detailed by Bouley et al. [44]. Only the main steps are reproduced here for the sake of completeness. The main idea is that
the cascade of vanes and its vicinity are considered as multiple sub-domains of space in which the same convected
Helmholtz equation holds. This implicitly imposes that the uniform flow considered in the analysis is parallel to the walls.
The domains of interest are the upstream and downstream regions and the inter-vane channels understood as a periodic
array of bifurcated waveguides. The various sub-domains communicate by the leading-edge and trailing-edge interfaces. In
each sub-domain the solution for the acoustic field can be expressed as a series of modes the form of which is imposed by
lateral boundary conditions. The latter are a rigid-wall condition for the channels and a periodicity condition in the
upstream and downstream regions. The modes differ from one subdomain to another one but the acoustic field must be
continuous. The continuity is ensured by writing some matching conditions at the interface. In turbomachinery gas
dynamics, the quantities to be conserved are the mass flow rate and either the total enthalpy for a row of stationary vanes or
the rothalpy for a rotating blade row. The associated equations are linearized when addressing small oscillatory motions. In
the present case the general conservation laws reduce to the continuity of the fluctuating pressure and axial velocity at the
interfaces [55]. The same conditions are classically applied for sound transmission problems in bifurcated waveguides in the
absence of flow.
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The problem of the primary scattering of an upstream-propagating oblique plane wave by the trailing-edge interface is
formulated in this appendix for semi-infinite vanes and ignoring the Kutta condition, as a preliminary step. The incident
wave of azimuthal index j forces transmitted cosine modes in the channels, of amplitudes Am

j
and shape functions

cos ðmπy=hÞ, that propagate upstream, with a phase shift between adjacent channels imposed by the angle of incidence. A
series of reflected, downstream-propagating waves of coefficients Bjs and transverse phases eiα

j
sy with αjs ¼ ðjþsVÞ2π=ðVhÞ are

also generated because the transverse periodicity of the incident wave is modulated by the periodicity of the cascade. All
waves are matched at the interface by imposing the continuity conditions. An infinite linear system of equations is obtained,
solved by matrix inversion after being reduced by modal projection.

The acoustic potential ϕ is used as the primary variable from which the pressure and velocity are deduced as (for the
convention e� iωt)

p¼ iρ0ωϕ�ρ0U0
∂ϕ
∂x

; vx ¼
∂ϕ
∂x

:

In view of the expression of the acoustic pressure derived in Section 2.2 the incident plane wave of index j from
downstream has the potential

ϕi ¼ ajeij2πy=ðVhÞe� iðK ðjÞ þM0KÞX

with

aj ¼ iaj
ρ0c0
β

KþM0K
ðjÞ

	 

K ðjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2� j2π

Vh

� �2
s

The transmitted potentials in the inter-vane channels are expressed as sums of cosine modes. Now adjacent inter-vane
channels have phase-shifted responses driven by the obliqueness of the incident wave, in such a way that the coefficients in
the channel of index ν are those of the reference channel (ν¼ 0) multiplied by eiνu with u¼ j2π=V . As a result the trans-
mission problem only needs to be solved for the reference channel, in which the transmitted potential reads

ϕt ¼
X1
m ¼ 0

Aj
m cos

mπy
h

	 

e� iðKm þM0KÞX with Km ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2� mπ

h

	 
2r
:

Finally the reflected field is a sum of oblique plane waves written as

ϕr ¼
X1

s ¼ �1
B j
s e

iα j
s yeiðK

j
s �M0KÞX with K

j
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2�α j2

s

q
; α j

s ¼ ð jþsVÞ2π
Vh

:

If the trailing-edge interface is placed at x¼0 in a first step the matching equations read

X1
m ¼ 0

Aj
m cos

mπy
h

	 

¼ ajeij2πy=ðVhÞ þ

X1
s ¼ �1

Bj
se

iαjsy; (A.1)

X1
m ¼ 0

KmþM0Kð ÞAj
m cos

mπy
h

	 

¼ aj K ð jÞ þM0K

	 

eij2πy=ðVhÞ �

X1
s ¼ �1

Bj
s K

j
s�M0K

	 

eiα

j
sy: (A.2)

These equations are first reduced by projection on the modes of the inter-vane channels, considering only the reference
channel 0ryrh and the integrals

Ijm ¼
Z h

0
eij2πy=ðVhÞ cos

mπy
h

	 

dy; Js;jm ¼

Z h

0
eiα

j
sy cos

mπy
h

	 

dy;

keeping in mind that j cannot be zero in the present case. The following expressions are found for Im
j
:

Ijm ¼ i
j2π
Vh

1�ð�1Þmei2πj=V� �
2πj
Vh

� �2

� mπ

h

	 
2 if ma7
2j
V
;

Ijm ¼ h
2

if m¼ 7
2j
V
;

and similar ones are obtained for Js;jm when replacing j2π=ðVhÞ by αs
j
, with the value hδ0;m if jþsV ¼ 0.

Eqs. (A.1) and (A.2) lead to

Aj
m
h
2

1þδ0;m
� �¼ ajI

j
mþ

X1
s ¼ �1

B j
s J

s; j
m ; (A.3)

KmþM0Kð ÞAj
m
h
2

1þδ0;m
� �¼ aj K ðjÞ þM0K

	 

Ijm�

X1
s ¼ �1

Bj
s K

j
s�M0K

	 

Js;jm : (A.4)
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Now the trailing-edge interface is also the source of the excitation in the present problem. Therefore, after the matching
equations (A.3) and (A.2) are solved, the total field downstream of the interface must be cleaned of the incident plane wave
and added to the complementary downstream-travelling component of the expansion illustrated in Fig. 4.

It is worth noting that the mode-matching procedure as described above can be applied in the same way to formulate the
scattering of a downstream-propagating oblique wave at the leading-edge interface of a stator, by simply changing the sign
of the Mach number. Yet in the present case a Kutta condition must be imposed at the trailing edges of the vanes. This
condition is equivalent to force the pressure jump between both sides of a vane to go to zero when approaching the trailing-
edge from upstream and adding thin vorticity sheets downstream of the trailing edges (Section 3.2).
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