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SUMMARY

The long-range atmospheric propagation of explosion-like waves of frequency in the infra-
sound range is investigated using non-linear ray theory. Simulations are performed for sources
of increasing amplitude on rays up to the lower thermosphere and for distances of hundreds of
kilometres. A study of the attenuation of the waveforms observed at ground level induced by
both the classical mechanisms and the vibrational relaxation of the molecules comprising the
atmospheric gas is carried out. The relative importance of classical absorption and vibrational
relaxation along the typical atmospheric propagation trajectories is assessed. Non-linear ef-
fects are highlighted as well and particular emphasis is placed on their strong interaction with
absorption phenomena. A detailed description of the propagation model and of the numerical
algorithm used in this work is first reported. Results are then discussed and the importance of
the different mechanisms is clarified.

Key words: Seismic monitoring and test-ban treaty verification; Guided waves; Wave

propagation; Acoustic properties.

1 INTRODUCTION

Explosive sources generate low-frequency acoustic waves below a
few Hertz that can be measured at very large distances (Campus &
Christie 2010). The signal detected by barometric stations located
at ground level consists of phases which propagate along particular
paths through the atmospheric thermal layers and can reach alti-
tudes up to the lower thermosphere. As a general rule, tropospheric,
stratospheric and thermospheric arrivals are observed (Ottemdéller
& Evers 2007; Gainville ef al. 2010; Fee et al. 2013).

Atmospheric absorption plays a major role in long-range propa-
gation (Sutherland & Bass 2004). Along with the classical mecha-
nisms associated with the viscous diffusion, the thermal conduc-
tion and the rotational modes of the molecules comprising the
atmospheric gas (Pierce 1985), vibrational relaxation is a poten-
tial source of wave attenuation. Due to the vertical variability of
the atmosphere, the influence of these phenomena on the recorded
waveforms is related not only to the frequency of the wave, but
also to the particular trajectory followed by the signal before reach-
ing the ground (de Groot-Hedlin 2008). Roughly speaking, in the
infrasound range, vibrational relaxation is expected to be more im-
portant for stratospheric or tropospheric arrivals. On the other hand,
as a consequence of the approximately exponential reduction with
height of the mean density, classical phenomena are the dominant
absorption mechanisms along thermospheric phases. Together with

signal attenuation, non-linearity can be important for large source
amplitudes and increases with decreasing density. Non-linear ef-
fects induce waveform distortion and modify the spectral content of
the signal. As a result, the amount of absorption can be significantly
affected.

Research in the field of atmospheric infrasound has been highly
motivated over the last two decades by the development of The
International Monitoring System for the enforcement of the Com-
prehensive Nuclear-Test-Ban Treaty, which bans all kind of nuclear
explosions (Christie & Campus 2010; Brachet ef al. 2010). In this
context, evaluating the importance of absorption and non-linear ef-
fects on the signals measured at ground level is crucial to allow
a quantitative characterization of the source. Current methods of
estimating the size of a source from infrasound data are based on
empirical formulae (Mutschlecner & Whitaker 2010), and only a
few theoretical investigations have been made on the influence of
atmospheric absorption and non-linearity on the amplitude of ar-
rivals. de Groot-Hedlin (2008) simulated the upward propagation
of an acoustic signal with and without attenuation. The approach
was however based on a linear equation. Rogers & Gardner (1980)
performed a theoretical analysis of the interaction between classi-
cal absorption and non-linear distortion, and a numerical illustra-
tion has been provided by the more recent work of Lonzaga et al.
(2015). Nonetheless, both studies neglect the effects of relaxation
phenomena.
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The direct numerical simulation of the fluid dynamic equations
for the study of long-range infrasound propagation in realistic
atmospheres is now possible (de Groot-Hedlin ez al. 2011; Marsden
et al. 2014; Sabatini et al. 2015; de Groot-Hedlin 2016; Saba-
tini et al. 2016), and investigations based on this approach are ex-
pected to lead to a better understanding of the inherent physics. The
conventional formalism of the Navier—Stokes equations includes
viscous, thermal and rotational terms, but does not account for vi-
brational losses. A complete model incorporating non-equilibrium
phenomena was developed by Pierce (1978) and preliminary nu-
merical results on atmospheric acoustic propagation have been
shown in the more recent works of Wochner et al. (2005) and de
Groot-Hedlin (2012), however neither of them focuses on long-
range high-altitude infrasound propagation. Including vibrational
relaxation not only results in a higher number of equations (Pierce
1978) but may also lead to a severe limitation of the integration
time step, which is dependent on the smallest relaxation time of the
atmospheric molecules (Hanique-Cockenpot et al. 2010).

The goal of this work is the assessment of attenuation and non-
linearity on long-range propagation of explosion waves. The ob-
jective is twofold. On the one hand, it is necessary to improve
our understanding of atmospheric absorption and, in particular, its
interaction with non-linear effects, in order to develop better meth-
ods of estimating the source strength from infrasound recordings.
On the other hand, it appears of primary importance to ascertain
whether vibrational relaxation can be reasonably neglected in di-
rect solvers, in order to avoid an excessively large computational
cost. For these purposes, the acoustic propagation in a realistic at-
mosphere of explosion-like waves of frequency in the infrasound
range is investigated on stratospheric and thermospheric arrivals
for different source amplitudes and frequencies. Non-linear ray the-
ory is employed. In this method, acoustic signals are supposed to
propagate along particular paths, known as acoustic rays, which
are computed by solving the equations of geometrical acoustics
(Candel 1977), whereas the evolution of the amplitude along the
rays is modelled by a 1-D transport equation. The augmented Burg-
ers’ equation proposed by Cleveland et al. (1996) is used here.
This methodology appears well suited for the present investiga-
tions, as it allows to accounts for vibrational relaxation, classical
absorption and non-linear terms in a straightforward way and with
a reduced computational cost, given the uni-dimensional nature of
the governing equation. Similar approaches for long-range infra-
sound propagation can be found in Gainville et al. (2006, 2010)
and Lonzaga et al. (2015). Sonic boom propagation has also been
extensively studied using non-linear ray theory (Rogers & Gardner
1980; Cleveland 1995; Rallabhandi 2011; Yamamoto et al. 2015).

For the purposes of this study, an infrasonic wave is assumed to
be emitted by a fixed point source located at ground level. The initial
signature is supposed known at a certain distance from the source
location and modelled using the waveform proposed by Reed (1977)
for explosions. The mean atmospheric variables are defined from
the specification of the vertical profile of speed of sound, which is
taken from studies previously performed by the authors (Sabatini
et al. 2016). The model proposed by Sutherland & Bass (2004) is
employed for evaluating the coefficients of the absorption terms.
The propagation is analysed on stratospheric and thermospheric
rays up to a range of 325 km.

The augmented Burgers’ equation is solved numerically via a
high-order finite-difference time-domain method (Bogey & Bailly
2004; Berland et al. 2006). Acoustic shocks are handled using a
shock-capturing procedure based on low-order filtering (Bogey et al.
2009), with a new specific shock detector (Sabatini ez al. 2016). Vi-
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Figure 1. Sketch of the physical framework. A point source is placed at the
origin of the Cartesian coordinates.

brational relaxation is finally taken into account using the analytical
technique recently proposed by Yamamoto et al. (2015).

The paper is organized as follows. The acoustic propagation
model is presented in Section 2, along with a brief theoretical
analysis of the main terms of the augmented Burgers’ equation.
Numerical issues are discussed in Section 3. Simulation parameters
and results are described in Section 4 and concluding remarks are
finally drawn in Section 5.

2 ACOUSTIC PROPAGATION MODEL

In the geometrical acoustics approximation and in the absence of
wind, an acoustic ray x(¢) is defined by the first-order differential
system (Candel 1977)

ax _:
dn

where ¢ is the equilibrium speed of sound and # is the unit nor-
mal to the wavefront. System (1) is to be integrated from an initial
surface. For a fixed point source, this surface is a sphere which
can be parametrized by the longitude 6 and the latitude ¢, as illus-
trated in Fig. 1, and a given couple (8, ¢) corresponds to a unique
ray. When no wind is considered, the wavefront remains invariant
with respect to any rotation around the vertical axis x; and the ray
corresponding to the angles (6, ¢) always lies on the same plane.
Thus, it is sufficient to investigate rays emitted with a longitude
0 = 0°. In this case, the initial conditions needed to solve system (1)
are

x(t=0)=0

. @)
n(t = 0) = cos(p)e; + sin(gp)e;.

The point source is located at the origin of the frame and e;,
i = 1, 2, 3, are the unit vectors of the Cartesian coordinate
system.

In the weakly non-linear regime, the evolution of a signal
p'(s, t,) along an acoustic ray x(¢) can be modelled by the
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augmented Burgers’ equation (Cleveland et al. 1996)

op B op” P o4 p 3
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1/2
! dx1 2 dX2 2 dX3 2
= — — — d 4
[1G) (@) ()] - @
is the curvilinear abscissa and #, the retarded time

s 1
t, :t_-[o E(S)dé )

with sy a reference point on the ray, at which the initial condition
p'(s = s0, t, = t) = qo(?) is specified. In eq. (3), p is the mean
density and 8 = (y + 1)/2 is the coefficient of non-linearity, where
y represents the ratio of specific heats. When considering only
the two first terms, eq. (3) reduces to the well-known lossless 1-D
Burgers’ equation. The geometrical spreading along the ray is taken
into account by the third term. The function A(s) is related to the
elemental ray tube area dX(s) = A(s)dfdy spanned by the four
rays emitted with initial angles (6, ¢), (6 + dO, ¢), (0, ¢ + dp),
(60 + db, ¢ + dp), and is defined as

A(s) = [|ra(s) x ry(s)] (6)

where the vectors r, = dx/dp, with p = 6 or p = ¢, are the so-
called geodesic elements. The fourth term is associated with the
inhomogeneities of the medium. Finally, losses are described by
the right-hand side of eq. (3). The first term is here referred to as
classical diffusion and includes the viscous, thermal and rotational
relaxation contributions, respectively, proportional to the dynamic
viscosity of the medium ji, the conductivity i through the Prandtl
number Pr and the bulk viscosity ji,. The parameter fi. is given
by

_ 4_ y—-1_  _
fa = s+ —=—[+ i @)
3 Pr

The second term of the right-hand side of eq. (3) represents vi-
brational relaxation processes. In the integral expression, t,, is the
relaxation time relative to the molecule m and Ac,, a coefficient
associated with the increase in the phase speed induced by the re-
laxation process m.

The pressure perturbation p’ is generally normalized according
to the expression

- 12

Poco A ,

q= (TT*) p (3)
p ¢ Ao

which compensates for amplitude variations due to geometrical

spreading and inhomogeneities of the medium. In eq. (8), the sub-

script 0 indicates that the corresponding variable is evaluated at the
initial abscissa s¢. Eq. (3) is finally recast as

d
ﬁ = Sn] + Scl + va (9)
as

where Sy, S and S, represent the non-linear, classical dissipation
and vibrational relaxation effects,

_ 1/2

B. 9q> o ¢ Ao

Snl: — s ﬁe:ﬂ T%i (10)
200Cy° Oty pc A

ﬁcl 82‘]
Sy = 11
"7 2p3 ar,2 (n
Ac r 3%q
— m —(tr=7)/Tm
Sy = Z = / K L (12)

and B, is the so-called coefficient of effective non-linearity.

2.1 Analysis of non-linear and absorption terms

When the right-hand side of eq. (9) can be neglected, that is in
the case of linear propagation with no absorption mechanism, g
remains constant with s and the acoustic energy flow rate, which is
proportional to ¢°, is conserved along the acoustic ray. Accordingly,
the pressure perturbation p’ evolves as (pc/A)'/.

More generally, the right-hand side of eq. (9) cannot be neglected.
An exact solution of eq. (9) including only the source term S, can
still be obtained by introducing the variable (Cleveland 1995)

N * B§)
x(s) [ Tp § (13)
eg. (9) can thus be recast as

dg B 09q
A% 2p0G° o1,

(14)

so that, with g(X = 0, ¢. = t) = ¢,(¢) the initial condition, the exact
implicit solution is given by

)= (1 + LT (15)
PoCy

The second term in the argument of g, in eq. (15) tends to modify
the shape of the wave, and the amount of distortion is linearly de-
pendent on . For this reason, the variable X is often referred to as
distortion distance (Cleveland 1995). Furthermore, multivalued so-
lutions can be generated. A single-valued signature is then obtained
by introducing shock waves (Hamilton & Blackstock 2008).

In order to get more insight into the analysis of non-linear, clas-
sical dissipation and vibrational relaxation effects, it is useful to
investigate the evolution along the acoustic ray of the energy E(s)

of the signal g, which is defined as

E(s) = /m q°(s, t.)dt, (16)

00

or, equivalently, as

+oo
E(s) = /0 &5, Ndf (17)

where (s, ) = 2|4(s, f)I* is the one-sided spectrum associated
with the Fourier component g(s, f) of frequency f°

+00

a6 = [ atsiye . (18)
—00

Hereafter, g is considered a continuous function of both space and

time. With some manipulations of eq. (9) (see Appendix A for

further details), it can be shown that the energy spectral density &,

is governed by the Lin’s equation (Bailly & Comte-Bellot 2015)

94 /) _ BS) s 1y 4 s, ) (19)
as PoCo

where 7 and D are the so-called non-linear transfer and dissipation
terms, respectively. The former takes into account the interaction
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among harmonics, which is associated with the waveform distor-
tion during propagation. The latter represents the rate of decay of
the spectral component g(s, /) due to the dissipative mechanisms.
Integrating eq. (19) over all frequencies provides

dE . oo Foo
6 _ P [ s,y + f Dis. /)df. 20)
ds PoCo” Jo 0

As demonstrated in Appendix A, the first term at the right-hand side
of eq. (20) is identically zero. Consequently, the non-linear transfer
function 7 is only responsible for a redistribution of energy among
spectral components, but does not affect the total energy E. The
dissipation function D can be written as

D(s, f) = —2a(s, ))& (s, /). (2]

The coefficient o = « + o, contains both the classical and vibra-
tional relaxation contributions

_ Aa)Qf)
aals, f) = W (22)
avb(S, f) — Z 27Tfm(S)Acm(S) (4f/fl‘1z(s))2 (23)

c(s) L+ (f/fu(s))?

where f,, = 1/(2r 7,,) is the relaxation frequency of the molecule m.
For a given point s on the acoustic ray, the term «; is proportional
to f2, indicating a quadratic increase of classical absorption with
frequency. On the other hand, the coefficient «,, reaches significant
values only for Fourier components of frequency around f,,, whereas
it is practically negligible for > 10%f;, or f < 1072f,,.

The vibrational source term S, also induces dispersion
(Hamilton & Blackstock 2008). More specifically, the phase speed
¢, can be computed from its Taylor series

1)
% ‘”Z[l /P

This velocity increases monotonically from its equilibrium value
¢ to the frozen speed of sound ¢ + ), Ac,,. As will be shown in
Section 4.2, this effect is very weak in the infrasound frequency
range.

The behaviour of the coefficient of absorption o and the phase
speed ¢, in a realistic atmosphere will be discussed in Section 4.

Finally, it is worth noting that, in the present model, ray paths
are computed using the equilibrium value ¢ of the speed of sound.
Consequently, they depend neither on the amplitude of the wave
nor on the frequency. This is in general not true for finite-amplitude
signals propagating in a dispersive medium. Nevertheless, in the
weakly non-linear regime and for weakly dispersive media, the error
induced by this assumption is expected to be small. A more detailed
discussion on this topic can be found in Hamilton & Blackstock
(2008).

m

Ac, +0O (Aci)] . (24)

3 NUMERICAL INTEGRATION

The numerical algorithm involves two main steps. First, the eigen-
rays connecting the source with a given receiver are computed, along
with the corresponding curvilinear abscissa s and the spreading
term 4/A. Second, the augmented Burgers’ equation is integrated
along each ray. The acoustic pressure at the recording station is
then obtained by the sum of each ray contribution. In this section,
the numerical procedure employed in each step is briefly described,
and the algorithm is then validated with the case of a step shock
propagating in a monorelaxing fluid.
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3.1 Computation of eigenrays, curvilinear abscissa
and spreading term

The computation of the eigenrays connecting the source with a
given receiver P = G consists in determining angles ¢ for which
the distance d(¢) = ||P(¢) — Gsl| becomes nil. In this work, a grid
of discrete values ¢; is constructed. For each ¢;, the ray x(¢; ¢;) is
calculated by solving systems (1) and (2) using the low-dissipation
and low-dispersion fourth-order Runge—Kutta scheme proposed by
Berland et al. (2006). An approximation of the function d(¢) is
thus obtained. The eigenrays are then given by the zeros of d(¢p).
For each of them, the curvilinear abscissa s is computed by eq. (4).
Concerning the spreading term A/A4,, it is straightforward to show
that, for & = 0° and under the hypothesis of rotational symmetry
around the vertical axis x3, the vector ry is perpendicular to the
x1x3-plane and equal to ry = x;e,. Following Candel (1977), the
geodesic element r, can be obtained by integrating the differential
system

dr,

P (rw . Vé)n—{—Enw
d
e - Ve, + (0, - ) n— [0, — (1 - v,) ]

25

where v, = (r, - V) Ve, with the initial conditions r,(0) =0
and n,(0) = —sin(p)e; + cos(p)es. The ray tube area A4 is fi-
nally given by eq. (6). As an illustration, when ¢ is constant
throughout the medium, rays are straight lines, the derivative of
the unit vector n, remains constant and r, = c¢tn,, so that A(s) =
¢t x| = (¢t)? cos(gp), as expected for a configuration with spherical
symmetry.

3.2 Integration of the generalized Burgers’ equation

The ray tube area 4 may vanish along the acoustic rays for an
inhomogeneous medium. The locus of points s. where 4 becomes
nil is called caustic (Kravtsov & Orlov 1993). In the atmospheric
propagation field, fold and cusp caustics are commonly encountered.
The effect of such singularities on the waveform is not directly taken
into account by the augmented Burgers’ equation and an ad-hoc
treatment is required. For the purpose of this study, as suggested by
Rogers & Gardner (1980), a phase shift is applied to the acoustic
signal every time a caustic is crossed. If ¢, (¢,) = q(s,, t.) is the
incoming waveform, the outgoing signal ¢,(#,) is computed as the
Hilbert transform of ¢i,(%,)

Gou(ty) = ‘% / @, (26)

o T— 1,

Moreover, at the caustic point s., the generalized Burgers equation
cannot be directly integrated in the form (9) as the coefficient 8,
becomes infinite. For this reason, Gainville (2008) proposed to de-
fine the following new variable n = |s — s.|'/2. Hence, eq. (9) is
recast as

dq B. dq*

3y = S0 —son =

+2sgn(s —so)n [Sa + Swl.  (27)

In the nelghbourhood of'the fold or cusp caustics, A(s) = A'(s.)(s —
s.) + O((s — s.)%), so that the coefficient of the non-linear term
remains finite at s = s.. In practice, the acoustic ray is divided
into two segments, to the left and the right of the caustic point,
respectively (see Fig. 1). Eq. (27) is integrated on the left-hand side
from 19 = |so — s.|'/? to n = 0. The Hilbert transform (26) is then
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applied to the temporal signal g(n = 0, ¢,) obtained at s = s.. and the
result is used as the initial condition for the integration of eq. (27)
on the right-hand side from 1 = 0 to the recording station G;.

The integration of eq. (27), dq/dn = F(n, q), is performed on
both segments using the low-dissipation and low-dispersion fourth-
order Runge—Kutta scheme developed by Berland ez al. (20006). At
each stage of the Runge—Kutta algorithm, the temporal derivative
of the non-linear term is computed on a regular grid with time step
At, using an explicit fourth-order 11-point stencil centred scheme
optimized to reduce the dispersion error (Bogey & Bailly 2004).
The viscous term is computed with a standard second-order centred
scheme. Vibrational relaxation effects are calculated using the tech-
nique recently proposed by Yamamoto et al. (2015). The relaxation
term (12) is rewritten in the form (Pierce 1985)

Acy g,
Sv s = Z 28
o1 ) Z = (28)
where the auxiliary variables ¢,, satisfy the expression
1 a dq
— = —. 29
<%'Fm)q’ o, 9)
Eq. (29) has the following solution
Iy 8q
qﬂmn)=¢*”@Am—«0+/‘e*“““%rdr (30)
oo T
which can be rewritten as
an(n, 1) = e 27 q,, (n, 4, — At + 1(n, 1) 31
with
Iy 8
In.1) = / et Sl (32)
A JaT

Replacing the exponential function in the integral by its mean over
the interval [#, — At,, t,], the values of g,, can be explicitly computed
as

an(m, ) =e 2" q,(n, 1, — AL + L(n, 1) (33)
where
L(n. t,) = e “"/C) [q(n, t,) — q(n, t, — At)]. (34)

The derivatives dg,,/d¢. are then calculated with the same fourth-
order scheme used for the non-linear term S,;. For an harmonic
wave of the form g = e~/ the error |I — 1| is given by

o (1+40272)"

I—1,]=
| ol = 2472

At} 4+ O (Ar) 35)

which means that the approximation /, of the integral / is for-
mally of third order in At,.. Contour lines of the relative er-

ror €, = |I — I,|/|l] are plotted in Fig. 2 as a function of
the dimensionless angular frequency wAt, and the ratio At,/7,,.
The line wAt, = w,At., with w,At, = 2w /5, correspond-

ing to the accuracy limit of the fourth-order finite-difference
scheme used for derivatives with respect to the variable ¢, (Bo-
gey & Bailly 2004), is also reported. As an illustration, for
At, = 0.17,, € is always lower than 1percent for frequencies
smaller than w, At,.

Grid-to-grid oscillations are not resolved by centred finite-
difference schemes and can be removed using a low-pass selective
filter with cut frequency close to (wAt,), (Bogey & Bailly 2004).

Finally, to handle acoustic shocks, a shock-capturing technique
is employed (Bogey et al. 2009). The methodology consists in ap-
plying artificial dissipation only near shock fronts and involves

1010 . .
\
|
107!
i 1072
=
<
1073
0.001 % |
10—4 | 1 | I
/16 /8 /4 /2 7r
wAt,
Figure 2. Relative error €; = |I — I,|/|l] as a function of the non-

dimensional angular frequency wAf, and the ratio At./t,. The dashed
vertical line represents a resolution limit of 5 points per period.

two main steps. The locations of the discontinuities are first de-
termined through a shock sensor. To this end, a new detector
has been specifically developed for acoustic applications (Sabatini
et al. 2016). Then, a second-order filter is applied in conservative
form with a strength which is significant around the shocks but nil
everywhere else. In this way, smooth regions of the solution remain
unaffected.

3.3 Validation of the numerical procedure

In order to illustrate the capabilities of the present algorithm, the
plane wave propagation of a step shock in a mono-relaxing inviscid
and homogeneous fluid is investigated. Under these assumptions,
eq. (3) reduces to

P 19P
Bc 296,

o~ =10/ pd (36)

with P = p'/po, = §/su, 0, = ot,, O = wr; and
R = (Ac1poCo)/(B po), where py is the ambient pressure, sy, the so-
called shock formation distance and 1/w a characteristic timescale.
The coefficient R represents a measure of the relative importance
between relaxation and non-linear effects. The initial signature is a
pressure jump of 2 py, from — p, ahead of the wavefront (¢, € ] — co
0[) to + po behind (¢, € ]0, +o0[). For large propagation distances,
eq. (36) has a closed-form stationary wave solution (dP/d¢ = 0)
given by the following implicit expression (Cleveland et al. 1996;
Hamilton & Blackstock 2008)

(1+ Py~

0, = @)1 log [m

] + constant. 37)
For R < 1, eq. (37) describes a multivalued waveform, which can
be corrected using weak-shock theory. The peak shock pressure is
P; = (1 — 2R). To validate the numerical procedure, an investiga-
tion is performed for R = 0.5 and ®, = 1/6. The computation is
carried out on a uniform grid of spacing A, = 5.29 x 1075, The
result obtained at ¢ = 5 is illustrated in Fig. 3(a), along with the
analytical multivalued solution. An excellent agreement is found,
both for the smooth non-zero part of the wave and the position of
the shock.
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Figure 3. Stationary waves in a monorelaxing fluid. Numerical solution
for R =0.5and ®; = 1/6 at £ = 5 (solid line), initial temporal signature
(dotted line) and analytical multivalued solution (dashed line).

4 A NUMERICAL INVESTIGATION
OF RELAXATION EFFECTS ON
INFRASONIC WAVES

Using the methodology presented in the previous section, an anal-
ysis of the long-range atmospheric propagation of explosion-like
waves is carried out. In this section, the mean atmospheric state, the
source signature and the simulation parameters are first presented.
Results are then illustrated and discussed.

4.1 Atmosphere

The mean atmospheric field is a vertically stratified medium. The
speed of sound ¢ = ¢(x3) is here defined as the effective celerity
obtained from data observed during the Misty Picture experiment in
the east-west direction (Gainville ef al. 2010). The numerical val-
ues have been taken from previous investigations performed by the
authors (Sabatini et al. 2016). This profile, displayed in Fig. 4(a),
induces two main waveguides. First, a stratospheric duct, located
between the ground and the altitude of the first local maximum of ¢,
around x; = 53.5 km. Second, a thermospheric waveguide, between
the Earth’s surface and the altitude at which ¢ reaches its ground-
level value, that is x; = 105 km. The mean temperature 7 (x;) is com-
puted from the speed of sound according to T(x3) = &2(x3)/(¥7 ),
where r, is the specific gas constant, whereas the mean pressure
P(x3) is obtained by solving the hydrostatic equilibrium equation
dp g .

7163 s _VMTP

(3%

Absorption and non-linear effects 1437

where g = 9.81 m s~2 is the gravitational acceleration. Eq. (38)
is integrated numerically from x; = 0 km with the ground-level
pressure fixed to p, = 101325 Pa. Finally, the density profile p is
obtained from the equation of state 5 = p/(r,7) and is plotted in
Fig. 4(b). It is worth emphasizing the severe reduction with height
of the mean density: at the limit of the thermospheric waveguide, p
is about 8 orders of magnitude smaller than its value at the Earth’s
surface.

4.2 Absorption and dispersion terms

The mean dynamic viscosity fi is provided by the Sutherland’s law

T(xs)>3/2 Tur 43
T}cf T (X3) + S
where jir = 1.8192 x 1075 kg m~' s7!, T,,r =293.15 K and
S = 117 K. The bulk viscosity i, in eq. (7) is taken as a fraction of
the dynamic viscosity fi, namely fi,(x3) = 0.6fi(x3) (Pierce 1985).
The main contribution to relaxation attenuation is due to the vibra-
tion of oxygen O,, nitrogen N, carbon dioxide CO, and ozone Oj.
The values of the relaxation times 7 ,,(x3) and speed of sound incre-
ments Ac, (x3) for these molecules are computed using the expres-
sions provided in Sutherland & Bass (2004). The attenuation coeffi-
cient o obtained with the present modelling is plotted in Fig. 5(a) as
a function of the frequency f'and the altitude x;. Some contour lines
of the ratio o /&, are also reported to highlight the regions of rela-
tive importance of classical and vibrational relaxation mechanisms.
For infrasound frequencies up to about 10 Hz, classical losses are
found to be dominant in the upper atmosphere, above approximately
60 km altitude, mainly as a result of the exponential-like decrease
of the atmospheric density. As an example, for f= 0.1 Hz, the coef-
ficient o is about 0.45 dB km™! at x3 = 140 km, which implies an
amplitude diminution of 1 per cent over a range of only 0.2 km. On
the other hand, in the troposphere and stratosphere, attenuation is
mostly due to the vibrational relaxation of the gas molecules, but the
coefficient s is quite small for frequencies below approximately
1 Hz. These trends can be also observed in Fig. 5(b), where the con-
tributions of « and oy, are shown for three different frequencies,
f=0.1,1, 10 Hz. For the lowest frequency, f = 0.1 Hz, the vibrational
attenuation is of the order 10~* dB km~! on average between the
ground and 60 km altitude. Consequently, a propagation distance
of about 10° km would be necessary for an amplitude reduction of
1 per cent. The vibrational relaxation attenuation globally increases
with frequency in the stratosphere and troposphere. As an illustra-
tion, for f= 10 Hz, a,;, is approximately 102 dB km~' on average
below the mesosphere, with a peak of 107! dB km™' at about
10 km altitude.

(X3) = frer < (39)

’E\ Thermosphere
290k A= ----- Mesopause - — —
™

Mesosphere

— - Tropopause — — — —

Tropo‘sphcrc

180

xg (km)

0 I L 1
200 300 400 500 600 700 10-10 106
. (m.s) 77y
@ ®)

1072 10*° 10*2

300 325

(©)

Figure 4. (a) Atmospheric speed of sound ¢ as a function of the altitude x3. (b) Atmospheric density p normalized with respect to its value at ground level pg
as a function of the altitude x3. (c) Eigenrays connecting the point source with a ground-level barometric station located at x; = 325 km.
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Figure 6. Vibrational relaxation frequencies f;, of oxygen O, nitrogen N,
carbon dioxide CO, and ozone O3 as functions of altitude x3. The dashed
lines indicate a reference infrasound range [0.01 Hz, 20 Hz].

The relaxation frequencies f,, of the four molecules considered
here are plotted in Fig. 6 as functions of the altitude x;. As the
absorption reaches its maximum for frequencies closer to the relax-
ation frequencies, it is expected that the most important contribution
to the attenuation of infrasound below the stratospheric limit is pro-
vided by the relaxation processes of nitrogen and oxygen.

The dispersion induced by the vibrational relaxation term is
weak. As an example, in the infrasound frequency range, the ratio
¢, /¢ predicted by the model of Sutherland and Bass (Sutherland &
Bass 2004) is always smaller than 7 x 10~ below 140 km altitude.

Vibrational relaxation is the sole mechanism responsible for
dispersion in the present model. The term S, represents in fact
an approximation of the classical mechanisms and does not in-
clude dispersive effects (Rayleigh 1878; Pierce 1985). Sutherland &
Bass (2004), Bass et al. (2007) and de Groot-Hedlin (2008) have
however pointed out that rotational relaxation may induce an aug-
mentation of the propagation velocity, which is expected to be sig-
nificant above 100 km altitude and increasingly important with fre-
quency. Using a linear propagation model, Bass et al. (2007) have
also emphasized that the spectral components affected by this veloc-
ity increment are also the most attenuated by classical absorption.

Consequently, they have concluded that rotational relaxation disper-
sion should not be observed in practice. Furthermore, for the case
of acoustic waves produced by explosions at ground level, it can
be argued that this dispersive effect is unlikely also as a result of
non-linearities. In fact, as will be shown in Section 4.5, infrasound
signals lengthen while propagating from the ground to the ther-
mosphere and their spectrum is shifted towards lower frequencies,
which are less affected by dispersion.

4.3 Initial signature

In order to integrate the augmented Burgers equation (9), an initial
condition gy must be specified. For the purposes of this study, the
signature ¢, is supposed known at a distance » = 4 km from the
source and modelled using the waveform proposed by Reed (1977)
for explosions

t t r\?
qo(?) = Qo <1 - E) (1 - ?0) |:1 - (70) :| M, 7(1)  (40)

where Q is the initial amplitude, T the total duration of the pulse,
T the positive phase duration and ITy 7,; the boxcar function. The
coefficient 7 is set to 77,/25 in order for the integral of g over
time to be nil. The parameters Qy and 7. primarily depend on
the so-called source yield W, which represents the ratio between
the energy of the actual explosion and the energy of a reference
explosion of 1 kg of trinitrotoluene. As suggested by Gainville
et al. (2010), the following expressions for Q, and 7', derived by
fitting the tabulated data given by Kinney & Graham (1985), are em-
ployed: Qg = 0.82m x p,z~'and T, = 0.0041s x (2W)"/3 with z
=r/(2W)'3 a scaled distance and p, = 101325 Pa the atmospheric
pressure at ground level. A factor 2 for the source yield W is intro-
duced for explosions located at ground level. The initial signature
qo normalized with respect to its amplitude Q is plotted in Fig. 7(a)
as a function of the non-dimensional time #/T;. The pressure distur-
bance exhibits a shock at #/7) = 0 followed by a smooth negative
phase before reaching its equilibrium value at #/7 = 1. The corre-
sponding one-sided energy spectral density &, is shown in Fig. 7(b)
as a function of the non-dimensional frequency /7. The frequency
J» of the maximum &, is around f,7, > 0.85 and about 91 per cent
of the total energy of the signal is contained in the frequency range

[0, 6/,].
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Figure 7. (a) Initial signature g9 normalized with respect to its amplitude
Qo, see eq. (40). (b) One-sided energy spectral density &, of the initial
waveform go.

Table 1. Amplitude Qy, total duration 7j, positive phase duration 7.y and
central frequency f, for three different source yields .

Case w Qo (Pa) To (s) Ty (s) fp (Hz)
A 4 % 10° 4.154 x 103 2.930 0.8204 0.29
B 4x%103 4.154 x 10% 0.293 0.0820 2.90
C 4 % 10! 8.950 x 10! 0.063 0.0176 13.5

4.4 Simulation parameters

The signal recorded at Gy = (325, km, 0 km, 0 km) is investigated
for three different values of W, see Table 1. The three cases will
be referred to as 4, B and C, respectively. The corresponding am-
plitudes and central frequencies are representative of a wide range
of impulsive sources, from volcanic eruptions (Ripepe & Marchetti
2002) to large explosions (Gainville ef al. 2010).

The speed of sound profile ¢ chosen for this study induces two
caustics, respectively, located in the stratosphere and lower ther-
mosphere. Three rays are found to connect the source with the
barometric station Gs. The lower, emitted with a latitude angle of
@ >~ 2.496°, reaches heights of about 45 km and crosses the strato-
spheric caustic. Two upper rays climb up to altitudes of 110.6 and
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135.4km before turning back toward the Earth’s surface. They are
emitted with latitude angles of ¢ ~ 30.23° and ¢ =~ 50.23°, respec-
tively (Fig. 4). Finally, only the lower thermospheric ray crosses the
thermospheric caustic, whereas the ray tube area does not vanish on
the highest eigenray.

The present simulations are performed with a constant time step
At,., which depends on the highest frequency w,At,. to accurately
resolve. As an illustration, following the considerations drawn in
the previous paragraph, f;, = w,/(27) could be taken equal to
Jfa = 20f, and would be about 270 Hz for case C. By consider-
ing a resolution limit of 5 points per period for the finite-difference
scheme employed here, the maximum value of A¢. would be around
7.4 x 10™*s. For case C, At, is set to 10™*s, so that £, = 2kHz.
As discussed in Section 3, the source term Sy, may not be properly
computed in regions of the acoustic ray where ,(s) < At,. In these
zones, the spectral components of the signal which are affected
by vibrational relaxation have however negligible energy and are
removed by the selective filtering procedure.

For the present computations, the spacing An is constrained for
stability reasons by the maximum value of the total kinematic vis-
cosity P, = fic/p, which reaches very high values on the thermo-
spheric rays. In order to avoid an excessive computational cost, the
spatial step An is progressively reduced along these rays in order to
meet the stability requirements. As an illustration, for case B, An
varies between 3 x 1073 and 3 x 10~* m'/? on the segment before
the caustic point of the lower thermospheric ray.

A final remark concerns the boundary conditions. Before the
caustic point, the signal g(n, ¢.) has a compact support, so that it is
sufficient to consider a domain [min #,, max #,] which includes the
pulse and impose ¢ = 0 at the boundaries. After performing the
Hilbert transformation at the caustic point, the function gou (7., ¢.)
has an asymptotic behaviour of the form

X X
qout(nm tr) ~ 70 + 721 + - |tr| — (41)

;
where x;, i =0, 1, ..., indicate the moments of gou (7., ¢,). Thus,
for s > s., function g slowly goes to zero for |t,| — oo and prob-
lems can arise when truncating the computational domain. No exact
conditions are known, at least to the best of our knowledge. In this
work, the following strategy is adopted. Assuming that the mean of
the signal remains zero up to 1., xo = 0 and Gou(n., t,) ~ 1/£2.
For this reason, beyond the caustic point, it is imposed that
dq/dt, + 2¢q/t. = 0 at the boundaries. These conditions are however
applied sufficiently far in order for the central part of the signal to
be unaffected by possible errors near the boundaries.

4.5 Results

4.5.1 Case A

The pressure signal computed at the recording station G is plotted in
Fig. 8. Results obtained with source terms S, and (S, + S) are also
shown for comparison. The three curves are nearly superimposed,
which means that the evolution of the waveform is essentially driven
by non-linear effects. The dissipation term is responsible for the
absorption of high frequencies, which are concentrated around the
shock regions.

Two different arrivals are clearly visible. The stratospheric phase,
referred to as I, is observed between about = 1040 and 1060 s and
exhibits a U-shaped waveform, as expected for an N wave crossing a
caustic. The corresponding maximum overpressure is around 28 Pa.
The second arrival is recorded between about = 1160 and 1300's
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Figure 8. Signals p’ recorded at Gy in case 4 with (Sy;) (black dashed line),

(Sn1 + Ser) (grey line) and (Sp + Se1 + Syp) (black line). The three curves
are nearly superimposed.

and is a combination of the lower and upper thermospheric phases,
respectively, labelled /i, and /y,. The former has a U-shaped wave-
form, whereas the latter is an N wave. Their maximum overpressure
is relatively small, about 1.5 Pa.

The evolution of the signature of the normalized pressure ¢ along
the lower thermospheric ray before the thermospheric caustic is
plotted in Fig. 9(a). Because of non-linearities, the initial waveform
evolves into an N-shaped wave, which lengthens while propagating
toward the thermosphere. The duration 7(s) is of about 4s at s; =
44.2km, 22 sats, = 175.5km and 50 s at s = s, = 224 km. Accord-
ingly, the maximum of the pressure perturbation Q(s) diminishes
approximately following the theoretical behaviour Q(s) o< T~ '(s),
valid in the pure non-linear case (Pierce 1985).

The evolution of the signature of the normalized pressure ¢ along
the lower thermospheric ray after the thermospheric caustic is plot-
ted in Fig. 9(b). As a consequence of the Hilbert transformation
applied when the ray crosses the caustic, the initial waveform be-
yond the point s = s, is a perfectly U-shaped wave. For s > s,
two shocks are generated near the peaks and, as also highlighted
by Rogers & Gardner (1980), the signal should again become an N
wave. However, the roughly exponential increase of the density of
the medium during the downward propagation beyond the caustic
contributes to slow down the non-linear distortion. The waveform is
found to be frozen for s 2 s; = 250 km. This effect can be explained
by examining the evolution of the function ¥(s), as illustrated in
Fig. 9(c). For s = s, the increase of the distortion distance %(s)
remains very small, no matter how far the wave propagates along
the ray. Consequently, according to expression (15), no significant
distortion can occur for s 2 s;. More generally, waveform freezing
is likely to take place for any downward propagating phase. Hence,
it can be deduced that the duration and the peak frequency of the
signals detected at ground level mostly depends on the non-linear
period lengthening during the upward propagation.

The pressure perturbation ¢ computed on the upper thermo-
spheric phase at s = 245.2 km and the corresponding energy spectral
density &, are plotted in Figs 10(a) and (b), respectively. Different
regions can be identified in the spectrum. The function &£, reaches
its maximum value at f, = 0.007 Hz and about 93 per cent of the to-
tal energy of the signal is contained in the interval [0, 0.04] Hz. For
frequencies fin the intermediate range [0.04, 0.4] Hz, dissipation is

+2.0 T

S1
|
4
Y
= +1.0 |
&
T
= 400}
X
ST
—1.0F
—-1.5 ! ‘ '
—30 —15 0 15 30
tr(s)
(a)
+0.4 — T
9 i
i i
| |
i i
SR | | 1
o S ;
\ N :
o ] \
—
X +00f==—=="—\ . |+r—====
& N
N
—0.2 ! ‘ '
—80 —40 0 40 80
tr (S)
(b)
12 T T T
10} e
]t i
s
4t i
21 i
0 83 I | | l
220 260 300 340 380 400

s (km)
(©

Figure 9. Results for case 4 on the lower thermospheric ray. (a) Signals ¢
recorded at 51 = 44.2 km (dashed line), s, = 175.5 km (grey line) and s,
before the caustic point. (b) Signals g recorded at s, = 224 km (black dashed
line), s3 = 228 km (grey line) and s4 = 399 km (black line) after the caustic
point. (c) Distortion distance ¥ computed from s = s3 as a function of the
curvilinear abscissa s.
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Figure 11. Case A. Signals g obtained at the caustic point on the (a) strato-

spheric and (b) lower thermospheric rays, with (S¢;) (black line) and (S +
Svb) (grey line). The initial waveform is also reported (black dashed line).

negligible and the maxima of £, decrease as f~2, as typically found
for N waves (see Appendix B). Finally, for /> 0.4 Hz, absorption
becomes significant and the function &, drops with f. The term 7
of eq. (19) computed for this signal is shown in Fig. 10(c). Since
its sign oscillates with £, the non-linear transfer of energy seems to
take place towards both higher and lower harmonics. More insights
can be obtained by the analysis of the function W(s, f) defined by

f
W, f) = /) (s ) (42)

which represents the net energy transferred from spectral
components of frequency greater than f to spectral components
of frequency smaller than £. As a consequence of the low-frequency
generation induced by the lengthening of the wave, the variable
W(s, f) reaches a local maximum around f = f,. Nevertheless, be-
yond this point, the term W(s, f) decreases and becomes negative,
indicating that, despite the frequency shift, the energy is preferen-
tially transferred towards higher harmonics.

Signals obtained at the caustic points of the stratospheric and
lower thermospheric paths in the linear propagation approximation
are illustrated in Figs 11(a) and (b). On both rays, it is found that
vibrational relaxation has a weak influence on the waveforms. The
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Figure 12. Case B. Stratospheric (a) and lower thermospheric (b) arrivals

recorded at Gs with (Sn1) (black dashed line), (Su + Sci) (grey line) and
(Sn1 + Sc1 + Swp) (black line).

classical term play a minor role on the stratospheric trajectory, but
induces a strong attenuation on the lower thermospheric path. On
this ray, the amplitude of the phase /;, at s = s, is about 17.9 per cent
of Oy and its energy E(s.) is around the 19.7 per cent of the initial
value E(sp).

It is worth pointing out that, if the non-linear source term were
also included, the ratio E(s.)/E(so) would be about 0.048, four times
smaller than in the linear case. This effect is a consequence of the
aforementioned energy transfer towards higher harmonics, which
are more attenuated than lower frequencies.

4.5.2 Case B

The stratospheric and lower thermospheric arrivals recorded at G
are plotted in Figs 12(a) and (b), respectively. The former has a
duration of about 1 s and a maximum of overpressure of the order
of 1 Pa. The latter has a higher period, but its amplitude is more than
10 times smaller. Concerning the stratospheric arrival, results ob-
tained in the pure non-linear case (only with the source term S,,;) and
with the source term (S, + S.|) are nearly superimposed, indicating
that classical absorption effects play a minor role on the wave-
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Figure 13. Case B. (a) Signals ¢ recorded at the caustic point on the lower
thermospheric ray with (Sy) (black dashed line), (Sy + Sc1 + Svb) (grey line)
and (S¢ + Syb) (black line). (b) Corresponding energy spectral densities &, .

form. On the contrary, vibrational relaxation induces a reduction
of about 20 per cent on the maximum of overpressure. Dispersion
is also visible on the stratospheric phase. The lag is however very
small if compared to the time arrival of the signal. Different trends
are observed on the lower thermospheric ray, where classical ab-
sorption is the major dissipation mechanism, whereas vibrational
relaxation does not affect the recorded signal. The maximum of the
pressure perturbation is almost halved with respect to the inviscid
non-relaxing case.

The interaction between non-linear and absorption effects is em-
phasized in Fig. 13(a) which illustrates the signals g recorded at the
caustic point of the lower thermospheric ray with the source terms
Suand (S + Se + Syw)- The corresponding energy spectral den-
sities &£, are plotted in Fig. 13(b). No intermediate range is found
for the present case, and dissipation, which is mainly due to the
classical mechanisms, affects also the energy-containing spectral
components. As a result, the amplitude observed with all source
terms is reduced by a factor of 1.6 with respect to that obtained in
the pure non-linear case. The duration of the phase, which depends
on the non-linear lengthening, is also slightly decreased. The signal
g obtained with the source term S + S is reported in Fig. 13(a) as
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well, in order to highlight the importance of non-linearity. For the
present source yield, the non-linear shift toward lower frequencies
strongly attenuates the impact of absorption. If S,; were set to zero,
the amplitude would be six times lower if compared to the solution
of the complete configuration, and the duration would be almost
halved.

4.5.3 Case C

The stratospheric arrival recorded at Gy is plotted in Fig. 14. The
results obtained only with the non-linear term (S,) and with also
classical absorption included (S, + S.) are nearly superimposed.
On the contrary, vibrational relaxation has a strong impact on the
maximum amplitude. The signal recorded by considering only the
oxygen O, and nitrogen N, terms is also reported in Fig. 14. As
expected, the deviation from the full model case is weak, demon-
strating that, for the range of frequencies under study, vibrational
relaxation of oxygen O, and nitrogen N, constitute the most impor-
tant contribution to the absorption along stratospheric paths.

5 CONCLUSIONS

Using non-linear ray theory, the propagation in a realistic atmo-
sphere of signals induced by explosive phenomena and of main
frequencies between about 0.1 and 15 Hz is investigated in order to
assess the importance of absorption and non-linear effects on the
waveforms recorded at ground level, at distances of a few hundreds
kilometres. Three cases with different source amplitudes, corre-
sponding to waves generated by phenomena ranging from small
volcanic eruptions to large chemical explosions, are examined,
and the results obtained on stratospheric and thermospheric rays
are discussed. For high-amplitude and low-frequency signals, the
propagation is found to be essentially non-linear. The influence of
the dissipation terms on the signature obtained at ground level in-
creases with increasing frequency and decreasing amplitude. In the
infrasound range, attenuation is induced by vibrational relaxation
on stratospheric rays, whereas the classical mechanisms become
dominant on thermospheric rays, mainly because of the roughly
exponential decrease of the density with altitude. The most impor-
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tant contribution to relaxation absorption below the stratospheric
limit is given by the vibrational modes of oxygen and nitrogen, at
least for the frequencies under study. Nonetheless, the relaxation
processes of carbon dioxide and ozone may affect thermospheric
phases while travelling across the mesosphere. Dispersion induced
by vibrational relaxation is also observed on the simulated signals,
but the effect is negligible. Overall, relaxation absorption should
be taken into account on stratospheric rays for frequencies higher
than about 1 Hz, whereas classical absorption may be important on
thermospheric rays also for lower frequencies.

The interaction between absorption and non-linear terms is also
revisited on thermospheric rays. For large amplitude and low-
frequency explosions, the classical absorption and vibrational relax-
ation terms, although responsible for energy depletion, have weak
influence on the waveform, as they act only near shock fronts. For
smaller explosions with higher frequency content, the dissipation
terms may also affect the energy-containing spectral components
of the wave, inducing an important reduction of its amplitude and
limiting the non-linear lengthening. On the other hand, the impact
of non-linearity is also likely to be significant, as the non-linear shift
toward lower frequencies prevents the strong attenuation predicted
by linear theory.

In the cases examined in this work, waveform freezing is observed
as well. The duration of the signal recorded at ground level mainly
depends on its lengthening during the propagation towards the upper
atmosphere and around the caustic. Beyond this point, distortion is
considerably slowed down by the roughly exponential increase of
the atmospheric density and the propagation towards the Earth’s
surface can be considered linear.
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APPENDIX A: EQUATION GOVERNING
THE ENERGY SPECTRAL DENSITY

The augmented Burgers equation (9) can be rewritten in the spectral
domain as

g infh. .
89 _ {17 s ag—idg (A1)
s PoCo

where £ is the Fourier transform of the variable ¢?

+00

émj):/‘ q*(s, t)e " dt, (A2)
—00

and the real coefficient d,;, represents the dispersion effect induced

by the vibrational relaxation term. Taking the complex conjugate of

eq. (A1) yields

9g* imfBe ..

— =3

— —ag* +idwg”. (A3)
ds PoCo

By multiplying eq. (A1) by ¢* and eq. (A3) by ¢, by adding these
relations and by multiplying the result by a factor 2, the Lin’s
equation (19) is obtained for the one-sided spectrum &,

& B

s puco

;T +D (A4)

The non-linear transfer and dissipation terms are, respectively, given
by

T(s, ) = i2nf [q"(s, LIECs, [) = 4(s, IE(s, /)]
D(s, f) = —2a(s, )& (s, /). (AS5)

By using the properties of the convolution product and recalling
that the Fourier transform of a real function is Hermitian, the term
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& can be further developed as
S
6. = [ a6 06, s —oc
(

+o0
w2 [ a6 006~ e (A6)
S
which shows that the non-linear transfer term 7 is responsible for
the interaction of the spectral component of frequency f'with lower
and higher harmonics.

Integrating eq. (A4) over all frequencies yields

dE 3 +o0 +oo
e _ P / Tdf + [ Ddf. (A7)
ds PoCo” Jo 0

Eq. (A7) can also be derived by multiplying eq. (9) by g and by
integrating over time. It can be shown that
dE L +00 9 2 +00
=L [ [ i sian. @)
ds PoCo” —

—00 8tl‘ o)

Consequently, by comparison between eqs (A7) and (A8), it may be
deduced that
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+00 oo 9.2 203 +oo
/ Tdf:/ ¢ g = (A9)
0 oo Of 3 |

since the signal ¢ vanishes as ¢, goes to £oo.

APPENDIX B: SPECTRUM OF
AN N WAVE

The one-sided spectrum &, = 2|¢|? of an N wave of the form

9, . €l—T,+T][
giy=1 T (B1)
0 otherwise
is given by
_20° [Tcos2ufT) sinQnfT) 2
R e .

and its maxima decrease as f> when the frequency f goes
to +o00.
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