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Abstract The nonlinear propagation of low-frequency acoustic waves through the turbulent
fluctuations induced by breaking mountain gravity waves is investigated via 2-D numerical simulations of
the Navier-Stokes equations, to understand the effects of atmospheric dynamics on ground-based
infrasound measurements. Emphasis is placed on acoustic signals of frequency around 0.1 Hz, traveling
through tens-of-kilometers-scale gravity waves and subkilometer-scale turbulence. The sensitivity of the
infrasonic phases to small-scale fluctuations is found to depend on the altitudes through which they are
refracted toward the Earth. For the considered cases, the dynamics in the stratosphere impact the
refracting acoustic waves to a greater extent than those in the thermosphere. This work clearly
demonstrates the need for accurate descriptions of the effects of atmospheric dynamics on acoustic
propagation, such as here captured by the full set of fluid dynamic equations, as well as of the subsequent
effects on measured signals.

Plain Language Summary Infrasound is the low-frequency part of the acoustic spectrum,
with periods ranging from around 0.05 s to about 300 s. Infrasonic waves are generated by a large variety of
natural and artificial sources (such as earthquakes, volcanic eruptions, auroras, thunderstorms, explosions,
rocket launches, and sonic booms) and can propagate up to the thermosphere and over thousands of
kilometers on the ground. The ground recordings are currently employed in numerous applications,
including the detection and localization of specific sources (such as clandestine nuclear tests) as well as
the research in the domain of the atmospheric dynamics. Mountain gravity waves are buoyant motions
associated with the gravitational acceleration and are excited as air flows over mountain ranges. They

can have horizontal wavelengths as small as 10 km and as high as 100 km and, if sufficiently strong, can
break and lead to smaller-scale turbulence. The subsequent turbulent fluctuations can severely influence
the infrasonic waves. This paper reports the results of numerical simulations of the atmospheric
propagation of infrasonic signals through the inhomogeneities induced by the breaking of mountain waves.
The present analysis provides new insights into the understanding of the effects of the aforementioned
turbulent perturbations on the infrasonic signals potentially recorded on the Earth's surface.

1. Introduction

Infrasonic acoustic waves (IAWSs) of frequency f in the band 0.003 < f < 20Hz are generated in the Earth's
atmosphere either by natural phenomena, such as earthquakes (Mutschlecner & Whitaker, 2005), volcanic
eruption (Matoza et al., 2009), auroras (de Larquier et al., 2010), thunderstorms (Assink et al., 2008), and
atmospheric entry of meteoroids (Gainville et al., 2017), or by anthropogenic sources, like aboveground and
underground explosions (Assink et al., 2016; Ceranna et al., 2009; Yang et al., 2012; McKisic, 1997), rocket
launches, and sonic booms (Le Pichon et al., 2002). As a result of the ducts resulting from the large-scale
variations with altitude of the atmospheric temperature and winds, they travel up to the thermosphere and
over thousands of kilometers horizontally (Drob et al., 2003) and carry important information about both
their sources and their medium of propagation.
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In addition to the vertical large-scale gradients of atmospheric properties, which are largely controlled by
the solar radiative heating, large-scale waves, and tides and by gravity waves (GWs) and their momentum
forcing, localized small-scale turbulent perturbations are also ubiquitous in the Earth's atmosphere (Bossert
etal., 2015; Fritts & Alexander, 2003; Fritts et al., 2018; Hecht et al., 1997; Tsuda, 2014). Such fluctuations not
only are responsible for partial reflections and scattering of the IAW signals (Chunchuzov et al., 2011, 2013,
2014, 2015) but can also amplify or weaken the various acoustic waveguides and in particular the strato-
spheric duct (Bertin et al., 2014; Lalande & Waxler, 2016). One of their most important causes is the breaking
of GWs. GWs can be excited by multiple sources (Fritts & Alexander, 2003). As an example, orographic
GWs, also called mountain waves (MWs), develop due to air flow over mountain ranges and exhibit horizon-
tal scales as small as 10 km and as high as hundreds of kilometers, potentially at large amplitude (Bossert
et al., 2015; Fritts et al., 2018). Orographic forcing is also likely to generate IAWs, which have been hypothe-
sized to contribute to the heating of the thermosphere as they dissipate (Hickey et al., 2001; Walterscheid &
Hickey, 2005).

Understanding the interaction between acoustic waves and turbulence is crucial to advance the science and
applications of atmospheric infrasound. Recent sensitivity analyses (Bertin et al., 2014; Lalande & Waxler,
2016) have revealed that even small-amplitude perturbations of the atmospheric temperature and winds
can severely affect the infrasonic signals recorded at ground level far from their source. Given the lack of
knowledge of the ever-changing middle atmosphere, the strong sensitivity of the IAWs to the turbulent
fluctuations raises a fundamental question of predictability. Investigating the interaction between the IAWs
and the small-scale inhomogeneities is challenging. Although a number of studies have been carried out
for applications near the ground (e.g., Ostashev & Wilson, 2016, and references therein) or to analyze the
effect of temperature and wind fluctuations on sonic boom signatures (e.g., Luquet et al., 2015, and refer-
ences therein), only few investigations have been performed on the long-range propagation of infrasound
through GWs and their induced turbulence (Chunchuzov et al., 2011, 2013, 2014, 2015; Hedlin & Drob,
2014; Kulichkov, 2009; Lalande & Waxler, 2016). From a modeling perspective, great difficulty arises in the
specification of the propagation medium (Lalande & Waxler, 2016), which is typically obtained from numer-
ical weather predictions or from empirical and semiempirical models (Drob et al., 2003, 2008; Picone et al.,
2002). Since the data thereby provided do not include small-scale structures, the unresolved dynamics of
atmospheric GWs have been represented in recent infrasound studies as noise superimposed on the resolved
mean state (Chunchuzov et al., 2015; Hedlin & Drob, 2014; Lalande & Waxler, 2016; Norris et al., 2009) and
with specific spectral characteristics (Chunchuzov, 2009; Drob et al., 2013; Gardner, 1994).

Apart from this specification issue, comprehensive investigations of the interaction between IAW and
the GW-induced turbulence have also been hampered by the inherent limitations of the propagation
models employed in the framework of atmospheric acoustics, such as ray tracing, normal modes, and
parabolic-equation methods, which do not incorporate all of the relevant physics.

In the last three decades, numerous studies on the propagation and breaking of GWs generated by differ-
ent sources have been conducted by performing 2-D and 3-D simulations of the Navier-Stokes equations
(e.g., Fritts & Alexander, 2003; Snively & Pasko, 2008, and references therein). The use of the full set of the
fluid dynamic equations to investigate the 2-D and 3-D propagation of IAWs is a relatively recent subject
of research, made feasible by advances of computational capabilities (de Groot-Hedlin, 2012, 2016, 2017;
Marsden et al., 2014; Sabatini et al., 2016, 2019; Zettergren & Snively, 2015, 2019). In this work, the prop-
agation of an IAW through the small-scale inhomogeneities induced by the breaking of a MW is analyzed
by direct numerical simulations of the 2-D Navier-Stokes equations. The emphasis is here placed on an
impulsive IAW generated on the Earth's surface, with a central frequency equal to about 0.1 Hz and with a
wavelength of the order of 3.4 km near the ground. This choice is particularly relevant for explosive sources,
which have received renewed attention in the framework of the Comprehensive Nuclear-Test-Ban Treaty
(Le Pichon et al., 2009).

The purpose of the present study is twofold. First, the feasibility of simultaneously investigating the evolu-
tion of the atmospheric nonlinear wave dynamics and turbulence with the propagation of acoustic waves
therein is demonstrated, for the first time in the framework of infrasonic acoustics. Second, a qualitative
analysis of the effects of small-scale turbulent fluctuations on ground recordings is carried out, to provide a
preliminary and nonexhaustive answer to the fundamental question of predictability of infrasonic arrivals.
This demonstrates and motivates a pathway toward more comprehensive and quantitative 3-D investigations
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Figure 1. (a) Speed of sound ¢(x,) and (b) horizontal wind &, (x,) of the
initial unperturbed atmosphere for the first two configurations (black line)

and for the NLP case (purple line).

0 L .
220 300 350 400 450 500 550 —30 0 30 60 90 2. Problem Definition and Case Studies

- -1
L (m.s ) A Cartesian coordinate system with origin at ground level, horizontal axis

(b) x,, and vertical axis x, is employed. The domain of interest ranges from
x, = 0Okmtox; = 800km and from the ground atx, = Okmtox, =
150 km altitude. The atmosphere is assumed to behave as a single ideal
gas satisfying the equation of state p = pRT, where p is the pressure, p is
the fluid density, T is the temperature, and R = 287.06J-kg~}-K~! is the
specific gas constant. The speed of sound c is given by the relation ¢ =
\/m, where y = 1.4 represents the ratio of specific heats. The fluid flow is described by the conservative
variables U = [p, puy, pu,, p(e + uf /2 + u% /)17, where u; is the component of the velocity vector in the
direction x;, for i = 1,2, and e indicates the specific internal energy. The evolution of the conservative
variables is finally governed by the 2-D Navier-Stokes equations, as formulated by Marsden et al. (2014) and
Sabatini et al. (2016).

Attheinstantt = 0s, the initial undisturbed atmospheric flow, whose variables are marked with an overbar,
is defined as a stationary, stratified, and laminar medium, with a wind in the x, direction. It is constructed
by specifying the vertical profiles of the temperature T(x,) and of the horizontal flow &, (x,).

Three different configurations are investigated. In the first case, the function T(x,) is defined through the
NRLMSISE-00 model (Picone et al., 2002), whereas an HWM profile (Drob et al., 2008) is used for the hori-
zontal flow @, (x,). The background propagation medium thereby specified is laminar and characterized only
by large scales. As an illustration, the speed of sound ¢(x,) and the wind i, (x,) are displayed in Figures 1a
and 1b, respectively, with regions of the atmosphere identified.

An impulsive sinusoidal IAW is excited into the above initial state att = ¢,,, = 0s. To this end, as suggested
by Sabatini et al. (2016), the following forcing term is added to the right-hand side of the energy equation:

2

Apep s % % (xi_xi.aw)2 % —

—L SiN(@gy ) [1 = cos(@,,t)] exp [_ZT] £ = (t—ty,) €10, Tyl
i=1 aw :

i,

A

per

0 otherwise

The parameter 4, represents the source amplitude, w,,, = 27/T,, is the angular frequency, T,,, = 10sis
the source period, (x, ., = 350km, X, ,,, = 0km) is the source position, and 6, ., = 6,,, = 600m is the
source half width.

In the second configuration, before exciting the IAW, a MW is generated into the same initial atmosphere.
To this purpose, as proposed by Heale et al. (2017), the following forcing term is introduced in the vertical
momentum equation:

2 2 2
(G = X ) (t = temw)
A, = PA,, COS(Ky pmw () = X1 1my)) €XP —Z - Zl > o i
i=1

20 202

1 i,mw t,mw

In this formula, A, = 0.1m/s is the amplitude, k, ,,,, = 27/(50km) is the source wavenumber, (x; y,,, =
450km, x, .., = 10km) is the forcing center in space, ., = 8,000s is the source center in time, and
C1mw = 50km, 6, = 3km, and ,,,, = 2,000s are the half widths. The breaking of this MW induces
small-scale fluctuations into the initial atmosphere. Once a 2-D unsteady turbulent field is developed, at
t = t,, = 7.84hr, the impulsive sinusoidal IAW is launched.
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Figure 2. Horizontal velocity perturbations u’1 at four different instants of time: (a) t = t; = 3.92hr, (b)

t=1t, =499hr,(c)t = t3 = 5.36hr,and (d) t = t, = 7.84hr. In (a) and (b), the 2-D Fourier transforms of the
horizontal velocity fields enclosed by the red boxes are also plotted in the upper-right corners. In (c) and (d), zooms of
particular regions of the mountain-wave field are displayed as well.

In the third configuration, the IAW is again excited into a stationary, stratified, and laminar atmosphere.
However, in this last case, the temperature T(x,) and the horizontal wind &, (x,) are extracted atx; = 450km
and att = 7.84 hr from the 2-D unsteady turbulent MW field. These functions are displayed versus altitude
in purple in Figures 1a and 1b and can be seen as the sum of the previous laminar profiles with specific
additional fluctuations. The purpose in investigating such a configuration is to analyze whether the effects of
the turbulent inhomogeneities can be properly described by adding 1-D stationary small-scale perturbations
to 1-D laminar vertical profiles, as it is done in most of the earlier studies.

For the first and the second configurations, simulations are performed with two different amplitudes of the
IAW source: 4, = 500] ‘m~3-s~land A se, = 5,000] -m~3-s7L. For the third configuration, only a computation
is carried out with 4, = 5,0007 -m~3.s71. The five simulations are labeled as WNL, WNLMW, NL, NLMW,
and NLP, where the acronyms WNL and NL are defined for weakly nonlinear and nonlinear, respectively,
and are used to indicate the importance of nonlinearities. Simulations WNL and NL include the acoustic
waves alone, at the two amplitudes; cases WNLMW and NLMW include the acoustic waves launched into
the MWs, again at the same two amplitudes; and computation NLP involves the nonlinear acoustic wave
launched into the 1-D perturbed profiles.

3. Results

3.1. Time Evolution of the MW in the Cases WLMW and NLMW

The horizontal velocity perturbations u] = u; — &, associated with the MW (i.e., in the cases WNLMW and
NLMW) and obtained att = t; = 3.92hr,t = t, = 498hr,t = t; = 536hr,andt = t, = 7.84hr
are illustrated in Figures 2a-2d, respectively, as functions of range and altitude. A video illustrating the
evolution in time of the variable u/ is also provided as Supporting Information S1. In Figures 2a and 2b, the
2-D Fourier transforms of the fields enclosed by the red boxes are additionally plotted in the upper-right
corners. In Figures 2c and 2d, zooms of particular flow regions are displayed as well. Att = t; (cf. Figure 2a),
a left-going MW (with negative horizontal wave number k) is observed in the stratosphere between 20- and
50-km altitude. The dominant horizontal wavelength 1, is about 50 km, whereas the vertical wavelength 1,
isaround 6 km. Att = ¢, (cf. Figure 2b), the MW has propagated in the mesosphere and lower thermosphere,
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Figure 3. Scaled pressure field @ at four different instants of time: (a) t* = ¢, (b) t =7, (c) t = £7, and (d) t = t;‘. In (c),
a vertical cut of the variable @ extracted at ¢ = ¢7 and at x; = 350-km range is also reported.

where the dominant vertical wavelength 1, is of the order of 20 km. At ¢t = t, (cf. Figure 2c), vortices develop
in both the stratosphere (at about x, = 45-km altitude) and the lower thermosphere (around x, = 90-km
altitude). Att = t, (cf. Figure 2d), a 2-D turbulent field is observed. The amplitude of the horizontal velocity
fluctuations is of about 15m/s at around x, = 50-km altitude and can reach values as high as 100m/s in
the lower thermosphere at x, = 125-km altitude.

3.2. Time Evolution of the IAW in the NLMW Case

The scaled pressure field ® = (p — p — pmw)/\/;ﬁ obtained at t* = ¢ — t,, = tf = 93.3s, t* = £y = 291.7s,
t* =t = 420s,and * = £ = 1,166.7s in the NLMW case are illustrated in Figures 3a-3d, respectively, as
functions of range and altitude. A video illustrating the evolution in time of the variable @ is provided as
Supporting Information S1. A vertical cut of the function @ extracted atx; = 350-km range is also reported
in Figure 3c. Note that, in order to only visualize the IAW, the MW field has been subtracted in the function
@. Moreover, to elucidate the pressure field, the acoustic rays are also depicted in Figure 3d.

Near the source location (cf. Figure 3a), a cylindrical wavefront is observed. However, mainly as a result of
the vertical gradients of the speed of sound and of the horizontal wind, the IAW is continuously deformed
during its propagation. At the instant ¢ = ¥ (cf. Figure 3b), partial reflections and scattering are clearly
visible in the stratosphere. Moreover, because of nonlinearities, the acoustic wavefront steepens, converts
into an N wave (cf. the vertical cut of @ shown in Figure 3c), and then lengthens while propagating toward
the thermosphere. After the instant t = L, the IAW is refracted back toward the Earth's surface. Two
arrivals are predicted at large distances at the right of the acoustic source location: a stratospheric return
and a thermospheric return. On the contrary, since the wind is globally blowing in the positive x, direc-
tion, only a thermospheric arrival is observed for x; < Xx, ,,. At the instant ¢ = £, the acoustic wavefront
has a complex shape and is a superposition of partial reflections, scattered waves, and stratospheric and
thermospheric returns.

3.3. Signals at Ground Level

The signals p = (p — p — p,y) obtained from the five simulations at ground level, atx, = x;; = 0km,
atx; = x;, = 650km, and atx;, = x;; = 725km, are plotted in Figures 4a-4f. In the presence of
turbulence, alongside with the main returns (the thermospheric return and eventually the stratospheric
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arrival), a wave train is observed. This latter is generated by scattering and partial reflections, as long as the
main wavefront travels through the small-scale atmospheric inhomogeneities. Atx, = x;, (cf. Figures 4a
and 4b), the thermospheric return exhibits a U-shaped waveform, which is typical of an N wave having
crossed a caustic. In both the weakly nonlinear and the nonlinear cases, it is found to be only slightly affected
by the small-scale turbulent fluctuations. The thermospheric arrival is also reasonably well predicted by the
NLP simulation. Nevertheless, as evident in Figure 4b, the scattered field and the partial reflections are not
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reproduced by simply adding stationary 1-D small-scale perturbations to 1-D vertical profiles. Atx, = X ,,
in the geometrical shadow zone, different trends are observed according to the amplitude of the acoustic
source. In the weakly nonlinear cases (cf. Figure 4c), both the stratospheric arrival and the thermospheric
return are strongly affected by the small-scale atmospheric inhomogeneities. Oppositely, in the NLMW case
(cf. Figure 4d), the thermospheric return, which again exhibits a U-shaped waveform, is found to be less
sensitive to the GW-induced turbulence. Besides, as at the former recording station, adding stationary 1-D
small-scale perturbations to 1-D vertical profiles does not allow recovering the scattered wave packets and
the partial reflections. Moreover, the stratospheric arrival recorded in the NLP case exhibits a double U shape
which is absent in the NLMW configuration. Finally, atx; = Xx, 3, the stratospheric and the thermospheric
arrivals are both well reproduced even in the absence of the turbulent field. Once more, adding stationary
1-D small-scale perturbations to 1-D vertical profiles does not correctly recover the scattered train and the
partial reflections. Additionally, the amplitude of the stratospheric return obtained in the NLP case is twice
higher than that recorded in the presence of turbulence.

4. Discussion and Concluding Remarks

In this work, direct numerical simulations of the 2-D Navier-Stokes equations have been carried out to inves-
tigate the interaction between an infrasonic wave and the 2-D turbulent field generated during the early
stages of breaking of a MW. The present results demonstrate the feasibility of simulating, within the same
code, both the evolution of the GW and turbulent fields and the propagation of the acoustic wave, for the
first time in the framework of atmospheric infrasonic acoustics. This study has emphasized infrasonic waves
generated at the ground with central frequency of about 0.1 Hz and with wavelength around 3.4 km near
the source location; however, the methodology is extendable to a range of smaller and larger scales.

The infrasonic signals recorded at large distances from the source have been presented and described. They
consist of a superposition of main returns (in our cases, arrivals of waves following refraction through
the thermosphere or stratosphere) and wave packets generated by scattering and partial reflections. The
results obtained in this work suggest that, for the frequencies under consideration, the main stratospheric
arrivals are more sensitive than the thermospheric ones to the atmospheric small-scale turbulent fluctua-
tions induced by the breaking of MWs. This tendency is particularly evident for strong amplitudes of the
acoustic source. The scattered field and the partial reflections are generated when the main acoustic wave-
front travels through the atmospheric inhomogeneities. The interaction between the infrasonic wave and
these fluctuations depends on both the acoustic wavelength and the length and time scales of the turbu-
lent perturbations (Chunchuzov et al., 2013, 2014; Sabatini et al., 2019), among other factors. As a result,
the spectrum of the aforementioned wave packets varies as the amplitude of acoustic source is increased,
since the nonlinear lengthening of the main waveform induces an augmentation of the acoustic wavelength
impinging on the inhomogeneities.

This investigation also indicates that adding 1-D stationary small-scale fluctuations to 1-D vertical profiles
to construct the atmospheric medium, as regularly done in previous studies, does not allow retrieving the
scattered field and, in some cases, can strongly and adversely affect both the shape and the amplitude of the
main stratospheric return. This suggests that 1-D model atmospheric profiles used for numerical investiga-
tions of infrasound propagation should be filtered to include only the variations associated with larger-scale
features that can be assumed homogeneous in the horizontal directions.

The present results clearly elucidate the need for an accurate description of the atmospheric small-scale
dynamics and turbulence together with the nonlinear infrasonic propagation, in order to compare numerical
simulations with observations. In this regard, 3-D simulations of the Navier-Stokes equations are currently
envisaged, which will lead to a finer and more quantitative analysis of the interaction between realistic infra-
sonic waves and GW dynamics and induced fluctuations. Furthermore, this work identifies opportunities
to address the influence of the atmospheric dynamics on the IAWs that reach the thermosphere and perturb
the ionosphere, which are routinely used as diagnostics of a wide range of geophysical and anthropogenic
source processes, such as earthquakes or aboveground and underground explosions.
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