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Direct numerical simulations of the two-dimensional unsteady compressible Navier-Stokes equations

are performed to study the acoustic field generated by an infrasonic source in a realistic atmosphere.

Some of the main phenomena affecting the propagation of infrasonic waves at large distances from

the source are investigated. The effects of thermal and wind-related refraction on the signals recorded

at ground level are highlighted, with particular emphasis on the phase shift induced by the presence

of caustics in the acoustic field. Nonlinear waveform steepening associated with harmonic generation,

and period lengthening, both of which are typical of large source amplitudes, are illustrated, and the

importance of thermoviscous absorption in the upper atmosphere is clearly demonstrated. The role of

diffraction in the shadow zone, around caustics and at stratospheric altitudes is also pointed out. The

Navier-Stokes equations are solved using high-order finite-differences and a Runge-Kutta time inte-

gration method both originally developed for aeroacoustic applications, along with an adaptive

shock-capturing algorithm which allows high-intensity acoustic fields to be examined. An improve-

ment to the shock detection procedure is also proposed in order to meet the specificities of nonlinear

propagation at long range. The modeling as well as the numerical results are reported in detail and

discussed. VC 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4958998]

[MDV] Pages: 641–656

I. INTRODUCTION

Infrasonic waves can be generated in the atmosphere by

natural events, such as volcanic eruptions, earthquakes, and

meteors, or by man-made sources, like explosions or super-

sonic flights. These waves can propagate over thousands of

kilometers through the Earth’s atmosphere and can potentially

carry relevant information about their source. Accordingly,

a worldwide infrasound monitoring network has been devel-

oped1,2 to verify compliance with the Comprehensive

Nuclear-Test-Ban Treaty (CTBT), which prohibits all types

of nuclear detonation. At the date of writing the present paper,

the network consists of about 48 certified ground stations, that

record pressure fluctuations of frequency lower than 4 Hz.

Infrasound monitoring can also be used in the field of atmo-

spheric tomography,3 for instance, to study gravity waves.4

The determination of the nature of infrasound sources as

well as their spatial location, based on pressure signals

recorded by the CTBT stations, depends on the ability to sim-

ulate long-range atmospheric propagation in a time-accurate

manner. While a preliminary analysis of the acoustic field can

be carried out by techniques accounting only for refraction

effects induced by both temperature and wind speed gra-

dients,5 the computation of an accurate acoustic time signa-

ture requires the integration of nonlinear distortion6–8 and

thermoviscous atmospheric absorption9 among other phenom-

ena. More specifically, the exponential reduction with altitude

of the mean atmospheric density tends to amplify non-

linearities, which lead to signal steepening and lengthening.

Thermoviscous absorption also increases as the mean atmo-

spheric density diminishes, due to the increase of the mean

kinematic viscosity. Furthermore, a caustic is generally ob-

served in the thermosphere.6 Signals detected at barometric

stations located in the audibility zone of the caustic are

strongly affected. In particular, a phase shift is induced by the

caustic,10 so that for an incoming N-like wave, typical for

instance of explosive phenomena, a U-shaped signature is

observed at ground level.6,11,12

Numerical approaches for atmospheric infrasonic prop-

agation studies have naturally been based on simplified

equations. Ray tracing,7,8,13 parabolic models14 or the nor-

mal mode theory have been the most commonly used tech-

niques.15 Their efficiency in terms of computational time is

however obtained at the expense of generality and some of

the aforementioned phenomena are inherently excluded by

these approaches. Over the past decade, progress has been

made toward the simulation of acoustic propagation by di-

rectly solving the fluid dynamics equations. One of the first

numerical investigations was carried out by Wochner

et al.16 to analyze a realistic absorption model accounting

for molecular relaxation. Currently, most numerical simula-

tions are performed in two dimensions,17–19 but a proof of

concept computation in three dimensions, based on simpli-

fied linearized Euler equations, was performed by Del Pino

et al.20 A complete Navier-Stokes modeling in an axisym-

metric cylindrical coordinate system was proposed by de

Groot-Hedlin,21 with some example calculations of infra-

sound propagation at short range. Understandably, progress
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in the direct simulation of the fluid dynamics equations is

expected to lead to better interpretation of experimental

observations and improved physical modeling of infrasonic

waves. However, as also highlighted by the previous

authors, numerical accuracy is an essential requirement, in

particular, for the computation of the nonlinear propagation

of infrasonic signals over very large distances. In a recent

work of Marsden et al.,22 the feasibility of using numerical

simulation of the Navier-Stokes equations for the detailed

description of long-range infrasound propagation in the at-

mosphere was analyzed. In particular, a first investigation of

the sound field generated by an infrasonic source of main

frequency of 0.1 Hz in a realistic atmosphere at rest was

computed using a high-order finite-difference time-domain

(FDTD) method originally developed for aeroacoustic

applications.23–25 The numerical schemes,26–28 designed to

minimize the numerical dispersion and dissipation errors,

were shown to be well suited for the simulation of nonlinear

acoustic propagation over very large distances.

In the present work, numerical simulations of the two-

dimensional Navier-Stokes equations are carried out for four

different configurations in order to investigate some of the

main physical phenomena affecting acoustic signals recorded

at long range, namely, refraction due to the temperature gra-

dient, refraction due to the wind profile, thermoviscous ab-

sorption, nonlinear waveform modifications and diffraction.

The aim is not to provide direct comparisons with experi-

ments, as undertaken in Gainville et al.,29 for instance, which

is precluded by the two-dimensional nature of this study, but

rather to highlight some specific physical features of infra-

sonic waves propagating in the Earth’s atmosphere. In each

case, the atmospheric propagation of a finite-duration signal

emitted from an infrasonic source of frequency of 0.1 Hz and

placed at ground level is computed. The realistic atmosphere

specification includes the definition of range-independent

vertical temperature and wind profiles, which follow the

main trends observed during the Misty Picture experiment
from the ground up to an altitude of 180 km.29,30 The physi-

cal domain of interest spans 600 km in the horizontal direc-

tion and 180 km the vertical direction. The infrasonic source

is implemented as a forcing term in the energy equation. The

two-dimensional Navier-Stokes equations are solved on a

regular Cartesian grid with the explicit finite-difference time-

domain (FDTD) algorithm employed in the earlier work of

Marsden et al.22 Spatial discretization is performed with a

low-dissipation and low-dispersion optimized 11-point sten-

cil scheme, while time integration is carried out thanks to a

six-step second-order optimized low-storage Runge-Kutta al-

gorithm.26,27 In order to handle the acoustic shocks which are

generated during the propagation of large-amplitude signals,

the shock-capturing technique proposed by Bogey et al.28 is

used. The methodology consists in applying artificial dissipa-

tion only where necessary, i.e., only near shock fronts, in

such a way that smooth regions of the solution are not affect-

ed. Clearly, the efficacy of the method strongly depends on

FIG. 1. Sketch of the computational domain. The source is located at the or-

igin O � S, and the inner black rectangle indicates the physical domain.
TABLE I. Spline coefficients for the speed of sound and the wind.

x2 (km) �c (m s�1) �c 00 (m km�2 s�1)

0 340 �1.2000000000

10 300 þ 0.7040957867

20 290 þ 0.1836168532

50 330 �0.2576768707

70 290 þ 0.0129590737

90 265 þ 0.4308405759

120 425 �0.1281079686

160 580 �0.0935025416

180 600 �0.0452688129

250 550 �0.0038182448

300 480 �0.0005818014

350 410 þ 0.0061454503

400 350 þ 0.0000000000

x2 (km) �u1(m s�1) �u 001 (m km�2 s�1)

0 þ 00.0 þ 0.0000000000

10 þ 04.6 �0.4234911283

15 �00.3 þ 0.8129467697

20 þ 04.7 �0.4522959507

30 þ 02.6 þ 0.2244144671

40 þ 07.4 �0.0313619178

50 þ 21.5 þ 0.4590332040

55 þ 30.6 �2.1994753882

60 þ 09.7 þ 1.1388683490

65 þ 10.2 þ 2.7800019922

70 þ 49.8 �2.8748763180

80 þ 16.7 þ 0.4966279578

95 �21.8 þ 0.5584910193

110 þ 28.2 �0.3705920349

125 þ 38.6 �0.1321228796

140 þ 21.0 þ 0.1524168868

160 þ 22.6 �0.0583669442

180 þ 20.0 þ 0.0180508898

200 þ 18.0 �0.0048366151

220 þ 16.0 þ 0.0012955706

240 þ 14.0 �0.0003456673

260 þ 12.0 þ 0.0000870984

280 þ 10.0 �0.0000027265

300 þ 08.0 �0.0000761925

320 þ 06.0 þ 0.0003074966

340 þ 04.0 �0.0011537937

360 þ 02.0 þ 0.0043076783

380 þ 01.0 �0.0010769196

400 þ 00.0 þ 0.0000000000

642 J. Acoust. Soc. Am. 140 (1), July 2016 Sabatini et al.



the ability to identify the presence of discontinuities. To this

end, a new shock sensor based on the smoothness indicators

first proposed for the weighted essentially non-oscillatory

schemes31,32 is also developed in this work. The entire algo-

rithm is implemented in OpenCL and runs on a AMD R290

Graphic Processing Unit (GPU), allowing very high compu-

tational performance to be achieved.22

The paper is organized as follows. The present numeri-

cal modeling of long-range atmospheric infrasound propaga-

tion is presented in Sec. II. The computational domain

and the atmospheric mean flow are first defined. The set of

governing equations and the infrasonic source are then

described and a detailed illustration of the numerical method

is given. The results obtained for the four configurations are

reported in Sec. III. Time signals at various altitudes and at

ground level are examined and the aforementioned physical

aspects are discussed. Concluding remarks are finally drawn

in Sec. IV.

II. NUMERICAL MODELING OF LONG-RANGE
ATMOSPHERIC INFRASOUND PROPAGATION

A. Computational domain

The present studies involve computing the two-

dimensional acoustic field generated by a source of infrasound

in a realistic atmosphere up to 180 km altitude and 600 km

range. A sketch of the computational domain is given in Fig. 1.

A Cartesian coordinate system Ox1x2 with its origin at ground

level is used. The Earth’s surface is modeled as a perfectly

reflecting flat wall and the atmosphere, as a vertically stratified

medium. The infrasonic source S is placed at the origin of the

domain. The physical domain of ½0; 600� km� ½0; 180� km is

surrounded by sponge zones in order for outgoing waves to

leave the computational domain without appreciable reflections.

B. Atmospheric mean flow

For the purpose of the present investigations, air in the at-

mosphere is assumed to behave as a single ideal gas satisfying

the equation of state p ¼ qrT, where p is the pressure, q the

fluid density, T the temperature and r the specific gas constant.

The atmosphere is defined as a vertically-stratified and range-

invariant medium, constructed from a spline-based profile of

sound speed �cðx2Þ which reproduces the large scales observed

during the Misty Picture experiment29 from 0 km to around

180 km. Spline knot locations and values are taken from a pre-

vious study,30 with additional knots specified to allow the pro-

file to be defined throughout the entire computational domain.

They are provided in Table I and discussed in Appendix A.

The resulting profile is illustrated in Fig. 2(a), along with a

synthetic nomenclature of the different atmospheric layers.

The mean temperature �Tðx2Þ is computed from the

speed of sound according to �Tðx2Þ ¼ �cðx2Þ2=ðcrÞ, where c
represents the ratio of specific heats, while pressure �pðx2Þ
is obtained by solving the hydrostatic equilibrium

condition

d�p

dx2

¼ ��qg ¼ � g

r �T
�p; (1)

where g is the gravitational acceleration, here considered to

be independent of altitude. Equation (1) is integrated numer-

ically from x2 ¼ 0 km with the ground-level pressure fixed

to �pg ¼ 105 Pa. Finally, the density profile �q is determined

from the equation of state �q ¼ �p=ðr �TÞ. Mean pressure and

density vertical profiles are shown in Fig. 2(c).

To complete the construction of the mean atmospheric

state, a horizontal wind �u ¼ ð�u1ðx2Þ; �u2 � 0Þ is specified by

a spline-based profile �u1ðx2Þ derived from data observed dur-

ing the Misty Picture experiment in the East-West direction.

The spline values are reported in Table I and the wind profile

is shown in Fig. 2(b). Strong wind gradients are clearly visi-

ble in the stratosphere and mesosphere.

C. Governing equations

Sound propagation is governed by the two-dimensional

compressible Navier-Stokes equations, which can be written as

@q
@t
þ
@ qujð Þ
@xj

¼ 0;

@ quið Þ
@t
þ
@ quiujð Þ
@xj

¼ � @p0

@xi
þ
@s0ij
@xj
� q0gdi2;

@ qetð Þ
@t
þ
@ qetujð Þ
@xj

¼ �
@ p0uj

� �
@xj

� �p
@uj

@xj
�
@q0j
@xj

þ
@ uis0ij
� �
@xj

� q0gu2 þ Ks; (2)

FIG. 2. (a) Atmospheric speed of sound �c (solid line) and effective celerity �ce ¼ �c þ �u1 (dashed line) profiles; (b) wind profile �u1; (c) atmospheric pressure �p
(solid line) and density �q (dashed line) profiles normalized with respect to their values at ground level.
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where ui is the velocity component in the ith direction, p0

¼ p� �p the pressure perturbation, q0 ¼ q� �q that of densi-

ty, et the total energy per unit mass, s0ij the viscous stress ten-

sor, q0i the heat flux and Ks the source forcing term. Note

that, following Marsden et al.,22 the hydrostatic equilibrium

condition d�p=dx2 ¼ ��qg is here subtracted from the classi-

cal Navier-Stokes system in order to avoid its high-precision

computation at each time step. Moreover, because of the

non-vanishing terms @�s12=@x1 and @�q2=@x2, the initial mean

atmosphere is not fully consistent with the Navier-Stokes

equations and thus tends to evolve in time. To take into

account this issue, the numerical solution is computed by

neglecting the diffusion of the mean flow during the acoustic

propagation. The viscous and thermal terms are thus calcu-

lated using the perturbed variables u0i ¼ ui � �ui and T0

¼ T � �T . More specifically, the viscous stress tensor and the

heat flux are computed, respectively, as

s0ij ¼ l
@u0i
@xj
þ
@u0j
@xi
� 2

3

@u0k
@xk

dij

 !
(3)

and

q0i ¼ �
lcp

Pr

@T0

@xi
; (4)

where l is the dynamic viscosity, Pr is the fluid’s Prandtl

number and cp ¼ cr=ðc� 1Þ the specific heat at constant

pressure. Finally, the dynamic viscosity is calculated as9

l Tð Þ ¼ lref

T

Tref

� �3=2 Tref þ TS

T þ TS
: (5)

It is worth emphasizing that, except for the viscous and

thermal terms, system (2) is mathematically equivalent to

the classical Navier-Stokes equations as long as the mean

flow fields are invariant in the x1 direction.

The numerical values of all the constants are provided

in Table II.

D. Definition of the infrasound source

The source of infrasound is implemented as a time-

dependent forcing term Ks in the energy equation17,22

Ks x1; x2; tð Þ ¼
As

2

sin xstð Þ 1� cos xstð Þ½ �e�log 2ð Þ x2
1
þx2

2ð Þ=b2
s t 2 0; Ts½ �

0 otherwise:

(
(6)

The parameter As, expressed in J m�3 s�1, is used to adjust

the source strength. The Gaussian half-width of the source is

set to bs¼ 600 m and the central frequency to fs ¼ xs=ð2pÞ
¼ 1=Ts ¼ 0:1 Hz. The total emission duration is thus Ts

¼ 10 s. The temporal evolution of Ks is chosen in order to

generate a N-like pressure signature at the source location.

E. Numerical method

System (2) is solved on a Cartesian grid using a high-

order finite-difference time-domain (FDTD) algorithm

1. Spatial and time derivatives

At the inner points, spatial discretization is performed

with explicit fourth-order 11-point centered finite differences

optimized to reduce dispersion for wavelengths longer than

about five grid spacings.26 Close to the boundaries, opti-

mized 11-point stencil non-centered finite differences are

used.27 Time integration is carried out by a six-step second-

order low-storage Runge-Kutta algorithm.26

2. Selective and shock-capturing filtering

At the end of each time step, spatial low-pass filtering is

performed on the perturbations of conservative variables

U0 ¼ ðq� �q; qu1 � �q�u1; qu2 � �q�u2; qet � �q�etÞ to damp out

grid-to-grid oscillations and ensure numerical stability.26 For

this purpose, an explicit sixth-order 11-point stencil filter,

designed to remove fluctuations discretized by less than four

grid points per wavelength, while leaving larger wavelengths

unaffected,28 is used with a strength rsf equal to 0.1.26

Additionally, a shock-capturing procedure is employed to

handle acoustic shocks which are generated during the propa-

gation for sufficiently large source amplitudes. Interested

readers can find a detailed description of the methodology in

Appendix B.

3. Boundary conditions

Near the wall, viscous and thermal effects are expected

to be negligible for the considered acoustic wavelengths.

Accordingly, only the velocity in the x2 direction is set to 0,

whereas no condition is imposed on the other conservative

variables, which are advanced in time by solving the Navier-

Stokes equations. Indeed, to implement a no-slip condition,

a refinement of the mesh near the ground would be necessary

TABLE II. Values of the constants used for the atmospheric model.

Ratio of specific heats c 1.4

Specific gas constant r 287.06 J kg�1 K�1

Prandtl number Pr 0.72

Reference temperature Tref 293.15 K

Sutherland’s temperature TS 117 K

Reference viscosity lref 1:8192� 10�5 Pa s

Gravity constant g 9.81 m s�2
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in order to correctly describe the evolution of the boundary

layers. At the left, right, and top boundary, Tam and

Dong’s33 radiation condition is applied.

Sponge zones are based on the combination of a

Laplacian spatial filtering with grid stretching to dissipate

outgoing disturbances and reduce reflections.34 A specific

implementation is required for the top sponge zone to take

into account the amplification of waves due to gravity strati-

fication.22 More specifically, in this zone the gravity profile

is progressively reduced from g to �g. Once negative gravity

has been reached, the ratio of pressure fluctuations to ambi-

ent pressure no longer increases but decreases, allowing

standard grid stretching techniques and low-order dissipation

to operate as in typical sponge zones.

4. Parameters and performance

The entire computational domain contains 7168� 2560

’ 20� 106 grid points with a grid spacing of D ¼ Dx1

¼ Dx2 ¼ 100 m. In the present simulations, as a result of the

high values of the kinematic viscosity � ¼ l=q reached in

the upper atmosphere, the time step Dt is constrained by

the viscous and thermal fluxes rather than by the advection

term. To alleviate this constraint, the value of l above the

physical domain is progressively reduced down to 0 in the

top sponge zone. The Courant-Friedrichs-Lewy and Fourier

numbers are defined here, respectively, as CFL ¼ �cuDt=D
and Fo ¼ ��uDt=D2, where the subscript u indicates the upper
boundary of the physical domain, i.e., x2 ¼ 180 km. It is

found that Fo should be lower than around Fomax ¼ 0:4 to

avoid numerical instabilities, so that, with D¼ 100 m, the

maximum allowed time step Dtmax ’ 0:4D2=��u is about

0.045 s. For all the computations, Dt is set to 1/30 s, which

yields a CFL number of 0.2 and a Fourier number of 0.287.

Simulations are carried out until tmax ¼ 2800 s, correspond-

ing to 84 000 time steps.

The numerical algorithm is implemented in the OpenCL

language and runs on a AMD Radeon R9 200 Series GPU

with a memory allocation limit of 4 GB. A comparative

study of the computational time required on a variety of

CPUs and GPUs was carried out by Marsden et al.22

Performance on GPUs was found to be considerably higher

than on CPUs. For the present computations using the

OpenCL code, one time step takes about one second, which

leads to a total time duration of about 24 h per simulation.

F. Numerical dissipation versus physical dissipation

When system (2) is solved with the algorithm described

in Sec. II E, four dissipation mechanisms affect the numerical

solution: the physical diffusion due to the molecular viscosity,

and numerical dissipation due to the selective filter, the

shock-capturing procedure and the time advancement scheme.

Spatial derivatives at the inner points of the computational do-

main are based on centered schemes and do not induce dissi-

pation.26 In order to compare the different contributions, the

transfer functions of all these mechanisms24,35 are evaluated

as a function of the normalized wavenumber kD. The dissipa-

tion transfer function F � associated with the molecular

viscosity is given by ��k2, yielding F �ðkDÞ ¼ ��ðkDÞ2=D2.

Regarding the selective filtering procedure, which is applied

to the flow variables at every time step Dt, the transfer

function can be written as26 F sfðkDÞ ¼ ðrsf=DtÞDsfðkDÞ,
where Dsf is the Fourier transform of the operator Dsf . The

same reasoning can be applied to the shock-capturing proce-

dure. Its transfer function is F scðkDÞ ¼ ðrsc=DtÞDscðkDÞ,
where Dsc is the Fourier transform of the second-order filter

used in the procedure28 and rsc
max its maximum strength,

which is here set equal to 0.25. Finally, the dissipation

transfer function linked to the time integration F ts is given

by F tsðkDÞ ¼ ½1� jGðxDtÞj�=Dt, where jGðxDtÞj is the

amplification factor per time step of the Runge-Kutta algo-

rithm.27 The normalized pulsation xDt is computed as xDt
¼ �cuðk?DÞDt=D, where k? denotes the approximated wave-

number provided by the finite difference scheme.

The transfer functions are plotted in Fig. 3. In particular,

the dissipation transfer function F � is shown for three differ-

ent altitudes of 50, 80, and 100 km. For the spacing D used

here, the dissipation due to time integration is negligible

compared to that of the selective filtering. At altitudes where

absorption phenomena become important, namely, above

100 km in the present cases, physical dissipation is found to

be stronger than the filtering dissipation, at least for the well

resolved wavenumbers below kD ¼ p=2. Finally, the shock-

capturing procedure is highly dissipative, but, according to

the sensor strength in Eq. (B4), it is applied only near the

shocks and not in the smooth regions of the solution. The

molecular absorption phenomena are thus correctly taken

into account in the upper atmosphere by the present numeri-

cal algorithm.

III. RESULTS

One of the most spectacular features of infrasound prop-

agation in the atmosphere is the observation at ground level

of signals, also called phases, that have reached very high

altitudes during their propagation. These various arrivals are

generated by downward refraction stemming in large part

from the atmospheric mean speed of sound profile �cðx2Þ,

FIG. 3. Dissipation transfer functions. F � at 50 km (�), 80 km (�) and

100 km (�), F sf (dash dotted line), F sc (dotted line), F ts (dashed line).
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which increases with altitude both in the stratosphere and the

thermosphere, as shown in Fig. 2(a). The infrasonic waves

are continuously refracted downward as they cross the atmo-

spheric layers and propagate along periodic arched paths

which curve toward the Earth’s surface. Because of succes-

sive reflections from the land surface, such rays form acous-

tic light and shadow zones even at long distances from the

source.5 A first case, labeled L (Linear), is defined to under-

line this waveguide effect. A weak source amplitude As is

chosen, in order for nonlinear terms to be negligible,22 and

the atmosphere is specified to be at rest.

Alongside the downward refraction due to the profile of

sound speed, the presence of strong wind also induces possi-

ble refraction phenomena. Depending on its profile,

temperature-related ducting can be amplified or attenuated,

and, furthermore, additional acoustic signals can be recorded

at ground level.29 To highlight these aspects, the aforemen-

tioned horizontal wind profile is included in a second case

denoted LW (Linear with Wind).

Real-world problems usually involve strong source ampli-

tudes, which result in significant modifications to the wave-

forms recorded at ground levels.30 To evaluate the importance

of non-linearities, the previous configurations are reexamined

with larger and more realistic source amplitudes. Two cases,

labeled NL (Nonlinear) and NLW (Nonlinear with Wind), are

thus designed. The main numerical parameters of the four se-

lected configurations are summarized in Table III.

As highlighted by Bergmann,36 the amplitude of pres-

sure fluctuations is proportional to the square root of the

mean density. The following normalized pressure fluctuation

is therefore defined

U x1; x2; tð Þ ¼
p x1; x2; tð Þ � �p x2ð Þ
As

ffiffiffiffiffiffiffiffiffiffiffi
�q x2ð Þ

p : (7a)

The source amplitude As is introduced to allow comparisons

between the different cases. The maximum overpressure at

ground level

Ugðx1Þ ¼ max
t

Uðx1; x2 ¼ 0 km; tÞ (7b)

is studied as well. The pressure signature is analyzed in the

frequency domain, through its one-sided energy spectral

density

ESDðx1; x2; f Þ ¼ 2

����
ðþ1
�1

Uðx1; x2; tÞe�2piftdt

����
2

; f 2Rþ:

(7c)

In particular, the ESD computed on the x1 and x2 axes, that

is ESD1 ¼ ESDðx1; 0 km; f Þ and ESD2 ¼ ESDð0 km; x2; f Þ,
are investigated. To characterize the infrasound source, two

parameters are examined, the peak overpressure at the source

location Ps ¼ maxtðpðS; tÞ � �pgÞ and the energy flux Ia, cal-

culated according to

Ia ¼
ðt1

0

ð
R
ðp� �pÞðu� �uÞ:dlR

� �
dt; (7d)

where the surface R is chosen as the boundary of the domain

½�5;þ5� � ½0; 10� km2 (see Fig. 1). The integral in Eq. (7d)

is to be calculated up to a time t1 sufficiently large for the

wavefront emitted by the source to cross the integration line.

A. Overview of results

1. Characterization of the infrasonic source

The normalized pressure U recorded at the source loca-

tion S for the NLW case is plotted in Fig. 4(a), along with

the corresponding one-sided energy spectral density ESD

[Fig. 4(b)]. The peak overpressure Ps detected at the point

S is of about 598.4 Pa and the frequency corresponding to

the maximum ESD is around 0.11 Hz. The waveform at S is

found to be nearly independent from both the source ampli-

tude As and the presence of wind, at least for values of As

up to 104 J m�3 s�1. This result is also confirmed by the good

agreement between the present numerical solution and the

analytical ESD obtained by solving the classical Helmholtz

equation for a homogeneous medium [see Fig. 4(b)]. For the

range of amplitudes considered here, the peak overpressure

TABLE III. Simulation parameters.

Case

Wind

profile

Source parameters Energy flux Max. overpressure

As

(J m�3 s�1)

fs
(Hz)

bs

(m)

Ia

(J m�1)

maxtðp0Þ
(Pa)

L no wind 1:0� 10�1 0.1 600 1:066� 10�2 2:62� 10�2

LW �u1ðx2Þ 1:0� 10�1 0.1 600 1:066� 10�2 2:62� 10�2

NL no wind 2:5� 10þ2 0.1 600 6:662� 10þ4 6:48� 10þ1

NLW �u1ðx2Þ 2:5� 10þ3 0.1 600 6:673� 10þ6 6:59� 10þ2

FIG. 4. NLW case. (a) Normalized

pressure U [Eq. (7a)] recorded at the

source location S. (b) One-sided energy

spectral density ESD [Eq. (7c)] of the

normalized pressure U at points S (solid

line) and B1 (dotted line); exact solution

of the Helmholtz equation for a homo-

geneous medium at S (dashed line).
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Ps scales approximately as As=4. The one-sided energy

spectral density ESD of the signal recorded at point B1

¼ ð0 km; 5 kmÞ is also reported in Fig. 4(b). A slight shift

toward a lower value of the frequency corresponding to

the maximum ESD is observed as a result of the non-

compactness of the source, whose Helmholtz number He

¼ ksbs ¼ 2pfsbs=�cðSÞ is around 1.1. The Gaussian source

distribution acts as a low-pass filter applied to the source

term Ks. The intensity Ia [Eq. (7d)] is also found to be almost

independent from the presence or not of the wind, and it

scales as Ia � A2
s . Values of Ps and Ia for the four configura-

tions are reported in Table III.

2. Linear case

Some snapshots of the normalized pressure U obtained

with As ¼ 10�1 J m�3 s�1 are shown in Fig. 5 for different

time instants. Acoustic rays are also superimposed. Owing

to the vertically stratified speed of sound, acoustic waves

are refracted while propagating through the atmosphere. A

waveguide is generated between the Earth’s surface and

about 110 km altitude, where the speed of sound becomes

greater than its value at ground level.5 Consequently, the

wavefront emitted by the infrasonic source rapidly loses its

cylindrical shape visible in Fig. 5(a). Various arrivals are

observed at ground level, depending on the distance from

the source. Up to about x1 ¼ 140 km range, only the direct

phase, noted Iw, is recorded. Its amplitude decays exponen-

tially with the distance along the x1-axis.10,37 This diminu-

tion is not attributed to physical dissipation, but to a more

complex redistribution of energy in the waveguide. Indeed, a

stratospheric phase is rapidly generated. It is clearly visible

in Fig. 5(b) at about 40 km altitude, where the lower part of

the wavefront begins to split into two different arrivals. The

new phase is not predicted by ray theory, since associated

with low-frequency or diffraction phenomena. It is refracted

toward the ground around the altitude of the local maximum

of the speed of sound profile, whose value is relatively

close to the celerity at ground level. It is labeled Is1. At

t¼ 700 s, a strong cusp caustic appears around 113 km alti-

tude [Fig. 5(c)]. The acoustic rays which have reached

the thermosphere now turn toward the Earth’s surface. The

refracted wave consists of two wavefronts generated by the

lower and higher thermospheric rays. As a result of the dif-

fraction at the caustic, the amplitude of the

associated thermospheric phases, noted, respectively, Ita1

and Itb1, becomes appreciable at about x1 ¼ 200 km [Fig.

5(d)], whereas the arrival range predicted by ray theory is

around 290 km. At larger distances from the source, in spite

of a longer path length, the higher thermospheric wave Itb1

arrives before the lower phase Ita1 thanks to the greater prop-

agation speed in the upper atmosphere. For simulation times

larger than about 1200 s, the fluctuating pressure field

becomes more and more complex and a multitude of arrivals

reaches the Earth’s surface. Along with the two thermo-

spheric phases, arch-like wavefronts are generated in the

waveguide [Fig. 5(e)]. Besides, the thermospheric rays

reflected by the ground are again refracted back toward the

Earth’s surface. The subsequent thermospheric phases,

labeled Ita2 and Itb2, hit ground more than 500 km away from

the source [Fig. 5(f)].

In order to gain more insight into the generation of the

arch-like wavefronts, which cannot be captured by ray

theory, a zoom of U at three different times is reported in

Fig. 6. At 1000 s, the wavefront Wr
s1, produced by the reflec-

tion of the first stratospheric phase Is1, propagates upward

[Fig. 6(a)]. At about 49 km altitude [Fig. 6(b)], Wr
s1 is partial-

ly reflected down toward the ground (Wi
s2) and partially

transmitted into the mesosphere (Wt
s1). This waveguide

effect is induced by the variations of the mean speed of

sound: it has a local maximum at x2 ¼ 49 km, which is

close to its value at ground level. When the wavefront Wi
s2

reaches the ground, a new stratospheric phase, labeled Is2, is

recorded. Wi
s2 is in turn reflected by the Earth’s surface, so

that the process of generation of a new arch structure starts

again [Fig. 6(c)]. More generally, partial reflections and

transmissions around x2 ¼ 49 km can be observed whenever

a wavefront propagates downward or upward in the strato-

sphere. An example is given in Fig. 6(c), where a new arch

is generated by the wavefront Wi
ta1 associated with the first

thermospheric phase.

The normalized pressure U recorded at the ground sta-

tion S1 ¼ ð300 km; 0 kmÞ is shown in Fig. 7(a). Two differ-

ent arrivals can be distinguished: the first stratospheric

phase, Is1, between 980 and 1040 s, and a combination of the

first lower and upper thermospheric phases, Ita1 and, between

1220 and 1280 s. This result is in good agreement with the

geometrical acoustic theory, which yields an arrival time of

about t¼ 1240 s for Ita1. Furthermore, the thermospheric

waveform coincides with the Hilbert transform of the signal

recorded at the source location, as expected for rays passing

through a caustic.10

The normalized pressure U recorded at the ground station

S2 ¼ ð600 km; 0 kmÞ is shown in Fig. 7(b). Several arrivals

can be observed: the diffracted stratospheric arrivals and the

thermospheric ones. As at S1, the maximum overpressure is

due to the lower thermospheric phases. Furthermore, a phase

shift can be again noticed on the signal Ita2.

The normalized pressure U recorded at ground level is

illustrated in Fig. 8(a) as a function of the distance from the

source x1 and of the reduced time tr ¼ t� x1=�cð0 kmÞ, to

better visualize the various phases and their arrival times.

Additionally, the normalized maximum overpressure Ug is

shown in Fig. 8(b), along with the contributions of the differ-

ent arrivals. The amplitude of the direct phase Iw is found to

decay faster than the classical two-dimensional cylindrical

spreading behavior, Ug � x
�1=2
1 . This reduction is attributed

to the negative gradient of the speed of sound near the

ground, which deviates the acoustic rays toward higher alti-

tudes.10,37 At about x1 ¼ 100 km, the maximum overpressure

of Iw is found to be 1% of the value at the origin of the do-

main. The direct phase Iw is recorded almost without delay

since it propagates at a speed close to the celerity at ground

level. The first diffracted arrival Is1 is recorded with an ap-

preciable level at distances from the source greater than

140 km, and at a reduced time between 110 and 160 s. This

means that the overpressure induced by this phase is delayed

by about 110 s with respect to a hypothetical direct wave.
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The first thermospheric phases are detected with non negligi-

ble amplitudes for x1 > 200 km at a reduced time which

diminishes with increasing distance x1. The higher arrival

Itb1, which travels faster than the lower phase Ita1, is even

recorded at x1 ¼ 600 km with no delay. Between x1

¼ 400 km and x1 ¼ 500 km, a second diffracted arrival Is2 is

generated. It is detected with a delay of about 250 s. Finally,

the second thermospheric arrivals, Ita2 and Itb2, become

detectable for distances from the source greater than 500 km

and with a delay of around 750 s. Beyond the first geometri-

cal shadow zone, the function Ug exhibits a peak at about

x1 ¼ 300 km, as a consequence of the first lower thermo-

spheric arrival Ita1; the phase Ita1 is responsible for the

maximum overpressure visible between x1 ¼ 300 km and

FIG. 5. L case. Snapshots of the normal-

ized pressure U at different time instants.
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x1 ¼ 600 km; over this range, Ug is about 5% to 10% of the

overpressure measured at the source location S.

The spectrogram ESD1 of the signals detected at ground

level is reported in Fig. 8(c), where color indicates the ESD

level as a function of frequency f for each recording location

x1. Most of the energy is found around the source frequency

fs ¼ 0:1 Hz, even at distances larger than 200 km from the

source, where the maximum overpressure is due in large part

to the thermospheric phases. This is a consequence of the

small source amplitude As: nonlinear effects are not appre-

ciable. By integrating the ESD function over x1 and f, it is

found that about 99.3% of the energy is associated with fre-

quencies in the interval ½0 Hz; 0:2 Hz�.
The ESD computed along the x2 axis is plotted in Fig.

9(a) as a function of frequency f and distance from the

source x2. As a result of the small source amplitude, the sig-

nal U undergoes negligible distortion during its vertical

propagation up to about 120 km. Below 120 km, and outside

the source region, the frequency fpðx2Þ of the maximum

ESD2 for a given altitude x2 remains constant with a value of

fp ’ 0:093 Hz. Furthermore, until 120 km, the amplitude of

the pressure fluctuations decreases, owing essentially to the

cylindrical spreading.

For higher altitudes, thermoviscous dissipation becomes

increasingly important due to the exponential diminution of

the mean density, as also demonstrated by the departure of

the Navier-Stokes result from that of the Euler model. The

signal amplitude drops, and a shift toward lower frequencies

is observed, since absorption phenomena depend not only on

the value of the kinematic viscosity �� but also on the square

of the frequency.9,10 The frequency fp is about 0.042 Hz at

x2 ¼ 180 km.

3. Linear with Wind case

The presence of a wind profile in the atmosphere general-

ly has a strong impact on the acoustic field recorded at ground

level. The arrival time of the different phases as well as their

amplitude and waveform are affected.29,38 The generation of

new arrivals can be also observed. As an illustration, a snap-

shot of U at t¼ 666.7 s is shown in Fig. 10. Acoustic rays are

also superimposed. The initially isotropic wavefront is de-

formed by the stratification of the mean atmosphere.

Furthermore, a caustic appears at an altitude of about

111 km. The influence of the wind profile on the acoustic

field is clearly visible at stratospheric and mesospheric alti-

tudes, where multiple reflections toward the Earth’s surface

are generated. In particular, a second caustic is formed at a

height of about 45 km, where the effective speed of sound

�ceff ¼ �c þ �u1 exceeds its ground level value5,10 [see Fig.

2(a)]. The amplitude of the subsequent stratospheric arrival

Is1 becomes noticeable at about x1 ¼ 150 km. This value

should be compared to the arrival range predicted by the

geometrical acoustic theory, of around 270 km. Moreover,

FIG. 6. L case. Zoom of the snapshots

of the normalized pressure U at (a)

1000 s, (b) 1333.3 s, and (c) 1666.7 s.

FIG. 7. L case. Normalized pressure U recorded at stations (a) S1 and (b) S2.
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an additional reflection is observed around x2 ¼ 70 km, near

a local maximum of the effective speed of sound. This dif-

fracted phase is labeled Im1.

The pressure signal U recorded at the ground station

S3 ¼ ð270 km; 0 kmÞ is shown in Fig. 11(a). The signal

obtained without wind is also reported in light gray for com-

parison. The thermospheric signature remains almost un-

touched by the horizontal wind. The amplitude is however

doubled, and the arrival time, reduced. The time lag between

the maximum overpressures is of about 35 s, corresponding

to a difference between the apparent propagation speeds of

7.06 m s�1. The mean atmospheric profile considerably rein-

forces the stratospheric ducting. The stratospheric arrival Is1

has an amplitude 20 times higher than that of the diffracted

phase Is1 recorded in the absence of wind. The time lag be-

tween the maximum stratospheric overpressures is of 15 s.

The signature detected in the presence of wind is also modi-

fied. Since it passes through the stratospheric caustic, it

exhibits a shape close to the Hilbert transform of the signal

recorded at the source location. The additional mesospheric

phase has a very low amplitude, about two orders of magni-

tude smaller than the stratospheric signal.

The maximum overpressure Ug at ground level is plot-

ted in Fig. 11(b) as a function of x1. The contributions of the

different phases are reported in dashed line; the result

obtained without wind is also plotted in gray for comparison.

FIG. 9. L case. (a) ESD of the whole

signal recorded along the x2 axis and

above the source; (b) ESD profile for

f¼ fs obtained by the Navier-Stokes

model (black solid line) and without

viscous and thermal terms (dotted

line).

FIG. 8. L case. Ground recordings: (a)

normalized pressure U as a function of

range x1 and of reduced time tr; (b)

normalized maximum overpressure Ug

at ground level; (c) spectrogram ESD1

of U as a function of x1 and frequency

f.

650 J. Acoust. Soc. Am. 140 (1), July 2016 Sabatini et al.



The decay rate of the amplitude of the direct phase is

reduced in the presence of wind. A moving medium with

velocity �u1 and speed of sound �c can be considered to a first

approximation as a medium at rest with an effective speed of

sound �ce ¼ �c þ �u1 (Ref. 13) [see Fig. 2(a)]. Considering that

the wind profile is globally positive near the ground, the de-

cay rate diminishes as the effective celerity gradient is de-

creased by the horizontal flow. Finally, beyond the shadow

zone and except for distances from the source between

roughly 350 and 520 km, the generally larger amplitude of

the stratospheric arrivals induced by the horizontal wind pro-

duces an increase in the peak overpressure measured at

ground level.

4. Nonlinear case

The amplitude of the infrasonic source is found to have

a negligible influence on the geometrical structure of the

acoustic field: the number and features of arrivals remain

the same, at least for the cases under study. However, the

signature recorded at a given distance r is highly affected by

nonlinear effects. For large source amplitudes As, the ini-

tially smooth wavefront is distorted during propagation and,

at a characteristic distance rshock, which decreases with As,

shock waves are formed. To highlight this aspect, the nor-

malized pressure U recorded at three different altitudes

along the x2 axis, B2 ¼ ð0 km; 80 kmÞ; B3 ¼ ð0 km; 120 kmÞ
and B4 ¼ ð0 km; 170 kmÞ, is plotted in Fig. 12.

At the point B2, U is still a smooth function, but its

waveform has undergone appreciable modifications from

the source [see Fig. 12(a) and 4(a)]. Moreover, its ampli-

tude has diminished by a factor 20 as a consequence of the

two-dimensional cylindrical spreading. The waveform

steepens with increasing time and distance and evolves into

an N-shaped wave [Fig. 12(b)]. Once the N-wave is formed,

it lengthens while propagating toward the upper atmosphere

[Fig. 12(c)]. Its duration is about 25 s at B3 and 50 s at B4.

The importance of the viscous and thermal terms is again

emphasized in Fig. 12(c), where the signal resulting from

the Euler equations is also reported in gray. The maximum

overpressure is almost halved by the thermoviscous absorp-

tion phenomenon. The central part of the wave and the

frequency fp of the maximum ESD2 remains however

untouched.

The ESD computed along the x2 axis is displayed in

Fig. 13(a). The shock formation coincides with a rapid

widening of the spectrum. For distances from the source

smaller than about 40 km, most of the energy is around

the source frequency, whereas above 40 km, the energy of

higher harmonics becomes significant. The behavior of

the ESD as a function of altitude is shown in Fig. 13(b)

for three different spectral component frequencies, f¼ nfs,
with n¼ 1, 2, 3. As the shock formation implies a transfer of

energy toward shorter waves, the energy associated with the

fundamental frequency drops with height, whereas the ESD

of the harmonics rapidly increases and reaches a maximum

value around x2 ¼ 95 km. For higher altitudes, the lengthen-

ing of the N-wave causes a shift of the frequency fp toward

lower values, and thermoviscous absorption erases higher

harmonics. Therefore, a shock formation distance xshock
2 can

be defined here as the distance x2 from the source at which

the ESD of the first harmonic reaches its maximum value,

xshock
2 ’ 94:8 km in the present case.

FIG. 10. LW case. Snapshot of the normalized pressure U at t¼ 666.7 s.

FIG. 11. LW case. (a) Pressure U recorded at the station S3. (b) Maximum overpressure Ug obtained with (black solid line) and without (gray solid line) wind:

contributions of the different phases (dashed line) in the presence of the wind.
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It is interesting to note that the diminution of the atmo-

spheric density contributes highly not only to the increase in

thermoviscous absorption but also to the development of

nonlinear effects. Waveform distortion primarily depends on

the term �q�1=2 which varies strongly between the ground

and the thermosphere.39

The pressure U recorded at the ground station S1 is illus-

trated in Fig. 14. The signal obtained in the L case is also

reported in light gray for comparison. The stratospheric ar-

rival Is1 is found to be untouched by nonlinear effects [Fig.

14(a)]: these effects become appreciable beyond the strato-

spheric waveguide limit, where this phase is refracted back

toward the Earth’s surface. Conversely, nonlinear distortion

has a strong impact on the thermospheric phases Ita1 and Itb1.

The U-shape wave visible in Fig. 14(b) is generated by the

N-wave of the lower signal Ita1 which passes through the

thermospheric cusp caustic.6,10,11 Furthermore, as a result of

the lengthening of the signal, the peak overpressure is

brought forward by about 15 s compared to the arrival time

for the lowest source amplitude. The peak overpressure itself

is reduced in relative terms by the nonlinear effects.

5. Nonlinear with Wind case

The aim of the last study is to investigate the combined

effects of non-linearity and wind gradient on the acoustic

field produced by an infrasound source. As in the LW-case,

the presence of a wind profile generates a second caustic at

about 50 km altitude and tends to magnify the peak over-

pressure associated with the subsequent stratospheric arriv-

al. Unlike in the NL-case, the source amplitude is now

strong enough for non-linear modifications to be significant

also on the stratospheric arrival. This aspect is highlighted

in Fig. 15(a), which displays the pressure U recorded at the

ground station S3 corresponding to this phase. Results

obtained in the NL and LW cases are also reported for com-

parison. The stratospheric signal detected in the NLW

case is clearly distorted by nonlinear effects. It exhibits a

U-shaped waveform, which suggests that an N-wave is gen-

erated as rays climb toward the stratosphere before reaching

the stratospheric caustic. Following the criterion described

in the previous paragraph, shock formation occurs at

x2 ¼ 63 km altitude.

As in the NL case, once the N-wave is created, it length-

ens while propagating in the vertical direction. This lengthen-

ing corresponds to a shift toward lower frequencies. At x2

¼ 63 km, fp is about 0.08 Hz, whereas, above x2 ¼ 140 km,

fp is around 0.01 Hz. Furthermore, it is found that the frequen-

cy fp varies as �1=ð3sþÞ, where sþ represents the duration of

the positive phase of the N-wave.6,40 For the present source

amplitude, thermoviscous effects are found to play a minor

role on the shape of the signal. When the wavefront arrives in

FIG. 12. NL case. Normalized pressure U recorded at altitudes (a) B2, (b) B3, and (c) B4; in gray, result obtained without viscous and thermal terms.

FIG. 13. NL case. (a) ESD of the whole signal recorded along the x2 axis and above the source; (b) ESD profiles for f¼ fs (black solid line), f ¼ 2fs (slate gray

solid line) and f ¼ 3fs (light gray solid line); in dotted line, result obtained in the Linear case without viscous and thermal terms.
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FIG. 14. NL case. Pressure U recorded at the station S1: (a) stratospheric arrival Is1; (b) thermospheric arrivals Ita1 � Itb1. The L case result is reported in gray.

FIG. 15. NLW case. (a) Pressure U recorded at the ground station S3: result for the NLW case (black line), NL case (dotted line) and LW case (gray line). (b)

Pressure U recorded at the point B4.

FIG. 16. Numerical accuracy. (a) Temporal signals and (b) corresponding one-sided energy spectral densities obtained at B5 with a ¼ 0:75 (black line),

a ¼ 1:0 (slate gray line), a ¼ 1:25 (gray line) and a ¼ 1:5 (light gray line).
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the thermosphere, most of the energy is contained in frequen-

cies too low for significant attenuation to be observed below

180 km altitude [Fig. 15(b)]. The signal would have to propa-

gate over far larger distances for viscous and thermal terms to

affect the central part of the wave.

Numerical accuracy

To illustrate the capability of the present algorithm, the

signals recorded at the point B5 ¼ ð0 km; 90 kmÞ using dif-

ferent grid spacings aD, with a ¼ 0:75; 1:0; 1:25; 1:5, are

shown in Fig. 16(a). Because of the large source amplitude,

a N-wave is observed at this location. The agreement

between the different solutions is fairly good. In particular,

the positions of the front and rear shocks seem to be well

predicted even on the coarsest grid. The central part of the

N-wave is also well resolved.

The energy spectral densities obtained with the four grid

spacings are plotted in Fig. 16(b). The f�2-behavior expected

for the maxima of the spectrum of a balanced zero-mean

N-wave is also reported in dashed line for comparison.

Differences with respect to the ESD obtained on the finest

grid appear at higher and higher frequencies as the mesh is

refined. Convergence is observed for all grids on the first

two lobes, which contain about 90% of the total energy of

the signal, and despite appreciable attenuation with increas-

ing frequency, the position of the maxima and minima is

well reproduced even on the coarsest grid. Moreover, the

relative error between the maxima of the energy spectral

densities computed with a ¼ 0:75 and a ¼ 1:0 is lower than

50% up to the seventh harmonic, corresponding to a frequen-

cy of about 0.4 Hz. Finally, the relative error between the

total energies obtained with a ¼ 0:75 and a ¼ 1:0 is

around 2%.

IV. CONCLUDING REMARKS

Long-range infrasound propagation is investigated in this

work by performing direct numerical simulations of the two-

dimensional Navier-Stokes equations. The aim is to highlight

some specific physical features of infrasonic waves propagat-

ing in the Earth’s atmosphere that are not properly captured

by simplified modeling approaches. Four configurations with

increasing source amplitudes are simulated. The refraction

effects induced by temperature gradients are first illustrated,

and the importance of thermoviscous dissipation during the

linear propagation toward the upper atmosphere is clearly

shown. The signature of different thermospheric signals is dis-

cussed with emphasis placed on the phase shift induced by a

thermospheric caustic, and the behavior of the amplitude of

ground level recordings as a function of the distance from the

source is analyzed. An exponential-like decay of the ampli-

tude is seen in the first shadow zone adjacent to the source, as

also predicted by previous authors, whereas an overpressure

up to 10% of the value at the source location can be observed

beyond 300 km range. The influence of a wind profile on

various phases is investigated in the second computation,

and the effects of a stratospheric waveguide on the overpres-

sure recorded at ground level are analyzed. A third

configuration, with a high source amplitude and in an atmo-

sphere at rest, is investigated in order to examine the influence

of non-linearities on the signature, amplitude and spectrum of

thermospheric phases. The joint effects of wind and non-

linearities are then illustrated in the last computation. In

particular, it is shown that, for sufficiently large source en-

ergies, the signature of stratospheric phases can also be

strongly affected. The roles of non-linearities and molecu-

lar dissipation during the propagation in the upper atmo-

sphere, both of which are magnified by the decrease of the

mean density with altitude, are also demonstrated, and it is

found that, as a result of the low frequency generation asso-

ciated with period lengthening, thermoviscous absorption

effects can become less important for increasing source

amplitudes.

The transfer functions of the numerical dissipation

mechanisms in Fourier space are provided and it is shown

that all the physical effects under study are correctly taken

into account by the present numerical algorithm. A conver-

gence analysis on a N-wave observed in the thermosphere in

the last computation is reported as well, and an example of

application of an improved and robust shock-capturing pro-

cedure is finally illustrated.

The numerical approach followed in this work is direct-

ly applicable to three-dimensional simulations of the Navier-

Stokes equations for future work, which should allow in-

sightful comparisons with measurements.
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APPENDIX A: ATMOSPHERIC PROFILES AND
CONSTANTS

The speed of sound and wind profiles are defined by cu-

bic splines, whose coefficients are reported in Table I. For a

given altitude x2 2 ½x2;i; x2;iþ1�, the value of �f at x2 is given by

�f x2ð Þ ¼ a�f i þ b�f iþ1

þ 1

6
a3 � að Þ�f 00i þ b3 � bð Þ�f 00iþ1

h i
x2;iþ1 � x2;ið Þ2

where �f ¼ �c or �f ¼ �u1. The two factors a and b are de-

fined as

a ¼ x2;iþ1 � x2

x2;iþ1 � x2;i
; b ¼ 1� a:
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APPENDIX B: SHOCK-CAPTURING METHODOLOGY

To handle the acoustic shocks generated during the

propagation for sufficiently large source amplitudes, the

shock-capturing technique proposed by Bogey et al.28 is

employed at each time step after the selective filtering proce-

dure. It consists in adding artificial dissipation only where

necessary, i.e., only near shock fronts, in such a way that

smooth regions of the solution are not affected. The method-

ology involves two main steps. The locations of the disconti-

nuities are first determined through a shock sensor. Then, a

second-order filter is applied in conservative form with a

strength rsc which is significant around the shocks but nil ev-

erywhere else. In the present work, the shock detector of

Bogey et al.28 is replaced by a new indicator, which is spe-

cifically developed for acoustic applications using the

smoothness variables employed in the weighted essentially

non-oscillatory schemes.31,32 In a one-dimensional mesh, the

following parameters bk, k¼ 0, 1, 2, are first calculated as

b0 ¼
13

12
p0i�2 � 2p0i�1 þ p0i
� �2 þ 1

4
p0i�2 � 4p0i�1 þ 3p0i
� �2

;

b1 ¼
13

12
p0i�1 � 2p0i þ p0iþ1

� �2 þ 1

4
p0i�1 � p0iþ1

� �2
;

b2 ¼
13

12
p0i � 2p0iþ1 þ p0iþ2

� �2 þ 1

4
3p0i � 4p0iþ1 þ p0iþ2

� �2
;

(B1)

where p0i is the perturbation of pressure at node i. These indi-

cators are combinations of centered and non-centered finite

difference approximations of the first and second derivatives

of p0 and constitute an estimate of the regularity of the solu-

tion at point i. The coefficients ak and xk, k¼ 0, 1, 2, are

then computed as

ak ¼
1

bk þ �ð Þ2
; xk ¼

akX
l

al

; (B2)

where � ¼ 10�18 is a constant introduced to avoid divisions

by zero. It is straightforward to show that, in smooth regions,

the coefficients bk are very small and the terms xk tend to
1
3
.32 The following sensor is thus introduced

r ¼
X2

k¼0

����xk �
1

3

����
 !2

; (B3)

and the filtering strength rsc
i at the node i is calculated

according to28

rsc
i ¼

rsc
max

2
1� rth

r
þ
����1� rth

r

����
 !

; (B4)

where rth is a threshold value equal to 0.8. The filtering mag-

nitude rsc
i is thus nil away from shocks, where r < rth, and

takes increasing values up to rsc
max 2 ½0; 1� for increasing

shock intensities. Finally, for the application of the conserva-

tive form of the shock-capturing filtering, the strengths

rsc
i61=2 [Eq. (24) in Bogey et al.28] are determined as the

weighted averages

rsc
i�1=2 ¼

1

5
2rsc

i�1 þ 2rsc
i þ rsc

iþ1

� �
;

rsc
iþ1=2 ¼

1

5
rsc

i�1 þ 2rsc
i þ 2rsc

iþ1

� �
: (B5)

As an illustration, a vertical cut of the normalized

pressure U obtained in the NLW case, Ux2
ðx2; tsdÞ

¼ U ð0 km; x2; tsdÞ, is shown in Fig. 17. The cut is taken at

tsd ¼ 366:7 s. The shock sensor rsc computed by performing

the detection procedure along the x2 axis is also plotted. The

highly dissipative second-order filter is applied only in

two limited zones around the front and rear shocks, where

rsc does not vanish, whereas the smooth central part of the

N-wave is left unaffected.
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