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A direct numerical simulation of the three-dimensional unsteady compressible
Navier–Stokes equations is performed to investigate the infrasonic field generated
in a realistic atmosphere by an explosive source placed at ground level. To this
end, a high-order finite-difference method originally developed for aeroacoustic
applications is employed. The maximum overpressure and the main frequency of the
signal recorded at 4 km distance from the source location are about 4000 Pa and
0.2 Hz, respectively. The atmosphere is parametrized as a vertically stratified medium,
constructed by specifying vertical profiles of the temperature and the horizontal
wind which reproduce measurements. The computation is carried out up to 140 km
altitude and 450 km range. The goal of the present paper is twofold. On the one
hand, the feasibility of using a direct numerical simulation of the three-dimensional
fluid dynamic equations for the detailed description of long-range propagation in
the atmosphere is proven. On the other hand, a physical analysis of the infrasonic
field is realized. In particular, great attention is directed towards some important
phenomena which are not taken into account or not well predicted by classical
propagation models. To begin with, the present study clearly demonstrates that the
weakly nonlinear ray theory may lead to an incorrect evaluation of the waveform
distortion of high-amplitude waves propagating towards the lower thermosphere. In
addition, signals recorded in the shadow zones are investigated. In this regard, the
influence on the acoustic field of temperature and wind inhomogeneities of length
scale comparable with the acoustic wavelength is analysed. The role of diffraction at
the thermospheric caustic is finally examined and it is pointed out that the amplitude
of the source may have a strong impact on the length of the shadow zone.
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1. Introduction
Infrasound is formally defined as sound of frequency lower than about 20 Hz, the

limit of the human hearing range. Infrasonic waves are generated by a large variety
of natural events, such as volcanic eruptions or earthquakes, and by artificial sources,
like nuclear or chemical explosions and supersonic booms. Following particular paths
which extend up to thermospheric altitudes, they can propagate over thousands of
kilometres through the Earth’s atmosphere and may carry relevant information about
their source.

One of the earliest investigations on long-range propagation dates back to the
immediate aftermath of the Krakatoa eruption in 1883 (Evers & Haak 2010). During
the first four decades of the 20th century, infrasound studies were essentially motivated
by the interest in the layered structure of the atmosphere. The outbreak of the
Cold War probably marked the beginning of the modern era of the research in
low-frequency acoustics. Thenceforth, infrasonic recordings have been extensively
used to monitor the Earth for clandestine nuclear tests and constitute today one of
the four techniques used by the International Monitoring System (IMS) to verify
compliance with the Comprehensive Nuclear Test Ban Treaty (Brachet et al. 2010).
The infrasound network of the IMS, still under construction, will ultimately include 60
stations which can detect frequencies roughly between 0.01 and 4 Hz. Its primary goal
is to allow a reliable estimation of the source yield of large explosions. Nonetheless,
a number of new practical applications where infrasound recordings may prove to
be useful are currently emerging. To name a few examples, retrieval techniques for
the vertical profiles of the speed of sound and wind velocity (Le Pichon et al. 2006;
Lalande et al. 2012; Assink et al. 2013, 2014; Chunchuzov et al. 2015) have been
recently developed; investigations on atmospheric gravity waves have been performed
as well. A detailed review can be found in Le Pichon, Blanc & Hauchecorne (2010).

1.1. Physical phenomena affecting infrasound propagation
Infrasound propagation is primarily driven by the vertical gradients of the speed of
sound and atmospheric wind, which trap the acoustic energy between the Earth’s
surface and the thermosphere. Tropospheric, stratospheric and thermospheric ducts are
generally observed (Drob, Picone & Garcés 2003). Furthermore, the refraction induced
by the variations with altitude of the propagation velocity leads to the formation of
focusing regions or caustics and shadow zones (Pierce 1985). Signals travelling in the
atmosphere undergo a phase shift when grazing a caustic, so that an initially N-shaped
waveform, typical of an explosive source, is transformed into a U-wave (Rogers &
Gardner 1980; Pierce 1985; Marchiano, Coulouvrat & Grenon 2003). Diffraction at
a caustic also plays an important role, especially for low-frequency waves (Pierce
1985; Salomons 1998; Marchiano et al. 2003). The atmospheric stratification imposed
by the gravity force has a considerable impact on acoustic propagation. The roughly
exponential reduction with altitude of the mean atmospheric density indeed tends to
amplify nonlinearities, which leads to signal steepening and lengthening (Rogers &
Gardner 1980; Lonzaga et al. 2015; Sabatini et al. 2016b). Likewise, thermoviscous
absorption augments as the mean atmospheric density diminishes, due to the increase
of the mean kinematic viscosity (Sutherland & Bass 2004). Relaxation phenomena
may also damp infrasonic waves, in particular those propagating in the troposphere
and in the stratosphere (Sabatini et al. 2016b). Moreover, acoustic energy can be
scattered by fine-scale temperature and wind inhomogeneities generated by internal
gravity waves (Kulichkov 2004; Chunchuzov et al. 2011; Chunchuzov, Kulichkov &
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Firstov 2013; Chunchuzov et al. 2014, 2015). Finally, the roughness of the Earth’s
surface may also alter infrasonic recordings, especially near the source (Lacanna &
Ripepe 2013; de Groot-Hedlin 2017).

1.2. Numerical modelling of infrasound propagation
Given the complexity of the physics to be taken into account, numerical simulations
of atmospheric propagation have necessarily been based on simplified approaches. Ray
tracing (Rogers & Gardner 1980; Lonzaga et al. 2015; Sabatini et al. 2016b; Scott,
Blanc-Benon & Gainville 2017), normal modes (Waxler 2002, 2004; Bertin, Millet &
Bouche 2014; Assink, Waxler & Velea 2017; Waxler, Assink & Velea 2017) and one-
way models (Lingevitch, Collins & Siegmann 1999; Ostashev et al. 2001; Le Pichon,
Ceranna & Vergoz 2012; Gallin et al. 2014) have been the most commonly used
techniques. Albeit computationally efficient, they are not able to account for all the
aforementioned physical phenomena. Ray theory is valid up to the weakly nonlinear
regime and does not predict by its own nature scattering by inhomogeneities and
diffraction; a normal mode expansion is only admitted by linear waves in a stratified
medium; finally, one-way models have strong angular limitations and are generally
restricted to linear or weakly nonlinear propagation.

Over the past decade, significant efforts have been made towards infrasound studies
based on the complete set of the fluid dynamic equations, for providing a finer
description of long-range atmospheric propagation. However, their accurate resolution
is still a challenging task and requires well-suited numerical techniques. To the best
of the authors’ knowledge, numerical simulations of such equations have generally
been performed in two dimensions, on Cartesian grids (de Groot-Hedlin, Hedlin &
Walker 2011; Marsden, Bailly & Bogey 2014; Sabatini et al. 2015, 2016a) or in
cylindrical coordinates under the hypothesis of axial symmetry (de Groot-Hedlin
2012, 2016). A three-dimensional computation, based on simplified equations, was
carried out by Del Pino et al. (2009), however without including nonlinear, viscous
and thermal conduction effects.

1.3. Present study
In this work, the full three-dimensional unsteady compressible Navier–Stokes
equations are solved in order to investigate the infrasonic field generated by an
explosive source placed at ground level in a realistic atmosphere. For this purpose, a
high-order finite-difference time-domain method originally developed for aeroacoustic
applications (Bogey & Bailly 2002, 2004; Berland, Bogey & Bailly 2007) is employed,
along with an adaptive shock-capturing algorithm (Bogey, Cacqueray & Bailly 2009;
Sabatini et al. 2016a) which allows the handling of discontinuities. The maximum
overpressure and the central frequency of the signal recorded at 4 km distance from
the source location are about 4000 Pa and 0.2 Hz, respectively. The atmosphere is
defined as a vertically stratified medium and is constructed by specifying vertical
profiles of the temperature and the horizontal wind which partly reproduce the data
observed during the Misty-Picture experiment (Gainville et al. 2010). The computation
is carried out up to 140 km altitude and 450 km range.

The aim of this work is twofold. On the one hand, the feasibility of using a direct
numerical simulation of the three-dimensional fluid dynamic equations for the detailed
description of long-range propagation in the atmosphere is proven. On the other hand,
a fine physical analysis of the infrasonic field is realized. In particular, great attention
is directed towards different important phenomena which are not taken into account
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FIGURE 1. (Colour online) Sketch of the physical domain.

or not well predicted by classical propagation models, namely: the strong nonlinear
effects in the thermosphere, the penetration of acoustic energy in the shadow zone
on the Earth’s surface, the partial reflections induced by small-scale temperature and
wind inhomogeneities and the diffraction at the thermospheric caustic.

The paper is organized as follows. The present propagation model is described in
§ 2. The properties of the atmospheric gas and the initial mean flow are first defined.
The set of governing equations and the infrasonic source are then presented and a
discussion of the main hypothesis of the model is carried out. The numerical algorithm
and its computer implementation are outlined in § 3. Results are finally reported in § 4.
After a general illustration of the acoustic field at various instants of time, time signals
at different altitudes and at ground level are examined. In particular, the nonlinear
effects in the thermosphere, the penetration of acoustic energy in the shadow zone at
ground level, the influence of fine-scale temperature and wind inhomogeneities and the
diffraction at the thermospheric caustic are discussed. Concluding remarks are finally
presented in § 5.

2. Propagation model
A Cartesian coordinate system Ox1x2x3 with its origin at ground level and vertical

axis x3 is employed. The Earth’s surface is modelled as a perfectly reflecting flat wall,
which is represented by the x1–x2 plane. An infrasonic source is placed at the point
O. A sketch of the problem is illustrated in figure 1.

2.1. Fluid model
For the purpose of the present investigation, the air in the atmosphere is assumed to
behave as a single ideal gas satisfying the equation of state p= ρrT , where p is the
pressure, ρ is the fluid density, T is the temperature and r = 287.06 J kg−1 K−1 is
the specific gas constant. The speed of sound c is given by the relation c =

√
γ rT ,

where γ = cp/cv = 1.4 represents the ratio of the specific heat capacity at constant
pressure cp to the specific heat capacity at constant volume cv = cp − r. The molar
mass and the specific heats are considered constant. As a result, the internal energy e
and the enthalpy h are simply computed as e= cvT and h= cpT , respectively. The fluid
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FIGURE 2. (a) Vertical profiles of the speed of sound c̄(x3) (black line) and of the
temperature T̄(x3) (grey line); (b) mean horizontal wind ū1(x3) in the east–west direction
versus altitude.

flow is described by the conservative variables [ρ, ρu1, ρu2, ρu3, ρet], where ui is the
component of the velocity vector in the direction xi, for i= 1, 2, 3, and et= e+ ukuk/2
indicates the total specific energy, which is related to the pressure p by the relationship
p= (γ − 1)(ρet − ρukuk/2).

2.2. Initial undisturbed atmosphere
At the instant t= 0, the initial undisturbed atmosphere is defined as a stationary and
stratified medium, with a wind in the x1 direction

ρ̄ = ρ̄(x3), ρ̄ūi = ρ̄(x3)ūi(x3), i= 1, 2, 3, ρ̄ēt = ρ̄(x3)ēt(x3). (2.1a−c)

In the present study, the vertical profiles of the temperature T̄(x3) and the horizontal
wind ū1(x3) are defined by combining the data measured during the Misty-Picture
experiment with empirical models (see Gainville et al. (2010) for further details).
They are displayed in figures 2(a) and 2(b), respectively. A synthetic nomenclature
of the different atmospheric layers is also reported in figure 2(a). The length scale
for variations of the initial undisturbed atmosphere is globally higher than around
10 km. Nonetheless, small-scale inhomogeneities are clearly visible in the stratosphere,
between 25 and 55 km altitude. Their characteristic length is equal to about 4 km
and is close to the acoustic wavelengths λ considered in this study.

The mean speed of sound c̄(x3) is computed from the temperature according to the
relation c̄(x3)=

√
γ rT̄(x3). The pressure profile p̄(x3) is then obtained by integrating

the hydrostatic equilibrium equation

dp̄
dx3
=−ρ̄g=−

g
rT̄

p̄, (2.2)

where g = 9.81 m s−2 is the gravitational acceleration, here assumed to be constant,
with the ground-level pressure fixed to p̄0 ≡ p̄(0) = 101 325 Pa. Finally, the density
and the specific energy are determined from the expressions ρ̄ = p̄/(rT̄) and ρ̄ēt =

p̄/(γ − 1)+ ρ̄ū2
1/2.
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3-D direct numerical simulation of atmospheric infrasound propagation 759

2.3. Governing equations
Sound propagation is governed by the three-dimensional unsteady compressible
Navier–Stokes equations, which can be recast as

∂ρ

∂t
+
∂(ρuj)

∂xj
=Λρ,

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
=−

∂p′

∂xi
+
∂τ ?ij

∂xj
− ρ ′gδi3,

∂(ρet)

∂t
+
∂(ρetuj)

∂xj
=−

∂
(

p′uj
)

∂xj
− p̄

∂uj

∂xj
−
∂q?j
∂xj
+
∂(uiτ

?
ij )

∂xj
− ρ ′gu3 +Λρet ,


(2.3)

where p′ = p− p̄ is the pressure perturbation, ρ ′ = ρ − ρ̄ is the density perturbation,
τ ?ij is the viscous stress tensor, q′i is the heat flux, Λρ and Λρet are two source-forcing
terms and δij is the Kronecker symbol. Note that, in keeping with Marsden et al.
(2014), the hydrostatic equilibrium condition dp̄/dx3=−ρ̄g is here subtracted from the
Navier–Stokes equations in order to bypass its high-precision computation at each time
step. Moreover, because of the non-vanishing terms ∂τ̄12/∂x1 and ∂ q̄2/∂x2, the initial
undisturbed atmosphere, determined from experimental data, is not fully consistent
with the Navier–Stokes equations and thus would tend to evolve in time. To avoid
the diffusion of the mean flow during the acoustic propagation, the viscous and the
thermal conduction terms are calculated using the perturbed variables u′i= ui− ūi and
T ′=T − T̄ . More specifically, the viscous stress tensor and the heat flux are computed
respectively as

τ ?ij =µ

(
∂u′i
∂xj
+
∂u′j
∂xi
−

2
3
∂u′k
∂xk

δij

)
(2.4)

and

q?i =−
µcp

Pr
∂T ′

∂xi
, (2.5)

where µ is the dynamic viscosity and Pr= 0.72 is the fluid’s Prandtl number. Finally,
the dynamic viscosity is given by the expression

µ(T)=µref

(
T

Tref

)3/2 Tref + TS

T + TS
, (2.6)

where µref = 1.8192× 10−5 Pa s, Tref = 293.15 K and TS= 117 K (Sutherland & Bass
2004, 2006).

2.4. Infrasonic source
The infrasonic source is implemented through the following forcing terms of the
continuity and energy conservation equations:

Λρet(x, t)=As sin(ωst)[1− cos(2ωst)]Π[0,π/ωs](t)e
−log(2)‖x‖2/b2

s

Λρ(x, t)=
γ − 1
c̄2(x3)

Λρet(x, t),

 (2.7)

where As = 3 × 105 J m−3 s−1 is the source strength, fs = ωs/(2π) = 0.2 Hz the
source frequency, bs = 360 m the half-width and Π[0,π/ωs](t) the rectangle function,
equal to 1 in the interval [0, π/ωs] and 0 otherwise. As explained in appendix A,
the functions Λρet and Λρ are designed in order to obtain a blast wave, typical of
explosions (Whitham 1974), close to the origin of the domain.
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FIGURE 3. (Colour online) Knudsen number Kn as a function of the wavelength λ and of
the altitude x3. The solid and dashed lines represent the level set Kn= 0.1 and the limit
of the physical domain of interest, respectively.

2.5. About the main hypotheses of the present propagation model
The present propagation model, based on the three-dimensional compressible unsteady
Navier–Stokes equations, rests upon the continuum hypothesis (Batchelor 2012), which
is valid when the characteristic wavelength λ is large enough compared to the free
mean path `. This latter is equal to about 10−7 m at ground level, but can reach
significant values in the thermosphere. The typical behaviour of the Knudsen number
Kn= `/λ in the atmosphere is shown in figure 3 as a function of the wavelength λ
and of the altitude x3. The conventional limit of validity, Kn = 0.1, is also reported.
Clearly, becoming irrelevant at altitudes higher than 140 km for values of λ lower
than about 200 m, the continuum hypothesis is verified for the range of wavelengths
of interest in this study.

Another underlying assumption of the present model is the negligibility of relaxation
effects, but, as shown by Sabatini et al. (2016b), non-equilibrium phenomena mainly
affect tropospheric and stratospheric waves of frequency greater than 1 Hz.

3. Numerical algorithm
System (2.3) is solved on a Cartesian grid using a high-order finite-difference time-

domain method.

3.1. Computational domain
The maximum number of mesh points being constrained by the computer memory,
a moving frame is employed (Salomons, Blumrich & Heimann 2002; Sabatini et al.
2015; de Groot-Hedlin 2016). System (2.3) is solved only in a narrow region which
moves along the x1 axis and follows the acoustic wavefront. A schematic illustration
of the technique is provided in figure 4(a). The physical domain of interest is a
parallelepiped of sizes 450 km, Lphys

2 = 90 km, Lphys
3 = 140 km along the x1, x2, x3

axes, respectively, while the moving window covers a distance of Lphys
1 = 220 km

in the x1 direction. As displayed in figures 5(a) and 5(b), the physical domain
Lphys

1 × Lphys
2 × Lphys

3 is surrounded by sponge zones where particular numerical
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FIGURE 4. (Colour online) (a) Sketch of the computational domain. (b) Schematic
illustration of the two-level parallelism of the present solver for the Navier–Stokes
equations.

techniques are used in order for outgoing waves to leave the computational frame
without significant reflections. Moreover, since no wind is considered in the x2
direction and the source forcing terms (2.7) depends only on the radial distance ‖x‖,
the acoustic field is symmetric across the x1–x3 plane. Accordingly, with reference to
figure 4(a), System (2.3) is solved only for negative values of the coordinate x2.

3.2. Numerical schemes
At inner points, the spatial derivatives are computed using an explicit fourth-order 11-
point stencil finite-difference scheme optimized to reduce dispersion for wavelengths
shorter than about five grid spacings (Bogey & Bailly 2004). Close to the boundaries
of the computational domain, optimized 11-point stencil non-centred finite-difference
schemes are employed (Berland et al. 2007). The time integration is carried out by a
six-step second-order low-storage Runge–Kutta algorithm (Bogey & Bailly 2004).

At the end of each time step, spatial low pass filtering is performed on the
perturbations of conservative variables U′ = [ρ − ρ̄, ρu1 − ρ̄ū1, ρu2 − ρ̄ū2, ρu3 −

ρ̄ū3, ρet − ρ̄ēt], in order to damp out grid-to-grid oscillations and ensure numerical
stability. For this purpose, an explicit sixth-order 11-point stencil filter, designed to
remove fluctuations discretized by less than four grid points per wavelength, while
leaving larger wavelengths unaffected, is employed at inner nodes (Bogey et al.
2009). Close to the boundaries of the computational frame, optimized 11-point stencil
non-centred filters are applied instead (Berland et al. 2007). Additionally, in order
to handle the acoustic shocks generated during the propagation, the shock-capturing
procedure developed by Bogey et al. (2009) is used in conjunction with the new
shock detector proposed by Sabatini et al. (2016a).

3.3. Boundary conditions and sponge zones
The flow field near a wall can be decomposed, in the linear regime, into the sum of
three different waves, namely the vorticity, the entropy and the acoustic modes. The
first two waves have appreciable amplitudes only in the vicinity of the wall, up to
distances of the order of the acoustic boundary layer thickness δµ =

√
2µ̄/(2πf ρ̄).

Close to the Earth’s surface, δµ is equal to about 1 cm for a frequency f of 0.2 Hz
and a wavelength λ of 1.7 km, i.e. δµ = 1.7× 10−6 λ. Understandably, in the present
simulation, the flow field at ground level is dominated by the acoustic mode, which
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FIGURE 5. (Colour online) Projections of the moving domain on the (a) x1–x3 and
(b) x2–x3 planes.

alone satisfies a no-slip boundary condition. Accordingly, at nodes on the Earth’s
surface, only the vertical velocity u3 is set to zero, whereas no condition is imposed
on the other conservative variables, which are advanced in time by solving the
Navier–Stokes equations.

At grid points on the other boundaries, radiation conditions, as formulated by
Bogey & Bailly (2002), are implemented. In order to diminish the amplitude of the
outgoing waves reaching the boundaries of the computational domain, in the sponge
zones, a Laplacian filter is employed. Its strength gradually augments from zero, at
the beginning of the sponge layer, to a maximum value at the extremity of the frame.
Along the x2 and x3 axes, the reduction of the wave amplitude is further enhanced
by the increase of the grid spacing. A supplementary technique is finally required
in the top numerical sponge zone. Due to gravity stratification, the ratio of pressure
fluctuations to ambient pressure would tend to amplify with altitude. Therefore, as
proposed by Marsden et al. (2014), the gravity profile in the top sponge layer is
progressively reduced from g to −g.

3.4. Informatic implementation and numerical parameters
The numerical algorithm has been written in C/C++ with a two-level parallelism,
allowing one to exploit the excellent performance of GPU clusters (Jacobsen &
Senocak 2013). The moving box is split into several sub-domains, each of which is
handled by an MPI process. In its turn, each MPI node drives, thanks to OpenCL
kernels, a GPU. A GPU can be seen as an ensemble of work-groups, each of which
is made of processing elements or work-items. The same program or kernel (such
as the kernel computing the partial derivative along an axis) can be executed on all
the processing elements at the same time. Hence, each work-item can handle all the
operations for a single grid node (cf. figure 4b).

The moving box is divided into 6 × 8 × 3 = 144 sub-domains, each of which
contains 448× 64× 512 grid points. The total number of mesh nodes is about 2.11
billion. The step size is constant and equal to 1x1 = 90 m on the x1 axis. On the
x2 axis, the grid is stretched with a rate of 0.6 % from x2 = 1 km to x2 = 105 km
and with a rate equal to 1.2 % beyond. On the x3 axis, the spatial step is of 90 up
to 125 km, and then increases at a rate of 2 %. The variations of the mesh spacings
1x2 and 1x3 are represented in figures 6(a) and 6(b).
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FIGURE 6. Variations of the grid spacing along (a) the x2 axis and (b) the x3 axis.

The time step is set equal to 0.0699 s and the computation is carried out up to
1600 s, corresponding to 23 000 iterations. The Courant–Friedrichs–Lewy and Fourier
numbers computed using the speed of sound and the kinematic viscosity at the top of
the physical domain along the vertical axis are 0.4 and 0.07, respectively.

The present numerical simulation was run on the hybrid nodes of the Curie
supercomputer, located in the Commissariat à l’énergie atomique et aux énergies
alternatives (CEA, France), and 144 Nvidia M2090 T20A GPUs were used.

4. Results
As demonstrated by Bergmann (1946), the amplitude of the pressure perturbation

p′ evolves proportionally to the square root of the ambient density ρ̄. Therefore, the
normalized pressure fluctuation Φ(x, t) = p′(x, t)/

√
ρ̄(x3) is analysed along with the

overpressure p′. In addition, the signature of p′ and Φ are studied in the frequency
domain, by considering the one-sided energy spectral density

Eχ(x, f )= 2
∣∣∣∣∫ +∞
−∞

χ(x, t)ei2πft dt
∣∣∣∣2 , f ∈R+, χ = p′, Φ. (4.1)

4.1. General description of the acoustic field
The three-dimensional normalized pressure fields Φ obtained at different instants
of time are displayed in figure 7(a–i). The black box represents the computational
moving frame, whereas the red box indicates the physical domain of interest. The
colour level ranges from −10 Pa kg−1/2 m3/2 (blue) to +10 Pa kg−1/2 m3/2 (red). This
interval is chosen in order to visualize the various infrasonic phases, which may have
very different amplitudes. Successive points on the axes x1, x2 and x3 are 100 km
distant.

Near the source location, a spherical wavefront is observed. However, as a result of
the vertical gradients of the speed of sound and of the horizontal wind, the infrasonic
wave is continuously deformed during the propagation. At the instant t2, partial
reflections start being observed between 25 and 55 km altitude. They are induced by
variations of the speed of sound and of the wind of length scale comparable to the
acoustic wavelength. The amplitude of these reflections appears strengthened at the
instant t3. Moreover, because of nonlinear effects, the acoustic wavefront lengthens
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FIGURE 7. For caption see next page.

while propagating towards the thermosphere. At the instant t4, the infrasonic wave
is refracted back towards the Earth’s surface. In addition, part of the wavefront
leaves the domain through the top boundary. The computational frame starts moving
between times t4 and t5. At the instant t5, the signal at ground level, between
x1 = 200 km and x1 = 250 km on the x1 axis, is a superposition of partial reflections
and stratospheric returns, while a thermospheric phase is reaching the Earth’s surface
at about x1 = 180 km distance from the source location. Furthermore, part of the
wavefront leaves the moving window through the plane x2 = −L2 with a negligible
level of spurious reflection. At the instant t6, the thermospheric phase is clearly
visible on the ground at around x1 = 250 km. At successive instants, the pressure
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FIGURE 7 (cntd). For caption see next page.

field becomes more and more complex and a multitude of arrivals are recorded at the
Earth’s surface. The computational box stops moving just after reaching the boundary
of the physical domain, between times t6 and t7. The simulation ends up once the
wavefront exits the frame.

4.2. The signal in the near field
The pressure perturbation p′ recorded on the x1 axis at x1 = 7.92 km and the
corresponding energy spectral density Ep′ are plotted in figure 8(a,b). The pressure
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FIGURE 7 (cntd). (Colour online) Three-dimensional normalized pressure field Φ obtained
for different instants of time. The black box represents the computational moving frame,
whereas the red box is the physical domain of interest. The times are (a) t1 = 146.79 s,
(b) t2= 216.69 s, (c) t3= 356.49 s, (d) t4= 566.19 s, (e) t5= 775.89 s, ( f ) t6= 1055.49 s,
(g) t7 = 1265.19 s, (h) t8 = 1404.99 s, (i) t9 = 1544.79 s.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

81
6

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

m
br

y 
Ri

dd
le

 A
er

o 
U

ni
ve

rs
ity

 M
ul

tis
ite

, o
n 

26
 N

ov
 2

01
8 

at
 1

4:
18

:0
0,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2018.816
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


3-D direct numerical simulation of atmospheric infrasound propagation 767

2.5
2.0

1.0

0

-1.0

-2.0
20 22 24

p�  (P
a)

26

e
p�

 (P
a2  H

z-
2 )

28 30
t (s) f (Hz)

108

107

106

105

104
0 0.2 0.4 0.6 0.8 1.0

(÷ 10-3)(a) (b)

FIGURE 8. (a) Pressure perturbation p′ recorded on the x1 axis at x1 = 7.92 km and
(b) corresponding energy spectral density Ep′ .

signal in the near field exhibits an N-waveform, has a maximum amplitude of 2330 Pa
and a total duration of 6 s. The central frequency is equal to about 0.13 Hz and
corresponds to a wavelength of 2.6 km.

4.3. Nonlinear effects in the upper atmosphere
The normalized pressure perturbations Φ recorded along the vertical axis x3 at three
different altitudes are plotted in figure 9(a–c). At x3 = 50 km, an N-shaped signal
with a period of 12 s is observed. As a result of nonlinearities, the N-wave lengthens
while propagating towards the upper atmosphere, its duration being equal to about 26
and 75 s at x3= 90 and 130 km altitude, respectively. A diminution of the amplitude
associated with the increase of the wave period is observed as well. Moreover, at
x3 = 130 km, the central part of the N-wave is found to be curved. This result is in
disagreement with the weakly nonlinear ray theory, according to which an N-wave
should conserve its shape during the propagation. The weakly nonlinear ray theory
rests upon the assumption that the amplitude of the signal p′ remains at least one
order of magnitude smaller than the atmospheric pressure p̄, that is, p′ < 0.1 p̄ (for
instance, see Whitham (1974)). As illustrated in figure 10, where the maximum in
time of the ratio P3(x3, t) = p′(x1 = 0, x2 = 0, x3, t)/p̄(x3) is plotted as a function of
the altitude x3, the hypothesis maxt(P3) < 0.1 is however not verified near the source
as well as in the thermosphere. As an example, maxt(P3) is equal to about 0.7 at
x3 = 114 km altitude. Therefore, the nonlinear effects cannot be considered weak in
the present simulation. To the best of the authors’ knowledge, a model for moderate
amplitude waves in a variable atmosphere is currently not available. Qualitative
insights into the understanding of the aforesaid signal distortion can nevertheless be
gained through a closer analysis of the propagation of one-dimensional plane waves
in a homogeneous medium at rest. First, let it be assumed that the viscous and
the thermal conduction terms are negligibly small. Second, with x3 the propagation
direction, let it be supposed that the specific entropy s is constant, s= s̄, and that the
velocity u3 = u′3 is a single-valued function of the pressure p. According to Whitham
(1974), the evolution of a right-running signal is then described by the following
nonlinear partial differential equation:

∂p′

∂t
+ (u3 + c)

∂p′

∂x3
= 0, (4.2)
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FIGURE 9. Normalized pressure signals Φ recorded on the x3 axis at (a) x3 = 50 km,
(b) x3 = 90 km and (c) x3 = 130 km.

with p= p̄(ρ/ρ̄)γ , c=
√
γ p/ρ and u3= 2(c− c̄)/(γ − 1). Writing the sum (u3+ c) as

a function of the pressure p and expanding it for p′/p̄→ 0 yields

∂p′

∂t
+ c̄

[
1+

β

ρ̄c̄2
p′ −

β2

2ρ̄2c̄4
p′2 + h.o.t.

]
∂p′

∂x3
= 0, (4.3)

where β = (γ + 1)/2 is the nonlinear parameter. In the presence of shock waves, the
previous hypotheses on the specific entropy s and on the velocity u3 are not verified.
However, it can be shown that, at a discontinuity, the relations s− s̄= 0 and u3= u′3=
2(c− c̄)/(γ −1) are valid up to the third order in p′/p̄ when p′/p̄ tends to 0 (Whitham
1974). Therefore, equation (4.3) can still be employed in the presence of small or
moderate amplitude shocks. When only the first two terms of the Taylor series for
(u3+ c) are retained, u3+ c= c̄+βp′/(ρ̄c̄), the classical Burgers equation is recovered.
Ray theory is entirely based on an extension of this latter equation to inhomogeneous
media (for instance, see Sabatini et al. (2016b) and references therein). In the case of
the Burgers equation, an N-wave conserves its shape as a consequence of the linearity
in p′ of the first-order approximation of (u3 + c). The central part of the waveform
remains straight and only a variation of slope can be observed during the propagation.
The curvature of the signals recorded in the thermosphere might be thus attributed to
high-order terms in p′, which cannot be neglected beyond a certain altitude. A similar
discussion of the distortion of high-amplitude N-waves can be found in Inoue & Yano
(1997).

The energy spectral density EΦ,3(x3, f ) = EΦ(0, 0, x3, f ) of the signals Φ recorded
along the x3 axis is finally plotted in figure 11 as a function of the frequency f and
of the altitude x3. The nonlinear lengthening of the N-wave leads to a shift of the
spectrum towards very low frequencies. Therefore, throughout the propagation, most
of the energy is carried by spectral components which are weakly affected by the
viscous and the thermal conduction terms. Dissipative effects only influence the shock
region, but play a minor role in the waveform.

4.4. Description of the arrivals at ground level
Two waveguides are induced by the vertical profiles (2.1) of the speed of sound
and of the wind, a stratospheric duct between the Earth’s surface and about 55 km
altitude, and a thermospheric duct between the ground and 115 km altitude. As a
consequence, different arrivals reach the Earth’s surface. The pressure perturbations
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FIGURE 10. Maximum of the ratio P3 between the pressure perturbation p′ on the x3
axis and the atmospheric pressure p̄. The dashed line represents the conventional limit of
validity of the weakly nonlinear ray theory, maxt(P3)= 0.1.
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FIGURE 11. (Colour online) Spectrum EΦ,3 of the signals Φ recorded along the x3 axis.

p′ detected on the x1 axis at the ground stations x1 = 100 km, x1 = 230 km and
x1 = 360 km are plotted in figures 12(b), 12(d) and 12( f ), respectively. In order
to help the understanding of the various arrivals, the acoustic fields Φ obtained
on the x1–x3 plane at times t3, t5 and t7 are also displayed in figures 12(a), 12(c)
and 12(e), respectively. The results obtained by ray theory (Candel 1977) are reported
as well in figure 12(a,c). At the ground station located at x1 = 100 km range, refer
to figure 12(b), two distinct wave packets are observed. The first arrival, labelled
Idtr, where the subscripts d and tr stand respectively for diffracted and tropospheric,
is not predicted by the geometrical acoustics approximation and may be attributed
to a creeping wave which diffracts energy along the Earth’s surface (Pierce 1985).
It is detected between about t = 290 s and t = 300 s, its maximum overpressure is
equal to 30.8 Pa and its duration is around 6 s. No period lengthening is observed,
meaning that the propagation at ground level is essentially linear. An analogous
conclusion has been drawn in a recent study by de Groot-Hedlin (2017). The second
arrival, detected from t = 360 to 460 s, is associated with the partial reflections the
wavefront undergoes while travelling within the small-scale inhomogeneous layer
located between 25 and 55 km altitude. For this reason, it is denoted Ips, where
the subscripts p and s stand for partial reflection and stratospheric. Its amplitude is
about 7 Pa. It can also be remarked that, at time t1, a stratospheric return, labelled
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FIGURE 12. (Colour online) Acoustic field Φ on the x1–x3 plane at (a) t3, (c) t5 and
(e) t7. Pressure signals p′ recorded on the x1 axis at (b) x1 = 100 km, (d) x1 = 230 km
and ( f ) x1 = 360 km. The grey lines in (a,c) represent the acoustic rays.

Is, becomes visible in figure 12(a) at about 50 km altitude. At the ground station
located at x1= 230 km on the x1 axis, three different wave packets are recorded along
with the partial reflections Ips. The stratospheric phase Is is observed between 780
and 820 s, with an amplitude equal to about 73 Pa. Furthermore, contrarily to the
prediction of ray theory, a thermospheric wave packet It is also detected between 980
and 1100 s, with a maximum overpressure of 3 Pa. As discussed in § 4.7, the arrival
It is due to diffraction at the thermospheric caustic. At t = t3 and t = t5, arch-like
structures are observed between the ground and the lower thermosphere. They are
associated with partial reflections occurring whenever the wavefront propagates
downward or upward through the small-scale inhomogeneous layer. The resulting
phase, labelled as Ipst, is clearly visible at the ground stations located at x1= 230 km
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FIGURE 13. Zooms of the pressure signals p′ recorded on the x1 axis at x1 = 230 km.
(a) Stratospheric and (c) thermospheric arrivals and (b,d) corresponding spectra.

and at x1 = 360 km. Finally, zooms of the stratospheric and thermospheric arrivals
detected at x1 = 230 km are displayed in figures 13(a) and 13(c), respectively. The
corresponding energy spectral densities are reported in figures 13(b) and 13(d). Both
signals exhibit U-shaped waveforms. Their durations are around 35 and 90 s, and
their central frequencies are equal to about 0.06 and 0.01 Hz.

In order to characterize the different arrivals, the pressure perturbation p′1(x1, t) =
p′(x1, 0, 0, t) recorded on the x1 axis is plotted in figure 14(a) as a function of the
distance x1 and of the retarded time tr = t− x1/c̄(0). This diagram allows comparison
of the arrival times of the various phases with the one of a wave propagating at ground
level with a speed equal to c̄(0). Yellow dots are associated with the couples (x1, tr)
for which an acoustic ray is detected. The maximum in time of the function p′1 is
illustrated in figure 14(b). The direct phase Idtr is recorded without delay, meaning
that its propagation speed is close to c̄(0). Its maximum overpressure decreases with
range, more rapidly than the amplitude of a spherical wave in a homogeneous medium.
As discussed in § 4.5, this decay is associated with the negative gradient of the speed
of sound in the troposphere, which deviates the acoustic energy towards the upper
atmosphere. The direct phase Idtr represents the dominant contribution up to x1 =

130 km. The partial reflections Ips are detected all along the x1 axis, with a delay
which diminishes with the distance x1. The amplitude of Ips is of the order of 1 Pa
between x1= 0 km and x1= 70 km, reaches a local minimum at x1= 70 km and then
increases again up to values of about 15 Pa at x1 = 140 km. In addition, a phase
jump of π is observed at x1 = 70 km. The stratospheric arrival Is is recorded for
x1 &100 km, whereas, according to ray theory, it can be detected only for x1 &212 km.
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FIGURE 14. (Colour online) (a) Pressure p′1 recorded at ground level as a function of the
distance x1 and of the retarded time tr. Yellow dots are associated with the couples (x1, tr)
for which an acoustic ray arrives at the ground. In order to visualize all the infrasonic
arrivals, the colour level ranges from −10 to +10 Pa. (b) Maximum in time of p′1(x1, t)
as a function of the distance x1. The dashed line represents the decay of a spherical wave
in a free homogeneous medium. (c) Spectrum Ep′,1(x1, f ) of the arrivals recorded at ground
level as a function of the distance x1 and of the frequency f .

The stratospheric phase represents the most important contribution to the pressure
signal for x1 & 120 km. Its amplitude remains higher than 10 Pa up to at least x1 =

450 km, with two local maxima of 75 and 65 Pa at x1 = 230 km and x1 = 275 km,
respectively. The thermospheric phase It is detected at ground level for x1 & 180 km,
while the geometrical-acoustics approximation predicts no arrival for x1 . 280 km.
The amplitude of the signal It is much lower than the maximum overpressure of the
stratospheric wave packet, mainly as a result of the nonlinear lengthening in the upper
atmosphere.

The spectrum Ep′,1(x1, f )= Ep′(x1, 0, 0, f ) of the various arrivals recorded at ground
level is finally displayed in figure 14(c) as a function of the distance along the x1 axis
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FIGURE 15. (Colour online) Equivalence between (a) the sound field above a flat ground
in an upward refracting atmosphere and (b) the acoustic field above a convex surface in
a homogeneous medium.

and of the frequency f . Up to x1 = 100 km, the main contribution is due to the
direct phase Idtr, which has an N-waveform, leading to a broadband spectrum Ep′,1.
On the contrary, the energy spectral density Ep′,1 of the arrivals beyond x1 = 100 km
is essentially contained in the frequency range [0, 0.3]Hz.

4.5. Analysis of the direct arrival Idtr

As previously mentioned, the direct arrival Idtr is not predicted by the geometrical
acoustics. Because of the negative vertical gradient of the speed of sound, rays are
deviated towards the upper atmosphere and do not reach the ground up to x1=212 km
distance from the source location. From a physical point of view, the effect of an
inhomogeneous atmosphere can be better understood with the help of an analogy
proposed by Pierce (1985) and Berry & Daigle (1988) among others. The sound
field above a flat surface in a quiescent and upward refracting atmosphere, i.e. with a
negative vertical gradient of the speed of sound, can be considered equivalent to the
acoustic field above a curved convex surface in a homogeneous medium, as illustrated
in figure 15. In the latter case, the rays emanating from the source are straight lines
and, for geometrical reasons, cannot penetrate into the region below the tangent to
the curved ground, which is called shadow zone. Hence, in the shadow side of the
sound field, no ray can be detected and, according to the geometrical theory, the
amplitude of the pressure perturbation p′ should be nil. The direct arrival Idtr is thus
induced by diffraction and is interpreted as a creeping wave propagating along the
x1 axis.

In order to gain more insight into how acoustic energy penetrates in the shadow
zone and, in particular, on the Earth’s surface, an analysis of the phase Idtr is carried
out in this paragraph. As formerly stated, propagation at ground level is essentially
linear, excepting in the source region. Furthermore, viscous and thermal conduction
effects play a minor role in the troposphere. Besides, to simplify the forthcoming
developments, the mean atmosphere is modelled as an effective quiescent medium
with the speed of sound and the density given by c̄eff = c̄ + ū1 and ρ̄eff = ρ̄c̄2/c̄2

eff ,
respectively. As demonstrated by Godin (2002), such an approximation is valid for low
angles of propagation with respect to the horizontal axis, and is consequently justified
for a creeping wave. Under the above hypotheses, the acoustic field is axisymmetric
and the normalized pressure perturbation Φ = p′/

√
ρ̄eff can be described by the wave
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equation (Bergmann 1946; Pierce 1990)

∂2Φ

∂%2
+

1
%

∂Φ

∂%
+
∂2Φ

∂x2
3
+

[
1

2ρ̄eff

d2ρ̄eff

dx2
3
−

3
4ρ̄2

eff

(
dρ̄eff

dx3

)2
]
Φ −

1
c̄2

eff (x3)

∂2Φ

∂t2
=

G√
ρ̄eff

,

(4.4)
where % =

√
x2

1 + x2
2 and G is a function of the source terms Λρ and Λρet in (2.3).

Since the characteristic acoustic wavelength λ ' 2.6 km is smaller than the typical
length scale for variations of the atmospheric density ('8.4 km), the vertical
derivatives of the function ρ̄eff are henceforth neglected. Taking the Fourier–Bessel
transform

χ̂(k%, x3, ω)=

∫
+∞

−∞

∫
+∞

0
χ(%, x3, t)J0(k%%)e+iωt% d% dt, (4.5)

with χ = Φ or χ = G and where J0 is the zeroth-order Bessel function of the first
kind, the depth-separated Helmholtz equation is obtained:

d2Φ̂

dx2
3
+

(
ω2

c̄eff
− k2

%

)
Φ̂ =

Ĝ√
ρ̄eff

. (4.6)

The normalized pressure perturbation Φ is then retrieved by the inverse transform

Φ(%, x3, t)=
1

4π

∫∫
+∞

−∞

Φ(k%, x3, ω)H(1)
0 (k%%)e

−iωtk% dk% dω, (4.7)

where H(1)
0 is the zeroth-order Hankel function of the first kind. By means of the

residue theorem, it is possible to demonstrate that integral (4.7) can be approximated
by a linear combination of the eigenfunctions Φ̂ of the differential equation (Jensen
et al. 2011)

d2Φ̂

dx2
3
+

(
ω2

c̄eff
− k2

%

)
Φ̂ = 0, (4.8a)

completed with the rigid-wall constraint

dΦ̂
dx3
= 0, x3 = 0 km, (4.8b)

and with the radiation condition

Φ̂ ∼ eik∞3 x3, k∞3 = lim
x3→+∞

√
ω2

c̄eff (x3)
− k2

%, x3→+∞. (4.8c)

The real part of the wavenumber k∞3 is required to be positive or nil in order for the
function Φ̂ to represent an outgoing wave as x3→+∞. Since the diffracted arrival
Idtr is mainly influenced by the negative gradient of the temperature in the troposphere,
the function c̄eff is here defined as

c̄eff (x3)=

{
c̄(x3)+ ū1(x3), x3 ∈ [0, x∞3 ]
c̄(x∞3 )+ ū1(x∞3 ), x3 > x∞3 ,

(4.8d)
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FIGURE 16. (Colour online) (a) Effective speed of sound profile c̄eff . (b) Wavenumbers
k% for f = 0.2 Hz; the red square corresponds to the least attenuated mode.

where x∞3 = 15.75 km is the altitude of the first minimum of the sum c̄(x3)+ ū1(x3).
The resulting profile c̄eff (x3) is displayed in figure 16(a). In line with this definition,
the above radiation condition is replaced by the following boundary constraint (Jensen
et al. 2011):

dΦ̂
dx3
− ik∞3 Φ̂ = 0, k∞3 =

√
ω2

c̄eff (x∞3 )
− k2

%, x3 = x∞3 . (4.8e)

Problem (4.8) represents a differential eigensystem and can be solved through a
pseudospectral collocation method (Bertin et al. 2014; Sabatini & Bailly 2015). As
an illustration, the eigenvalues k% obtained for f = 0.2 Hz are plotted in figure 16(b).
As suggested by Pierce (1985), along the x1 axis, integral (4.7) is dominated by
wavenumbers k% close to k0 = ω/c̄eff (0). Moreover, since the imaginary parts of
the eigenvalues k% are strictly positive, the corresponding contributions, which are
proportional to H(1)

0 (k%r), decay with distance. Consequently, at large distances, only
the least attenuated mode is likely to be observed. The phase speed vφ = ω/Re(k%)
and the imaginary part α = mink%(Im(k%)) of the least attenuated mode are depicted
as functions of the frequency f in figure 17(a). Globally, they both depend weakly
on the pulsation ω. For f > 0.05 Hz, the velocity vφ is approximately equal to
c̄eff (0) = 340 m s−1, and the attenuation factor α increases only slightly as f
augments and has an average value of about αmean = 2.85 × 10−2 km−1 in the
range [0.05, 0.2] Hz. As the wind velocity is nil at ground level, the least attenuated
mode propagates with a celerity equal to the speed of sound on the Earth’s surface,
c̄(0), which confirms the result of the previous paragraph. Moreover, by virtue of the
above considerations, the absolute value of the pressure perturbation p′ along the x1
axis and in the far range is found to behave as

p′(x1, 0, 0, t)∝
1
√

x1
e−αmeanx1, (4.9)

since H(1)
0 (k%x1) ∼ 1/

√
x1 for k%x1 � 1. Hence, conforming to earlier remarks, the

amplitude of the phase Idtr weakens more rapidly than that of a spherical wave in a
homogeneous medium, for which p′(x1, 0, 0, t)∝ 1/x1. To conclude, the maximum in
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FIGURE 17. (Colour online) (a) Phase speed (black line) and imaginary part (blue line)
of the least attenuated mode. (b) Maximum in time of the function p′1(x1, t) as a function
of the distance x1, compared to the result given by formula (4.9) and to the behaviour of
a spherical wave in a homogeneous medium.

time of the function p′1 is again illustrated in figure 17(b) and compared to the result
given by expression (4.9). A very good agreement is observed between numerical and
theoretical predictions for x1 > 20 km.

4.6. Analysis of the partial reflections
The sensitivity of ground recordings to the speed of sound and wind fluctuations
of length scale of the same order as the acoustic wavelength has received particular
attention in recent years (Chunchuzov et al. 2011, 2014, 2015; Bertin et al. 2014). In
particular, Chunchuzov et al. (2014, 2015) demonstrated the feasibility of retrieving
the vertical structure of the atmosphere from the reflected signals, whose energy
spectral densities are closely related to the characteristic wavenumbers of the
inhomogeneities. In order to gain more insight into the relationship between the
wavenumber spectrum of the atmospheric fluctuations and the Fourier transform of
the partial reflections, a more detailed analysis of the phase Ips is now carried out on
a simplified model.

4.6.1. Reflection of a spherical wave by a one-dimensional speed-of-sound
inhomogeneity

The configuration schematically illustrated in figure 18 is considered. A spherical
wavefront is emitted in an infinite domain Ox1x2x3 by a point source placed at the
origin O and propagates through a one-dimensional speed-of-sound inhomogeneity
confined between the altitudes x3wb and x3wt; the medium is at rest and the speed
of sound away from the inhomogeneity is equal to c̄∞. The interaction between
the wavefront and the speed-of-sound fluctuation generates a transmitted wave and a
reflected wave. In order to simplify the analytical developments, nonlinear, viscous and
thermal conduction effects are henceforth neglected. Moreover, since the large-scale
variations of the atmospheric medium induced by the gravitational acceleration do not
contribute to the reflected wave, the gradient dp̄/dx3 is assumed nil and the ambient
pressure p̄ is set equal to p̄0. Under these hypotheses, the pressure perturbation p′ is
described by the wave equation (Bergmann 1946; Pierce 1990)

∂2p′

∂x2
1
+
∂2p′

∂x2
2
+ ρ̄(x3)

∂

∂x3

(
1

ρ(x3)

∂p′

∂x3

)
−

1
c̄2(x3)

∂2p′

∂t2
=−F(t)δ(x), (4.10)
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FIGURE 18. (Colour online) Propagation of a spherical wave through a small-scale speed-
of-sound inhomogeneity.

where F(t) indicates the temporal envelope of the point source and ρ̄(x3)= γ p̄0/c̄2(x3).
As shown in appendix B, for x3� x3w, the incident sound field p′i(x, t) is represented
by

p′i(x, t)=
F(t− ‖x‖/c̄∞)

4π‖x‖
. (4.11)

Accordingly, the temporal shape of the source is advected in space at the speed c̄∞
and the maximum overpressure decays as 1/‖x‖. Moreover, the temporal Fourier
transform p̂′r(x, ω) of the reflected wave p′r(x, t),

p̂′r(x, ω)=
∫
+∞

−∞

p′r(x, t)eiωt dt, (4.12)

is given by the integral

p̂′r(x, ω)=
F̂(ω)
4π

∫∫
+∞

−∞

iRce+i[k1x1+k2x2−k3(k1,k2,ω)x3]

2πk3(k1, k2, ω)
dk1 dk2, (4.13)

where k1, k2 and k3 =
√
(ω/c̄∞)2 − (k2

1 + k2
2) represent the wavenumber components,

F̂ is the Fourier transform of F(t) and Rc is the reflection coefficient of the
inhomogeneous layer. The acoustic field p̂′r can be interpreted as a sum of
monochromatic plane waves whose amplitude is proportional to both the incident
spectrum F̂ and the reflection coefficient Rc. The value of Rc depends on the speed
of sound c̄(x3), on the incidence angle ϕ = atan(k3/

√
k2

1 + k2
2) with respect to the

horizontal plane and on the pulsation ω. According to Lekner (1987), the reflection
coefficient Rc is defined as the limit

Rc ≡ lim
x3→−∞

rc(x3)e2ik̃3(x3)x3, (4.14)

where the wavenumber k̃3 is given by

k̃2
3(x3)≡

ω2

c̄2(x3)
− k2

1 − k2
2 =

ω2

c̄2(x3)
−
ω2

c̄2
∞

cos2(ϕ), (4.15)
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and the function rc(x3) satisfies the Riccati problem

drc

dx3
+ 2ik̃3rc −

ρ̄

2k̃3

d(k̃3/ρ̄)

dx3
(1− r2

c)= 0, (4.16)

with the condition
lim

x3→+∞
rc = 0. (4.17)

Since the inhomogeneous layer is assumed confined in the interval [x3wb, x3wt],
rc(x∞3 ) = 0 for x∞3 > x3wt and the above equation can be integrated from x3 = x∞3 to
x3 = x−∞3 < x3wb through any stable time-integration algorithm.

4.6.2. Reflection coefficient of a Morlet wavelet
The reflection coefficient is now analysed for a speed of sound c̄(x3) defined as

the sum of a constant c̄∞ and an elementary Morlet wavelet of amplitude εc̄c̄∞, of
wavelength λw and located at altitude x3w:

c̄(x3)= c̄∞[1+ εc̄e−z2/2 cos(2πz)], with z=
x3 − x3w

λw
. (4.18)

Hereafter, the parameter εc̄ will be considered small. The modulus |Rc| obtained with
εc̄c̄∞ = 5 m s−1 is plotted in figure 19 as a function of the normalized pulsation
ωλw/c̄∞ and of the sinus of the incidence angle ϕ. The function |Rc| is different
from zero only in specific frequency bands and its maxima approximately satisfy the
well-known Bragg law (Blanc-Benon, Dallois & Juvé 2001)

2λw sin(ϕ)= lλ, (4.19)

where l is an integer number and λ = 2πc̄∞/ω is the incident wavelength. The
modulus |Rc| increases as ϕ tends to 0, and is close to 1 for incidences ϕ lower
than about 10◦. In this case, the associated plane wave is totally reflected. Moreover,
in each frequency band, there exists an angle ϕt, called intromission angle, for which
Rc is nil and the signal is totally transmitted. As an example, ϕt is equal to 45◦ for
l= 1 and to about 57.3◦ for l= 2.

According to Lekner (1987), under the hypothesis of weak reflection, a first
approximation of the function Rc for a generic inhomogeneity c̄′ = c̄ − c̄∞ is given
by the integral

Rc '

∫
+∞

−∞

[
i1k̃2

3

2k3
+

1
2

1
ρ̄

dρ̄
dx3

]
e2ik3x3 dx3, with 1k̃2

3(x3)=
ω2

c̄2(x3)
−
ω2

c̄2
∞

. (4.20)

For weak inhomogeneities (c̄′/c̄∞ � 1), the density gradient can be rewritten as
(dρ̄/dx3)/ρ̄ = −2(dc̄′/dx3)/c̄∞. As a result, integral (4.20) can be further simplified
as

Rc ' i
1
k3

ω2

c̄2
∞

(2 sin2(ϕ)− 1)
∫
+∞

−∞

c̄′(x3)

c̄∞
e2ik3x3 dx3. (4.21)

This formula allows relating the reflection coefficient Rc to the spectrum of the
speed of sound fluctuations; Rc is indeed proportional to the Fourier transform of the
inhomogeneity c̄′/c̄∞. Furthermore, because of the factor (2 sin2(ϕ)− 1), the function
Rc vanishes for ϕ= ϕt = 45◦. Hence, the existence of an intromission angle ϕt is not
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FIGURE 19. (Colour online) Reflection coefficient Rc for the speed of sound profile (4.18)
as a function of the normalized pulsation ωλwc̄∞ and of the sinus of the incidence angle
sin(ϕ). The dashed lines represent the well-known Bragg law 2λw sin(ϕ) = lλ, for l = 1,
l= 2 and l= 3.

peculiar to the profile (4.18) and is strictly linked to the density variations (dρ̄/dx3)/ρ̄,
which, under the assumption dp̄/dx3 = 0, are only induced by the gradient of the
speed of sound dc̄′/dx3. For ϕ = ϕt, the effect of the fluctuations of ρ̄ is exactly
compensated by the effect of the speed-of-sound inhomogeneity.

To conclude, for the specific case of the profile (4.18), it can be shown that the
reflection coefficient Rc can be written as Rc≡Re2ik3λw , where the auxiliary function
R is approximately equal to

R' i

√
2π εc̄

k3λw

ω2λ2
w

c̄2
∞

(2 sin2(ϕ)− 1)e−2k2
3λ

2
w−2π2

cosh(4πk3λw). (4.22)

This function takes pure imaginary values and exhibits a jump of π at the intromission
angle ϕ= ϕt. Moreover, the modulus |Rc| = |R| increases linearly with the amplitude
of the speed-of-sound inhomogeneity.

4.6.3. Amplitude of the wave reflected by a Morlet wavelet along the x1 axis
By using the auxiliary variable R, the reflected sound field (4.13) can be recast as

follows:

p̂′r(x, ω)=
F̂(ω)
4π

∫∫
+∞

−∞

iRe+i[k1x1+k2x2−k3(k1,k2,ω)(x3−2x3w)]

2πk3(k1, k2, ω)
dk1 dk2. (4.23)

This integral can be drastically simplified through the method of the stationary phase
(Frisk 1994). More specifically, with reference to figure 20, it can be shown that, at
a given recording station SR, the function p̂′r(x, ω) can be approximated as

p̂′r(x, ω)' F̂(ω)R(ϕst, ω)
e−iωr?/c̄∞

4πr?
, (4.24)

where ϕst = atan(x3w/(
√

x2
1 + x2

2/2)) and r? = ‖
−−→
O′SR‖. The variable ϕst represents

the angle formed with the horizontal plane by the line connecting the source O
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FIGURE 20. (Colour online) Propagation of a spherical wave through a small-scale
inhomogeneity. At the receiver SR, the main contribution to the reflected wave comes from
the specular angle ϕst, formed with the x1 axis by the ray connecting the point source O
and the intersection between the incident spherical wave and the symmetry axis of the
inhomogeneity.

with the intersection point between the incident wavefront and the symmetry axis
x3 = x3w of the speed-of-sound profile; the term r? is the distance between the point
O′, located at the altitude x3 = 2x3w, and the recording station SR. From a physical
point of view, equation (4.24) states that the reflected field p̂′r consists of a spherical
wave emanating from the image source O′, whose amplitude is proportional to the
incident spectrum F̂(ω) and to the reflection coefficient R for a plane wave having
an incidence angle equal to the specular angle ϕ = ϕst. Expression (4.24) represents
the geometrical approximation of the reflected field, according to which the reflected
energy is mainly concentrated in the direction of the specular angle. The modulus
|p̂′r| is finally given by the relation

|p̂′r(x, ω)| '

∣∣∣∣∣ F̂(ω)R(ϕst, ω)

4πr?

∣∣∣∣∣ . (4.25)

Since the reflection coefficient |R| is different from zero only in particular frequency
bands, the above formula states that the inhomogeneous layer acts as a selective filter
which reflects only specific wavelengths of the incident spectrum.

4.6.4. Reflection coefficient of a wind inhomogeneity
The above results, obtained for a small-scale speed-of-sound inhomogeneity, cannot

be readily extended to the case of wind fluctuations. However, two-dimensional
simulations carried out by the authors suggest that, for incidences ϕ lower than
the intromission angle ϕt and within the limits of validity of the effective celerity
approximation (Godin 2002), the effect of a wind inhomogeneity equal to ū1= c̄′ in an
isothermal atmosphere is closely equivalent to that of the speed-of-sound fluctuation
c̄′ in a medium at rest. On the contrary, for incidences ϕ higher than the intromission
angle ϕt, a horizontal wind does not contribute to the reflected field.
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FIGURE 21. (Colour online) (a) Wavefronts obtained by ray theory at two different
instants of time. (b) Angle ϕst between the geometrical wavefront and the reference axis
x3 = 40 km as a function of the distance x1 of the receiver. (c) Spectrum of the arrival
Ips as a function of the distance x1 and of the frequency f .

4.6.5. Nonlinear effects on the partial reflections
As a result of the nonlinear steepening and lengthening, the spectrum of the

incident wave p′i evolves while the wavefront travels from the source location to the
small-scale inhomogeneity. Oppositely, the reflected wave p′r has generally a small
amplitude, so that its propagation towards the Earth’s surface can be considered
linear. Accordingly, supposing that the Fourier transform of the incident signal does
not change significantly as this latter crosses the small-scale fluctuation, formula
(4.25) remains valid as long as the function F̂(ω) is interpreted as the incident
spectrum at the inhomogeneity location.

4.6.6. Qualitative analysis of the spectrum of the phase Ips

The considerations developed in the present section ultimately allow one to
qualitatively explain the behaviour of the spectrum of the arrival Ips. It is first
remembered that the speed-of-sound and wind fluctuations contributing to the partial
reflections are essentially localized between 25 and 55 km altitude, so that their
reference axis x3w can be placed at approximately 40 km altitude. Moreover, as
shown in figure 21(a,b), the angle ϕst between the wavefront and the layer diminishes
with x1, ϕst= 90◦ for x1= 0 km and tends to 0◦ with growing values of x1. Therefore,
the evolution with x1 of the spectrum of the phase Ips can be directly deduced by
the behaviour of the reflection coefficient R as the sinus of the angle ϕst goes from
1 to 0. The energy spectral density Ep′,1(x1, f ) of the arrivals Ips recorded on the
x1 axis is illustrated in figure 21(c) as a function of the distance x1 and of the
frequency f . The maximum of overpressure detected up to x1= 70 km is around 1 Pa.
The minimum of amplitude at about 70 km distance can be justified by considering
that, for x1 = 70 km, the angle ϕst is close to the intromission angle ϕt = 45◦ (see
figure 21b). Finally, for x1 > 70 km, the amplitude of the arrival Ips increases because
of the diminution of the incidence angle ϕst and the subsequent augmentation of the
reflection coefficient. As an example, the maximum of overpressure at x1 = 140 km
from the source position is around 15 Pa. Besides, as predicted by the Bragg law,
the main frequency of the partial reflections Ips globally grows as the distance x1

increases and the term sin(ϕ) diminishes. To conclude, the spectrum Ep′,1 remarkably
widens beyond the ground station located at x1 = 70 km distance. This enlargement
can be attributed to the fact that the speed-of-sound and wind fluctuations tend to be
less selective as the function sin(ϕ) goes to 0.
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FIGURE 22. (Colour online) Normalized pressure field Φ obtained on the x1–x3 plane at
t = 775.89 s. The grey line represents the thermospheric caustic, whereas the green and
black lines constitute the wavefront obtained by ray theory.

4.7. Diffraction at the thermospheric caustic
As previously mentioned, diffraction at caustics plays a significant role in atmospheric
infrasound propagation. In order to demonstrate the importance of this phenomenon,
a more detailed study of the thermospheric caustic is finally carried out.

A caustic is defined within the framework of geometrical acoustics and corresponds
to the locus of points where the ray-tube area vanishes, or, equivalently, to the locus
of points where two infinitely adjacent rays intersect. The projection on the x1–x3

plane of the thermospheric caustic associated with the profiles of the speed of sound
and the wind employed in the present simulation is plotted in grey in figure 22.
The normalized pressure field Φ obtained at t5 is displayed as well, along with the
wavefront computed by ray theory, which is represented by the green and black
curves. The caustic divides the acoustic field into two regions, an ensonified zone
between the grey lines, also called a lit region, and a shadow zone. In the context of
the geometrical-acoustics approximation, the amplitude of the pressure field should
be different from zero only in the lit region. However, as shown in figure 22, part of
the acoustic energy penetrates in the shadow zone by diffraction. For this reason, the
thermospheric signal It is first recorded at about x1 = 180 km on the Earth’s surface
(red point in figure 22), whereas, according to ray theory, no thermospheric arrival
should be detected between the source location and x1 = 280 km (black point in
figure 22) corresponding to the intersection between the caustic and the axis x1.

The energy spectral density EΦ,η of the signals recorded along the axis η,
perpendicular to the caustic at the point Pc (cf. figure 22), is illustrated in figure 23(a)
as a function of the distance η and of the frequency f . The spectrum of the diffracted
field is mainly concentrated around f = 0.01 Hz. Its behaviour along the axis η for
f = 0.01 Hz is plotted in figure 23(b). In the shadow zone, for η > 0 (at the right
of the red dashed line), the energy spectral density EΦ,η exhibits an exponential-like
decay. This result can be qualitatively explained by the linear theory of diffraction,
according to which the amplitude of a spectral component of the pressure field,
having frequency equal to f , decreases as Ai(η̃)∼ η̃−1/4e−2/3η̃3/2 , where Ai is the Airy
function of the first kind and η̃ is a non-dimensional variable proportional to ηf 2/3.
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FIGURE 23. (Colour online) (a) Energy spectral density EΦ,η(η, f ) of the signals recorded
along the axis η, normal to the caustic at the point Pc = (192.2 km, 0 km, 83.25 km).
(b) Energy spectral density EΦ,η(η, f ) for f = 0.01 Hz.

The dependence of η̃ on the frequency f also allows one to argue that the distance
x1 on the ground at which the thermospheric arrival It is first detected augments with
the amplitude of the source. Indeed, as the source energy increases, the lengthening
of the N-wave is enhanced by the nonlinear effects in the upper atmosphere. As a
result, the central frequency of the signal reaching the caustic decreases, the decay of
the Airy function slows down and the penetration depth in the shadow zone grows.

To conclude, the wavefront obtained by ray theory is also represented in figure 22
by the green and black lines. Within the framework of geometrical acoustics, it can
be shown that the waveform on the green side of the wavefront is given by the
Hilbert transform of the waveform on the black side, at least in the linear regime
(Pierce 1985). This result allows one to qualitatively understand the origin of the
U-shaped signature of the thermospheric arrival (see figure 13c), which corresponds
to the Hilbert transform of the N-shaped waveform generated by the impulsive source.

5. Concluding remarks
A direct computation of the propagation of an infrasonic impulse signal in a

stratified atmospheric mean flow is performed in this study. To this end, high-
fidelity numerical schemes, previously developed for applications in computational
aeroacoustics, are employed. To the best of the authors’ knowledge, this is the
first time the Navier–Stokes equations have been applied to the analysis of the
three-dimensional propagation of low-frequency signals in the atmosphere. All
the main phenomena affecting infrasonic waves, including convection, refraction,
diffraction, absorption as well as nonlinear effects, are accurately reproduced, allowing
a fine physical analysis of the various arrivals observed at ground level.

The waveform of the thermospheric phase is found to be significantly altered
in the upper atmosphere. Contrarily to the predictions of the weakly nonlinear ray
theory, the strong nonlinear effects mainly induced by the stratification may lead to
a non-self-similar distortion of an N-wave propagating upwards. The continuous
partial reflections generated as the wavefront travels through the small-scale
speed-of-sound and wind fluctuations located in the stratosphere are analysed as
well. The inhomogeneous layer acts as a selective filter, which reflects only specific
wavelengths of the incident wave. An analytical model of the transfer function of
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such a filter, based on a simplified representation of the stratified mean flow, is
proposed to interpret the evolution with the distance from the source of the spectrum
of the partial reflections recorded on the Earth’s surface. Finally, as a consequence
of the diffraction at the thermospheric caustic, the acoustic levels in the shadow zone
are shown to be affected by the amplitude of the impulsive source.

All the present findings could not be obtained through the methods classically
employed for the study of acoustic waves, which demonstrates the attractiveness
of investigations based on the full Navier–Stokes equations. A general and complete
picture of infrasound propagation is here offered, for the first time in three dimensions.
A quantitative comparison between numerical results and ground-recorded signals is
however still difficult to carry out for various reasons. On the one hand, a direct
numerical simulation of the governing equations may be computationally unaffordable
for sources of higher frequency. On the other hand, the sensitivity of the ground
recordings to the small-scale fluctuations of the profiles of the speed of sound and
the wind evidences the need for a fine description of the three-dimensional turbulent
atmospheric mean flow. These two topics will be the subject of future research work.
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Appendix A. Source forcing terms
In the present study, the infrasonic source is modelled by the terms Λρ and Λρet

on the right-hand sides of the continuity and energy conservation equations. It is
well known that the perturbations of density and pressure of an acoustic wave are
approximately linked by the isentropic relation p′ = c̄2ρ ′ (Whitham 1974). Therefore,
in order to mainly excite the acoustic modes of the atmosphere and to limit the
energy delivered to gravity modes, the function Λρ is defined as

Λρ(x, t)=
γ − 1
c̄2(x3)

Λρet(x, t). (A 1)

The term Λρet is then designed to obtain a blast wave, which is typical of explosions
Whitham (1974). In order to justify the choice of the temporal envelope of the
function Λρet(x, t), it is worth considering the simplified case of the isentropic
propagation in a homogeneous medium, when nonlinear, viscous and thermal
conduction effects are neglected. Under these hypotheses, it is straightforward to
show that the Navier–Stokes equations (2.3) reduce to

∂2p′

∂t2
− c̄2 ∂

2p′

∂xi∂xi
= (γ − 1)

∂Λρet

∂t
. (A 2)

As a consequence, the waveform is mainly driven by the temporal derivative ∂Λρet/∂t.
In the present study, the temporal envelope of Λρet(x, t) is thus defined in order for
the term ∂Λρet/∂t to produce a period of a sinusoid, which, because of the very high
amplitude in the source region, steepens and evolves into an N-wave.
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Appendix B. Reflection of a spherical wave by a speed-of-sound inhomogeneity
In the model developed in § 4 to analyse the partial reflections, the pressure

perturbation p′ is governed by the wave equation

∂2p′

∂x2
1
+
∂2p′

∂x2
2
+ ρ̄(x3)

∂

∂x3

(
1

ρ(x3)

∂p′

∂x3

)
−

1
c̄2(x3)

∂2p′

∂t2
=−F(t)δ(x), (B 1)

where the profiles of the speed of sound and the density vary only in the
inhomogeneous layer located between the altitudes x3wb and x3wt. Taking the Fourier
transform

p̂′(k1, k2, x3, ω)=

∫∫∫
+∞

−∞

p′(x1, x2, x3, t)e−i(k1x1+k2x2−ωt) dx1 dx2 dt (B 2)

yields the depth-separated Helmholtz equation

ρ̄(x3)
d

dx3

(
1

ρ(x3)

dp̂′

dx3

)
+

(
ω2

c̄2(x3)
− k2

1 − k2
2

)
p̂′ =−F̂(ω)δ(x3). (B 3)

For x3� x3w, the medium is homogeneous and the pressure field p̂′(k1, k2, x3, ω) is
given by

p̂′(k1, k2, x3, ω)=

{
α1eik3x3 + α2e−ik3x3, x3 > 0
β1eik3x3 + β2e−ik3x3, x3 < 0,

(B 4)

where k3(k1, k2, ω)=
√
ω2/c̄2

∞
− k2

1 − k2
2 is the vertical wavenumber and α1, α2, β1 and

β2 are constants to be determined. First, the solution p̂′ must behave as an outgoing
wave as x3→−∞. Hence, β1= 0. Moreover, as x3→ 0+, the ratio α2/α1 must tend to
the reflection coefficient Rc for a plane wave of the form ei(k1x1+k2x2+k3x3−ωt) propagating
towards the inhomogeneity. In addition, since the function p̂′ has to be continuous at
x3= 0, the relation α1+ α2− β2= 0 must be satisfied. Finally, by integrating equation
(B 3) in the interval [−x3ε, +x3ε] and by taking the limit for x3ε→ 0, the following
relation is obtained:

lim
x3→0+

dp̂′

dx3
− lim

x3→0−

dp̂′

dx3
=−F̂, (B 5)

which yields the condition

α1 − α2 + β2 =
iF̂
k3
. (B 6)

The solution p̂′ can be finally written as

p̂′(k1, k2, x3, ω)=
iF̂(ω)

2k3(k1, k2, ω)

[
eik3(k1,k2,ω)|x3| +Rce−ik3(k1,k2,ω)x3

]
. (B 7)

The first and second terms between brackets represent the incident field and the
reflected wave, respectively. The function p′(x, t) is then retrieved by taking the
inverse Fourier transform

p′(x, t)=
1

8π3

∫∫∫
+∞

−∞

p̂′(k1, k2, x3, ω)ei(k1x1+k2x2−ωt) dk1 dk2 dω. (B 8)
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More specifically, the incident wave p′i(x, t) is given by

p′i(x, t)=
1

8π2

∫
+∞

−∞

F̂(ω)
[∫∫

+∞

−∞

iei(k1x1+k2x2+ik3(k1,k2,ω)|x3|)

2πk3(k1, k2, ω)
dk1 dk2

]
e−iωt dω. (B 9)

As shown by Frisk (1994), the term between brackets is equal to the Green
function for the Helmholtz equation in a three-dimensional homogeneous free space,
eiω‖x‖/c̄∞/‖x‖. It follows that

p′i(x, t)=
1

4π‖x‖

∫
+∞

−∞

F̂(ω)
2π

e−iω(t−‖x‖/c̄∞) dω=
F(t− ‖x‖/c̄∞)

4π‖x‖
. (B 10)

The reflected wave p′r(x, t) can be finally expressed as

p′r(x, t)=
1

8π2

∫
+∞

−∞

[∫∫
+∞

−∞

iF̂(ω)Rcei(k1x1+k2x2−ik3(k1,k2,ω)x3)

2πk3(k1, k2, ω)
dk1 dk2

]
e−iωt dω. (B 11)
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