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a b s t r a c t

Multiple-scale asymptotic analysis is applied to small-wavelength, weakly nonlinear prop-
agation of an impulsive acoustic wave in a general (3D, in-motion and time dependent)
atmosphere. In keeping with previous work on sonic booms and nonlinear acoustics in
general, the result is a combination of ray tracing and a generalised Burgers equation de-
scribing evolution of the waveform carried by a ray. This is nonetheless, to our knowledge,
the first derivation of such amodel based on asymptotic analysis of the governing equations
for a general atmosphere. Results are given, discussed and compared with measurements
for the particular example of the test explosion known as Misty Picture.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Supersonic aircraft and explosions are examples of high-intensity sources of impulsive acoustic waves, whose atmo-
spheric propagation can involve important nonlinear effects. In addition to direct arrivals near the source, such waves may
propagate to high altitude and be reflected in either the stratosphere or thermosphere, before returning to the ground as
long-range arrivals, a phenomenon known as secondary sonic boom in the aircraft case [1]. Modelling of such arrivals re-
quires consideration of the entire propagation process through the upper atmosphere, duringwhich changes in atmospheric
properties, such as density and acoustic attenuation, have significant effects on the wave which comes back to the ground.

Sonic-boom propagation modelling has a long history [2–4]. It is generally based on a combination of geometrical
acoustics, i.e. ray theory, which requires that acoustic wavelengths be small comparedwith atmospheric scales and accounts
for the principal effects of wind and atmospheric nonuniformities, and nonlinear acoustics, assumingweak nonlinearity and
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attenuation, which describes the propagation of the waveform carried by a ray. Ray theory, which itself has an extensive
literature (see e.g. [5–7]), is independent of nonlinearity and attenuation and expresses the idea that the motion of a
sonic wavefront is mainly due to a combination of acoustic propagation and convection by wind. On the other hand, the
other ingredients of the model, namely nonlinearity and attenuation, contribute most of the physics: nonlinearity leads to
propagation at a speed slightly different from its small-amplitude value, butwhose cumulative consequences are important,
and attenuation arises from a combination of thermoviscous diffusion and relaxation. These effects are expressed by a
generalised Burgers equation (see e.g. [8] and references therein), which can be integrated alongside the ray equations to
obtain the final result: the acoustic signal at the receiver.

Fewer studies of the explosive-source problem have appeared. Results obtained using the present model have been
reported in e.g. [9–11]. More recently, [12] have examined the effects of horizontal variations of atmospheric properties
on the propagation of explosion induced waves in a time-independent atmosphere.

Our aim here is to provide a single model, unifying the sonic boom and explosion problems, which allows for a general
atmosphere (three dimensional, in-motion and which may also be time dependent) and arbitrary source motion in the
sonic-boom case.

Sections 2 and 3 present the work, which is based on multiple-scale asymptotic analysis, starting from the governing
equations of a Newtonian, compressible fluid. In Section 2, the ray-tracing equations arise via solvability conditions at first
order. In Section 3, solvability at second order leads to a generalised Burgers equation which describes evolution of the
waveform carried by the rays. For simplicity’s sake, the second-order analysis is first given for the case of a thermodynam-
ically simple fluid, the effects of relaxation and variable atmospheric composition being later described in Section 3.3 and
Appendix D. Caustics (which are problematic for geometrical-acoustics models, such as the present one, because the model
does not apply in a small region near the caustic) are briefly discussed in Section 3.4. Finally, Section 4 gives some results
obtained using the model.

2. Basic equations and first-order asymptotics

2.1. Basic equations

The momentum and mass equations are:

∂v
∂t

+ (v · ∇)v =
∇ · σ

ρ
+ g − 2� × v, (2.1)

∂ρ

∂t
+ v · ∇ρ + ρ∇ · v = 0, (2.2)

where v, ρ and σ are the velocity, density and stress tensor, g combines gravitational and centrifugal acceleration, and �

is the rotational angular velocity of the earth. Although gravity and rotation have been included here, because they are
certainly important in the dynamics of the underlying atmosphere, as we shall see they turn out to have negligible direct
effects on the acoustic perturbation at the orders to which the asymptotic analysis is carried out.

Denote by v0, ρ0, σ0 the flow field in the absence of the source, referred to as the underlying atmosphere (or underlying
flow). Next, let

v = v0 + v′, ρ = ρ0 + ρ ′, σ = σ0 + σ ′ (2.3)

be the flow field with the source. Thus, v′, ρ ′, σ ′ represent the perturbation due to the source. Since both the underlying and
perturbed flows satisfy (2.1) and (2.2), subtraction yields the perturbation equations

∂v′

∂t
+ (v0 · ∇)v′

−
∇ · σ ′

ρ0
= −

ρ ′

ρ0(ρ0 + ρ ′)
∇ ·


σ0 + σ ′


− (v′

· ∇)v0 − (v′
· ∇)v′

− 2� × v′, (2.4)

∂ρ ′

∂t
+ v0 · ∇ρ ′

+ ρ0∇ · v′
= −v′

· ∇ρ0 − ρ ′
∇ · v0 − v′

· ∇ρ ′
− ρ ′

∇ · v′, (2.5)

where terms on the left-hand sides are those which contribute at leading order in the asymptotic analysis of the following
sections. This is because they: (a) are linear in the perturbation, and (b) contain derivatives of the perturbation. The
assumptions of small wavelength and weak nonlinearity made henceforth imply asymptotic dominance of such terms.

2.2. Short-wave asymptotics

From here on, the source size and acoustic wavelength are assumed much smaller than the length scale for variation of
the properties of the underlying atmosphere, the disparity in scales being formally expressed by a small parameter ϵ → 0.
In the near field of the source, it is as if the atmospherewere uniform, whereas at the propagation distances considered here,
comparable with the atmospheric scale, the acoustic perturbation is localised near a surface (the wavefront) Φ(x, t) = 0,
whose determination forms part of the problem.
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The presence of asymptotically distinct scales suggests a multiple-scaling approach with fast variable η = Φ(x, t)/ϵ,
representing distance from the wavefront scaled appropriately for the acoustic perturbation, and slow variables x, t . The
asymptotic expansions

v′
= ϵv′

1 + ϵ2v′

2 + · · ·

ρ ′
= ϵρ ′

1 + ϵ2ρ ′

2 + · · ·

σ ′
= ϵσ ′

1 + ϵ2σ ′

2 + · · ·

(2.6)

are used to describe the acoustic perturbation, where the coefficients are functions of η, x and t . On the other hand, Φ and
atmospheric properties, such as v0, ρ0 and σ0, are functions of x and t alone. Multiple scaling means that ∂/∂t and ∇ are
replaced by ∂/∂t + ϵ−1∂Φ/∂t ∂/∂η and ∇ + ϵ−1∇Φ ∂/∂η in equations such as (2.4) and (2.5).

The scaling, O(ϵ), of the leading-order terms in (2.6) is such that nonlinearity first appears at second order and hence
contributes to the generalised Burgers equation which arises as a solvability condition at that order. Similar scaling
assumptions are later made for the attenuation coefficients. Rather than being restrictive, as may appear at first sight, these
assumptions express formal asymptotic bookkeeping, aimed at incorporating both nonlinearity and attenuation into the
Burgers equation (in accord with the general principle of ‘‘distinguished’’ scalings of asymptotic analysis). Should it turn
out that one or other of these scaling assumptions is inappropriate, the corresponding term in the Burgers equation will
reflect this by inducing either small or large changes in the waveform during propagation. The model remains valid in the
short-wave limit provided that nonlinearity and attenuation are small in the sense that they do not enter at first order. This
requires a small acoustic Mach number and that the distance for attenuation be large compared with the wavelength, the
usual assumptions of nonlinear acoustics.

2.3. First-order analysis

At order O(ϵ0) (first order), (2.4) and (2.5) yield

ρ0


∂Φ

∂t
+ v0 · ∇Φ


∂v′

1

∂η
− ∇Φ ·

∂σ ′

1

∂η
= 0, (2.7)

∂Φ

∂t
+ v0 · ∇Φ


∂ρ ′

1

∂η
+ ρ0∇Φ ·

∂v′

1

∂η
= 0, (2.8)

whose closure requires an expression forσ ′

1. At this order,we expect (an expectation justified later) the usual linear acoustics
relation σ ′

1 = −c20ρ
′

1I to hold, where c0(x, t) is the sound speed of the underlying atmosphere and I denotes the identity
tensor. Replacing σ ′

1 in (2.7) and taking the scalar product with ∇Φ leads to a linear system for the quantities ∂ρ ′

1/∂η and
ρ0∇Φ · ∂v′

1/∂η. The condition for a non-zero solution yields the eikonal equation

∂Φ

∂t
+ w · ∇Φ = 0, (2.9)

where w = v0 + c0n and n = ∇Φ/|∇Φ| is a unit normal to the surface Φ = constant. A square root has been taken in
deriving (2.9), implying a choice of signs. If necessary, Φ is replaced by −Φ to obtain (2.9). This has the effect of making
acoustic propagation relative to the underlying atmosphere go in the direction of ∇Φ and n. (2.9) implies that the surfaces
Φ = constant move at velocity w, expressing the expected convection by the underlying velocity field and acoustic
propagation normal to the locally plane wave.

Using (2.9), (2.7) becomes

∂

∂η


v′

1 −
c0n
ρ0
ρ ′

1


= 0. (2.10)

Given the choice of sign made above, the wavefront Φ(x, t) = 0 propagates in the direction of increasing Φ relative to
the fluid, i.e. in the direction of increasing η. As a result, the fluid at η → +∞, far ahead of the wavefront, has yet to see
the effect of the source and the perturbation is zero there. Together with (2.10), this yields v′

1 = c0ρ ′

1n/ρ0, the usual linear
acoustics relation for a plane wave. This completes the first-order solution, in which ρ ′

1 is an as yet undetermined function
of x, t and η = Φ/ϵ, andΦ(x, t) is governed by (2.9).

2.4. Ray equations

Rays are here defined as points X(t)which move according to

dX
dt

= v0(X, t)+ c0(X, t)n. (2.11)
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Fig. 1. Illustrations of the rays and wavefront, Φ = 0, for: (a) an explosion, (b) a supersonic aircraft. In the latter case, the rays making up the wavefront
at the given time, t , have different emission times, τ . Note that these figures do not show results of actual ray calculations for the atmosphere. They are
simply sketches illustrating the source, rays and their relationship with the wavefront.

Taking the gradient of (2.9), setting k = ∇Φ and using kj∂nj/∂xi = 0 (which follows from the gradient of njnj = 1 and
nj = kj/|k|) leads to

dki
dt

= −


∂v0j

∂xi


x=X

+
∂c0
∂xi


x=X

nj


kj (2.12)

following a ray. Note that, here and henceforth, the repeated-subscript summation convention applies. We also remark that
(2.11) and (2.12) can be obtained from equations (105) and (106) of [13] using the dispersion relation ω = c0|k| + v0 · k.

Eq. (2.9) implies thatΦ is constant following a ray; in particular, the wavefrontΦ = 0 consists of rays which originated
at the source and we restrict attention to such rays from now on. For any such ray, define K = k/|ks|, where ks = k(τ ) is
the value of k at its emission time, τ . Since |ks| is a constant for the ray, (2.12) implies

dKi

dt
= −


∂v0j

∂xi


x=X

+
∂c0
∂xi


x=X

nj


Kj. (2.13)

Eqs. (2.11) and (2.13), together with n = K/|K|, form a closed systemwhich can be integrated, starting from t = τ , to obtain
X(t) and K(t) for the ray.

The initial conditions

X(τ ) = xs(τ ), K(τ ) = ns (2.14)

involve the source position, xs(τ ), and wavefront unit normal, ns, at the emission time. Different rays are distinguished
by emission time or ns. Note that the source is represented by a point, xs(t). Given the assumed small size of the source
compared with atmospheric scales, a different choice of representative point would modify the rays a little. It would also
induce a compensating change in the acoustic waveform carried by the rays, the end result being asymptotically insensitive
to the choice of xs.

In the case of an explosion (illustrated by Fig. 1(a)), the emission time, being that of the explosion, is the same for all
rays, while the direction of the unit vector ns is unconstrained and determines the choice of particular ray. Rays can be
parameterised using spherical polar angles, φ andψ , for ns(φ, ψ) and the full set of rays, obtained by integration of the ray
equations, expressed as X(t, φ, ψ) and K(t, φ, ψ). At any time t , the wavefront Φ = 0 can be constructed from X(t, φ, ψ)
by varying the ray parameters φ and ψ .

A supersonic aircraft (see Fig. 1(b)) emits rays continuously and the wavefrontΦ = 0 has xs(t) as its vertex. Thus,Φ has
a constant (zero) value at x = xs(t), implying ∂Φ/∂t + vs · ∇Φ = 0, where vs = dxs/dt is the aircraft velocity. Subtracting
(2.9), evaluated at x = xs(t), and recalling that n = ∇Φ/|∇Φ|, yields (vs − v0(xs, t)) · n = c0(xs, t). This equation defines
a cone of possible vectors n with axis in the direction vs − v0 and semi-angle arccos(1/M), where M = |vs − v0|/c0 is the
Mach number of the aircraft relative to the underlying flow. Since here n is a normal vector to the wavefront at its apex, this
implies the expected result that the wavefront asymptotes to a Mach cone with axis in the direction v0 − vs and semi-angle
arcsin(1/M). Rays emitted by the aircraft must have ns on the cone (vs − v0) · ns = c0, where vs, v0 and c0 refer to the
emission time of the ray. They can be parameterised by their emission time, τ , and a single polar angle,ψ , defining ns(τ , ψ)
and leading to rays X(t, τ , ψ) and K(t, τ , ψ). As for an explosion, the wavefront surface Φ = 0 can be determined from
X(t, τ , ψ) by varying the ray parameters, now τ and ψ .

Thus, in either case, the wavefront consists of a two-parameter family of rays. The precise parameters used are far from
unique and depend on the application and on implementation choices. In what follows, β and γ denote a general set of ray
parameters.We shall later require the partial derivatives ofX(t, β, γ ) andK(t, β, γ )with respect to each of the parameters.
Equations governing the evolution of these partial derivatives following a ray are derived in Appendix A. These equations
are added to the ray-tracing system (2.11) and (2.13).
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3. Waveform propagation

3.1. Second-order analysis

Second-order analysis requires the determination ofσ ′

2. This is described inAppendix B and involves use of theNewtonian
constitutive law and entropy equation. For simplicity’s sake, it is assumed that air is a thermodynamically simple fluid, i.e. its
thermodynamic state is uniquely determinedby just two independent state variables,which are chosen to beρ and s, where s
is entropyper unitmass. This implies, for instance, p = p(ρ, s) for the pressure. Given the known importance of relaxation for
atmospheric acoustic attenuation and the variation of atmospheric composition at high altitude, a full description requires
more than just these two variables. We later (in Section 3.3 and Appendix D) describe the modifications which arise from
allowing for relaxation and variable composition. Appendix B also makes the assumption that the coefficients of viscosity
and heat conduction are O(ϵ2). This forms part of the formal asymptotic bookkeeping referred to earlier.

The results of Appendix B are σ ′

1 = −c20ρ
′

1I, assumed earlier, and that the components of σ ′

2 are

σ ′

2ij = ϵ−2 c0
ρ0


λ0δij + 2µ0ninj


|∇Φ|

∂ρ ′

1

∂η
−


c20


ρ ′

2 +
B

2Aρ0
ρ ′

1
2


+Π


δij, (3.1)

where δij is the Kronecker delta, λ0 and µ0 are the coefficients of viscosity of the underlying atmosphere, and

B
2A

=
ρ0

2c20

∂2p
∂ρ2


0

Π =
∂p
∂s


0
s′2 (3.2)

are respectively a nonlinearity parameter and the pressure perturbation arising from entropy perturbations, represented by
s′2. The latter is governed by (B.16), with S ′

1 given by (B.15). We should perhaps explain the notation used in (3.2). Partial
derivatives with a subscript 0 imply that the quantity being differentiated is a function of ρ and s. The derivative is taken
with respect to the indicated variable, while holding the other one constant. The result is then evaluated at ρ = ρ0, s = s0.

Introducing the expansions, (2.6), of v′, ρ ′ and σ ′ into (2.4) and (2.5),

ρ0

c0


∂Φ

∂t
+ v0 · ∇Φ


n ·

∂v′

2

∂η
+ c0 |∇Φ|

∂ρ ′

2

∂η
= −f1, (3.3)

∂Φ

∂t
+ v0 · ∇Φ


∂ρ ′

2

∂η
+ ρ0 |∇Φ|n ·

∂v′

2

∂η
= −f2, (3.4)

at order O(ϵ1), where the result of (2.4) has been scalar multiplied by ρ0n/c0 to obtain (3.3) and

f1 =
ρ0

c0


∂

∂t
+ v0 · ∇


c0ρ ′

1

ρ0


+

1
c0

n · ∇

c20ρ

′

1


+

1
ρ0c0

n · (∇ · σ0) ρ
′

1 + n · (n · ∇v0) ρ ′

1

+
c0
ρ0

B
A

|∇Φ| ρ ′

1
∂ρ ′

1

∂η
− ϵ−2 λ0 + 2µ0

ρ0
|∇Φ|

2 ∂
2ρ ′

1

∂η2
+

1
c0

|∇Φ|
∂Π

∂η
, (3.5)

f2 =
∂ρ ′

1

∂t
+ v0 · ∇ρ ′

1 + ρ0∇ ·


c0ρ ′

1

ρ0
n


+
c0ρ ′

1

ρ0
n · ∇ρ0 + ρ ′

1∇ · v0 +
2c0
ρ0

|∇Φ| ρ ′

1
∂ρ ′

1

∂η
. (3.6)

Here v′

1 = c0ρ ′

1n/ρ0, σ
′

1 = −c20ρ
′

1I and (3.1) have been used to express v′

1, σ
′

1 and σ ′

2. The space and time derivatives of
n · n = 1 have also been employed. Note that the Coriolis term in (2.4) does not contribute because its scalar product with
n is zero at the present order.

Taking the sum of (3.3) and (3.4) and using (2.9) gives the solvability condition f1 + f2 = 0, leading to
ρ0

c0

1/2 
∂

∂t
+ w · ∇


c0
ρ0

1/2

ρ ′

1


=

1
2
ϵ−2∆ |∇Φ|

2 ∂
2ρ ′

1

∂η2
−


1 +

B
2A


c0
ρ0

|∇Φ| ρ ′

1
∂ρ ′

1

∂η

−
1
2


1
c0

∇ ·

c20n


+ ∇ · v0 + n · (n · ∇v0)


ρ ′

1, (3.7)

where (B.16), (B.15) and the second of Eqs. (3.2) have been used to express ∂Π/∂η and

∆ =
1
ρ0


λ0 + 2µ0 + κ0


1
cv0

−
1
cp0


(3.8)

is the diffusivity of sound [14] due to viscosity and thermal conduction (κ is the thermal conductivity, while cv , cp are the
specific heats at constant volume and pressure). Note that, in deriving (3.7) and (3.8), we have used the thermodynamic
relation

∂θ

∂ρ


s


∂p
∂s


ρ

= θc2


1
cv

−
1
cp


, (3.9)
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where θ is the absolute temperature, and the following term has been dropped from the right-hand side of (3.7):

−
ρ ′

1

2ρ0c0
n ·


∇ · σ0 + c20∇ρ0 +

∂p
∂s


0
∇s0


. (3.10)

The justification for this is as follows. The sum in brackets in (3.10) can be rewritten as∇ ·(σ0+p0I) = ∇ ·τ0, where τ0 is the
underlying viscous stress tensor (not to be confused with the emission time τ ). Given the assumption that the coefficients
of viscosity are small, of O(ϵ2), ∇ · τ0 is correspondingly small and is thus neglected.

3.2. Generalised Burgers equation

At this point, the second-order asymptotic analysis is complete, but there remains the task of simplifying and interpreting
the result, (3.7).

The area of thewavefront consisting of rays with values of the ray parameters in the infinitesimal range dβ, dγ is νdβdγ ,
where ν =

Xβ × Xγ
 =

n ·

Xβ × Xγ

 and Xβ , Xγ denote the partial derivatives of Xwith respect to the ray parameters.
As shown in Appendix C, following a ray,

2 |K|

ν1/2

d
dt


ν1/2

|K|


=

1
c0

∇ ·

c20n


+ ∇ · v0 + n · (n · ∇v0) , (3.11)

of which the right-hand side will be recognised from (3.7).
For any given ray, X(t), K(t), ν(t), an associated waveform, u(ξ , t), is defined from ρ ′

1(η, x, t) by

u(ξ , t) =
ϵ

|K|


νc0
ρ0

1/2

ρ ′

1(η,X(t), t), ξ =
ϵη

|ks|
, (3.12)

with c0/ρ0 evaluated at the ray location, x = X(t). Taking partial derivatives of the first of Eqs. (3.12) and using (2.11),

∂u
∂ξ

=
|ks|

|K|


νc0
ρ0

1/2
∂ρ ′

1

∂η
, (3.13)

∂2u
∂ξ 2

=
|ks|

2

ϵ |K|


νc0
ρ0

1/2
∂2ρ ′

1

∂η2
, (3.14)

∂u
∂t

= ϵ


c0
ρ0

1/2

ρ ′

1
d
dt


ν1/2

|K|


+ ϵ

ν1/2

|K|


∂

∂t
+ w · ∇


c0
ρ0

1/2

ρ ′

1


. (3.15)

Finally, (3.7), (3.11) and |∇Φ| = |ks| |K| lead to

∂u
∂t

=
1
2
∆ |K|

2 ∂
2u
∂ξ 2

− b u
∂u
∂ξ
, (3.16)

where

b(t) = |K|
2

1 +

B
2A


c0
νρ0

1/2

. (3.17)

(3.16) is a generalised Burgers equation which can be integrated following the ray to obtain u(ξ , t) from initial conditions
at the source. The two terms on the right-hand side represent thermoviscous attenuation and nonlinearity. (3.16), valid for
a general atmosphere, is in agreement with previous results for special cases, e.g. [15,16].

The variables u and ξ , defined by (3.12), can be interpreted as follows. η = Φ/ϵ and |∇Φ| = |ks| |K| give Φ =

|∇Φ| ξ/ |K|. Comparison with a Taylor’s expansion of Φ about the wavefront Φ = 0 shows that ξ/ |K| is simply distance
from the wavefront, measured positive in the direction of ∇Φ , i.e. the direction of acoustic propagation relative to the
underlying atmosphere. Given the specialisation to x = X(t) on the right-hand side of the first of the Eqs. (3.12), u(ξ , t)
refers to that point on the wavefront (the ray under consideration). At a particular time t , u(ξ , t) describes, via the distance
variable ξ , the acoustic perturbation along a line through X(t) perpendicular to the wavefront. The leading-order acoustic
perturbation follows from ρ ′

= p′/c20 , v
′
= p′n/ρ0c0 and

p′
= |K|


ρ0c30
ν

1/2

u (K · (x − X), t) . (3.18)

Another interpretation of u(ξ , t) yields the acoustic perturbation at a fixed point, x, as a function of time. According to
ray theories, such as the present one, the source is only heard if the wavefront, and hence a ray, passes through x at some
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time ta (otherwise x lies within a ‘‘shadow’’ zone). Taylor’s expansion ofΦ(x, t) about t = ta, using (2.9) to evaluate ∂Φ/∂t ,
leads to ξ = w · K(ta − t). The pressure perturbation at x is thus

p′
= |K|


ρ0c30
ν

1/2

u (w · K(ta − t), ta) . (3.19)

If there are several ray arrivals, their perturbations sum.
Initial conditions for (3.16) come frommatching to the source. This requires numerical solution, analyticalmodelling (e.g.

theWhitham F-function [17, section 9.3]) or measurements in the near-source region, where the atmosphere can be treated
as locally steady and uniform. In particular, the acoustic perturbation is needed at distances from the source appropriate for
matching. This implies distances large comparedwith the acousticwavelength and source size, but small on the atmospheric
scale. The distance must also be sufficiently large that the acoustic Mach number is small. For any given ray, a suitable
matching point, x = X(tm), is chosen and u(ξ , t) follows from (3.19) with ta = tm and the pressure perturbation, p′(x, t),
from the near-field problem.

The quantity ν(t) goes to zero as t → τ , leading to an infinite singularity in b(t) at the emission time. It may be a good
idea to remove the resulting singularity of the Burgers equation, prior to numerical integration, using a transformation of
the time variable. Thus, a new time variable T = T (t) is used in place of t , where T (t) behaves like (t − τ)1/2 as t → τ for
the sonic-boom problem and like ln(t − τ) for the explosive source.

3.3. Effects of relaxation and variable composition

As noted earlier, a more realistic description of atmospheric attenuation requires additional thermodynamic state
variables. Details of the lengthy analysis this entails can be found in Appendix D. The result is simply that (3.16) becomes

∂u
∂t

= − |K|
∂

∂ξ


∞

−∞

G(z, t) u(ξ + |K|z, t) dz − b u
∂u
∂ξ
, (3.20)

i.e. the attenuation term in (3.16) becomes amore general linear operator. The functionG(z) depends on the thermodynamic
state (including composition) of the underlying atmosphere at time t and ray location x = X(t), hence the time dependency,
G(z, t), in (3.20). (3.16) can be recovered by taking G(z) = 1δ′(z)/2, where δ′ is the derivative of the Dirac function.

Using the identity u ∂u/∂ξ = ∂(u2/2)/∂ξ , the Fourier transform of (3.20) with respect to ξ gives

∂ ũ
∂t

= −Γ (|K|q, t) ũ −
1
2
ibq u2, (3.21)

where

ũ(q, t) =


∞

−∞

u(ξ , t) e−iqξdξ (3.22)

is the Fourier transform of u, the (complex) temporal attenuation coefficient is

Γ (Q , t) = iQ


∞

−∞

G(z, t) eiQzdz (3.23)

and Q = |K|q is the acoustic wavenumber.
Because they only depend on the local thermodynamic state of the underlying atmosphere, G(z) orΓ (Q ) can be obtained

by specialising to the case of one-dimensional propagation according to linear acoustics in a uniform, time-independent
atmosphere at rest. This allows use of existingmodels from the literature (e.g. [18]) to obtainΓ as a function ofwavenumber,
Q . Since, rather than Γ (Q ), most such models give the spatial attenuation rate, α(ω), as a function of frequency, ω, it is
perhaps worth noting that Γ (Q ) = c0α(c0Q ) relates the complex temporal and spatial attenuation coefficients in the case
of small attenuation/dispersion perwavelength considered here. Observe that allowing for relaxation implies a small degree
of choice in the definition of c0: it could be either the equilibriumor frozen sound speed. The expression used forΓ (Q ) should
be consistent with this choice. Note also that, like G(z),Γ (Q ) is implicitly dependent on the thermodynamic state (including
composition) of the underlying atmosphere at position x = X(t) and time t , hence the time dependence, Γ (Q , t), in (3.21).

3.4. Caustics

A caustic occurs when ν = 0, leading to infinite amplitude according to ray theory, which does not apply in the
neighbourhood of the caustic. Fold caustics are the simplest type, taking the form of curves on the wavefront at which
it has a sharp pleat. Higher-order caustics may occur at particular points, but only a small fraction of rays are so affected and
we restrict ourselves to fold caustics here.

Passage through a fold caustic implies a change of sign of n ·

Xβ × Xγ


, which can be detected when integrating the ray

equations. The zero occurs at the caustic passage time tc . Assuming linear acoustics holds in the caustic region, the effect on
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the waveform of propagation through the caustic is well known. The generalised Burgers equation is integrated up to time
tc to give uin(ξ) = u(ξ , tc), the waveform entering the caustic. The waveform leaving the caustic is the Hilbert transform of
uin, i.e.

ũout(q) = −i sgn(q) ũin(q), (3.24)

and integration of the Burgers equation can proceed for t > tc , starting with u(ξ , tc) = uout(ξ). Of course, neither uin nor
uout apply within the caustic region itself. Calculation of the waveform in this (small) region, would require the solution of
the Tricomi equation which describes that region (see [19]).

Perhaps the most questionable aspect of (3.24) is the implied neglect of nonlinearity. This is particularly true if the
incident waveform contains thin shocks. The Hilbert transform of a discontinuity yields a logarithmic singularity, while a
thin shock approaches this case, leading to a large peak in uout and hence enhanced nonlinearity. [20], and references therein,
investigated the consequences of nonlinearity on passage through the caustic. However, by far the simplest approach uses
(3.24).
ν(t) goes to zero as t → tc . As for the emission time, the resulting singularity of the Burgers equation can be removed

using a transformed time variable, T (t), such that T (t)− T (tc) behaves like sgn(t − tc)|t − tc |1/2 as t → tc .

4. Illustrative results

Here, the model derived in Sections 2 and 3 is illustrated by results obtained for a ground-level explosion: the well-
documented test case, known as Misty Picture (see e.g. [10,11,21,22]), which was conducted in 1987 by the US Defense
Nuclear Agency. Data on atmospheric properties are needed as inputs to the calculations. Although the model is capable of
treating a general atmosphere, it is difficult to obtain realistic three-dimensional, unsteady atmospheric data (though this
is, in principle, possible using outputs from a real-time meteorological model, which would need to give accurate results at
high altitude). Thus, we restrict attention to a particular steady, horizontally stratified atmosphere based on Misty-Picture
observations. The full 3D, unsteady model is nonetheless used and can, in principle, treat the general case. Fig. 2 shows the
sound speed and wind-velocity components as functions of altitude. The model also requires the atmospheric composition
and acoustic attenuation. To this end, we use the composition/attenuation model of [18]. Note that the vertical component
of wind velocity is neglected, being supposed small compared to the others.

4.1. Rays and wavefronts

As noted above, we consider the Misty-Picture explosion. Meteorological observations yield the profiles shown in Fig. 2,
which are used to compute the rays. Results for rays which propagate eastwards and westwards at the initial instant are
shown in Fig. 3(a) and (b). These figures show altitude as a function of distance from the source. Here, and in subsequent
figures, ‘‘Distance’’ is that of the point obtained by vertical projection onto the ground. It is apparent that rays are reflected
in either the stratosphere or thermosphere back towards the ground, thus yielding long-range arrivals (the explosive
equivalent of secondary sonic boom). Cusps in the wavefront are symptomatic of caustics. The white zone without rays is
the so-called shadow region, in which geometrical acoustics predicts no arrival. It goes without saying that the differences
between Fig. 3(a) and (b) are due to wind.

During the Misty-Picture test, the pressure signature of the explosion was measured at several locations on the ground.
One of these, on which we focus, is known as White River and lies 309kmwest of the explosion. Simulation of the pressure
signature requires the determination of the rays (known as eigenrays) which pass through the given ground location. This
was done numerically forWhite River andwe found four arrivals, illustrated in Fig. 4(a). Two of these rays are reflected in the
thermosphere and are denoted Ita and Itb, while the other two undergo reflection in the stratosphere and are labelled Isa and
Isb. Fig. 4(b) plots the ratio u/p′, obtained from Eq. (3.18), of the waveform u to the acoustic pressure it represents. The ratio
varies by six orders of magnitude along ray Itb, mainly due to the much smaller atmospheric density at high altitude, but
also the effects of geometric spreading. Fig. 4(c) shows the nonlinear coefficient, b, which appears in the generalised Burgers
equation and is given by Eq. (3.17). Geometric spreading initially causes b to decrease, but it then tends to increase with
altitude due to the decreasing density, thus promoting nonlinearity. The spikes in Fig. 4(b) and (c) are due to caustics of Ita
and Isa. Note that the caustics occur close to themaximum altitude for the given ray. Finally, Fig. 4(d) shows the attenuation
coefficient Γr(Q ) (the subscript r denotes the real part) divided by Q 2 for the frequencies 0.1 Hz and 1 Hz. This ratio would
have the same value at all frequencies if attenuation were purely thermoviscous. Significant differences between the two
frequencies appear at altitudes around 40 km because the relaxation frequencies of O2 and CO2 lie between 0.1 Hz and 1 Hz.
Elsewhere, the attenuation coefficient has the classical frequency dependence, like ω2, and tends to increase with altitude.

4.2. Waveform propagation

As discussed in Section 3.2, the waveform described by the generalised Burgers equation is initialised by matching to
the source. Near the source, the overpressure due to the explosion is much greater than the atmospheric pressure and the
Sedov (see e.g. [17]) blast-wave solution applies (note that the presence of the ground doubles the effective energy of the
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Fig. 2. Atmospheric sound- and wind-velocity profiles. Profiles of both the zonal (west to east) and meridional (south to north) components of wind
velocity are shown.

Fig. 3. Trajectories of rays launched towards: (a) the east, (b) the west. The corresponding wavefronts are also shown every 100s up to 800s and at 1100,
1400 and 1700s. Caustics are indicated by dashed curves.

explosion). This regime is very far from the weak nonlinearity assumed by the model and matching must be carried out
sufficiently far from the source. According to the Sedov solution, the overpressure becomes comparable to the atmospheric



50 J.F. Scott et al. / Wave Motion 72 (2017) 41–61

Fig. 4. (a) Eigenrays for White River, (b) plots of the ratio u/p′ along the rays, (c) plots of the nonlinear coefficient, b, and (d) plots of Γr (Q )/Q 2 for
frequencies 0.1 Hz and 1 Hz (the latter being represented by dotted lines).

pressure, p0, at distances of order (E/p0)1/3, often referred to as the blast radius, where E is the energy released by the
explosion. The Sedov solution no longer holds at or beyond such distances. At distances large compared with the blast
radius, the pressure perturbation due to the source becomes small compared to the atmospheric pressure, so matching can
be applied. For the Misty-Picture explosion, the blast radius is of order 500 m and we used a matching distance of 2 km. At
this distance, we estimate the pressure perturbation as 104 Pa, about one tenth of the atmospheric pressure. Having decided
on the distance for matching, an initial waveform is needed. We used an empirical expression for p′(t) suggested by [23].

Having integrated the generalised Burgers equation numerically along eigenrays, Fig. 5 shows some results. The
maximum value of |u|(ξ), denoted u⋆, is plotted in Fig. 5(a). A frequency characterising the dominant spectral content of the
acoustic arrival can be defined as f⋆ = q⋆w · K/2π , where

q⋆ =


∞

0 q|ũ(q)|4dq
∞

0 |ũ(q)|4 dq
. (4.1)

Thus, f −1
⋆ is a measure of the duration of the arrival. Fig. 5(b) shows a plot of f⋆. Comparison of Fig. 5(a) and (b) indicates

strong similarity. The decrease of f⋆ represents a lengthening of the acoustic arrival with increasing propagation distance.
This is a nonlinear effect that is reflected in the decrease of u⋆. The relative importance of nonlinearity and attenuation can
be measured by the Gol’dberg number

R =
bq⋆u⋆

Γr(q⋆|K|)
, (4.2)

which is plotted in Fig. 5(c). It is apparent that R > 1, indicating that nonlinearity is more important than attenuation for the
present problem. The large values of R overmost of the range suggest that nonlinearwaveform steepening yields thin shocks
inwhich a balance is struck between nonlinearity and attenuation, leading to dissipation of acoustic energy. Finally, Fig. 5(d)
plots the maximum |p′

| (denoted p′
⋆) divided by the atmospheric pressure. The ratio is small, indicating weak nonlinearity

(as required by the model), apart from the ray Ita near the caustic. This raises the question, posed earlier, concerning the
validity of the linear relation, (3.24), used to describe passage through a caustic.

Fig. 6 shows plots of the acoustic arrival, represented by u and its energy spectral density, at different points along the ray
Ita. Position on the ray is represented by the time, ta, taken forX(t) to reach the given point, starting from the source at t = 0
(the time of the explosion). Fig. 6(a) and (b) show u and its energy spectral density at ta = 6.01 s (the initialisation time),
ta = 125 s, ta = 500 s and ta = 639.51 s (the caustic passage time). It is apparent from Fig. 6(a) that, by ta = 125 s, thin
shocks have formed and the acoustic pulse has become an N-wave. The pulse lengthens and the maximum |u| decreases in
accordwith Fig. 5(a) and (b). Fig. 6(b) also shows the effects of pulse lengthening: the peak frequencymoves to lower values.
Pulse lengthening ismainly due to nonlinearity. Fig. 6(c) and (d) show ta = 639.51 s just prior to passage through the caustic
and just afterwards (the former being the same as the last of Fig. 5(a) and (b)). They also show ta = 685 s and ta = 1258.9 s
(arrival at the ground). Recalling that the caustic occurs close to themaximum altitude, one can also think of Fig. 6(c) and (d)
as corresponding to the descending phase of propagation. Caustic passage is modelled using the Hilbert transform, (3.24),
a procedure which can be questioned, as discussed earlier. Comparing the post-caustic waveforms in Fig. 6(c), we see that
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Fig. 5. Plots of: (a) u∗ , (b) f∗ , (c) R and (d) p′
∗
/p0 for the White-River eigenrays of Fig. 4.

Fig. 6. Acoustic signature (u and its energy spectral density) at different propagation times, ta , along the ray Ita: (a) and (b): ta = 6.01 s, ta = 125 s,
ta = 500 s and ta = 639.51 s, (c) and (d): ta = 639.51 s, ta = 685 s and ta = 1258.9 s. Note the different scales used in (a) and (c). Apart from this, the
largest ta in figures (a) and (b) coincides with the smallest ta in figures (c) and (d).

the initial evolution is quite rapid, but then slows down. Nonlinearity is relatively strong near the caustic, hence the rapid
evolution, but weakens as the ray descends towards the ground. The energy spectral densities in Fig. 6(d) show little change
during the downward propagation phase.

4.3. Ground arrivals and comparison with measurements

Fig. 7 shows measurements and model results. We use measured pressure signatures from three locations: Alpine,
232 km, White River, 309 km and Roosevelt, 416 km, west of the source.

Fig. 7(a) has reduced time on the vertical axis and distance from the source on the horizontal axis. By reduced time, we
mean t − d/crep, where t = 0 is the explosion time, d is distance from the source, defined as before, and crep = 340 m/s is a
representative sound speed. This reduces the dispersion of arrival times between different locations. Note that reduced time
increases from the top of the figure to the bottom. Thus, for a given location, earlier arrivals appear towards the top and later
ones towards the bottom. The wiggly lines in Fig. 7(a) show the observed pressure fluctuations at the three measurement
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Fig. 7. Ground arrivals along a line through the source directed towards the west. (a) The vertical axis represents reduced time (defined in the text). The
wiggly lines show the observed pressure fluctuations at threemeasurement stations. The curves represent the arrival times of rays according to themodel.
(b) Maximum |p′

| as a function of distance. The circles, squares and triangles are measured values, whereas the curves are model results.

stations, whose locations are indicated by the labelling (AL, WR and RO) at the top of the figure. The curves represent the
arrival times of rays according to the model.

AL lies in the shadow zone (see Fig. 3(b)), so ray theory predicts no arrivals. On the other hand, themeasurements indicate
that, in fact, two arrivals occur. This reflects the usual weakness of geometrical acoustics: that it cannot predict the acoustic
signature inside shadow zones. However, as apparent in Fig. 3(b), the shadow boundary is located not far from AL. Thus, the
observed arrivals can be interpreted as the result of ‘‘leak over’’ of rays into the shadow zone. The fact that the arrival times
at AL are close to an extrapolation of the model results into the shadow zone lends credence to the idea of ray leakage. It
also suggests an identification of the arrivals at AL, the first being stratospheric, the second thermospheric.

Turning attention to WR, as we saw earlier, the model indicates four arrivals, predicted to occur in the time-order Is, Itb,
Ita according to Fig. 7(a) (note that Isa and Isb are predicted to arrive at almost the same time: here we use Is to refer to both
of them). Of these, the measured and theoretical arrival times of Is and Ita are in reasonable accord, whereas Itb does not
show up in themeasurements. This can be attributed to its predicted relatively small amplitude at the ground (see Fig. 7(b)),
which is due to it having propagated to higher altitude, where attenuation is greater.

At RO, the final arrival is in agreementwith theory (Ita), but the two earlier ones raise questions. Although the first arrival
is close to the predicted time for Itb, as noted above forWRwe expect the ground amplitude of Itb to be so low that it would
not be observed. The second arrival is also unexpected. It may be that these arrivals are due to ‘‘leakage’’ of stratospheric
rays.

Fig. 7(b) compares the maximum |p′
| according to measurements and theory. The curves are theoretical, while the

symbols indicate experimental results (circles for stratospheric arrivals, squares for thermospheric ones and triangles for
the first two arrivals at RO). For each arrival, the experimental p′

⋆ was obtained by maximising |p′
| over a time window

containing the arrival. These windows are indicated by the shaded rectangles in Fig. 7(a). To account for the presence of
the ground (modelled as a hard wall), the pressure perturbation given by the model was doubled when calculating the
theoretical values of p′

⋆ shown in Fig. 7(b). Once again, because the shadow zone is excluded by the model, there are no
theoretical results for AL. Otherwise, themodel results for Ita are in quite good agreementwith themeasurements, indicated
by the squares. As before, Itb does not appear in the observations atWR. For RO, the two triangles near the Itb curve represent
the unexpected arrivals discussed above. Finally, turning to Isa and Isb at WR, the model predicts a much higher amplitude
for Isa, which we therefore expect to dominate. Comparing the theoretical result for Isa with experiment, the predicted p′

⋆

is seen to overestimate the experimental value. This may be due to scattering by small-scale atmospheric nonuniformities.

5. Conclusion

Beginning with the full equations of motion of a compressible fluid, we have used multiple-scale asymptotic analysis
to derive a geometrical acoustics model for nonlinear propagation of impulsive waves in a general atmosphere (three
dimensional, in-motion and time dependent). The approach used unifies the sonic boom and explosion problems and allows
for arbitrary source motion in the case of a sonic boom. The ray equations appear as a solvability condition at first order,
followed by a generalised Burgers equation at the next. To our knowledge this is the first time that the combination of ray
theory and the Burgers equation has been derived using asymptotic analysis for such a general case.

In addition to deriving themodel, results of its application to an explosive source have been given in Section 4. Themodel
has also been employed to study sonic boom propagation, see e.g. [9,10,24–26].
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Appendix A. Partial derivatives of X and K

As seen in Section 2.4, rays, X(t), K(t), form a two-parameter family: X(t, β, γ ), K(t, β, γ ). (2.11) and (2.13) apply to
any given ray, providing the partial derivatives of X andKwith respect to t . Equations governing the partial derivatives with
respect to the ray parameters are obtained using the method proposed by [7]. Taking the β-derivative of (2.11) and (2.13)
and using n = K/|K| to express n yields

dXβi
dt

=


∂v0i

∂xj


x=X

+
∂c0
∂xj


x=X

ni


Xβj +

c0
|K|


Kβi − ninjKβj


, (A.1)

dKβi
dt

= −


∂v0j

∂xi


x=X

+
∂c0
∂xi


x=X

nj


Kβj −


∂2v0j

∂xi∂xk


x=X

+
∂2c0
∂xi∂xk


x=X

nj


Kj Xβk, (A.2)

where Xβ = ∂X/∂β , Kβ = ∂K/∂β . The same equations apply if β is replaced by γ .
Initial conditions for the partial derivatives can be obtained for the explosion and boom problems using (2.14). In the

case of the explosion, the partial derivative of (2.14) with respect to γ yields

Xγ (τ ) = 0, Kγ (τ ) =
∂ns

∂γ
(A.3)

and the same equations hold if γ is replaced by β . (A.3) also applies to the boom problem if the ray parameters are chosen as
β = τ and γ , γ being any parameterisation of ns which respects the Mach cone. (2.11), (2.13), (2.14) yield the coefficients
of Taylor’s expansions up to linear terms of X(t) and K(t) about t = τ . Taking partial derivatives of these expansions with
respect to τ and setting t = τ :

Xτ (τ ) = vs(τ )− v0(xs, τ )− c0(xs, τ )ns, (A.4)

Kτ i(τ ) =
∂nsi

∂τ
+
∂v0j

∂xi
nsj +

∂c0
∂xi

(A.5)

provide initial conditions for Xβ and Kβ (since we have here specialised to β = τ ). Note that the derivatives of v0j and c0 in
Eq. (A.5) are to be evaluated at position x = xs(τ ) and time t = τ .

Appendix B. Stress-tensor evaluation to second order

Closure of Eqs. (2.1) and (2.2) requires the Newtonian constitutive law

σ = −pI + τ (B.1)

and the entropy equation

∂s
∂t

+ v · ∇s = S, (B.2)

where τ is the viscous stress tensor (not to be confused with the emission time, τ ), given by

τij = λDkkδij + 2µDij, Dij =
1
2


∂vi

∂xj
+
∂vj

∂xi


, (B.3)

and

S =
1
ρθ

(D : τ + ∇ · (κ∇θ)+ q⋆) . (B.4)

The pressure p and viscosity coefficients λ,µ appearing in (B.1), (B.3) are functions of the thermodynamic state of the air.
As discussed in the main text, we suppose air to be thermodynamically simple, so that p = p(ρ, s), with similar expressions
for λ andµ. In (B.4), θ = θ(ρ, s) is absolute temperature, κ = κ(ρ, s) is thermal conductivity, and q⋆ represents volumetric
heating by absorption of radiation. Subtracting the equation of the underlying atmosphere, (B.2) gives

∂s′

∂t
+ v0 · ∇s′ = S ′

− v′
· ∇s0 − v′

· ∇s′. (B.5)
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The expansions (2.6) are supplemented by similar ones for the pressure, entropy and temperature perturbations, p′, s′
and θ ′. (B.3) gives

τij = λ0Dkkδij + 2µ0Dij, (B.6)

Dij =
1
2


∂v0i

∂xj
+
∂v0j

∂xi
+
∂Φ

∂xj

∂v′

1i

∂η
+
∂Φ

∂xi

∂v′

1j

∂η


(B.7)

at leading order, while the heat conduction term in (B.4) has the leading-order expression

∇ · (κ∇θ) = ϵ−1κ0 |∇Φ|
2 ∂

2θ ′

1

∂η2
. (B.8)

As discussed in the main text, it is assumed that λ0, µ0 and κ0 are of O(ϵ2). It follows from (B.6)–(B.8) that the viscous and
heat conduction terms in (B.4) are respectivelyO(ϵ2) andO(ϵ). Heating by radiation absorption is important in determining
the state of the underlying atmosphere, but is here assumed negligible as regards acoustic propagation. Thus, S ′ has the
asymptotic expansion

S ′
= ϵS ′

1 + · · · , (B.9)
where

S ′

1 = ϵ−2 κ0

ρ0θ0
|∇Φ|

2 ∂
2θ ′

1

∂η2
. (B.10)

Using (B.9), (B.5) yields
∂Φ

∂t
+ v0 · ∇Φ


∂s′1
∂η

= 0 (B.11)

at O(ϵ0). One solution of (B.11) is

∂Φ

∂t
+ v0 · ∇Φ = 0, (B.12)

which contradicts (2.9), the eikonal equation of acousticwaves. (B.12) is, in fact, the eikonal equation of the two non-acoustic
modes supported by the Navier–Stokes equations, namely entropy and vorticity ‘‘waves’’ (quotes are used here because
these modes are carried by the flow, rather than propagating with respect to the fluid). Such modes are not the subject of
this paper andwe specialise to the acoustic mode from here on by adopting the other solution of (B.11), namely ∂s′1/∂η = 0.
Arguing, as following (2.10), that the perturbation is zero at η → +∞ implies s′1 = 0.

Subtracting the equation of the underlying atmosphere, (B.1) gives

σ ′
= −p′I + τ ′, (B.13)

while (B.6) and (B.7) imply

τ ′

ij = λ0
∂Φ

∂xi

∂v′

1i

∂η
δij + µ0


∂Φ

∂xj

∂v′

1i

∂η
+
∂Φ

∂xi

∂v′

1j

∂η


(B.14)

at leading order. Because the viscosity coefficients are O(ϵ2), so is the viscous term in (B.13). Thus, (B.13) gives σ ′

1 = −p′

1I.
Since s′1 = 0, Taylor’s expansion of p(ρ, s) about ρ0, s0 implies p′

1 = c20ρ
′

1. This justifies the usual linear acoustics relation
σ ′

1 = −c20ρ
′

1I, introduced following Eqs (2.7), (2.8).
Employing Taylor’s expansion of θ(ρ, s) about ρ0, s0 and s′1 = 0, (B.10) leads to

S ′

1 = ϵ−2 κ0

ρ0θ0

∂θ

∂ρ


0
|∇Φ|

2 ∂
2ρ ′

1

∂η2
. (B.15)

Using (2.9), s′1 = 0, v′

1 = c0ρ ′

1n/ρ0 and n = ∇Φ/|∇Φ|, (B.5) gives

|∇Φ|
∂s′2
∂η

= (n · ∇s0)
ρ ′

1

ρ0
−

S ′

1

c0
(B.16)

at O(ϵ1). Taylor’s expansion of p(ρ, s) about ρ0, s0 implies

p′

2 = c20


ρ ′

2 +
B

2Aρ0
ρ ′

1
2


+Π, (B.17)

while v′

1 = c0ρ ′

1n/ρ0 and (B.14) give

τ ′

ij =
c0
ρ0


λ0δij + 2µ0ninj


|∇Φ|

∂ρ ′

1

∂η
(B.18)

at O(ϵ2). Finally, using (B.17) and (B.18) in (B.13) yields (3.1).
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Appendix C. Derivation of equation (3.11)

This appendix is devoted to a derivation of (3.11). To this end, we temporarily lift the restriction to rays coming from the
source, imposed from just after (2.12) onwards.

Consider a volume, V (t), consisting at all times of the same rays. According to (2.11), rays move with velocity w(x, t),
thus the volume of V (t) evolves according to

d
dt


V (t)

dv =


V (t)

∇ · w dv. (C.1)

This relation follows from Reynolds’ theorem and is well known in the context of fluid mechanics, where the analogue of
w(x, t) is the fluid velocity.

Let S(t) be part of the wavefront surface Φ = 0 consisting always of the same rays. Define V at some initial time by
infinitesimally thickening S on both sides of Φ = 0 out to Φ = ±δ/2 (thus δ > 0 is infinitesimal), then let S(t) and V (t)
move with the rays. Since Φ is constant following a ray, V remains an infinitesimally thickened version of S, bounded by
Φ = ±δ/2. Taylor’s expansion ofΦ shows that V has thickness δ/|k|, hence

V (t)
dv = δ


Σ

ν

|k|
dβdγ , (C.2)

where β and γ are ray parameters, we have used the fact that the area element on the wavefront is dS = νdβdγ and the
integral is over the part,Σ , of the β− γ plane corresponding to S(t). Likewise, the integral on the right-hand side of (C.1) is

V (t)
∇ · w dv = δ


Σ

ν∇ · w
|k|

dβdγ . (C.3)

From here on, there is no need to consider rays other than those coming from the source and we again restrict attention to
such rays.

Since rays have constant values of β and γ and S(t) is made up of rays, Σ is independent of t . Using (C.2) and (C.3) in
(C.1), the time derivative can be taken inside the integral on the left-hand side, where it becomes a partial derivative at
constant β and γ . This is equivalent to the derivative following a ray, hence

Σ


d
dt


ν

|k|


−
ν∇ · w

|k|


dβdγ = 0 (C.4)

for any choice ofΣ . Taking the limit in whichΣ shrinks down to a point,

d
dt


ν

|k|


=
ν∇ · w

|k|
. (C.5)

Given |k| = |ks| |K| and constancy of |ks| for a ray,

d
dt


ν

|K|


=
ν∇ · w

|K|
. (C.6)

Usingw = v0 + c0n, we conclude that

|K|

ν

d
dt


ν

|K|


= ∇ · v0 + ∇ · (c0n) . (C.7)

Multiplying (2.13) by Ki gives

1
2

d
dt


|K|

2
= −K · (K · ∇v0)− |K|K · ∇c0. (C.8)

Dividing by |K|
2,

1
2|K|2

d|K|
2

dt
= −n · (n · ∇v0)− n · ∇c0. (C.9)

Finally, subtracting (C.9) from (C.7) and using the identities

|K|

ν

d
dt


ν

|K|


−

1
2|K|2

d|K|
2

dt
=

2 |K|

ν1/2

d
dt


ν1/2

|K|


(C.10)

and

∇ · (c0n)+ n · ∇c0 =
1
c0

∇ ·

c20n


(C.11)

yields (3.11).
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Appendix D. Inclusion of relaxation and variable composition

Section 2 is unaffected by relaxation and variable composition, but Section 3 and Appendix B are significantly modified,
as described below.

D.1. Stress-tensor evaluation to second order

The fluid is a mixture of different molecular species, counting excited states as separate species, and the mass fraction of
species α is denoted Yα . These additional thermodynamic variables have associated evolution equations

∂Yα
∂t

+ v · ∇Yα = Zα, (D.1)

where

Zα = Rα −
1
ρ

∇ · Jα, (D.2)

Rα represents production of species α by relaxation processes and Jα its diffusive mass-flux vector. Note that, since the sum
of the Yα is 1, one of them is redundant and is dropped in what follows. Given that unexcited molecular nitrogen is the
dominant species in the atmosphere, it is the natural choice for elimination. The thermodynamic state variables are ρ, s, Yα ,
all other thermodynamic quantities (e.g. pressure and temperature), the coefficients of viscosity and Rα being functions of
these variables. Subtracting the equation of the underlying atmosphere, (D.1) gives

∂Y ′
α

∂t
+ v0 · ∇Y ′

α = Z ′

α − v′
· ∇Yα0 − v′

· ∇Y ′

α. (D.3)

The entropy equation still has the form (B.2), but (B.4) is replaced by

S =
1
ρθ

(D : τ − ∇ · q + q⋆)−


α

χαZα, (D.4)

where q is the heat-flux vector and χα is the difference of chemical potentials (per unit mass) between species α and the
species eliminated earlier, divided by the absolute temperature, θ . Subtraction of the entropy equation of the underlying
atmosphere gives

∂s′

∂t
+ v0 · ∇s′ = S ′

− v′
· ∇s0 − v′

· ∇s′ (D.5)

as before.
The generalised Fourier–Fick laws:

q = −κ∇θ − κs∇s −


α

κα∇Yα, (D.6)

Jα = −ζα∇ρ − ζ s
α∇s −


β

ζαβ∇Yβ (D.7)

describe the heat- and mass-flux vectors appearing in (D.2) and (D.4). It perhaps goes without saying that χα in (D.4), and
the coefficients in (D.6) and (D.7), are functions of the thermodynamic state variables. In keeping with the assumptions
concerning the coefficients of viscosity and heat conduction made in Appendix B, we suppose the coefficients in (D.6) and
(D.7) of O(ϵ2).

The expansions (2.6) are supplemented by similar ones for s′, θ ′ and Y ′
α . (D.2), (D.7) and Taylor’s expansion of Rα(ρ, s, Yβ)

yield

Z ′

α =
∂Rα
∂ρ


0
ρ ′

+
∂Rα
∂s


0
s′ +


β

∂Rα
∂Yβ


0
Y ′

β + ϵ−2 1
ρ0

|∇Φ|
2 ∂2

∂η2


ζα0ρ

′
+ ζ s

α0s
′
+


β

ζαβ0Y ′

β


(D.8)

at leading order, where the derivatives with subscript 0 imply that the quantity being differentiated is a function of ρ, s, Yα .
The derivative is takenwith respect to the indicated variable, while holding all others constant. As indicated by the subscript
0, the result is then evaluated at ρ = ρ0, s = s0 and Yα = Yα0. (D.8) is O(ϵ), hence (D.3) implies

∂Φ

∂t
+ v0 · ∇Φ


∂Y ′

α1

∂η
= 0. (D.9)

Arguing as we did following (B.11), we conclude that Y ′

α1 = 0. As we saw in Appendix B, s′1 = 0 for a thermodynamically
simple fluid and this remains the case here. Taylor’s expansion of p(ρ, s, Yα) implies that σ ′

1 = −c20ρ
′

1I as before. Note that
c20 = ∂p/∂ρ|0, where the derivative is taken at constant s and Yα , i.e. c0 is the frozen sound speed.
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Since Y ′

β1 = 0, the term


β ∂Rα/∂Yβ

0Y

′

β in (D.8) appears to be ofO(ϵ2), and thus negligible atO(ϵ). However, this term
is essential for relaxation. To ensure its contribution to the Burgers equation, we take ∂Rα/∂Yβ


0 = O(ϵ−1) in what follows.

This additional bookkeeping assumption is needed so that relaxation is effective during the short passage time, O(ϵ), of the
acoustic perturbation.
∂Rα/∂Yβ


0 = O(ϵ−1)means that relaxation is rapid on the atmospheric time scale, hence the underlying atmosphere is

always close to relaxational equilibrium. To make this statement more precise, consider a fluid particle, x(t), which follows
the underlying flow and is located at x0 at time t0, i.e. dx/dt = v0, x(t0) = x0. Applying (D.1) and (D.2) to the underlying
atmosphere,

dYα0
dt

= Rα(ρ0(x, t), s0(x, t), Yβ0)−
1
ρ0

∇ · Jα0. (D.10)

Given the time scale, O(ϵ), for relaxation, we consider times t = t0 + O(ϵ). Taylor’s expansion gives

Rα(ρ0(x, t), s0(x, t), Yβ0) = Rα(ρ0(x0, t0), s0(x0, t0), Yβ0)+
∂Rα
∂ρ


0

dρ0
dt
(t − t0)+

∂Rα
∂s


0

ds0
dt
(t − t0), (D.11)

inwhich the final two terms areO(ϵ). According to (D.7), the diffusive term in (D.10) isO(ϵ2). IfRα(ρ0(x0, t0), s0(x0, t0), Yβ0)
were asymptotically larger than O(ϵ), it would dominate and (D.10) would give

dYα0
dt

= Rα(ρ0(x0, t0), s0(x0, t0), Yβ0) (D.12)

at leading order. This equation implies relaxation of Yα0 to equilibrium on a time scale O(ϵ). Thus, if it exceeded O(ϵ) at
t = t0, Rα(ρ0(x0, t0), s0(x0, t0), Yβ0) would decrease rapidly until it reached O(ϵ) and the remaining terms in (D.11) kick
in. Since the underlying atmosphere has already had sufficient time to reach this state, we conclude that Rα0 = O(ϵ), an
expression of closeness to equilibrium.

Relaxation processes can be considered as a special type of chemical reaction. Rα can be expressed as a sum over such
reactions:

Rα =


l

ωlRl
α, (D.13)

where ωl is the rate of reaction l, which depends on the thermodynamic state variables, and Rl
α are constant coefficients

expressing stoichiometry. According to chemical thermodynamics, equilibrium leads to zero entropy production, i.e.
α

χαRl
α = 0 (D.14)

for each reaction. Since the underlying atmosphere is close to equilibrium,
α

χα0Rl
α = o(1). (D.15)

Note that ∂Rα/∂Yβ

0 = O(ϵ−1) arises from ∂ωl/∂Yβ


0 = O(ϵ−1).

Using s′1 = Y ′

α1 = 0, (D.8) implies

Z ′

α = ϵZ ′

α1 + · · · , (D.16)

where

Z ′

α1 =
∂Rα
∂ρ


0
ρ ′

1 + ϵ

β

∂Rα
∂Yβ


0
Y ′

β2 + ϵ−2 ζα0

ρ0
|∇Φ|

2 ∂
2ρ ′

1

∂η2
. (D.17)

Employing (2.9) and v′

1 = c0ρ ′

1n/ρ0, (D.3) gives

|∇Φ|
∂Y ′

α2

∂η
= (n · ∇Yα0)

ρ ′

1

ρ0
−

Z ′

α1

c0
(D.18)

as equation for Y ′

α2.
The final term in (D.4) contributes

−


α

χαZα

′

= −


α

χα0Z ′

α −


α

χ ′

αZα0 −


α

χ ′

αZ
′

α (D.19)
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to S ′. Using (D.17),


α

χα0Z ′

α = ϵ

α

χα0


∂Rα
∂ρ


0
ρ ′

1 + ϵ

β

∂Rα
∂Yβ


0
Y ′

β2 + ϵ−2 ζα0

ρ0
|∇Φ|

2 ∂
2ρ ′

1

∂η2


(D.20)

at leading order. Differentiating (D.13),

∂Rα
∂ρ


0

=


l

∂ωl

∂ρ


0
Rl
α, ϵ

∂Rα
∂Yβ


0

= ϵ


l

∂ωl

∂Yβ


0
Rl
α (D.21)

and (D.15) implies that the corresponding terms in (D.20) are negligible once the sum over α is taken. It follows that the
first term in (D.19) has the expansion

−


α

χα0Z ′

α = −ϵ−1 1
ρ0

|∇Φ|
2

α

χα0ζα0
∂2ρ ′

1

∂η2
+ · · · (D.22)

and hence is O(ϵ).
Applying (D.2) to the underlying atmosphere, (D.7) and Rα0 = O(ϵ) imply Zα0 = O(ϵ), while Taylor’s expansion of

χα(ρ, s, Yβ) gives χ ′
α = O(ϵ). Thus, the second term in (D.19) is O(ϵ2), negligible compared with (D.22). The final term in

(D.19) is also O(ϵ2), hence negligible, because χ ′
α = O(ϵ) and Z ′

α = O(ϵ). Thus,

−


α

χαZα

′

= −ϵ−1 1
ρ0

|∇Φ|
2

α

χα0ζα0
∂2ρ ′

1

∂η2
+ · · · . (D.23)

(D.6) and s′1 = Y ′

α1 = 0 lead to

−
1
ρθ

∇ · q = ϵ−1 κ0

ρ0θ0
|∇Φ|

2 ∂
2θ ′

1

∂η2
+ · · · (D.24)

for the heat-conduction term in (D.4). According to (B.6) and (B.7), the viscous term in (D.4) is O(ϵ2), small compared with
(D.23) and (D.24). Neglecting the volumetric heating term as before, (D.4), (D.23), (D.24) and Taylor’s expansion of θ(ρ, s, Yα)
lead to

S ′

1 = ϵ−2 1
ρ0

|∇Φ|
2


κ0

θ0

∂θ

∂ρ


0
−


α

χα0ζα0


∂2ρ ′

1

∂η2
. (D.25)

Using (2.9) and v′

1 = c0ρ ′

1n/ρ0, (D.5) gives

|∇Φ|
∂s′2
∂η

= (n · ∇s0)
ρ ′

1

ρ0
−

S ′

1

c0
. (D.26)

(D.17), (D.18), (D.25) and (D.26) provide governing equations for Y ′

α2 and s′2.
Finally, (3.1) remains valid, but the second of the Eqs. (3.2) becomes

Π =
∂p
∂s


0
s′2 +


α

∂p
∂Yα


0
Y ′

α2. (D.27)

D.2. Completion of the second-order analysis

Defining

Ŷα = Y ′

α2 + ϵ−2 ζα0

ρ0c0
|∇Φ|

∂ρ ′

1

∂η
− aαρ ′

1 + Ξ n · ∇Yα0, (D.28)

where

aα = ϵ−2 1
ρ0c0


β

rαβζβ0, rαβ =
ϵ

c0

∂Rα
∂Yβ


0
, (D.29)

Ξ =
1

ρ0 |∇Φ|


∞

η

ρ ′

1dη, (D.30)
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(D.17) and (D.18) give

|∇Φ|
∂ Ŷα
∂η

+


β

rαβ Ŷβ = −dαρ ′

1 +
ϵ

c0
Ξ n ·


β

∂Rα
∂Yβ


0
∇Yβ0, (D.31)

where

dα =
1
c0

∂Rα
∂ρ


0
+


β

rαβaβ . (D.32)

As we saw earlier,
Rα(ρ0, s0, Yβ0) = O(ϵ), (D.33)

whose gradient yields

∂Rα
∂ρ


0
∇ρ0 +

∂Rα
∂s


0
∇s0 +


β

∂Rα
∂Yβ


0
∇Yβ0 = O(ϵ). (D.34)

The first two terms in (D.34) are of O(1), hence
β

∂Rα
∂Yβ


0
∇Yβ0 = O(1). (D.35)

Recalling the bookkeeping assumption ∂Rα/∂Yβ

0 = O(ϵ−1), terms in the sum over β in (D.35) are individually of O(ϵ−1),

but this equation shows that they are nearly cancelling once the sum is taken. Using (D.35), (D.31) becomes

|∇Φ|
∂ Ŷα
∂η

+


β

rαβ Ŷβ = −dαρ ′

1. (D.36)

Eq. (D.36) and the boundary condition Ŷα → 0 as η → +∞ determine Ŷα .
Using (D.25)–(D.28), we find

|∇Φ|
∂Π

∂η
= 2c0 |∇Φ|

∂

∂η


Λρ ′

1 +


α

eα Ŷα



− ϵ−2 1
ρ0c0

|∇Φ|
2


κ0

θ0

∂θ

∂ρ


0

∂p
∂s


0
+


α

ζα0


∂p
∂Yα


0
− χα0

∂p
∂s


0


∂2ρ ′

1

∂η2

+n ·


∂p
∂s


0
∇s0 +


α

∂p
∂Yα


0
∇Yα0


ρ ′

1

ρ0
, (D.37)

where

Λ =


α

eαaα, eα =
1
2c0

∂p
∂Yα


0
. (D.38)

Eqs. (3.3)–(3.6) hold as before, but with (D.37) for ∂Π/∂η. The solvability condition, f1 + f2 = 0, gives
ρ0

c0

1/2 
∂

∂t
+ w · ∇


c0
ρ0

1/2

ρ ′

1


=

1
2
ϵ−2∆ |∇Φ|

2 ∂
2ρ ′

1

∂η2
−


1 +

B
2A


c0
ρ0

|∇Φ| ρ ′

1
∂ρ ′

1

∂η

− |∇Φ|
∂

∂η


Λρ ′

1 +


α

eα Ŷα


−

1
2


1
c0

∇ ·

c20n


+ ∇ · v0 + n · (n · ∇v0)


ρ ′

1, (D.39)

where

∆ =
1
ρ0


λ0 + 2µ0 +

1
c20


κ0

θ0

∂θ

∂ρ


0

∂p
∂s


0
+


α

ζα0


∂p
∂Yα


0
− χα0

∂p
∂s


0


(D.40)

is the diffusivity of sound. Note that, in deriving (D.39), the following term has been dropped from the right-hand side:

−
ρ ′

1

2ρ0c0
n ·


∇ · σ0 + c20∇ρ0 +

∂p
∂s


0
∇s0 +


α

∂p
∂Yα


0
∇Yα0


. (D.41)

As before, this is because the sum in brackets can be rewritten as∇ ·τ0, which isO(ϵ2) and thus negligible. The second-order
asymptotic analysis is now complete, the results being (D.36) and (D.39).
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D.3. Generalised Burgers equation

In keeping with (3.12), we introduce

yα(ξ , t) =
ϵ2

|K|


νc0
ρ0

1/2

Ŷα(η,X(t), t). (D.42)

Eqs. (D.36) and (D.39) yield

|K|
∂yα
∂ξ

+


β

r̄αβyβ = −dαu (D.43)

and

∂u
∂t

=
1
2
∆ |K|

2 ∂
2u
∂ξ 2

− b u
∂u
∂ξ

− |K|
∂

∂ξ


Λ̄u +


α

eαyα


, (D.44)

where

r̄αβ = ϵ−1rαβ =
1
c0

∂Rα
∂Yβ


0
, (D.45)

Λ̄ = ϵΛ =


α

eα āα, (D.46)

āα = ϵaα =
1
ρ0c0


β

r̄αβζβ0 (D.47)

remove the ϵ-dependency.
The solution of (D.43) can be expressed using a Green’s function, gα(z) being the solution of

dgα
dz

−


β

r̄αβgβ = dαδ(z), (D.48)

where gα(z) = 0 for z < 0. The solution of (D.43) which goes to zero as ξ → +∞ is

yα(ξ) =


+∞

−∞

gα(z)u(ξ + |K|z)dz. (D.49)

This result is used in (D.44) to obtain (3.20), where

G(z) =
1
2
1δ′(z)+ Λ̄δ(z)+


α

eαgα(z) (D.50)

depends only on the thermodynamic state of the underlying atmosphere at position x = X(t) and time t .
We would not, of course, advocate actually calculating G(z) using the above procedure, it being much simpler to adopt

existing models from the literature, as described in Section 3.3. The important point is not the detailed expression for G(z),
but that: (a) the attenuation term has the form given in (3.20), and (b) G(z) depends only on the thermodynamic state of
the underlying atmosphere at x = X(t) and time t . These results are not a priori obvious, at least not to us. In particular,
nonuniformity of the underlying atmosphere appears in the analysis via ∇ ·σ0, ∇ρ0, ∇s0 and ∇Yα0, but does not contribute
to the Burgers equation, thanks to (D.35) and smallness of (D.41).

Finally, adding a multiple of δ(z) to G(z) (as does the term containing Λ̄ in (D.50)) is equivalent to an O(ϵ) change in the
sound speed. This allows a limited degree of choice in c0. Although the frozen sound speed is the natural one for asymptotic
analysis, Λ̄ can be incorporated into the definition of c0. The equilibrium sound speed (with or without incorporation of Λ̄)
can also be used. For each such choice of c0, a consistent expression for G(z) or Γ (Q ) should be employed in the Burgers
equation or its Fourier transform.
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