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a b s t r a c t

Development of optimal reduced-order models for linearized Euler equations is investi-
gated. Recent methods based on proper orthogonal decomposition (POD), applicable for
high-order systems, are presented and compared. Particular attention is paid to the link
between the choice of the projection and the efficiency of the reduced model. A stabilizing
projection is introduced to induce a stable reduced-order model at finite time even if the
energy of the physical model is growing. The proposed method is particularly well adapted
for time-dependent hyperbolic systems and intrinsically skew-symmetric models. This
paper also provides a common methodology to reliably reduce very large nonsymmetric
physical problems.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Development of efficient reduced-order models is becoming an active research topic in computational physics and more
particularly in fluid dynamics. Responses of dynamical systems presenting extremely large degrees-of-freedom (DoF) can
nowadays be computed due to the recent advances in computer technology. However, the computation time required to
solve such systems becomes prohibitive especially when numerous parametric analyses are required. Moreover, such com-
putations are almost impossible to use in control or optimization procedures. These observations lead to the conclusion that
reduced-order models, i.e. which have much fewer DoFs, are desired.

In past decades, numerous reduced-order techniques have been developed in various domains of physics. Linear reduc-
tion methods are now well-established in control theory [3] for instance. It is commonly admitted that the reduced-order
solution must be written as a linear combination of global basis functions. The key challenge is then to construct the most
efficient global functions in the most inexpensive way. Approaches basically differ in the way these global basis functions are
built. The methodology depends on the type of precomputed responses of the full-order model (FOM): global eigenmodes,
frequency responses or temporal responses. For a linearized fluid model, these responses, sometimes referred to as high-
fidelity solutions, require solving either a very large nonsymmetric eigenvalue problem, or numerous nonsymmetric
high-order linear systems, or large linear dynamical systems, respectively. As a consequence, the building of global basis
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functions can induce a large computational cost. First, the calculation of global eigenmodes (direct and adjoint) is an extre-
mely expensive procedure. Furthermore, eigenvalue problems are often ill-posed for compressible open flows. In particular,
it is known that the application of modal reduction is impractical due to density of eigenvalues [18] and has difficulty to
capture the dynamics due to multiple poles [3]. However, it is still an active research topic in the hydrodynamic stability
community to only determine the unstable eigenmodes. Secondly, finding a solution of a large linear fluid system is some-
times very expensive since the linearized fluid models are not symmetric and sometimes even unstable. For instance, iter-
ative methods can be used but the convergence remains delicate [25]. It is therefore promising to employ dynamical
approaches for computing the global basis functions.

A critical step in the process of unsteady reduction is to maintain the physical and numerical stability properties of the
original model in the reduced-order model. The numerical stability is especially required for long-time simulations. Preser-
vation of the physical stability is also important for reliable stability prediction. Unfortunately, there exists few methods able
to preserve the stability when the high-fidelity model is unsteady and non-normal. In the context of linearized Euler equa-
tions (LEEs), most attempts to reach a reduced-order model are based on frequency-domain approaches such as Arnoldi’s
method [31], POD [17,21] or balanced-POD [30] methods. The frequency-domain has been driven by aeroelastic applications
and also to achieve a higher level of robustness than in the time-domain. Nevertheless, development of reliable unsteady
reduced-order models for LEEs remains a real challenge. Actually, with standard L2 inner product, a reduced model might
be stable for a given number of global basis functions but unstable for other choices of size [10]. In a recent paper, Barone
et al. [6] have introduced a symmetry-based inner product and have demonstrated that it is possible to obtain a robust un-
steady reduced-order model for LEEs. In a same way, Rowley [26] has obtained a stable unsteady reduced-order model in the
context of linearized incompressible flows with the balanced-POD method. POD based approaches seem currently to be the
best solution to reduce the LEEs and particularly for open flows. This article proposes a new approach to overcome these
instability problems. The specific numerical reduction of time-dependent hyperbolic systems is also discussed.

This paper is organized as follows. First, principles of model reduction techniques are introduced in the control system
framework. The construction of optimal global basis functions with the snapshot-POD method is described by considering
an arbitrary inner product. A particular attention is then paid to the link between the choice of the projection and the sta-
bility property of the reduced-order model. The role of the adjoint dynamical system is also examined and a generalized sta-
bilizing projection is proposed. Secondly, the linearized Euler model is reminded and afterwards the full-order model is
described. Furthermore, the adjoint LEEs are derived. Finally, academic simulations are performed to appreciate and compare
optimality and stability of the reduced-order models according to the different presented projections.
2. Reduced-order models (ROMs)

The mathematical concepts of model reduction are introduced in the framework of linear control theory. Consider a state-
space representation of a linear system with q inputs, p outputs and n state variables. The system is written in a matrix for-
mulation as
_xðtÞ ¼ AxðtÞ þ BuðtÞ

yðtÞ ¼ CxðtÞ

xðt0Þ ¼ x0

8>><>>: ; ð1Þ
where xðtÞ 2 Rn is the state vector, A 2 Rn�n is a very large sparse square matrix from the spatial discretization of the physical
model, B ¼ ðb1; . . . ;bqÞ 2 Rn�q is a rectangular matrix from the spatial discretization of source terms (supposed space–time
separable), uðtÞ 2 Rq is the input vector from temporal excitations, C ¼ ðc1; . . . ; cpÞT 2 Rp�n is a rectangular matrix from the
spatial discretization of observed linear laws (specific DoFs or physical quantities for example), yðtÞ 2 Rp is the output vector
and x0 is the initial state condition. The dot denotes the time derivation. The goal is to derive a reduced system with r state
variables
_xrðtÞ ¼ ArxrðtÞ þ BruðtÞ

yrðtÞ ¼ CrxrðtÞ

xrðt0Þ ¼ x0r

8>><>>: ; ð2Þ
such as r� n with xrðtÞ 2 Rr the reduced state vector, Ar 2 Rr�r the reduced matrix, Br 2 Rr�q and Cr 2 Rp�r . In this reduction
process, note that the number of inputs and outputs remains invariant. The next section describes the different steps to con-
struct the reduced system (2).
2.1. Reduction technique

The projection method is the most popular and efficient approach to develop a reduced-order model. The projection algo-
rithm proceeds as follows:
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� compute the approximation space of the state vector Vr = (U1, . . . ,Ur), Vr 2 Rn�r such as x ’ Vrxr where the Ui denote the
direct global basis functions or direct modes;
� replace the approximation Vrxr in the full-order model (1) so the new system is overdetermined;
� compute the projection space Wr = (W1, . . . ,Wr) where the Wi denote the dual global basis functions or adjoint modes;
� project Wr on the overdetermined system;
� obtain the reduced system (2) of dimension r with Ar ¼ WT

r Vr

� ��1
WT

r AVr , Br ¼ WT
r Vr

� ��1
WT

r B Cr = CVr where the super-
script T denotes the transpose of a matrix;
� solve the reduced dynamical system by a classical time integration method with the reduced initial condition

x0r ¼ WT
r Vr

� ��1
WT

r x0;
� obtain the original state vector x(t) ’ Vrxr(t).

In these steps, the main challenge is the determination of both efficient Vr and Wr subspaces in the most inexpensive way.
Furthermore, Vr and Wr subspaces are generally chosen to be bi-orthonormal i.e. WT

r Vr ¼ Ir with Ir the r-dimensional identity
matrix. This is a condition to achieve a well-conditioned reduced model and also to avoid the calculation of the inverse ma-

trix WT
r Vr

� ��1
. From a practical point of view, the reduced matrix Ar+1 can be built from the reduced matrix Ar as follows
Arþ1 ¼
WT

r

WT
rþ1

 !
A Vr Urþ1ð Þ ¼ WT

r AVr WT
r AUrþ1

WT
rþ1AVr WT

rþ1AUrþ1

 !
¼ Ar WT

r AUrþ1

WT
rþ1AVr WT

rþ1AUrþ1

 !
: ð3Þ
This recurrence avoids to have to rebuild the reduced matrix when the number of modes is increased. Furthermore, reduced
matrices are dense, Ar has r2 nonzero coefficients. In the following, the main concepts to construct reliable optimal Vr and Wr

subspaces are introduced.

2.2. Construction of optimal Vr and Wr subspaces: POD method
2.2.1. Minimization problem
First, a weighted inner product
hz1; z2iQ ¼ zT
1Qz2 ð4Þ
is defined on Rn, with Q 2 Rn�n a symmetric and positive definite weighting matrix. Its induced norm is kzkQ ¼ ðzT QzÞ1=2. The
objective is then to find a set of r optimal global basis functions Ui solution of the continuous minimization problem
min
U1 ;...;Ur

Z tf

t0

fðtÞ �
Xr

i¼1

hfðtÞ;UiiQ Ui

�����
�����

2

Q

dt ð5Þ
subject to hUi;UjiQ ¼ UT
i QUj ¼ dij for 1 6 i, j 6 r, where dij stands for the Kronecker symbol. In the simplest case, f(t) is a vec-

tor of dimension n representing a particular solution of the dynamical system (1) at time t within the temporal interval [t0, tf].
A solution to this minimization problem is characterized by the first optimal necessary conditions
GQUi ¼ kiUi; 1 6 i 6 r ð6Þ
with
G ¼
Z tf

t0

fðtÞfðtÞT dt: ð7Þ
This problem corresponds to an n-dimensional eigenvalue problem. G is also called the time-limited Gramian. Gramians are
n � n positive semi-definite symmetric matrices. Now, consider a numerical approximation of the introduced Gramian
G �
Xm

j¼1

xjf jf
T
j ð8Þ
where f i :¼ fðtiÞ 2 Rn for 1 6 i 6m are m particular computed solutions of the high-fidelity model at the respective times
t1, . . . , tm within the interval [t0, tf] and xi are quadrature coefficients. These solutions are also called snapshots. The numerical
solution of the minimization problem is then given by
XXT QUi ¼ kiUi; 1 6 i 6 r ð9Þ
with X ¼ ffiffiffiffiffiffiffi
x1
p

f1; . . . ;
ffiffiffiffiffiffiffiffi
xm
p

fm½ � the rectangular matrix of computed snapshots. The solutions Ui of the n-dimensional eigen-
value problem (9) are called Q-POD modes.

2.2.2. Snapshot-POD
The eigenvalue problem (9) is generally far too difficult to solve in fluid dynamics since n is very large. It is more conve-

nient to solve a m-dimensional eigenvalue problem than a n-dimensional ones because the number m of useful snapshots is
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often much smaller than the number n of DoFs. This idea named snapshot-POD was introduced by Sirovich [28]. First, note
that since Q is symmetric and positive definite, Q possesses a Cholesky factorization Q ¼ LLT . Hence, multiplying (9) by LT ,
setting eUi ¼ LTUi and eX ¼ LT X, gives the modified eigenvalue problem
eX eXT eUi ¼ ki

eUi; 1 6 i 6 r: ð10Þ
The snapshot-POD is a thus powerful method to solve the original very large eigenvalue problem. Besides, the m-dimensional
eigenvalue problem eXT eX ~wi ¼ ki

~wi is solved with eXT eX ¼ ðXT LÞðLT XÞ ¼ XT QX. In addition, the rectangular matrix eX 2 Rn�m has
a Singular Value Decomposition (SVD) such as:
eX ~wi ¼

ffiffiffiffi
ki

p eUi; eXT eUi ¼
ffiffiffiffi
ki

p
~wi; 1 6 i 6 r: ð11Þ
Hence, the modes eUi are calculated thanks to the relation
eUi ¼
1ffiffiffiffi
ki
p eX ~wi; 1 6 i 6 r: ð12Þ
Finally, the subspaces Vr and Wr are given by
Vr ¼ ½U1; . . . ;Ur�; Wr ¼ QVr ð13Þ
with
Ui ¼ L�T eUi ¼
1ffiffiffiffi
ki
p L�T LT X~wi ¼

1ffiffiffiffi
ki
p X~wi; 1 6 i 6 r: ð14Þ
Thus, both Vr and Wr subspaces depend on the choice of the weighted inner product to approximate the snapshots. This trac-
table POD procedure is commonly called Q-POD method. In the classical definition, note that the POD modes are calculated
with the L2-inner product which just corresponds to Q ¼ In with In the n-dimensional identity matrix.

2.3. Gramians

2.3.1. Definition and motivation
POD modes depend on the computed solutions of the full model. These solutions appear first in the Gramian matrix (7).

For exemple, the energy Gramian Ge, the controllability Gramian Gc, and the observability Gramian Go are respectively de-
fined by
Ge ¼
Z tf

t0

xðtÞxðtÞT dt; Gc ¼
Z tf

t0

eAtBBT eAT tdt; Go ¼
Z tf

t0

eAT tCT CeAtdt ð15Þ
and the function f is then respectively given by
fðtÞ ¼ xðtÞ ¼ eAtx0 þ
Z t

0
eAðt�sÞBuðsÞds

� �
; ð16Þ
f(t) = eAtB or fðtÞ ¼ eAT tCT . In control theory, the controllability and observability Gramians are known to determine essential
properties of linear systems with multiple inputs and multiple outputs [3]. Thus, the controllability Gramian is used to build
POD modes which are the most independent of inputs u(t). Furthermore, with the observability concept, it can be chosen to
observe some of the DoFs or some specific linear physical quantities of interest. For example, in [9], only the pressure at wall
boundary conditions is observed. In a general manner, we can also define primal Gramian and dual Gramian respectively as
follows
Gp ¼
Z tf

t0

eAt eBeBT eAT tdt; Gd ¼
Z tf

t0

eAT teCeCT eAtdt ð17Þ
with arbitrary matrices eB and eC. When the matrix A is asymptotically stable, infinite primal Gramian G1p and infinite dual
Gramian G1d can also be defined (tf = +1).

2.3.2. Computation of primal and dual Gramians
The primal and dual time-limited Gramians are solutions of the algebraic Lyapunov equations [3]
AGp þ GpAT ¼ �Pp; AT Gd þ GdA ¼ �Pd ð18Þ
with
Pp ¼ eAt0 eBeBT eAT t0 � eAtf eBeBT eAT tf ; Pd ¼ eAT t0 eCT eCeAt0 � eAT tf eCT eCeAtf : ð19Þ
But it seems unrealistic to solve these equations directly since the system is too large and not sparse. An efficient alternative
is to numerically approximate time-limited Gramians by a quadrature knowing a set of m snapshots (8). For example, the
snapshots fðtiÞ ¼ eAti eB are obtained by solving the dynamical system
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_fðtÞ ¼ AfðtÞ
fðt0Þ ¼ eB

(
ð20Þ
with a time-integration method. Similarly, the approximation of dual Gramian involves adjoint snapshots since
fðtiÞ ¼ eAT ti eCT . In this paper, snapshots eAt eB and eAT teC are respectively called primal snapshots and dual snapshots. Bui-Thanh
and Willcox [9] demonstrate the importance of accurate integration of the Gramians, that is the choice of the coefficients xi

and instants ti. The use of this approximation rather than solving Lyapunov equations explains why they are called empirical
Gramians in the literature [20]. Note that the snapshot-POD method described in Section 2.2.2 is a powerful technique to
compute the r largest eigenmodes Ui of the Gramians associated with the r largest eigenvalues. For example, the modes
of Ge;Gc and Go are respectively called energetic modes, controllable modes and observable modes. In fact, the energetic
modes correspond to the classical L2-POD modes. A physical explanation of controllable and observable modes can be found
in Bagheri et al. [4], for example.

2.4. Stability properties of the reduced model

In this section, the link between the choice of the matrix Q and the preservation of the stability of the reduced model is
discussed.

2.4.1. Classical Galerkin projection
In this case, we have Q ¼ In and Wr = Vr such as VT

r Vr ¼ Ir . It is an orthogonal projection. This inner product ensures the
stability of the reduced matrix Ar if the full-order matrix A is negative definite or normal (AAT = ATA) and stable, or yet if the
POD modes are built from the infinite primal Gramian G1p . In particular, one can show that this projection preserves the sym-
metry and the definiteness of the full-order matrix. First, suppose that the full-order matrix is symmetric or skew-symmetric
then the reduced matrix is also symmetric, respectively skew-symmetric
Ar ¼ VT
r AVr ¼ �VT

r AT Vr ¼ �AT
r : ð21Þ
Secondly, suppose that the full-order matrix is positive (respectively negative) definite then the reduced matrix is positive
(respectively negative) definite. Indeed, consider an arbitrary nonzero real vector x and A positive definite, then
xT Arx ¼ xT VT
r

� �
AðVrxÞ > 0 ð22Þ
since xTAx > 0 for all nonzero x by definition of positive definite matrix. Note that this definition includes also nonsymmetric
matrices by considering the symmetric part A + AT of A since
xT Ax ¼ xT Aþ AT

2
þ A� AT

2

 !
x ¼ xT Aþ AT

2

 !
x: ð23Þ
It can be shown that the reduced matrix Ar ¼ VT
r AVr can never be unstable for any stable normal matrix because the numer-

ical range is then equal to the convex hull of the spectrum of A [3]. For instance, the problem of the preservation of the sta-
bility does not exist in the cases of stable symmetric, skew-symmetric or yet stable orthogonal matrices. We can also show
that if the POD modes are calculated from G1p then the reduced matrix is stable since G1p is the solution of the Lyapunov
Equation (18) with Pp ¼ �eBeBT (with t0 = 0). Unfortunately, snapshots are sometimes computed from other Gramians which
in addition can be finite. Moreover, linearized fluid models are often non-normal and definite. Theoretically, it is well-known
that if A is non-normal, its eigenvectors are nonorthogonal and transient growth of perturbations can occur due to the linear
interference of these eigenvectors [11,13]. In addition, the numerical range of the matrix A may extend into the right half
plane Cþ. Consequently, the Galerkin projection may turn out to be unstable even if the original full-order system is stable.
The construction of an adequate Q – In becomes therefore a real challenge. Moreover it is well known that the L2-POD modes
are not necessarily the best modes for describing the dynamics of a particular physical dataset [26]. This is the case for non-
normal physical problems for which the standard POD method does generally not capture well the transient growth [19]. To
overcome this difficulty, a particular attention must be paid to the adjoint physical problem as explained afterwards.

2.4.2. General Petrov–Galerkin projection
In this case, Q – In and Wr – Vr with the condition WT

r Vr ¼ Ir . When a classical Galerkin projection is employed, the sub-
space Vr is generally not an approximation space for the dual problem if the full system is not symmetric. A better solution
then is to build the right subspace Vr as an approximation of the primal problem and to build the left subspace Wr as an
approximation of the dual problem. With this oblique projection, it is not possible to determine the definiteness or the sym-
metry of the reduced matrix. The preservation of the stability of the reduced matrix is therefore not ensured with the clas-
sical arguments. Note that, in the static case, the stability preservation is solved with the left projection Wr = AVr [8] that is
the Galerkin projection on the normal equation. The unsteady models are more complex since the choice Q ¼ AT does not
provide a well-posed weighted inner product (A is not positive definite symmetric). For other choices of Q , it is however
possible to study the stability of the reduced model by considering the Lyapunov stability theory [3,27]. Setting a natural
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Lyapunov candidate function EðxrÞ ¼ xT
r xr for the reduced system and Ar ¼WT

r AVr ¼ VT
r QAVr , the stability of the reduced

system can be investigated as follows
d
dt
EðxrðtÞÞ ¼ _xT

r xr þ xT
r

_xr ¼ ðArxrÞT xr þ xT
r ðArxrÞ ¼ xT

r Ar þ AT
r

� �
xr ¼ xT

r VT
r QAVr þ VT

r AT QVr

� �
xr

¼ xT
r VT

r ðQAþ AT QÞVrxr ¼ ðVrxrÞTðQAþ AT QÞðVrxrÞ: ð24Þ
The theorem of Lyapunov [3] ensures that the eigenvalues ki of the matrix A 2 Rn�n satisfy ReðkiÞ < 0 if and only if, for any
given symmetric positive definite matrix P, there exists a unique positive definite symmetric matrix Q satisfying the Lyapu-
nov equation:
QAþ AT Q ¼ �P: ð25Þ
Then the last identity in (24) ensures that d
dt EðxrðtÞÞ < 0 and the asymptotical stability of the reduced model since �P is neg-

ative definite. More precisely, the reduced L2-energy will be monotonically decreasing. In other words, the stability of the
reduced model is conditioned by a good choice of the matrix Q in adequation with the algebraic Lyapunov equation. In
the following, two recent methods for computing reliable Q are presented. A stabilizing numerical procedure is then intro-
duced to overcome the limitations of both projections.

2.5. Infinite dual Gramian based inner product: Q ¼ G1d

Infinite dual Gramians G1d are solutions of the Lyapunov Equation (18) with Pd ¼ �eCeCT (t0 = 0). Consequently, G1d can be
used in the weighted inner product to ensure the stability of the reduced system according to (24). Now, we deals with the
particular case of observability Gramian G1o . This approach is also called balanced-POD method, well-known in the control
community. This method is an efficient computation of the historic balanced truncation method for high-order systems. Bal-
anced truncation was first introduced by Moore [23] and then by Gavronski and Juang for time-limited Gramians [14]. It is a
reduction method for linear and stable control systems. It is known to preserve the asymptotical stability of the reduced sys-
tem. The main goal of this approach is to eliminate simultaneously the least controllable states and the least observable ones.
Balanced modes are identified by the eigenvectors of the product of the infinite Gramians G1c G1o . As a consequence, the bal-
anced modes are also the Q-POD modes with Q ¼ G1o . In other words, the balanced-POD method is equivalent to apply snap-
shot-POD method with the observability Gramian G1o as inner product [26]. Recently, balanced-POD method has been
described and adapted for many outputs by Rowley [26] in the time-domain and for general multiple inputs and multiple
outputs systems by Willcox and Bui-Thanh in the frequency and time domain [30,9]. An other very interesting property
is that this method does not depend on the choice of the inner product for defining both controllability and observability
Gramians. For instance, the adjoint system can be induced with an arbitrary inner product [19]. In the present work, we ap-
ply the balanced-POD for an initial value problem. Such a problem may be seen as a single input multiple output system
_~x ¼ A~xþ Ax0

y ¼ ~x

(
; ð26Þ
with C = In, B = Ax0, x0 the initial condition and ~x the translation x � x0. It follows that the entire state variable or in other
words all the DoFs are observed then the output projection method developed by Rowley [26,19] is applied. Since the output
is the full state and if the adjoint system is defined with respect to the standard L2 inner product, the initial conditions of the
adjoint simulations are just the L2-POD modes. As a consequence, the approximation of the observability Gramian needs sev-
eral adjoint simulations which can represent an important computation cost.

2.6. Symmetry based inner product: Q ¼ H

An important class of models are the symmetrizable hyperbolic systems. An hyperbolic system
@tdqþ E@xdqþ F@ydqþ Rdq ¼ 0 ð27Þ
is said symmetrizable if there exists a symmetric positive definite matrix H = HT > 0 such as HE and HF are symmetric, yield-
ing the symmetrized system
H@tdqþHE@xdqþHF@ydqþHRdq ¼ 0 ð28Þ
In a recent paper [6], Barone et al. demonstrate that if the H-inner product is used to compute the POD modes then the ROM
is better posed. A key property of this inner product is that a mathematical expression for the ROM energy can be derived.
The matrix Q ¼ H is a discrete formulation of the continuous matrix H constructed in a same manner as the full-order matrix
(1). H defines an energy based inner product and a Lyapunov function if the energy of the model is preserved or monoton-
ically decreasing. Finally, if C = In, the symmetrizer based inner product combined with the controllability Gramian Gc could
provide better numerical results than balanced-POD method (which corresponds to observability Gramian based inner prod-
uct combined with Gc).
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2.7. A stabilizing projection

Unfortunately, the stability of the reduced matrix is not always guaranteed with time-limited Gramians as suggested in
the previous sections. For instance, this is the case with the dual Gramian based inner product since the matrix Pd from (19)
is not guaranteed to be positive definite at finite time [15]. This is also the case when the full matrix A is neutrally stable or
even weakly unstable. This motivates the introduction of a stabilizing method. This issue has been recently addressed
[2,7,24] by deriving a convex optimization problem to enforce the stability of the primal reduced-model. In the present
study, a new effective way is proposed to guarantee the stability of the reduced model without computing an artificial left
projection Wr.

2.7.1. Principles of the stabilizing method
We look for a projection able to enforce the stability of the reduced model for all time. This is not obvious since energy can

grow at finite time, due to the non-normality of the full model. The main idea here is to impose the preservation of an intro-
duced energy into the reduced model. If an energy is preserved then the reduced-order system should be stable. This point is
essential for conservative dynamical systems, for instance. For that purpose, we first define the dynamical system
E _z ¼ EeAz
zðt0Þ ¼ z0

(
ð29Þ
with
z ¼
x
ŷ

� 	
2 R2n; E ¼

0 In

In 0

� 	
2 R2n�2n; eA ¼ A 0

0 �AT

� 	
2 R2n�2n: ð30Þ
In this definition, x is a solution of the primal problem and ŷ is a solution of the anti-dual problem. Note that the large matrix

EeA is skew-symmetric. The second step is to construct an approximation subspace eVr ¼
Vp

r

Vd
r

� 	
such that
eVT
r EeVr ¼ VpT

r Vd
r þ VdT

r Vp
r ¼ Ir : ð31Þ
The reduced model is then built as follows
eVT
r EeVr|fflfflffl{zfflfflffl}

Ir

_zr ¼ eVT
r EeA eVr|fflfflfflfflffl{zfflfflfflfflffl}eAr

zr ð32Þ
which gives
_zr ¼ eArzr ð33Þ
with
eAr ¼ VdT

r AVp
r � VpT

r AT Vd
r : ð34Þ
The reduced model (33) is now defined for both primal and anti-dual problems. Vp
r is an approximation subspace for the di-

rect problem and Vd
r is an approximation subspace for the anti-dual problem. The stability property of this reduced model is

now studied. With the Eq. (21) or (34), the reduced matrix eAr is also skew-symmetric. Consequently, the reduced initial en-
ergy is preserved since
zT
r

_zr ¼
1
2

d
dt

zT
r zr

� �
¼ zT

r
eVT

r EeA eVr

� �
zr ¼ 0 ð35Þ
which implies
zT
r zr ¼ zT

r0
zr0 ; zr0 ¼ eVT

r Ez0 ð36Þ
for all time. This procedure is called L2-stabilizing method. A Q-stabilizing method is also introduced by considering the
dynamical system
EQ _z ¼ EQ
eAQ z

zðt0Þ ¼ z0

(
ð37Þ
with
EQ ¼
0 Q
Q 0

� 	
2 R2n�2n; eAQ ¼

A 0
0 �Q�1AT Q

� 	
2 R2n�2n; Q ¼ Q T > 0: ð38Þ
The reduced matrix is then given by
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eAr ¼ VdT

r QAVp
r � VpT

r AT QVd
r : ð39Þ
Similarly, the reduced energy is preserved since the full matrix EQ
eAQ is skew-symmetric.

2.7.2. Practical computation of the L2-stabilizing method
The stabilizing method requires the construction of the subspace eVr . To do that, the snapshot method is adapted to be

able to consider very large systems. Let Z ¼ X
Y

� 	
2 R2n�m a snapshot matrix from the dynamical system (29). First, simulate

the direct dynamical problem
_xðtÞ ¼ AxðtÞ
xðt0Þ ¼ x0


ð40Þ
and store m snapshots x(ti) from the temporal interval [t0, tf] in the matrix X = [x1, . . . ,xm]. Secondly, simulate the skew-ad-
joint dynamical system
_̂yðtÞ ¼ �AT ŷðtÞ
ŷðt0Þ ¼ ŷ0

(
ð41Þ
and store again exactly m snapshots ŷðtiÞ at the same time ti in the matrix Y ¼ ½ŷ1; . . . ; ŷm�. After that, form the symmetric
square matrix
ZT EZ ¼ YT Xþ XT Y ð42Þ
and compute r eigenmodes ~wi in a matrix Uþr corresponding to the r largest positive eigenvalues ki stored in a diagonal matrix
Dþr . Form then both Vp

r and Vd
r subspaces
Vp
r ¼ XUþr Dþ

�1=2

r

Vd
r ¼ YUþr Dþ

�1=2

r :
ð43Þ
The biorthonormality property is therefore guaranteed since
eVT
r EeVr ¼ VpT

r Vd
r þ VdT

r Vp
r ¼ Dþ

�1=2

r Uþ
T

r XT YUþr Dþ
�1=2

r þ Dþ
�1=2

r Uþ
T

r YT XUþr Dþ
�1=2

r ¼ Dþ
�1=2

r Uþ
T

r ðX
T Y þ YT XÞUþr Dþ

�1=2

r ¼ Ir:

ð44Þ
This snapshot procedure now requires two high-fidelity simulations. It is essential that the anti-dual snapshots and direct
snapshots are saved at the same times t1, . . . , tm and are built in the same order in matrices X and Y. In addition, we choose
ŷ0 ¼ x0 to have zT Ez ¼ 2xT

0x0 > 0. Indeed, the method supposes that the modulus of negative eigenvalues of the matrix
XTY + YTX are non-physical or negligible compared to its largest positive eigenvalues since the matrix E is not definite po-
sitive. A necessary condition for that is to verify zT Ez ¼ 2xT

0ŷ0 > 0. That explains the important role of the initial condition
ŷ0 for the skew-adjoint dynamical problem. A canonical choice to guarantee this positivity is ŷ0 ¼ x0.

2.7.3. Remarks
The computation of the Q-stabilizing procedure is similar. In the particular case of skew-symmetrizable matrices, there

exists a matrix Q such as QA is skew-symmetric. For such matrices, the Lyapunov Equation (25) reduces to QAþ ðQAÞT ¼ 0
which implies the preservation of the reduced L2-energy. The Q-stabilizing method is therefore equivalent to the Q-POD
method if the same initial condition is considered for the skew-adjoint problem. Secondly, if A is asymptotically stable then
�AT is unstable. This is why the stabilizing projection should be more adapted for hyperbolic systems which are intrinsically
skew-symmetric and also for weakly unstable systems. For symmetrizable hyperbolic systems, a good choice for defining the
Q-stabilizing method should be
EH ¼
0 H

H 0

� 	
; eAH ¼

A 0
0 �H�1AT H

� 	
ð45Þ
in order to yield a conservative and energy consistent reduced-order model simultaneously. Finally, the stabilizing procedure
appears as an extension of the snapshot-POD method since it is able to induce a stable reduced system even if the primal full
system is unstable. Remind that the POD procedure is limited to build a monotonically stable reduced matrix Ar ¼ VT

r QAVr

from a globally stable full matrix A (but not necessarily monotonically stable) since there does not exist a symmetric definite
positive matrix Q such that QA is stable if A is unstable. That is demonstrated from the Lyapunov theory.

3. High-fidelity test model

Dynamics of small perturbations in inviscid compressible flows can be described by the Linearized Euler Equations (LEEs).
For instance, LEEs associated with appropriate source terms are often used as an extension to Lighthill’s analogy in
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computational aeroacoustics [5] and as an efficient simplified aerodynamic model for aeroelastic predictions [16]. The LEEs
are succinctly presented in this section.
3.1. LEEs

The two-dimensional nonlinear Euler equations for a perfect gas are linearized around a steady mean flow ð�q; �u; �pÞwith q
the density, u = (u,v) the velocity, p the pressure, and the overbar denoting the mean value. The behavior of small perturba-
tions (dq,du,dp) is governed by the LEEs, written in a quasi-conservative form, as:
@tdqþ @xðEdqÞ þ @yðFdqÞ þ Rdq ¼ s; ð46Þ
with:
dq ¼

dq
�qdu
�qdv
dp

8>>><>>>:
9>>>=>>>;; E ¼

�u 1 0 0
0 �u 0 1
0 0 �u 0
0 �c2 0 �u

0BBB@
1CCCA; F ¼

�v 0 1 0
0 �v 0 0
0 0 �v 1
0 0 �c2 �v

0BBB@
1CCCA; R ¼

0 0 0 0
�uTr�u @x�u @y�u 0
�uTr�v @x �v @y �v 0

0 ~c�uTr�u ~c�uTr�v 0

0BBB@
1CCCA; ð47Þ
~c ¼ c� 1 (c = 1.4 for air), �c ¼
ffiffiffiffiffiffiffiffiffiffiffi
c�p=�q

p
is the local speed of sound, s the source term and R the so-called reaction matrix [25]. R

depends only on the mean velocity and is identically null for uniform mean flows. LEEs do not only support acoustic modes,
but also vorticity and entropy modes. In this paper, the mean flow will be first supposed uniform to introduce model reduc-
tion concepts. The treatment of nonuniform or even unstable base flows remains much more complex theoretically and
numerically [1,5] due to possible growing energy at finite time. It can be shown that this potential growing is only induced
by the reaction matrix at least for isothermal and incompressible base flows. An example of classical shear flow will be pre-
sented at the end. The LEEs (46) are a symmetrizable hyperbolic system of partial differential equations. The symmetrizing
matrix H is given by
H ¼

a2�c2 0 0 �a2

0 1 0 0
0 0 1 0
�a2 0 0 d

0BBB@
1CCCA; ð48Þ
with d ¼ ða2 þ 1Þ=�c2 and a is an arbitrary real nonzero parameter. Since uniform mean flows support only neutral and decay-
ing modes, the H-inner product must preserve the stability in the reduced model. Furthermore, this inner product is phys-
ically consistent contrarily to the L2-inner product [6] since
dqT Hdq ¼ a2�c2dq2 þ �q2ðdu2 þ dv2Þ þ ddp2 � 2a2dqdp ð49Þ
whereas
dqTdq ¼ dq2 þ �q2ðdu2 þ dv2Þ þ dp2: ð50Þ
Expression (49) has a better physical interpretation since the induced norm is homogeneous to a physical energy.
3.2. Boundary conditions

The boundary conditions are very important in the computation of compressible flows since any reflected disturbance can
contaminate the numerical solution. For outgoing acoustic waves, the nonreflecting boundary conditions of Tam and Dong
[29] are used. In polar coordinates (r,h) centered at the source position, we have
@tdqþ Vg
@

@r
dqþ 1

2r
dq

� �
¼ 0; ð51Þ
as r ?1. The group velocity of acoustic waves Vg is given by
Vg ¼ �u 	 er þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c2 � ð�u 	 ehÞ2

q
ð52Þ
where er and eh are the unit vectors in the r and h directions. For an outflow boundary condition, the pressure disturbance is
still considered as an acoustic fluctuation, which is not the case for the velocity and density disturbances. For these last two
variables, LEEs are employed. The slip boundary condition on a wall with normal vector n, namely duTn = 0, implies that
there is no restriction on the velocity perturbation parallel to the wall. This slipping condition is directly substituted in
the vectors Edq and Fdq at the wall.
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3.3. Semi-discretization and matrix formulation

LEEs (46) are solved on a Cartesian grid with high-order finite differences. The space derivatives are discretized with ex-
plicit centered eighth-order finite differences (non dissipative scheme). Spatial derivatives of radiation conditions (51) are
solved for the three points surrounding the computational interior domain using fourth-order backward finite differences.
The same backward scheme is adopted for points located near wall boundaries. A matrix formulation is adopted. The
semi-discretized LEEs are thus assembled to form a global matrix and can be written in a compact form as:
_xðtÞ ¼ AxðtÞ þ BuðtÞ; ð53Þ
with x the unknown vector. The matrix A represents the discrete action of the spatial linear operator of the LEEs on the spa-
tial discretization of the variable dq. This linear system of ordinary differential equations has n = 4 � nx � ny degrees of free-
dom where 4 is the number of physical variables, nx and ny the number of grid points in x and y directions respectively.
Consequently, the full-order matrix A is block nonadiagonal and each of these blocks is also block nonadiagonal. The source
term is assumed to write as a linear combination of terms where time and space variables are separable. The matrix B rep-
resents thus the spatial discretization of the space part of the source term s. The matrix symmetrizer H is just block diagonal.
Time integration of the full-order model (53) is performed by a fourth-order Runge–Kutta scheme.

3.4. Adjoint LEEs

Approximation of the observability Gramian and of the stabilizing projection involves respectively the adjoint matrix AT

and the anti-adjoint matrix �AT. However, it is important to notice that when a matrix formulation is adopted, the transpose
of the matrix AT is not always well-posed because of the boundary conditions. For example, this is the case for the radiation
boundary conditions used in this study. This is explained by the fact that when the transpose of the matrix AT is considered,
the adjoint of the radiation boundary model is implicitly induced. But the adjoint of the Eq. (51) is not physical since it is not
an asymptotic expression of the adjoint LEEs in the far field. It is then necessary to reconstruct completely the matrix from
the adjoint (respectively anti-adjoint) operator with appropriate boundary conditions. The steady L2-adjoint operator is
identified for interior points after integration by parts of the LEEs over the computational domain X as
Z

X
q̂T ½E@xqþ F@yqþ eRq�dx ¼ �

Z
X

qT ½@xðET q̂Þ þ @yðFT q̂Þ � eRT q̂�dxþ
Z
@X

qTðAnq̂Þds ð54Þ
with eR ¼ R þ @xEþ @yF. Far from the boundary conditions, the L2-adjoint operator locally becomes
�@xðET q̂Þ � @yðFT q̂Þ þ eRT q̂: ð55Þ

The L2-adjoint problem is similar to the direct problem. The sign of each characteristic is reversed so that information travels
in the opposite direction. As a consequence, the Tam and Dong radiation condition remains identical. The formulation is only
adapted by changing the sign of the steady mean flow in the group velocity. In the same way, the no-penetration condition is
replaced in the new flux vectors. Because L2-adjoint LEEs are of the same nature that primal LEEs, the same spatial discret-
ization schemes for interior and boundary points and temporal integration are applied. The spatial discretization of the
adjoint operator combined with adapted non-reflecting boundary condition yields a matrix A+ – AT. In a same way, the
skew-adjoint operator is just obtained by changing the sign of the adjoint operator so information travels in the same direc-
tion that direct problem. Consequently, no changes of Tam and Dong boundary condition are required but again we have
�A+ – �AT. In the best case, the matrix A+ will be conditionally asymptotically stable since the Tam and Dong boundary con-
ditions depend on the source position. Note that LEEs are purely skew-symmetric with the symmetrizer when base flows are
uniform. This property can be shown from the H-skew-adjoint LEEs which are identical to the direct LEEs for uniform flows
contrary to the L2-skew-adjoint LEEs. Implicitly, the symmetry based inner product includes then dual information at least
for uniform mean flows. Finally, since �AT is not well-posed, the Q-stabilizing method is applied with the matrix
eA ¼ A 0
0 �Q�1AþQ

� 	
: ð56Þ
4. Numerical results

The reduced-order models are integrated in time using the same fourth order Runge–Kutta scheme with the same time
step that is used in the high-fidelity simulation. Then for each numerical examples, the accuracy of the reduced model is
measured from the L2 relative error defined as the difference between a snapshot from the full-order model and from the
reduced-order model
er ¼max
i

kxðtiÞ � VrxrðtiÞkL2

kxðtiÞkL2
: ð57Þ
Note that the H-stabilizing method is not displayed when base flows are uniform because the projection is then equivalent to
the H-POD method.



Table 1
Relative error er as a function of the number modes and the choice of the projection.

Inner product 20 25 30 35 40 45

L2 1.79 1.78 1.73 6.54 � 10�1 3.61 � 10�1 4.83 � 10�2

Go � 1 5.54 � 10�1 9.96 � 10�2 6.95 � 10�2 1.35 � 10�2 6.6 � 10�3 9.24 � 10�4

Go � 5 4.34 � 10�1 1.0 � 10�1 5.68 � 10�2 1.3 � 10�2 5.9 � 10�3 9.21 � 10�4

H 2.3 � 10�1 1.03 � 10�1 5.47 � 10�2 1.33 � 10�2 6.7 � 10�3 9.24 � 10�4

L2-stabilizing 2.14 � 10�1 1.03 � 10�1 5.47 � 10�2 1.33 � 10�2 6.7 � 10�3 9.24 � 10�4
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4.1. Test with neutral stability: a critical case

This first case introduces the main numerical aspects for the construction of a reduced dynamical system. In this example,
LEEs (46) are simplified to a one-dimensional propagation problem by setting periodic boundary conditions in the y-direc-
tion. An initial value problem is considered with an acoustic Gaussian pulse located at the center of the computational
domain. When the simulation is performed, the propagative and retrograde waves interfere at varying positions which
depend on the Mach number. For particular Mach number, this phenomenon is time-periodic. So the interference positions
are repeated. Here, the period can be found by looking for the natural numbers n, m and k such as n(c + c/k) = m(c � c/k). For
example, for a given k, m = k + 1 and n = k � 1 can be chosen.
Table 2
maxi ReðkiÞ as a function of the number modes and the choice of the projections.

Projections 20 25 30 35 40 45

L2 8.36 � 10�1 5.22 � 10�1 3.7 � 10�1 7.83 � 10�1 4.85 � 10�1 2.77 � 10�1

Go � 1 3.4 � 10�1 6.11 � 10�2 9.93 � 10�1 1.33 � 10�1 6.78 � 10�2 2.99 � 10�2

Go � 5 5.54 � 10�2 6.32 � 10�2 1.9 � 10�1 2.7 � 10�2 8.5 � 10�3 2.11 � 10�2

H 4.83 � 10�15 1.42 � 10�14 7.55 � 10�15 1.24 � 10�14 1.78 � 10�14 1.51 � 10�14

L2-stabilizing 3.37 � 10�14 3.11 � 10�14 4.26 � 10�14 5.02 � 10�14 5.59 � 10�14 6.39 � 10�14

Fig. 1. Long-time behavior of reduced dynamical systems. (a) Pressure after 9000Dt with 40 L2-POD modes, (b) Pressure after 22000Dt with 40 L2-POD
modes: development of the Galerkin instability. (c) Pressure after 350000Dt with 40 H-POD modes.
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Fig. 3. Analysis of the L2-energy decrease according to the number of modes and projections. In grey dashed line: full-order model, in grey solid line: L2, in
black solid line: H, in black dashed line: L2-stabilizing. (a) With 30 DoFs (b) With 40 DoFs.
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4.1.1. Numerical parameters
The computational domain is square with a length size of 100 m. It is discretized by 120 � 120 points, yielding 57600

DoFs for the full-order model. The time step is deduced from the CFL (Courant-Friedrichs-Lewy) condition. The mean flow
is ðq0;0;M�c; p0Þ with q0 = 1.2 kg m�3, p0 = 1.01325 � 105 Pa and M the Mach number. The initial condition is given by
qðx; t0Þ ¼ ðpðx; t0Þ=�c2;0;0; pðx; t0ÞÞT with
pðx; t0Þ ¼ expð�b½ðx� x0Þ2 þ ðy� y0Þ
2�Þ; ð58Þ
b = log (2)/b2, b = 5 the half width of the Gaussian and (x0,y0) = (50,50) its center. Periodic boundary condition in y-direction
is written for all time t as q(x,0, t) = q(x,100, t).
4.1.2. Accuracy in snapshot interval
In Table 1, the accuracy of the reduced dynamical system is displayed according to the number of modes and to the pro-

jection that is used. Here the Mach number is M = 0.5 and consequently k = 2. In each case, the modes are calculated from all
the snapshots in only one period which corresponds approximately 700 snapshots for D t = 0.001 s. The Go-POD modes are
calculated from the L2-POD modes with the output projection method proposed by Rowley and described in Section 2.5 since
the state is observed everywhere in space. Go � 1 and Go � 5 denote respectively that the observability Gramian is calculated
with one and five L2-POD modes. H-POD modes are computed with the parameter a = 0.1. The number of modes needed for a
given accuracy depends on the half width b and as a consequence of the scale of patterns too. Both inner products H and Go



Table 3
Relative error er in function of number modes and the projections.

Inner product 25 30 35 40 45 50

L2 4.08 1.29 4.4 � 10�1 1.11 � 10�1 2.8 � 10�2 5.0 � 10�3

H 6.12 � 10�1 1.8 � 10�1 7.06 � 10�2 2.15 � 10�2 7.9 � 10�3 3.6 � 10�3

L2-stabilizing 6.12 � 10�1 1.8 � 10�1 7.06 � 10�2 2.15 � 10�2 7.9 � 10�3 3.6 � 10�3
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require fewer modes than the L2-inner product for a given order of accuracy. Table 1 shows that the accuracy of H and Go are
very similar because they both contain dual information. This property is strengthened with the L2-
stabilizing projection that yields the same accuracy. Note also that the L2-stabilizing projection provides exactly the same
accuracy as the symmetry based inner product. Furthermore, an analogous study shows that the H, Go and the L2-stabilizing
projection require to store less snapshots for obtaining the accuracy of the L2-inner product.

4.1.3. Stability analysis and long-time behavior
Numerical analysis of long-time dynamics behavior of the reduced-order model can be accomplished by computing the

largest real part of eigenvalues of the reduced matrix. It is indeed well-known that if this latter is lower than zero then the
associated linear autonomous dynamical system is stable. In this particular numerical test, all the modes are neutral because
the system is conservative. This is the reason why, the real part of all eigenvalues should be null until the machine precision.
In Table 2, the largest real part of the eigenvalues of the reduced matrices induced by the different inner products are com-
pared. It is observed that both reduced matrix constructed thanks to the L2 and Go inner products do not conserve the neutral
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Fig. 4. Analysis of the stability of the reduced-order models according to the r number of modes, the projection and the temporal interval construction.
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Fig. 7. Acoustic perturbation in an open channel: pressure field at 540Dt. (a) Full-order model (b) ROM with 20 DoFs (c) ROM with 30 DoFs (d) ROM with 40
DoFs.
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stability contrary to the H inner product. This is explained by the fact that the full model is not asymptotically stable then the
infinite controllability Gramian is not defined. Note that Ma et al. [22] suggest in a recent paper to subtract the neutral modes
of the full model in a first time and then to apply the balanced-POD method. This technique can not be applied to our case
since all the modes are neutral. The reduced models from the symmetry projection and the stabilizing projection are per-
fectly neutrally stable because the reduced matrix is purely skew-symmetric. In Fig. 1, the classical Galerkin instability
occurring when a L2 projection is employed, is illustrated after some periods in pictures (a) and (b). On the contrary, the
dynamical system from the H-POD modes is impressively clean after numerous periods in picture (c). In Fig. 2, the long-time
behavior of the L2-energy of the reduced model is plotted for the different projections showing that the reduced energy is not
preserved with the L2 and Go projections in agreement with the stability analysis. On the other hand, the energy is perfectly
conserved with the H and L2-stabilizing projections.

4.2. Acoustic perturbation in an open system

In this test-case, we check if the reduced model is still numerically well-posed in the presence of radiation boundary con-
ditions. Since the waves leave the physical domain, the full-order model should be asymptotically stable. The reduced model
should then preserve this stability behavior. The observability-Gramian-based inner product is not compared here because
the nonreflective boundary conditions turned out to be insufficient in simulations of the L2-adjoint LEEs with L2-POD modes
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as initial conditions. Improvement of the anechoic boundary conditions for the L2-adjoint LEEs must be carried out in future
studies. The numerical parameters and the initial condition are identical to the previous test case. Non-reflecting boundary
conditions are used in both spatial directions. The base flow is uniform in the x-direction with M = 0.5. Hence the outflow
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Fig. 11. Example of direct modes showing pressure field for the different methods.
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Fig. 12. Example of adjoint modes showing equivalent pressure field for the different methods.
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boundary condition is placed on the right computational domain. The perturbations are recorded every two time steps. In
Fig. 3, the symmetry based inner product and the L2-stabilizing projection reproduce perfectly the dissipation of the energy
in agreement to the high-fidelity simulation with forty DoFs (picture (b)). On the other hand, the L2 projection needs more
modes to reproduce faithfully the decreasing rate of the energy in the computational domain at long time. This difference is
more significant with only thirty modes (picture (a)). That is also attested by the accuracy analysis given in Table 3. The sta-
bility analysis in Fig. 4(a) reveals that the L2 projection can be unstable for certain choices of the reduced dimension con-
trarily to both H and stabilizing projections. In Fig. 5, it can be seen that both L2-stabilizing method and H-POD method
conserve the reduced energy as long as disturbances are far from radiation boundary conditions. In addition, energy profiles
of these both methods are globally monotonic contrarily to the energy profile obtained by the standard POD method. Note
that since the perturbations must leave the computational domain for the primal and the dual problem, the reduced energy
can not be preserved. That also explains why the matrix �AT can not be well-posed with two-dimensional non-reflecting
boundary conditions. The stability analysis in Fig. 4(b) combined with the analysis of reduced energy profile in Fig. 6 shows
that spurious reflections due to imperfect non-reflecting boundary conditions have consequences for the stability of the re-
duced matrix. Actually, the smallest non physical reflections can induce sufficient numerical growing energy to destabilize
the reduced model. That also explains the difficulty for using balanced-POD method since the rigorous asymptotic behavior
is then uncertain. However, the L2-stabilizing method has been able to preserve the stability even with these spurious
reflections. The development of perfectly non-reflecting boundary conditions for compressible flow remains an open topic
in aeroacoustics [12].
4.3. Acoustic perturbation in an open channel

The computational domain is a 200 m � 100 m rectangle, discretized by 201 � 101 points, so that the high-fidelity model
has 81204 DoFs. Radiation boundary conditions are applied in x-direction and wall boundary conditions are applied in
y-direction. The same initial value problem is considered but now (x0,y0) = (0,0) and Dt = 0.7127 � 10�3 s. The full model
is advanced in time and snapshots are stored every tenth time step. The symmetry based inner product H is employed since
it has given the best results in the presence of uniform base flows. Indeed, whereas the L2-stabilizing projection would pro-
vide similar results, it requires two high-fidelity simulations (direct and anti-adjoint). The H-POD modes are constructed
with 100 snapshots from the time interval simulation. In Fig. 7, pressure snapshots after 540 temporal iterations are com-
pared for different dimensions of the reduced-order model. In this case, the ROM needs about forty modes to reproduce
faithfully the high-fidelity solution.
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4.4. Free mixing layer

In this last example, the propagation of the acoustic pulse (58) in a convectively unstable shear flow
�u ¼ 0:5�c þ 0:25�c tanh
y� 50

5

� 	
; 0

� 	T

ð59Þ
is simulated. The computational domain is a 200 m � 100 m rectangle, discretized by 600 � 300 points, so that the
high-fidelity model has 720000 DoFs. The time step is D t = 0.0006 s. The full model is simulated during 1000 time steps
and solutions are stored every fifth time step yielding 200 snapshots. First, stabilizing projections and H-POD method
provide similar accuracy and behave significantly better than standard POD method, as shown in Fig. 8. Again, the L2-
POD method does not capture well the transient behavior of the energy at long time with few modes. Secondly, impressive
numerical results for the stabilizing projections are reported in Figs. 9 and 10. In Fig. 10, it can be seen that both L2-
stabilizing and H-stabilizing methods yield stable reduced-order models in spite of the fact that energy is growing at long
time. This property is also attested by the time history of the energy reported in Fig. 9 (c) and (d), given that time evolution
of the L2 reduced energy is globally monotonically decreasing. Again, the reduced energy is preserved as long as perturba-
tions are far from radiation boundaries but also when only the vortical mode is convected at the end of the simulation. Fur-
thermore, H-POD method preserves the transient physical behavior of the energy. Thus the reduced matrix cannot be stable
at finite time due to energy growing. Finally, some direct and adjoint modes are respectively displayed in Figs. 11 and 12.
First, L2 and H methods generate different mode structures. Secondly, Q-stabilizing methods and Q-POD methods provide
modes of similar structure. In particular, H methods capture well the structure of pressure perturbation due to the vortical
mode in energetically significant modes unlike L2 methods. Actually, it can be seen that the vorticity mode is present in L2

methods but in the higher order modes. That confirms that the use of a weighted inner product based on the matrix H
induces a better representation of the physical energy.
5. Conclusion

Optimal reduced-order models have been constructed for LEEs and applied for simple two-dimensional problems. The
choice of the right and left projections has been shown to be fundamental for the optimality and the stability properties
of the reduced model, particularly by including dual dynamics. When all the DoFs are observed in the presence of uniform
base flows, the symmetry based inner product is shown to be the most reliable for accuracy, optimality, stability and cost
considerations. This product is accurate since the adjoint system is implicitly included, stable because it is an energy-based
inner product and inexpensive since it needs only one direct high-fidelity simulation. A new stabilizing projection is pro-
posed which turns out to yield similar properties and appears to be a promising extension in the presence of non-uniform
flows. The method is based on the definition of a skew-symmetric dynamical system constructed from the primal and anti-
dual problems. It requires two high-fidelity simulations and emphasized the crucial role of skew-adjoint systems to build
stable reduced-order models from full non-symmetric problems. In this sense, it could be used even for not symmetrizable
hyperbolic systems. However, the output projection method needs several high-fidelity simulations and does not ensure the
stability, in particular the conservation of the energy. The method is also not easy to carry out by including non-reflecting
boundary conditions. More generally, accurate non-reflecting boundary conditions can be crucial to avoid destabilization
of reduced-order models. With nonuniform mean flows, it is shown that Q-stabilizing methods are able to induce a stable
reduced-order model even in the presence of an hydrodynamic instability wave. The numerical procedure is then powerful
since this property is not satisfied with Q-POD methods at finite time. In addition, it seems that the stabilizing method does
not affect the optimality of the reduced models. Finally, the classical L2 Galerkin projection appears to be not adapted, lead-
ing to unstable and too sensitive reduced-order models, especially to capture transients.
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