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Résumé

La question de dissocier le champ acoustique du champ aérodynamique, étroitement liée à celle de la
définition adéquate des sources de bruit, reste une question ouverte d’une grande importance pratique
en aéroacoustique. En proposant une analogie acoustique construite sur le potentiel acoustique, cette
étude veut contribuer à la construction d’un modèle de prédiction du bruit de jet, qui soit robuste et
pragmatique pour des applications de l’industrie aéronautique. Le formalisme de l’adjoint utilisé dans le
calcul de la propagation du son, recours au principe de réciprocité, et est réalisé indépendamment des
sources de bruit. Ce formalisme est le seul capable de modéliser le rayonnement acoustique de l’air éjecté
par un turboréacteur avec un coup raisonnable, lorsque cet écoulement est calculé par les équations de
Navier-Stokes moyennées et n’est connu que de manière statistique.

Le modèle statistique du bruit de mélange turbulent de Tam et Auriault (1999) est le premier à
recourir à une approche adjointe de ce type. Ce travail reformule pour le potentiel acoustique ce modèle
emblématique, et compare le modèle de propagation proposé, basée sur l’équation de Pierce (1990), au
modèle original utilisé par Tam et Auriault (1998). Un accord satisfaisant est trouvé entre les deux
approches. Contrairement à la formulation de Tam et Auriault, l’équation d’onde pour l’acoustique
potentielle conserve l’énergie acoustique et ainsi ne présente pas de couplage avec le mode entropique ou
le hydrodynamique possiblement instable. De plus, la formulation proposée prend en compte l’effet de
la présence des surfaces dans le calcul de la propagation acoustique. Le calcul de la solution réciproque
par retournement d’écoulement représente une alternative plus intuitive et plus simple à mettre en oeuvre
que la méthode de l’adjoint. Ce travail montre que cette approche simplifiée ne s’applique que pour des
opérateurs auto-adjoints comme l’équation de Pierce retenue. Pour démontrer la viabilité opérationnelle
de la méthode, la solution adjointe à l’équation de Pierce pour une configuration réaliste de turboréacteur a
été calculée à l’aide du code commercial Actran TM. Des champ adjoints correspondant à une propagation
en champ proche et en champ lointain sont présentés.

Dans le modèle considéré, le champ acoustique est linéaire, dérive d’un potentiel et se propage autour
d’un écoulement moyen quelconque. La théorie peut être réécrite à l’aide du formalisme des rayons
exacts (Foreman, 1989), et coïncide ainsi avec les cas limites de l’acoustique potentielle et de l’acoustique
géométrique; soit avec les deux seuls cas pour lesquels l’acoustique peut être définie sans ambivalence. De
surcroît, ce travail réécrit les équations d’Euler sous une forme originale et fournit une équation d’onde
très générale sur la seule variable de la vitesse.

Abstract

The issue of properly distinguishing the acoustic field from the aerodynamic field, which is in close
relation with that of the adequate definition of noise sources, remains an open question of great practical
importance in aeroacoustics. By proposing an acoustic analogy built on the acoustic potential, this study
intends to contribute to the construction of a prediction model for jet noise, that is robust and pragmatic
with respect to the context of the aeronautical industry. The adjoint formalism used in the calculation
of the sound propagation is based on the reciprocity principle, and is carried out independently of noise
sources. This formalism is the only one capable of modelling the acoustic radiation of the air ejected by
an aircraft engine, at a reasonable computational cost, when this flow is obtained by Reynolds averaged
Navier-Stokes (RANS) equations and is only known statistically.

The statistical model of turbulent mixing noise of Tam and Auriault (1999) is the first to use an ad-
joint approach of this kind. This work reformulates this emblematic model for the acoustic potential, and
compares the proposed model, based on the equation of Pierce (1990), with the original propagation model
that Tam and Auriault (1998) used. A satisfactory agreement is found between the two approaches. Un-
like in Tam and Auriault’s formulation, the wave equation for the acoustic potential conserves the acoustic
energy and therefore does not present any coupling with the entropic mode nor with the hydrodynamic
mode, that is possibly unstable. The proposed formulation also takes into account the effect of the pres-
ence of surfaces in the calculation of acoustic propagation. The calculation of the reciprocal solution by
flow reversal represents a more intuitive and easier to implement alternative to the adjoint method. This
work shows that this simplified approach is applicable only for self-adjoint operators such as Pierce’s wave
equation that has been selected. To demonstrate the operational viability of the method, the adjoint so-
lution to Pierce’s equation for a realistic turbofan engine configuration is calculated using the commercial
code Actran TM. Adjoint fields corresponding to near-field and far-field propagation are presented.

In the model considered, the linear acoustic field is obtained from a potential scalar function and
propagates around an arbitrary mean flow. The theory can be rewritten using the exact ray formalism
(Foreman, 1989), and thus coincides with the two limiting cases of potential acoustics and geometric
acoustics, the only cases in which acoustics can be defined without ambivalence. Furthermore, Euler’s
equations are recast in an original form in this study and provides a very general wave equation based
solely on the velocity variable.
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Guide de lecture

Cette thèse s’articule en deux parties, une description succinte des chapitres les composant est donné ici.

Partie I:

Chapitre 1

Le cadre d’étude des analogies acoustiques est introduit, leur domaine de validité et leur intérêt sont

exposés. Le son est décrit sous la forme d’une perturbation linéaire se propageant autour d’un écoulement

porteur. La capacité qu’ont les analogies acoustiques à pouvoir caractériser les sources de bruit d’un jet

est dépeinte sommairement. Le concept d’ondes d’instabilités est introduit, et des raisons pour ne pas

chercher à décrire ces dernières sont avancées. Enfin, la structure de cette partie de la thèse est donnée.

Chapitre 2

L’équation d’onde d’Euler (en anglais “Euler’s wave equation”, abrégé en EWE) sous forme non homogène

est déduite des équations de Navier-Stokes. Les analogies acoustiques établies à partir d’une linéarisation

et d’une expansion autour d’un écoulement incompressible sont passées en revue et ces techniques sont

appliquées à EWE. Un modèle aéroacoustique basé sur l’équation d’onde de Pierce (1990) est proposé. La

métrique acoustique associée à cette équation d’onde est présentée, ainsi que son hamiltonien. Les rayons

exacts de Foreman (1989) sont généralisés à un écoulement moyen quelconque, de sorte a être équivalente

à l’équation de Pierce.

Chapitre 3

Le code maison de différence finie PROPA est présenté et validé pour la quatrième configuration du

workshop d’aéroacoustique numérique. Le concept de noyau auto-adjoint est introduit et de nouvelles

équations d’ondes stables sont proposées. Avec l’aide de PROPA, leur stabilité est testée et leur capacité

à calculer avec précision la propagation du son se propageant autour d’un écoulement cisaillé est comparée.

Partie II:

Chapitre 1

Une introduction à la certification acoustique des avions et aux effets de l’installation des turboréacteurs

met en évidence le besoin et l’enjeu pour les motoristes de développer un outil fiable de prédiction du

bruit produit par le jet. Compte tenu de la complexité de la géométrie rencontrée dans les architectures

d’avions modernes et les ressources de calcul disponibles, la densité spectrale de puissance nécessaire

à la certification doit être déterminée à partir des solutions des équations de Navier-Stokes moyennées

(RANS). Dans ce type de modélisation statistique, le champ acoustique rayonné par le jet est pris en

compte avec une approche adjointe. L’organisation de la seconde partie de la thèse est ensuite précisée.

Chapitre 2

Un examen détaillé du modèle de bruit de mélange de Tam and Auriault (1999) est fourni ici. Un effort est

fait pour recalculer à nouveau la formule de prédiction en mettant l’accent sur une utilisation rigoureuse
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de la méthode de l’adjoint. En complément des travaux de Tam et Auriault, la corrélation de fonction de

Green adjointe (1999, eq. (34)) est modélisée à l’aide d’une expansion de Taylor. La deuxième partie de

ce chapitre est consacrée à l’application de ce modèle à une formulation basée sur l’équation de Pierce, et

utilisant l’acoustique potentielle. Quelques remarques sur la manière de modéliser le bruit de choc large

bande (en anglais, Broadband shock associated noise abrégé en BBSAN) de Morris and Miller (2010) avec

le formalisme proposé sont données en perspective.

Chapitre 3

L’énoncé le plus général du principe de réciprocité est basé sur le formalisme de l’adjoint. Dans ce

chapitre, une discussion approfondie sur la méthode de l’adjoint est menée, et le bénéfice que représente le

recours à des opérateurs auto-adjoints pour résoudre le problème de la propagation acoustique est souligné.

Tam and Auriault (1998) ont exposé comment une approche adjointe permet de prédire le bruit de sources

stochastiques distribuées dans un écoulement complexe (Tam and Auriault, 1999). Une déclaration claire

portant sur l’applicabilité du théorème de retournement d’écoulement (en anglais “flow reversal theorem”,

abrégé en FRT), et sur sa restriction aux équations d’ondes auto-adjointes est également donnée. À titre

d’illustration, un cas de propagation acoustique autour d’un écoulement moyen cisaillé et stratifié est

résolu pour les équations d’onde de Lilley et de Pierce. Les champs acoustiques obtenues par la méthode

de l’adjoint sont ensuite comparés aux prédictions obtenues avec le FRT.

Chapitre 4

Cette section détaille comment Actran TM, solveur conçu pour résoudre l’équation de Möhring (1999),

est transformé de sorte à pouvoir résoudre l’équation de Pierce (1990). Après avoir présenté l’équation

de Möhring normalisée, telle que résolue par Actran TM, ses solutions sont comparées au code maison

PROPA. Comme l’équation de Pierce est auto-adjointe, le problème adjoint résolu avec Actran TM recourt

au FRT. Un template permettant le calcul de la fonction de Green adjointe pour un écoulement de

jet bidimensionnel est fourni. En guise de démonstrateur, la solution acoustique réciproque pour une

configuration réaliste de moteur d’avion à double flux présentant des effets de vol est calculée.

Conclusion

Ce travail porte sur la modélisation de la propagation du son émis par un jet turbulent à grande vitesse.

Le cadre de travail est celui des analogies acoustiques et l’approche retenue principalement celle de la mod-

élisation analytique. Sous cette hypothèse simplificatrice, le champ acoustique produit par l’écoulement

aérodynamique ne rétroagit pas sur ce dernier, et les problèmes de la génération et de la propagation

sonore peuvent être traitées de manière séparée.

L’objectif de la première partie de cette étude est de proposer une modélisation simplifiée précise et robuste

de la propagation du son autour d’un écoulement de base. Pour garantir la robustesse de l’approche, une

formulation basée sur l’utilisation du potentiel acoustique est proposée. Cette méthode conserve l’énergie

acoustique. Ceci constitue un atout de la méthode, qui ainsi concorde avec les cas limites de la propagation

du son autour d’un écoulement potentiel et de l’acoustique géométrique. Le modèle proposé coïncide avec

les seules formulations de la littérature pour lesquels l’acoustique est définit sans ambiguïté. Que la

conservation de l’énergie acoustique soit imposée, signifie également que les phénomènes de conversion

de mode ne peuvent pas être traités par cette approche. Ceci représente également un désavantage de la

méthodologie proposée, qui par construction, est incapable de décrire certains mécanismes de génération

de bruit, comme les ondes d’instabilité ou le rayonnement acoustique d’un tourbillon cisaillé dans son

vii



Contents

transport par l’écoulement. Cela paraît être un tribut nécessaire à payer pour garantir la conservation de

l’énergie acoustique.

Pour aboutir à cette formulation, les équations d’Euler ont été reformulées en l’équation d’onde d’Euler

(EWE). Sous l’hypothèse des gaz parfaits, une équation de fermeture des équations est établie, et il est

montré que les équations d’Euler peuvent être reformulées à l’aide de seulement deux variables. La linéari-

sation d’EWE (LEWE) a permis d’obtenir une équation d’onde sur la vitesse fluctuante qui est équivalente

aux équations d’Euler linéarisées pour peu que le mode entropique ne soit pas généré. Cela n’est pas très

contraignant pour les équations d’Euler qui présupposent un écoulement adiabatique. LEWE est plus

générale que l’équation de Lilley et al. (1972), l’équivalence des deux équations est vérifiée numériquement

sur une configuration présentant une onde d’instabilité. Tirant profit de la propriété de conservation de

l’énergie des opérateurs auto-adjoints (Möhring, 1999), plusieurs approximations stables de LEWE sont

proposées. En optant pour une définition du potentiel acoustique basée sur un potentiel de moment

plutôt qu’un potentiel de vitesse, une analogie acoustique est construite. L’opérateur de propagation

ainsi formé correspond à l’équation d’onde de Pierce (1990), dont l’utilité pratique est grandement accrue

par la donnée nouvelle d’un terme source. C’est en optant pour cette définition du potentiel acoustique

que l’équivalence de l’acoustique potentielle et du formalisme des rayons exacts (Foreman, 1989) a pu

être établie. Le choix en faveur de cette convention originale pour le potentiel acoustique s’en trouve

conforté. Le champ acoustique calculé par l’équation de Pierce est comparé à d’autres opérateurs de

propagation stables sur un cas test, et son accord avec la solution de référence est trouvé satisfaisant.

Alors que l’équation de Pierce et l’équation de Phillips (1960) possèdent le même opérateur d’onde, il

est apparu que leurs prédictions diffèrent grandement. La grande importance d’un choix judicieux de la

variable acoustique est par-là soulignée. Pour l’opérateur d’onde de Phillips-Pierce, la preuve n’a pas été

établie que ce soit la définition de l’acoustique potentielle retenue ici qui offre la meilleure approximation

du champ acoustique. D’autres définitions du potentiel acoustique, comme par exemple l’enthalpie fluctu-

ante (Howe, 1975a), pourraient être envisagées dans de futures études. Grâce au développement du code

PROPA, la stabilité des opérateurs de propagation a pu être validée. La précision des différentes formu-

lations a été comparée sur un cas test, qui en raison des limites du code PROPA, s’étend sur un domaine

de calcul restreint. Une étude comparative plus poussée pourrait avoir recours à un environnement de

développement plus sophistiqué comme par exemple FreeFEM.

La seconde partie de ce travail illustre comment l’analogie acoustique formée à partir de l’équation de

Pierce permet de reformuler avantageusement les modèles de bruit de jet existants. L’application visée est

la prédiction du bruit rayonné par le jet d’un moteur d’avion installé sous la voilure. Devant la complexité

de l’écoulement s’échappant d’un tel turboréacteur, seule une description statistique de l’écoulement est

envisageable, et les méthodes usuelles pour simuler la propagation acoustique sont rendues inopérantes.

La méthode de l’adjoint, initialement introduite par Lagrange (1761) et reformulée pour le bruit de jet par

Tam and Auriault (1998), surmonte astucieusement cette difficulté en recourant au principe de réciprocité.

Cette étude récapitule et reformalise cette méthode, puis la compare à la technique concurrente et plus

intuitive du retournement d’écoulement. Ces deux techniques, la méthode de l’adjoint et le retournement

d’écoulement, sont appliquées à l’équation de Pierce et à l’équation de Lilley. Alors que la méthode

de l’adjoint est toujours exacte, le retournement d’écoulement ne s’applique qu’à des équations auto-

adjointes comme celle de Pierce. L’utilisation de l’équation de Pierce possède donc dans ce contexte

plusieurs avantages majeurs. Comme le retournement d’écoulement ne nécessite pas le développement de

conditions aux limites anti-causales, la résolution numérique du champ adjoint à l’équation de Pierce s’en
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trouve simplifiée, et des outils numériques déjà existants peuvent être employés à cette fin. Par ailleurs,

l’équation de Pierce est scalaire et possède une expression très simple, de sorte que le coût de calcul associé

à sa résolution soit minimal. Ceci constitue un avantage indéniable dans la résolution de problèmes à

grand nombre de degré de liberté. Enfin, son caractère auto-adjoint garantit la stabilité du problème de

propagation. Ceci semble avoir été la pierre d’achoppement empêchant jusqu’à présent une utilisation

plus répandue de la résolution numérique des équations adjointes. En effet l’équation de Lilley et les

équations d’Euler linéarisées utilisées jusqu’à présent dans les formulations adjointes (Tam and Auriault,

1998) décrivent le mode d’instabilité et des méthodes analytiques approchées du type WKBJ ont été

privilégiées à une résolution numérique (Goldstein, 2003).

De sorte à démontrer la viabilité de l’utilisation de l’analogie de Pierce pour reformuler les modèles de

bruit de jet, le modèle de bruit de mélange turbulent de Tam and Auriault (1999) a été réécrit pour

l’acoustique potentielle. Une méthodologie pour transposer d’autres sources de bruit comme le BBSAN a

été donnée, et les travaux futurs devront en éprouver la pertinence. Pour indiquer une manière possible de

mettre oeuvre la méthode, qui soit compatible aux exigences de l’industrie aéronautique, une stratégie de

calcul basée sur le logiciel commercial Actran TM a été proposée. Une géométrie réaliste de turboréacteur

a été considéré comme démonstrateur et différents champs adjoints ont pu être calculés en champ proche

et lointain en des temps compatibles avec les exigences industrielles. Des travaux futurs devront s’attacher

à mettre en oeuvre l’ensemble de la chaine de prédiction, allant du calcul de la solution RANS jusqu’au

spectre de bruit, et à la valider. Des écarts ont été observés entre la solution de l’équation de Pierce

calculée avec PROPA et celle obtenue à l’aide d’Actran TM, bien que faibles, leurs origines doit être

comprises et des correctifs apportés. La présence des surfaces dans la propagation acoustique peut être

pris en compte par la méthode de l’adjoint telle que formulée ici, ceci représente une amélioration par

rapport à la formulation originale de Tam and Auriault (1998), et demande à être mis en oeuvre et validé

en pratique. Lorsque la propagation ne peut être résolue analytiquement, cette méthode est la seule qui

puisse décrire le champ acoustique de sources de bruit uniquement connues de manière statistiques. La

méthode de l’adjoint est générale et permet de traiter toute sortes de sources de bruit. Un unique calcul

de champ adjoint pourrait ainsi être utilisé pour déterminer la propagation acoustique de l’ensemble des

sources de bruit d’un turboréacteur. Cette technique traite la propagation sonore indépendamment des

mécanismes de génération de bruit, et les champs adjoints permettent de caractériser complètement un

milieu de propagation. En un sens, quant au découplage opéré, la méthode de l’adjoint apparaît comme

un prolongement logique des analogies acoustiques.
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Synopsis of the thesis

This thesis is structured in two parts, a brief overview of the chapters composing them is given here.

Part I:

Chapter 1

An introduction to the framework of acoustic analogies is provided, their purpose and limitations are

outlined. The description of sound seen as a linear perturbation propagating over a base flow is presented.

The capability of acoustic analogies to track some representative sound sources of a jet is briefly sketched.

The concept of instability waves is depicted, and reasons not to account for them with a linear operator,

are given. Finally, the organisation of this part of the thesis is given.

Chapter 2

Euler’s wave equation (EWE) in non-homogeneous form is derived from the Navier-Stokes equations.

Acoustic analogies based on linearisation and expansion about an incompressible flow are reviewed and

applied to EWE. An aeroacoustic model based on the wave equation of Pierce (1990) is proposed. The

acoustic metric associated to Pierce’s wave equation is exhibited, as well as its Hamiltonian, and the exact

rays (Foreman, 1989) are generalised to a medium with steady flow.

Chapter 3

The in-house finite difference code PROPA is presented and validated on the fourth CAA workshop case.

The concept of self-adjoint kernel is introduced and some new stable wave equations are derived. With

help of PROPA, their stability is tested, and their ability to accurately compute sound propagation on a

sheared flow is compared.

Part II:

Chapter 1

An introduction to aircraft noise certification and turbofan engine installation effects highlights the need

and the stakes for engine manufacturer to develop a reliable jet noise prediction tool. Given the complexity

of the geometry encountered in modern aircraft architectures and the available computational capacities,

the power spectral density of interest in the certification process needs to be computed from RANS

solutions. In such statistical modellings, the noise radiated from jets is accounted for with an adjoint

approach. The layout of the second part of the thesis is finally given.

Chapter 2

A detailed review on the mixing noise model of Tam and Auriault (1999) is provided here. Effort is given

to properly derive the prediction formula anew with a focus on a rigorous use of the adjoint technique.

Additionnaly to Tam and Auriault’s work, adjoint Green’s function correlation (1999, eq. (34)) is modelled

using a Taylor expansion. The second part of this chapter is devoted to apply this technique to a potential

acoustics formulation based on Pierce’s equation. Some remarks on how to model the broadband shock
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associated noise (BBSAN) as done by Morris and Miller (2010) within the present framework are given

as a perspective.

Chapter 3

The most general statement for reciprocity principle is based upon the adjoint formalism. In this chapter,

a comprehensive description of the adjoint approach is proposed and the benefit of using self-adjoint wave

equations to solve acoustic propagation problems is highlighted. Tam and Auriault (1998) presented how

an adjoint approach can be built to predict the noise of distributed stochastic sources in a complex

environment (Tam and Auriault, 1999). A clear statement is also provided about the application of the

flow reversal theorem (FRT), and its restriction to self-adjoint wave equations. As an illustration, sound

propagation is computed numerically over a sheared and stratified mean flow for Lilley’s and Pierce’s

wave equations. Acoustic solutions obtained with the adjoint approach are then compared to predictions

obtained with the FRT.

Chapter 4

This section details how Actran TM, designed to solve Möhring’s equation (1999), is turned into a solver

for Pierce’s equation (1990). After presenting the normalised Möhring equation solved by Actran TM, the

accuracy of the solver is compared with respect to the in-house code PROPA. Because Pierce’s equation is

self-adjoint, the adjoint problem is solved with help of Actran TM using the FRT. A template enabling the

computation of adjoint Green’s function for a bidimensional jet flow is provided. As a proof of concept,

the reciprocal acoustic solution for a realistic dual-stream aircraft engine with flight effects is presented.
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In his final contribution to acoustics, Euler (1767) gazed with wonder at the science he significantly

contributed to. “The most sublime research that Geometrist have undertaken nowadays with success, he

wrote, is unarguably in all respect that of sound propagation. Because a given perturbation of air is dealt,

this research has been all the more difficult, for among all those that were concerned with the movement

of different bodies, none was found successful in describing the movement of air; so that this area of

Mechanics was hitherto entirely unknown.” The then pioneering developments in acoustics were indeed

tremendous. He continues further on, “When I investigated this topic for the first time, my main concern

was to determine the speed at which a tremor is transmitted through the air; but now I will endeavour to

detail all the particularities that may occur in the perturbation of air, and also the way they are altered in

their propagation. This research is all the more interesting, that it is from there that all the variations that

we observe in the sounds result.” As a matter of fact, Euler’s equations which describe the conservation of

momentum in fluids (1757) was the stepping stone on which all later developments of sound propagation

would be based. From this theory it was henceforth possible to account for the vibration of air and trace

their propagation. Moreover, thanks to the joint developments of functional analysis, in which Lagrange

played a foreground role, similarities in the motion of a vibrating string and the vibrations of air were

found. From this analogy, an early-stage picture of waves invisibly travelling in air could be drawn, and

propagation effects like echoes, could be explained (Hascher and Papadopoulos, 2015). Lagrange, in close

collaboration with Euler, meticulously analysed the three-dimensional propagation of acoustic waves in

air. Lagrange (1761, §18) proposed a model of spherical wave fronts for which he was the first to compute

a solution using a variational statement and adjoint functions. By browsing through the literature, one

is struck by the modernity and the accuracy of the conceptual framework these great scientists mastered.

These concepts gave keys to grasp most of the propagation problems in acoustics. Consider for instance

the acoustic wave fronts emitted from a self-sustained oscillating supersonic jet as depicted in figure 1;

they clearly appear as spherical, while the reflectors visible on the photography left side corners generate

what Euler would have called echoes.

Figure 1: Shadowgraph of a planar under-expanded screeching supersonic jet of air taken by Poldervaart,
Vink and Wijnands (1969) of the technological university of Eindhoven, and reprinted in Hirschberg
(2009). For more details see Hirschberg et al. (2018) and the Youtube chanel of Avraham Hirschberg.
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Historical introduction

This golden age of acoustics is prior to French revolution, can only be compared with the breakthroughs of

the second half of the twentieth century. Indeed, although Euler successfully addresses acoustic propaga-

tion back in (1767), it is only in (1952) that Lighthill introduced the framework to apprehend the flow-noise

generation mechanisms. Neglecting the effect of viscosity, and using standard notations; Lighthill (1952)

recast Euler’s equations with the help of the continuity equation into the following equivalent formula,

∂2ρ

∂t2
− a2∆ρ = ∇ · ∇ · (ρu⊗ u) + ∆p− a2∆ρ (1)

where ρ is the density, u is the velocity, p is the pressure and a is the speed of sound. On the left-hand side

the d’Alembertian operator, that Euler and his peers used to evaluate for the fluid particle displacement,

is retrieved for the density. The right-hand side furnishes a source term for the wave equation that brought

about the recent craze for acoustic studies. For the first time indeed, the amount of energy converted from

the fluid motion into acoustics could be quantified by integrating this equation. There is also an exact

parallel between the equations of the fluid dynamics and the wave equation; from there an acoustic analogy

for the noise generation mechanisms in fluids is derived. Interpreting Lighthill’s equation, Powell (1964)

showed that the mechanisms of energy conversion are substantial only in the region of space were vortices

are distorted. This would correspond, in figure 1, to the mixing region of the jet, which is dominated by

aerodynamical phenomena and governed by Euler’s non-linear equations. Out of this domain, the source

term vanishes, and the perturbations in the fluid obeys the simpler linear acoustic equation. Such a split of

the space between aerodynamic and acoustic driven regions is characteristic of the aeroacoustic approach,

and intuitively distinguishes sound generation from its propagation. Yet, to achieve acoustic predictions

with Lighthill’s formula, a variable decomposition is furthermore required in order to dissociate the source

term from the acoustic variable. This split is intricate and tedious in the source region, because there

exists no general and unambiguous way to define acoustic perturbations: as a matter of fact, acoustics is

a manner for energy to propagate without transporting matter and its definition becomes equivocal when

it is superimposed on arbitrary flows. Only when the ratio of the fluid vorticity by the acoustic frequency

(Legendre, 2014, eq. (6.25)) tends toward zero, is acoustics properly defined (Michalke, 1965). It seems

therefore hollow to seek a general definition for acoustic energy in arbitrary moving media (McIntyre,

1981). It must be recognized, that the conceptual framework of aeroacoustics raises in itself unresolved

practical and fundamental questions.

Despite this gray area, acoustic analogies have proved themselves to be a powerful tool to predict and

describe how flow induces noise. Aeronautics has been the primary field of application for this theory; it

was developed to identify the sound generation mechanisms in jets exhausting from turbofan engines and

made noise reduction possible (Lighthill, 1962, §5). This acoustic analogy moreover successfully predicted

a remarkable scaling law for the acoustic power radiated from jets. While an increasing demand for quieter

aircraft steadily challenged the emerging aeroacoustic community, the prodigious development in available

computational resources significantly heighten the scope of the studies. Better understanding of the

noise generation mechanisms has been achieved with high-fidelity numerical techniques (Lele and Nichols,

2014; Brès and Lele, 2019). Besides that, acoustic analogies were used combined with timely statistical

simulations of the flow, to carry out jet noise predictions. During the manufacturing processes of aircraft

engines, timely and accurate prediction tools are indeed required to further reduce jet noise. In this view,

there is a need for jet noise statistical modelling to properly assess the refraction effects encountered in

the jets as well as the effects on the acoustic propagation of the turbofan installation under the plane

wing. For such jet noise statistical modelling, acoustic propagation effects can naturally be accounted for
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from an adjoint perspective (Lagrange, 1761; Tam and Auriault, 1998), and the use of the adjoint method

to this end is now standard.

Objective of the work

This work is concerned with the propagation of acoustic waves superimposed on a flow in application

to statistical jet noise modelling. In the context of acoustic analogies, this study deliberately adopts

a pragmatic stance and aims at proposing a consistent and robust approximate framework to compute

sound propagation. A formulation based on the acoustic potential is given and the widespread jet mixing

noise model of Tam and Auriault (1999) is demonstratively recast within this scope. Encouraging results

in the description of propagation effects have been obtained with the adjoint method in previous studies.

A further objective of this study is to propose a throughout discussion on the application of this method

in an industrial environment and to come with a concrete solution enhancing the state of the art jet noise

prediction capabilities.

Outline of the manuscript

This thesis is made of two autonomous parts.

The first part details a theoretical framework to describe sound generation and propagation. The issue of

noise prediction with an acoustic analogy is first introduced (Chapter 1). The equations of fluid mechanics

are then recast into a creative wave equation for the fluid velocity, referred to as Euler’s wave equation.

After linearisation, a Helmholtz decomposition of the fluctuating momentum is found to deliver the wave

equation of Pierce (1990), and a source term for the latter equation is proposed. The equivalence of

Pierce’s equation with the exact rays (Foreman, 1989) framework is finally demonstrated (Chapter 2).

The problematic of achieving acoustic propagation on a sheared flow without to trigger instability waves is

addressed. Following Möhring (1999), some original stable self-adjoint wave equations are proposed. The

sound propagation for the latter equations are compared with an in-house code on a benchmark problem

(Chapter 3).

The second part focuses on the modelling of noise radiated from jets, and is applied to the context

of aeronautical industry. It is illustrated how the acoustic analogy based on Pierce’s wave equation can

advantageously be applied to account for jet noise propagation effects. The stake of statistical jet noise pre-

diction is first introduced (Chapter 1). The standard mixing noise prediction formula of Tam and Auriault

(1999) is thoroughly presented and recast for the acoustic potential (Chapter 2). The adjoint method,

introduced in aeroacoustics by Tam and Auriault (1998), is presented and used as a rigorous mean to

assess propagation effects. The method is compared to the flow reversal theorem, that is its intuitive

alternative (Chapter 3). An additional step to prove the viability of the approach is achieved by using the

commercial software Actran TM to compute the solution to Pierce’s adjoint equation. A computation

carried out for a realistic turbofan engine serves as a proof of concept (Chapter 4).
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Historical introduction
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The beginning and ending of the last of Euler’s (1767) many studies that he contributed on sound prop-
agation. He had derived the basic equations of fluid mechanics a decade earlier (1757). The almost 20
year long controversy in which he opposed d’Alembert on the existence of discontinuous solutions to the
wave equation was solved, paving the way to the concept of a wave. In the meanwhile, the repeated canon
shot experiences had sown doubts on Newton’s isothermal estimate of the speed of sound, and Lagrange
(1761) solved the wave propagation problem with his adjoint approach.
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Part I

Acoustic analogy based on the acoustic

potential
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1 Basic features of acoustic analogies

Summary:

Introduction to the framework of acoustic analogies is provided, their purpose and limitations are outlined.

The description of sound seen as a linear perturbation propagating over a base flow is presented. The

capability of acoustic analogies to track some representative sound sources of a jet is briefly sketched. The

concept of instability waves is depicted, and reasons not to account for them with a linear operator, are

given. Finally, the organisation of this part of the thesis is given.

1.1 Introductory discussion

On its early stage, aeroacoustics has been introduced by Lighthill (1952) as the study of sound generated

aerodynamically. The original idea was to build a theoretical framework to describe the physical process

at play in the production of flow induced noise. Lighthill sought to estimate the amount of energy

converted from the fluid motion into acoustics. He succeeded in his endeavour by skilfully rearranging

Euler’s equations, 



∂ρ

∂t
+∇ · (ρu) = 0

∂ρu

∂t
+∇ · (ρu⊗ u) +∇p = 0

∂p

∂t
+∇ · (pu) + (γ − 1)p∇ · u = 0

(1.1)

into a non-homogeneous wave equation for the fluid density ρ,

∂2ρ

∂t2
− a2∆ρ = ∇ · ∇ · T (1.2)

Thereby an exact analogy between the density ρ of any real flow, and the acoustic fluctuations produced

by a quadrupole source ∇ · ∇ · T propagating in an idealised medium at rest, with constant sound speed

a, was derived. Lighthill’s stress tensor T = ρu⊗u+ (p− a2ρ)I is the wave equation source, u refers to

the flow velocity, p corresponds to the pressure field and I is the identity tensor. For simplicity, the effect

of viscosity is discarded. The double divergence of the Lighthill tensor T is tagged as quadrupole sound

source. These spatial derivatives confer the latter source a directive nature that resembles a four-leaf

clover which leaves may be twisted. Powell (1964, §5) gave insight into the physical mechanisms at play

in the formation of quadrupole sound sources, and this concept is an important construct in jet noise

modelling (Ribner, 1969). Lighthill selected the fluid density ρ, as the appropriate dependence variable

to model jet noise (1982). However its definition is implicitly given in his analogy. Hence, for his theory
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Chapter 1 : Basic features of acoustic analogies

to be operable, sound propagation needs to be addressed in a two step procedure, independently from its

generation. In practice, noise sources are first identified, the propagation of sound over a quiescent base

flow is addressed subsequently. Acoustic analogies describe a one-way energy conversion from the fluid

kinetic energy to sound, and the back-reaction of acoustics on the base flow (Maestrello et al., 1981) is not

account for. Therefore configuration for which acoustic feedback mechanisms are crucial, like screeching

supersonic jets or noise from cavities, cannot be tackled with such an approach.

Ffowcs Williams and Hawkings (1969) and Möhring et al. (1969) have independently shown that, different

equivalent distributions of sound sources consistently describe the same acoustic field. And in fact, plenty

of acoustic analogies have continuously been proposed over the years1, highlighting thereby considerable

efforts to find the most appropriate framework to address flow noise. This built-in non-uniqueness of

acoustic analogies has been pointed out by Tam (2001, 2002) as a fundamental obstacle to ever succeed in

identifying the correct sound sources. An additional hardship comes from the intricate distinction between

the acoustic field and the non-acoustic part of the flow (Morfey, 1971; Fedorchenko, 2000). Indeed, acoustic

analogies assume it is possible to associate to a unsteady turbulent flow a corresponding quiescent flow,

which contains all the representative sound-producing features of the flow. At low Mach number, the flow

incompressible part is such a quiescent base flow (Ribner, 1962), but in general it is too crude to restrict

the silent base flow to its solenoidal part (Fedorchenko, 1997).

Noise generation mechanisms are inextricably coupled (Chu and Kovásznay, 1958), so is also the prop-

agation of sound (Doak, 1954; Golubev and Atassi, 1998), with this in mind, some authors explicitly

introduced the concept of acoustic-vortical-entropy waves to depict the manner energy propagates in a

moving fluid (Campos and Serrão, 2013). The proper and non-ambivalent separation of acoustics from

the base flow is thus undeniably jeopardized (McIntyre, 1981). Such a bold undertaking was not, of

course, Lighthill’s intent when he derived his acoustic analogy. He was well aware of how complex it is to

define turbulent noise sources. In (1952) he explained the ambition and purpose of his new methodology:

“The problem’s utility may be questioned on the grounds that we never know a fluctuating fluid flow very

accurately, and that therefore the sound produced in a given process could only be estimated very roughly.

Indeed, one could hardly expect, even with the great advances in knowledge of turbulent flow which have

lately been made, that such a theory could be used with confidence to predict acoustic intensities within a

factor of much less than 10. But, on the other hand, one could certainly make no confident estimate even

within a factor of 1000 on existing knowledge”. Searching for a pragmatic basements for acoustic analogies

is a commendable initiative (Goldstein, 2002, 2003, 2005b); but in order not to pursue a pipe-dream, the

method constitutive limitations need to be borne in mind. In proposing his generalised acoustic analogy,

Goldstein (2003) summarised several techniques stemming from the literature, that are individually de-

fined for different base flows. For steady mean flows of Reynolds averaged Navier-Stokes (RANS) solutions,

a Reynolds or a Favre decomposition adequately models acoustic fluctuations. If a solenoidal unsteady

base flow is given, then an expansion about incompressible flow (Ribner, 1962; Hardin and Pope, 1994)

may be applied. If a general radiating flow simulation is available, a modal non-radiating decomposition

of the flow (Taira et al., 2017) may be considered. Yet in practice, the amplitude of acoustic fluctua-

tions are often small with respect to the incompressible fluctuations and the complete flow solution may

conveniently be included in the definition of the sound source without prejudice to the computed sound

1Among which (Phillips, 1960; Ribner, 1962; Powell, 1964; Lilley et al., 1972; Howe, 1975a; Goldstein, 1978;
Hardin and Pope, 1994; Doak, 1998; Starobinski and Aurégan, 1998; Möhring, 1999; Shen and Sørensen, 1999a;
Ewert and Schröder, 2003; Goldstein, 2003; Gabard et al., 2004b; Perez Bergliaffa et al., 2004; Seo and Moon, 2006;
Posson and Peake, 2013; Kaltenbacher et al., 2015).
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1.2 Linear acoustic perturbations superimposed over a base flow

(Ribner, 1962; Bogey et al., 2002). Notice that hybrid methodologies (Goldstein, 2006; Bodard et al.,

2009; Semiletov and Karabasov, 2018) may also be conceived.

1.2 Linear acoustic perturbations superimposed over a base flow

At the inception of aeroacoustics, the directivity of jet noise was solely explained by the Doppler ampli-

fication factor associated with the movement of sound sources (Lighthill, 1952, 1954). The predominant

role of the flow in the refraction of acoustic waves was recognised soon after. Gottlieb (1959) predicted,

that such sound propagation over flow heterogeneities, would create a ‘zone of silence’ close to the jet axis

in the flow downward direction2. Such a quiet region resulting from flow velocity gradients was verified

experimentally by Atvars et al. (1965). Grande (1965) illustrated, with measurements performed on a

nitrogen jet, that the temperature gradients may also create impressive acoustic refraction. Since, it is ac-

knowledged that the flow significantly alters sound radiation (Ribner, 1996). This influence of the medium

non-uniformities is referred to as acoustic propagation effects and include amongst others, flow refraction,

scattering by turbulence, atmospheric dissipation, reflection and absorbency at solid boundaries, as well

as scattering at surface edges.

Again, the clear distinction between propagation effects and sound generation mechanism is tedious. Tam

(2001) argues this point as follow, “if the complete wave propagation terms are kept, the assertion of

the Acoustic Analogy argument would end up with only viscous terms as the noise source terms. This is

definitely erroneous. Thus the so-called noise source terms of the Acoustic Analogy are, in many instances,

propagation terms wrongly classified as noise sources.” As a matter of fact, in the most general case,

acoustic propagation is coupled and non-linear, and sound propagation cannot be addressed separately

from its generation. This is not the simplified perspective underpinning the acoustic analogies, for which

only a one-way coupling from the flow dynamics to acoustics is considered. What is more, non-linear

propagation effects may exist in configuration without acoustic feed-back mechanisms (Petitjean et al.,

2006), but they are often irrelevant to a first approximation.

To account for acoustic propagation effects in jets, it is convenient to model acoustics as a linear per-

turbation superimposed over a steady base flow (Schubert, 1972a,b). Very often, the steady base flow is

modelled as the time-averaged part of the flow. If the mean flow variables are indexed with a zero, and

in absence of coupling with the acoustic field, they simply verify Euler’s equations (1.1),





ρ0∇ · u0 + u0 · ∇ρ0 = 0

ρ0(∇u0) · u0 +∇p0 = 0

u0 · ∇p0 + γp0(∇ · u0) = 0

(1.3)

where γ corresponds to the fluid adiabatic index. It is also useful3 to define a0 the mean speed of sound

for an idealised gas with a0 =
√
γp0/ρ0. The equations governing linear acoustic propagation are then

obtained with a Reynolds decomposition of the flow variables, such that, ρ = ρ0 + ρ′, u = u0 + u′ and

p = p0 + p′. The fluctuating variable are denoted here with a prime and have zero mean value. By

2This concept was readily introduced in the study of atmospheric sound propagation, e.g. (Galbrun, 1931) and
(Blokhintzev, 1956, §II.9). The current terminology of ‘cone of silence’ was in use soon after, in reference maybe to the
1960s television series ‘Get Smart’.

3Note that these relations can be rearranged to retrieve the isentropy conservation for the mean flow ~u0 ·(∇p0−a20∇ρ0) = 0

and in
~u0·∇(a2

0)

1−γ
= a20∇ · ~u0 = ~u0 · (∇~u0) · ~u0 so to highlight that the speed of sound is conserved along streamlines for an

incompressible mean flow.
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subtracting the steady state solution described by equations (1.3), the linearised Euler’s equations are

obtained, 



Dρ′

Dt
+∇ · (ρ0u′) + ρ′∇ · u0 = Sρ′

Dρ0u′

Dt
+ ρ0u

′∇ · u0 + (∇u0) · (ρ0u′) +∇p′ − ρ′∇p0
ρ0

= Sρ0u
′

Dp′

Dt
+ u′ · (∇p0 − a20∇ρ0) + a20∇ · (ρ0u′) + γp′∇ · u0 = Sp′

(1.4)

where D/Dt = ∂/∂t+u0 · ∇ is the material derivative along the mean flow. The second order interaction

terms are stored in the right hand side (RHS) of equations (1.4). They express as,





Sρ′ ≡ −∇ · (ρ′u′)

Sρ0u
′ ≡ −(∇u′) · (ρ0u′) + ρ′∇p′/ρ0

Sp′ ≡ −u′ · ∇p′ − γp′∇ · u′

(1.5)

From such a variable decomposition and rearrangement of the equations, what we may refer as inviscid

sound sources naturally appear. Even though every possible propagation effects are accounted for in the

linear operator as suggested by Tam (2001), inviscid sound sources may be defined. Figure 1.1 illustrates

this with a two-dimensional harmonic solution of equations (1.4). The fluctuating pressure p′ obtained

Figure 1.1: Quadrupole source Sρ0u
′ forcing the direct problem Sρ0u′

1
(top-left), and Sρ0u′

2
(top-right).

Mach number M0 and density ρ0 profiles of the parallel mean flow considered (bottom-left), and pressure
field p′ solution of Lilley’s equation and computed with PROPA, see §3.1, for St2σ = 0.60 (bottom-right).
Dashed lines represent the position of maximal shearing (x2/σ = 1).

for a parallel sheared and heated flow, as considered for the fourth computational aeroacoustic workshop
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1.2 Linear acoustic perturbations superimposed over a base flow

(Dahl, 2004), is presented, and qualitatively represents the acoustic propagation encountered in jets for

such an idealised sound source. The forcing term Sρ0u
′ is defined so to mimic a quadrupole distribution

and is adapted from in (Gréverie and Bailly, 1998, eq. (4)), with α = 1/(2σ)2. The modulation in the

cosine is replaced by α/4. Sρ′ = 0, and Sp′ = 0. The predominant effect of the mean flow on the acoustic

propagation is observed, and the quadrupole radiation pattern is hardly recognisable in figure 1.1. A

quieter region downward of the jet is observed (Gottlieb, 1959), while high amplitude fluctuations are

trapped by the flow upstream of the source.

Note that the remark of Tam (2001) transcripted previously is a fundamental one. For equations (1.4) not

to be coupled with second-order perturbations, and to enable a linear explicit resolution of the equations,

the non-linear terms need in practice to be defined as source terms. But, the choice of keeping all linear

terms in left hand side (LHS) of equations (1.4), and thereby consider them as acoustic propagation terms

rather than sources, is arbitrary. In fact, the link between first-order terms and propagation effect, and

between second-order terms and sound sources is the result of a half-century progresses in aeroacoustics.

To form his acoustic analogy, Lighthill (1952) built up a d’Alembertian’s operator from the equations of

fluid motion. Thereby he repelled all remaining terms in the RHS as possible sound source. Because

noise generating flows are not medium at rest for which acoustic propagation can be described with

a d’Alembertian’s wave equation, many RHS terms of Lighthill’s analogy compensate for the source

motion and do not account for noise generation mechanisms. The aeroacoustic community made thus

continuous effort (Phillips, 1960; Lilley et al., 1972; Bogey et al., 2002; Goldstein, 2003) to properly build

a linear equation that most representatively depicts propagation effects, in order to account for all sound

propagation mechanisms in the LHS. If in Lighthill’s equation, all possible sound sources are stored in

the RHS; with an acoustic analogy like equations (1.4), then all possible propagation effects are cast in

the LHS.

A noticeable drawback of these reformulations lies in the fact, that these linearised set of fluid equations

are not any more genuine wave equations. In fact, unlike classical second order wave equations, e.g.

(Lighthill, 1952; Phillips, 1960; Möhring, 1999), all energetic modes are now described with equations

(1.4). This has thoroughly been discussed by Chu and Kovásznay (1958), and can be illustrated using a

Helmholtz decomposition of the quadrupole sound source Sρ0u
′ used to compute the pressure fluctuations

p′ of figure 1.1. Figure 1.2 and figure 1.3 represent the fluctuating pressure p′ produced by the potential

part of Sρ0u
′ shown in figure 1.1, and its solenoidal part respectively. Because the propagation problem is

linear, the sum of the fluctuations of p′ of figure 1.2 and figure 1.3 corresponds to the solution figure 1.1,

computed for the full quadrupole source. The solution computed for the source solenoidal part appears to

be mostly non-radiating; most of the fluctuating pressure perturbations p′ are simply convected along the

mean flow. Oppositely, such convection phenomena cannot be observed for the fluctuating field associated

with the potential source given in figure 1.2. This solution corresponds to the acoustic mode generated

by the quadrupole source, for which a cone of silence is clearly identifiable. The other solution figure

1.3 is slightly radiating in the jet downward region. These sound waves correspond to indirect acoustic

fluctuations which are created by the movement and shearing of the solenoidal sources. This solenoidal

contribution to the quadrupole source is otherwise essentially silent. A coupling mechanisms is at stake

transforming the vortical fluctuations into acoustics. As a consequence, with a formulation like equations

(1.4), not all sound sources are cast in the RHS.
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Chapter 1 : Basic features of acoustic analogies

Figure 1.2: Potential part of the quadrupole sound source Sρ0u
′ shown in figure 1.1 (top). Mach number

M0 and density ρ0 profiles of the parallel mean flow considered (bottom-left), and corresponding pressure
field p′ (bottom-right). Dashed lines represent the position of maximal shearing (x2/σ = 1).

Figure 1.3: Solenoidal part of the quadrupole sound source Sρ0u
′ shown in figure 1.1 (top). Mach number

M0 and density ρ0 profiles of the parallel mean flow considered (bottom-left), and corresponding pressure
field p′ (bottom-right). Dashed lines represent the position of maximal shearing (x2/σ = 1).
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1.3 Instability waves as a source of sound

1.3 Instability waves as a source of sound

For many applications, the divergence of the Reynolds tensor∇·(ρ0u⊗u) appearing in Euler’s momentum

equation is the dominant source of aerodynamic noise (Lighthill, 1952, eq. (7)). In the previous acoustic

analogy example, sounds propagates over a steady base flow, given by equations (1.3), and acoustic

perturbations are linearly superimposed on the latter. This is described by equations (1.4). Some insight

on the noise generation mechanisms is given here by analysing more in depth the Reynolds decomposition

u = u0 + u′ of ∇ · (ρ0u⊗ u). Following Ribner’s theory of dilatation (1962), it is assumed here that the

part of the flow dynamics that produces sound is at leading order purely solenoidal, i.e. ∇·u0 = ∇·u′ = 0.

In the linearised framework, the amplitude of the perturbations are small with respect to those of the

mean flow dynamics, let ε = |u′|/|u0| measure this velocity magnitude gap. Furthermore, let λ and L be

the typical length scales of the flow structures associated to u′ and u0 respectively. δ = λ/L quantifies

this scale separation and is not necessary small. The order of magnitude of the different term appearing

in the Reynolds decomposition is then,

∇ · (ρ0u⊗ u) = ρ0(∇u0) · u0︸ ︷︷ ︸
∼O(δ/ε)

+(∇ρ0u′) · u0︸ ︷︷ ︸
∼O(1)

+(∇u0) · (ρ0u′)︸ ︷︷ ︸
∼O(δ)

+∇ · (ρ0u′ ⊗ u′)︸ ︷︷ ︸
∼O(ε)

(1.6)

The first term in O(δ/ε) is possibly large, but it can be discarded since it describes the dynamics of the

steady flow and vanishes for an isobar mean flow. The second term (∇ρ0u′)·u0 describes the convection of

the fluctuating momentum ρ0u
′. If δ ≪ 1, the vortical structures are simply convected along u0 without

deformation and hence are silent, otherwise they radiate noise. The two other terms correspond to the

distortion of vortices by the mean flow shear and interactions of the vortices amongst themselves. These

two last sources of flow noise have been extensively addressed by Ribner (1964, 1969, 1981) who referred

to them as shear-noise and self-noise. Even though they are linear and quadratic with respect to u′,

they appear to have comparable order of magnitude for small vortices when δ ∼ ǫ, that is in the acoustic

high frequency limit. Yet as in the equations (1.4), they are usually not stow away in the same member

of the acoustic analogy. Indeed, since the contribution of Lilley et al. (1972), the term responsible for

shear-noise is often tagged as a propagation term, while self-noise is undoubtedly a ‘real’ sound source.

Ribner (1969) gave evidences that shear-noise dominated the jet noise spectra in the low frequency range,

while self-noise was predominant for higher acoustic frequencies. His result is reproduced in figure 1.4.

In meticulously analysing all possible quadrupole correlations, Ribner (1969) proved that shear-noise was

Figure 1.4: Jet noise two-components spectrum prediction by Ribner (1969), experimentally calibrated.
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very directive while self-noise radiation was more omnidirectional. Figure 1.5 qualitatively illustrates how

these two sources of sound contribute to the jet directivity spectra. From figure 1.5, self-noise is the

dominant sound source in a direction perpendicular to the jet axis while shear-noise mainly contributes

in the jet downward region. The existence of two self-similar spectra in jet noise have been evidenced

Figure 1.5: Jet noise directivity explained by the combination of shear-noise, self-noise and propagation
effects, figure adapted from (Ribner, 1969).

experimentally by Tam et al. (1996) for supersonic jet noise. These contributions to jet mixing noise are

referred in these authors’ study as stemming from the fine-scale structures of turbulence (self-noise) and

from the large-scales (shear-noise). These authors argued that this two-components model transposes to

subsonic jet noise as well (Tam et al., 1996, §5). Notice that the concepts of self-noise and shear-noise are

constructs of the acoustic analogy framework, while fine-scales and large-scales draw their existence on

experimental evidences. Even though these notions are not perfectly alike, this must be considered as an

achievement of the acoustic analogies to have predicted the existence of the two component spectrum of

jet noise.

In a famous contribution, reviewed in §2.1 of this work, Tam and Auriault (1999) proposed an acoustic

description for the fine-scale mixing process for which they modelled the contribution of the turbulence

self-noise ∇ · (ρ0u′ ⊗ u′) with a potential sound source ∇qs. This description for fine-scale turbulence

mixing does not favour any spatial direction, complies with the idealised isotropic pattern of self-noise

radiation as depicted by Ribner in figure 1.5, but also with measurements performed on jet turbulence

at sufficient large distance from the nozzle lip lines (Fleury et al., 2008). Considering the Helmholtz

decomposition of the quadrupole sound source Sρ0u
′ and their corresponding acoustic solutions, it can

be alleged that the acoustic field stemming from the quadrupole potential part in figure 1.2 may fairly

well represent the radiation of turbulence self-noise, while the radiation of the quadrupole solenoidal part

of figure 1.3 rather qualitatively corresponds to shear-noise radiation. Indeed, if the shear-noise term

(∇u0) · (ρ0u′) is dropped from the the linearised equations (1.4), this solenoidal term radiates almost4

no more sound and is quietly convected by the mean flow. The corresponding solution for the fluctuating

pressure p′ is presented in figure 1.6, where the simplified formulation of Bogey et al. (2002, eq. (B3))

for a parallel mean flow was used for this calculation. In turn, the term responsible for shear-noise in the

linearised equations converts solenoidal fluctuations into acoustics, acknowledging the general statement:

“vortex dynamics makes noise”. This may be one of the shear-noise generation principle.

Tam et al. (1996) also referred in their work to the noise of large turbulent structures as instability waves.

The latter correspond to the sound radiated from a Kelvin-Helmholtz flow instability. This is another way

to create shear-noise. This noise generation process is described by the linearised equations written for

an inviscid fluid and takes place for a moderate low frequency range of flow disturbances (Michalke, 1965;

4The residual radiation may be due to the definition of the solenoidal sound source that does not respect δ ≪ 1 strictly.
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Figure 1.6: Mach number M0 and density ρ0 profiles of the parallel mean flow considered (left), and the
pressure field p′ solved with the stabilised Lilley’s equation (Bogey et al., 2002, eq. (B3)). The solenoidal
part of Sρ0u

′ that is presented in figure 1.3 is used as sound source. This fluctuating pressure field p′

corresponds to the solution of the linearised equation for which the shear-noise term (∇u0) · (ρ0u′) is
discarded (right). Dashed lines represent the position of maximal shearing (x2/σ = 1).

Moore, 1977; Morris, 1981; Bailly and Comte-Bellot, 2015, §1.5). This is a selective process for which some

frequencies of perturbations are damped and other amplified, with a model similar to equations (1.4) it is

furthermore linear so that the perturbation growth rate is irrespective from the perturbation amplitude.

Figure 1.7 (left) presents the acoustic solution to the linearised Euler’s solution computed by Ewert (2007)

for a jet with a stochastic reconstruction of the fine-scale mixing noise source of Tam and Auriault (1999).

While for such a stochastic model, ε ≪ 1 and δ ≪ 1, and the hypothesis of the linearised framework are

initially fulfilled; the instability wave growths unreasonably and faults the hypothesis of small amplitudes.

This is because the non-linear saturation is not accounted for in the acoustic propagation. If the mean

flow gradients are removed from the acoustic solution, as for the computation presented in figure 1.6, this

instability wave completely disappears from the computed solution, see figure 1.7 (right), and a fairly

isotropic sound radiation, characteristic of the fine-scale mixing noise, is obtained.

Figure 1.7: Jet noise computation with a stochastic reconstruction of Tam and Auriault’s mixing noise
model by Ewert (2007). Acoustic propagation is computed over a steady base flow with the linearised
Euler’s equations (left), the acoustic field is solved with linearised equations for which the mean flow
gradients are neglected (right).

Previous paragraphs illustrate, how an acoustic analogy with a simple Reynolds decomposition is successful

to describe some relevant features of jet noise, such as its directivity, its radiated acoustic energy spectrum

and some noise generation mechanisms. Two sound sources of subsonic jets are identified. The first one

originates from the interaction of the mean flow shear ∇u0 with the fluctuating momentum of the vortices

ρ0u
′. Whereas the second one describes the effect of the small eddies ρ0u′ that are sheared by equally small
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vortices ∇u′. These are definitely two limit process of a continuous spectrum of possible interactions. As

a result of linearisation, the non-linear contributions of the intermediate scales of turbulence is wiped out.

This is a serious limitation to the linearised modelling framework of jet noise, and may explain the failure

of this simplified description to quantitatively predict the noise of the large scale turbulent structures.

Mohseni et al. (2002) compared the radiation of the large scales as computed with a direct numerical

simulation of the flow against the instability waves computed with a acoustic analogy methodology relying

on a Reynolds decomposition of the flow. A qualitative good agreement was found for the directivity, but

apart for the azimuthal order and the amplitude of the most amplified frequency, these authors concluded

that a linear description essentially fails in quantitatively predicting the radiation of instability waves.

Summarily put, even though instability waves intrinsically result from convection phenomena, it appears

safer not to account for them in the linear operator of the acoustic analogy. This is for two main reasons.

First, it would appear that linearised Euler’s equations are inoperative to properly model the generation of

instability waves. Essential non-linear mechanisms are indeed at stake. Secondly, in a linearised framework

their growth are unbounded, and instability waves are likely to become overwhelming and corrupt the

acoustic solution. With a pragmatic stance, for the acoustic analogy methodology to be robust, the linear

operator accounting for the propagation needs to be stable. It is argued that the term responsible for

the instability waves must be dislodged from the acoustic propagation operator and be dealt as a sound

source. As such, this noise mechanisms can be addressed with a large scale non-linear unsteady flow solver

(Goldstein, 2006; Bodard et al., 2009; Semiletov and Karabasov, 2018) or modelled analytically relying

on a stochastic flow solution (Bailly et al., 1996).

This part of the thesis is concerned with the description of acoustic waves propagating in a moving fluid.

Chapter 2 begins by reformulating Euler’s equations in an original form from which a very general wave

equation on fluctuating velocity is drawn up. A pragmatic stance is adopted, and this study wants to

contribute to the construction of a robust and practically oriented solution to achieve acoustic predictions.

With this in mind, a formulation based on the acoustic potential is chosen and an acoustic analogy based

on the equation of Pierce (1990) is introduced in paragraph §2.5. To obtain this equation, an unusual

expression of the acoustic potential is chosen. Section §2.7 shows how with this convention, the formalism

of the acoustic rays can be found in a way that is not approximate. The in-house code that has been

developed in this thesis is briefly presented in chapter 3; it is then used to validate the stability of the

wave equations proposed and to give an appreciation of their accuracy.
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2 Constitutive equations of aeroacoustics

Summary: Euler’s wave equation (EWE) in non-homogeneous form is derived from the Navier-Stokes

equations. Acoustic analogies based on linearisation and expansion about an incompressible flow are

reviewed and applied to EWE. An aeroacoustic model based on the wave equation of Pierce (1990) is

proposed. The acoustic metric associated to Pierce’s wave equation is exhibited, as well as its Hamiltonian,

and the exact rays of Foreman (1989) are generalised to a medium with steady flow.

2.1 Equations of fluid motion

The Navier-Stokes equations are governing the dynamics of viscous flows. This set of equations is consti-

tuted by the mass, the momentum and the energy conservation equations which reads in non-homogeneous

form as follow,





∂ρ

∂t
+∇ · (ρu) = ṁ

∂ρu

∂t
+∇ · (ρu⊗ u) +∇p = ∇ · Σ+ f + ṁu

∂ρet
∂t

+∇ · (ρetu) +∇ · (pu) = ∇ · (Σ · u)−∇ · q + θ̇ + f · u+ ṁet

(2.1)

The states variables u, ρ, p are the fluid velocity, its density and the thermodynamic pressure. Σ corre-

sponds to the (symmetric) shear stress tensor and q is the heat flux defined by Fourier’s law as q = −λ∇T ,

where λ ≡ λ(T ) is the heat conductivity and T the fluid temperature. et = e+ u2/2 is the specific total

energy, where e is the fluid internal energy as defined by Gibbs’ formula δe = T δs − p δ
(
1/ρ
)

with s

the fluid entropy and where the δ refer to total derivatives. Additionally, some hypothetical source terms

for mass ṁ, heat θ̇ or driven by an external force f are introduced (Chu and Kovásznay, 1958), (Delfs,

2016, §2.2). Defining additionally the material derivative D/Dt = ∂/∂t+u · ∇ the constitutive equations

of fluid mechanics can be recast into,





Dρ
Dt

+ ρ∇ · u = ṁ

ρ
Du

Dt
+∇p = ∇ · Σ+ f

ρ
De
Dt

+ p∇ · u = tr(Σ · ∇u)−∇ · q + θ̇

(2.2)
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Chapter 2 : Constitutive equations of aeroacoustics

Using Gibbs’ formula, the equation for entropy is computed from the previous equations,

ρT
Ds
Dt

= tr(Σ · ∇u)−∇ · q + θ̇ − p

ρ
ṁ (2.3)

To close the system of equations a relation between the state variables is required. The fluid is therefore

particularised here to obey the perfect gas law, that is p = ρrT , where r denotes the specific gas constant.

The internal energy of a perfect gas solely depends on its temperature, de = CvdT , so does its enthalpy

dh = CpdT , where Cp and Cv are the specific heat capacity for constant pressure and volume respectively.

The isentropic constant γ is such as γ = Cp/Cv, from the definition of enthalpy h = e + p/ρ, Mayer’s

relation is then retrieved Cp −Cv = r, and thus Cp = γr/(γ − 1) and Cv = r/(γ − 1). Expressing Gibbs’

relation in terms of variations of density, pressure and entropy delivers,

δp− γp

ρ
δρ = (γ − 1)ρT δs (2.4)

The speed of sound a is defined as the characteristic velocity measuring the variation of pressure associated

with an isentropic change of the density,

a =

√(
∂p

∂ρ

)

s

(2.5)

hence, a2 = γp/ρ = γrT . The state equation for a perfect gas enables by now the closure of the system,

offering a further reformulation of the energy equation,

Dp
Dt

+ γp∇ · u = (γ − 1)tr(Σ · ∇u)− (γ − 1)∇ · q + (γ − 1)θ̇ + rT ṁ (2.6)

2.1.1 Euler’s wave equation (EWE)

Beside these concise expressions describing the fluid dynamics, the governing equations may be written in

some other elegant forms. For instance subtracting the gradient of the energy equation from the material

derivative of the momentum equation and dividing the obtained expression by the density offers,

D2u

Dt2
+ (∇u)T · Du

Dt
+ (γ − 1)(∇ · u)Du

Dt
− a2∇(∇ · u) = S1 (2.7)

where S1 expresses as,

S1 =
γ − 1

ρ

[
∇
(
∇ · q − θ̇ − tr(Σ · ∇u)

)
+ (∇ · u) (f +∇ · Σ)

]
+

D(f +∇ · Σ)
Dt

+
(∇u)
ρ

T

· (f +∇ · Σ)− rT∇
(
ṁ

ρ

) (2.8)

Equation (2.7) for the velocity u possesses a skeleton which resembles a wave operator and is referred

in the present study as Euler’s wave equation (EWE). Indeed, in absence of viscous contributions and

heat conduction phenomena, this equation becomes homogeneous and equivalent to Euler’s equations. It

is the exact generalisation of Powell’s analogy, that Powell (1964, eq. (49)) has derived for a low Mach

number quasi-incompressible flow. Some similitude of EWE with (Chapman, 2000, § 4.2) can also be

found. Interestingly, a closure for Euler’s wave equation can be obtained in combining the continuity and
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2.2 Linearisation of Euler’s wave equation (LEWE)

energy equations to derive a transport equation for the sound speed a,

Da
Dt

+
γ − 1

2
a∇ · u = S2 (2.9)

where S2 is independent of the mass injection ṁ and writes,

S2 =
γ − 1

2p

[
tr(Σ · ∇u)−∇ · q + θ̇

]
(2.10)

Whenever viscous effects of the fluid may be neglected, e.g. far from solid boundaries for high Reynolds

number flows, and when thermal conduction plays no role, thus in the framework of Euler’s equations;

then the above boxed equations (2.7) and (2.9), in their homogeneous form, fully describe perfect gases

dynamics. As a consequence if the fluid can be modelled as an inviscid and adiabatic ideal gas, then the

flow velocity u and the sound speed a (or temperature T ) are sufficient to fully characterise the flow state.

In their homogeneous form, Euler’s wave equation together with the transport equation for the speed of

sound form a system of quasi-linear partial differential equations. That is a second order system which

possesses two unknowns u and a, that represent in total n + 1 scalar unknowns, where n corresponds

to the dimension of u. For such a non-linear wave equation no standard classification into hyperbolic,

parabolic, elliptic problem is possible. Even when the linearised and parallel flow simplification of EWE

is considered, which is presented in this script equation (2.18), the problem is described by a set of second

order partial differential equation with n unknowns, and a classification of the linear operator is not

feasible, for dimensions greater than one. To obtain some insight in the structure of the flow solution, an

analysis of Euler’s equations is presented in appendix D. It is observed that an additional variable, like

the entropy s, is required to close Euler’s equations when recast with the flow velocity u and speed of

sound a.

2.2 Linearisation of Euler’s wave equation (LEWE)

In chapter 1, §1.2 some noise source term for Euler’s equations are given. They consist in second order

interaction terms yielded from the linearisation of the fluid governing equations. The linearised equation

of the fluid were found also to adequately model sound propagation. A similar procedure is considered

here to deduce from EWE sound sources as well as a corresponding linear operator for sound propagation.

It is possible to directly linearise EWE from equations (2.7), but for this specific problem, it is simpler to

form again the corresponding wave equation from the linearised Euler’s equations (LEE). In what follows,

the linearisation is performed over an unsteady base flow that obeys,





Du0
(ρ0) + ρ0(∇ · u0) = 0

ρ0Du0
(u0) +∇p0 = 0

Du0
(p0) + γp0(∇ · u0) = 0

(2.11)

The material derivative along the base flow is introduced, Du0 = ∂/∂t+ u0 · ∇. From here, the primes

are omitted in superscript to refer to fluctuating quantities. The linearised Euler’s equations are recalled
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Chapter 2 : Constitutive equations of aeroacoustics

hereafter for some generic source term (Sρ,Su, Sp) as,





Du0(ρ) +∇ · (ρ0u) + (∇ · u0)ρ = Sρ

Du0
(u) + (∇u0) · u+

∇p
ρ0
− ∇p0

ρ20
ρ = Su

Du0
(p) +∇p0 · u+ γp0(∇ · u) + γ(∇ · u0)p = Sp

(2.12)

This reformulation of the LEE does not present any technical difficulty, it is however lengthy and the

key steps for the derivation are given in appendix C.1. The linearised Euler’s wave equation (LEWE) is

eventually obtained as,

D2
u0
(u) + Du0

((∇u0) · u) + (∇u0)
T ·Du0

(u) + (∇u0)
T · (∇u0) · u− a20∇(∇ · u)

+(γ − 1)Du0
(u0)(∇ · u) +∇

(
Du0

(u0)
)
· u+ (∇u)T ·Du0

(u0)

+(γ − 1)(∇ · u0)
[
Du0

(u) + (∇u0) · u
]
+ a20∇(∇ · u0)

[
ρ

ρ0
− p

p0

]

= Du0
(Su) + (∇u0)

T · Su + (γ − 1)(∇ · u0)Su −
∇Sp

ρ0
− Du0

(u0)

ρ0
Sρ

(2.13)

This wave equation is very general and apart from the term
(
ρ/ρ0 − p/p0

)
, it is function of the fluctuating

velocity u only. This odd term corresponds to fluctuations of the speed of sound a, in fact,

a2 =
γp

ρ0
− γp0ρ

ρ20
= a20

(
p

p0
− ρ

ρ0

)
(2.14)

It can be expressed alternatively with help of equations (2.12). Then, using Gibbs’ relation (2.4), it is

claimed that this term measures entropy s variations, since,

Du0(p)− a20Du0(ρ)︸ ︷︷ ︸
=

(γ−1)p0
r

Du0
(s)

=
(
a20∇ρ0 −∇p0

)

︸ ︷︷ ︸
=

(1−γ)p0
r

∇s0

·u+ γp0(∇ · u0)

(
ρ

ρ0
− p

p0

)
+ Du0(Sp)− a20Du0(Sρ) (2.15)

From the linearisation of the entropy transport equation (2.3), for an inviscid and adiabatic fluid,

Du0
(s) + u · ∇s0 = 0 (2.16)

and,

γp0(∇ · u0)

(
ρ

ρ0
− p

p0

)
= a20Du0

(Sρ)−Du0
(Sp) (2.17)

Thus, in configurations for which no entropy source is present, i.e. Du0(Sp) = a20Du0(Sρ), and as long

solely acoustic propagation is concerned; the term ∇(∇ · u0)
(
ρ/ρ0 − p/p0

)
can reasonably be dropped.

For Euler’s equations are adiabatic, it is seen that the entropy mode decouples from the acoustic mode and

the vorticity mode. A genuine wave equation for the fluctuating velocity u is thereby obtained. The so

obtained linearised Euler’s wave equation (LEWE) is very general, and represents an interesting cheaper

alternative to the LEE1, that may possibly be solved with a finite-element method (Peyret and Elias,

1Note that a similar wave equation for the fluctuating velocity u was derived by Blokhintzev (1946, eq. (9)) for an
heterogeneous medium at rest. Similarities between the LEWE and the wave equations written for the particle displacements
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2.2 Linearisation of Euler’s wave equation (LEWE)

2001). In many applications however, simplifications for incompressible base flows (∇·u0) = 0 or parallel

base flows Du0
(u0) = 0 are handy. For parallel base flows, LEWE conveniently simplifies into,

D2
u0
(u) +

[
(∇u0) + (∇u0)

T
]
·Du0

(u) + (∇u0)
T · (∇u0) · u− a20∇(∇ · u)

= Du0
(Su) + (∇u0)

T · Su −
∇Sp

ρ0

(2.18)

This simplification of LEWE is equivalent to Lilley’s equation (1972). This is illustrated on a numerical

test in §3.2.

Sound source

While Bogey et al. (2002) proposed a source for the linearised Euler’s equation through a comparison

with Lilley’s equation sound source; Goldstein (2003) gave a more general expression for the source term

accounting for all possible second order non-linear interactions. The general forcing term of the LEWE

may similarly be given in relationship with the LEE source terms (Sρ,Su, Sp),

S = Du0
(Su) + (∇u0)

T · Su + (γ − 1)(∇ · u0)Su −
∇Sp

ρ0
+
∇p0
ρ20

Sρ (2.19)

These interaction terms for the LEE are given in equations (1.5) and are recalled hereafter,





Sρ ≡ −∇ · (ρu)

Su ≡ −∇ · (u⊗ u) + u(∇ · u) + ρ∇p/ρ20

Sp ≡ −u · ∇p− γp∇ · u

(2.20)

The right hand side S of the LEWE given by equations (2.19) and (2.20) is a forcing term for the wave

equation, but also accounts for non-linearities that may be encountered in the propagation of sound. Typ-

ically when an instability wave occurs, the velocity fluctuations u may become secular and contributions

from S caps its growth. This continuous effect of S in the propagation is lost in a two-step acoustic analogy

perspective. Therefore it should a posteriori be guaranteed, that the generated acoustic field does not

heavily alter the initial distribution of S. If the discrepancies between the initial and a posteriori eval-

uation of S are too significant, meaningful propagation effects are not acknowledged, and the linearised

framework must be questioned.

Figure 2.1 presents the acoustic solution obtained by Bogey et al. (2002) within such a linearised frame-

work. A direct Navier-Stokes (DNS) simulation of two corotating and merging vortices is investigated.

The departure from the base flow of the computed unsteady simulation is used to inform the source term.

The Linearised equations were found to reproduce very accurately the reference DNS solution.

(Galbrun, 1931; Biot and Tolstoy, 1957; Godin, 1997; Shnip, 1999) may also be found.
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Chapter 2 : Constitutive equations of aeroacoustics

Figure 2.1: Snapshot of the near vorticity field and the fluid dilatation generated by two corotating vortices
computed with the Navier-Stokes equations, where the rotation Mach number is Mr ≈ 1.1 (left). The
fluid dilatation is rebuilt with the linearised Euler’s equations with the Reynolds stress tensor taken as
the source of sound (right). The linearised solution proved to match the reference DNS solution perfectly
in the study of Bogey et al. (2002).

2.3 Expansion about an incompressible flow (EIF)

The expansion about an incompressible flow (EIF) is an alternative methodology to model noise generation

and propagation, and is briefly reviewed here. As a preliminary comment, notice that in previous approach

the acoustic field is sought as a linear deviation from a base flow, and that therefore the equations

describing the base flow dynamics are self-contained. No contribution stemming from the base flow forces

the acoustic equations, and only second order perturbations may be defined as valid sound sources. A

direct linearisation of the equations of fluid motion is consequently inappropriate to apprehend how the

unsteadiness of large flow structures, as encountered in low Reynolds number flows, will generate sound.

The basic principle of the EIF was introduced by Ribner (1962), and consists in considering the flow

essential sound producing part as solenoidal. In the literature, many authors2 have contributed to model

acoustic sources as departing from an incompressible base flow. Acoustics is correspondingly investigated

as a perturbation computed from an expansion about an incompressible flow. To define the base flow

relevant for an EIF analysis, an incompressible Navier-Stokes solver is used. Solely the momentum

equation and the incompressibility condition are solved. The pressure field of the base flow p0 is computed

a posteriori with Poisson’s equation, and is thus not solution of the fluid compressible equations (C.1). This

mismatch of the base flow pressure p0 with the compressible equations is used to provide source terms for

the aeroacoustic perturbation equations. Seo and Moon (2006) gave perhaps the most completed version

of acoustic perturbation equations obtained with such an EIF technique. Neglecting the effort induced by

2Notably (Powell, 1964; Yates, 1978; Klainerman and Majda, 1982; Hardin and Pope, 1994; Shen and Sørensen, 1999b,a;
Slimon et al., 2000; Gabard et al., 2004a; Seo and Moon, 2006; Munz et al., 2007; Moon et al., 2010; Khalighi et al., 2010;
Kaltenbacher et al., 2015).
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2.3 Expansion about an incompressible flow (EIF)

viscosity and the heat conduction terms, the linearised perturbed compressible equations (LPCE) write,





Du0
(ρ) + ρ0(∇ · u) = 0

∂u

∂t
+∇ (u0 · u) +

∇p
ρ0

= −(∇× u0)× u− (∇× u)× u0 −
ρ

ρ0
Du0

(u0) ≡ Su,LPCE

Du0
(p) + γp0(∇ · u) + u · ∇p0 = −Du0

(p0) ≡ Sp,LPCE

(2.21)

As for Euler’s wave equation, this set of equations can be combined to derive a wave equation for the

fluctuating velocity u. For completeness this reformulation of LPCE is given here,

∂2u

∂t2
+
∂

∂t

[
(∇u) + (∇u)T

]
· u0 + 2(∇u0)

T · ∂u
∂t

+∇
[
u0 · ∇(u0 · u)

]
− a20∇(∇ · u)

+γDu0
(u0)(∇ · u)−

∇(u · ∇p0)
ρ0

= Du0
(Su,LPCE) + (∇u0)

T · Su,LPCE −
∇Sp,LPCE

ρ0

(2.22)

Sound source

Because the base flow is supposed incompressible for these perturbation equations, this method applies

in the low Mach number limit, for which the principal sound source is Sp,LPCE (Klainerman and Majda,

1982). In comparable configurations, this formulation presents a computational advantage over Lighthill’s

analogy, this is most easily seen if the low Mach number limit of equations (2.21) is considered, see

(Seo and Moon, 2006, eq. (17)), and the analogy of Ribner (1962) retrieved,

∂2p

∂t2
− a2∆p = −∂

2p0
∂t2

(2.23)

where (Ribner, 1962, eq. (2.5)) noticed, that the incompressible pressure p0 obeys Poisson’s equation,

∆p0 = −∇ · ∇ · (ρ0u⊗ u) (2.24)

Thus in the low Mach number limit for an adiabatic flow, Ribner’s analogy equation (2.23), describes the

same sound generation mechanisms as in Lighthill’s analogy, equation (1.2). Observe that the principal

sound source for this analogy, consists in a double time derivative, that is numerically easier to process

than the double divergence of Lighthill’s tensor, even if the source domain is thereby stretched. This is

illustrated by Prax et al. (2008), who moreover pointed out that Ribner’s source definition filters out the

source term of the vorticity mode. It is important to note, that the separation between the two coupled

energetic modes is operable within the EIF framework because of the existence of discrepancies in the time

scales. As a matter of fact, with the low Mach number assumption, the characteristic time of evolution of

the flow is small, with respect to the acoustic one. For this reason, it is expected EIF fails to accurately

describe the acoustics of high Mach number flows.

An illustration for an acoustic field solution of an EIF is provided in figure 2.2. The perturbed acoustic

field computed with the LPCE for a elliptic spinning patch of vorticity is presented. A very satisfactory

match of the acoustic solution and the corresponding analytical solution is found by Seo and Moon (2006).
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U∇× = Ω

0U∇× =

Θ

a

b

Figure 2.2: Sketch of the Kirchhoff vortex (rigid body rotation of a vortex patch) considered by
Seo and Moon (2006) for which an analytical solution for the acoustic field exist (left). Instantaneous
pressure field computed with the linearised perturbed compressible equations (right). The Mach number
based on the rotating speed considered, is Mθ = 0.1. A perfect match with the reference solution was
obtained by these authors.

2.4 Choice of the aeroacoustic model

In spite of the efforts of Goldstein (2003) and others, there is still no satisfactory unified theory encom-

passing acoustic analogies obtained by linearisation and with an EIF. Second order perturbations may

be included within an EIF, yet thereby a risk exists of double-counting sound sources. The major dif-

ferences between acoustic analogies based on linearisation and those defined as an expansion about an

incompressible flow are summarised:

• While in the first formulation, acoustics is inherently linear, non-linear acoustic propagation can be

addressed with the second approach. With a linear propagation operator, unbounded exponentially

growing solutions may arise and corrupt the acoustic solution.

• In the second strategy sound sources are defined from the base flow unsteadiness, and this method

is adapted to track sound stemming from large flow structures as well as noise from fluid-structure

interactions. Within the first methodology on the contrary, sound is produced by the non-linear

interactions of fluctuating quantities only, and this techniques is appropriate to account for turbulent

mixing noise, but inoperable to describe the sound generated by large flow structures.

• Expansion about an incompressible flow is valid over all possible Reynolds number, yet its relevance

is questionable for high Mach flow, for which the computation costs become comparable to direct

aeroacoustic numerical simulations. This remark on computational expense applies also for acoustic

analogies based on linearisation. However for the latter statistical description of the noise sources

may be used together with affordable steady flow computations and are readily used to achieve high

Mach number supersonic jet noise predictions (Morris, 2012).

• EIF presumes a low Mach number flow for which the incompressible Navier-Stokes satisfactorily

describes the non-acoustic contribution of the fluid. At moderate/high Mach number, the time

scale separation on which the method relies vanishes, and the EIF foundations crumbles. For its

part, linearisation is based on an amplitude separation in which the fluctuations are deemed small
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2.5 Acoustic analogies for the acoustic potential

with respect to typical base flow magnitudes. This theory collapses when overwhelming instability

waves or resonance phenomena occur.

The present study is concerned with the noise modelling of jets with both, high Mach number, and high

Reynolds number. As discussed in §1 of part II of this work, turbulent mixing noise plays a foreground

role in such configurations and for the reasons detailed above, acoustic analogies based on linearisation

are found more suitable. With regard to the complexity of the flow dynamics encountered in high speed

jets, detailed unsteady simulations of the flow are unaffordable, and the sound sources must be modelled

semi-empirically. To guarantee the robustness of the method, the exponentially growing solutions of the

linear propagation problem must be withdrawn. Different strategies to achieve stable sound propagation

are reviewed in chapter 3, and some original stable operators are also presented. In the aeroacoustic model

proposed, stability is ensured with an acoustic preserving formulation. The conservation of acoustic energy

is achieved thanks to an acoustic potential description.

2.5 Acoustic analogies for the acoustic potential

The paramount concepts in fluid mechanics of velocity potentials and stream functions have been in-

troduced by Lagrange (Anderson Jr., 1997, chap. 3), and the tools to model acoustic potential sound

propagation are very ancient. Already in (1781) as a member of Berlin’s academy of sciences, did this

franco-sardinian citizen derive a linearised wave equation for the acoustic potential. This equation was

derived later anew by Helmholtz (1860). Their wave equation for the acoustic potential is acoustic preserv-

ing (Campos, 1988; Möhring, 1999), meaning that their relations solely describe acoustics, and conserve

the energy. The acoustic potential framework guarantees a robust, yet arbitrary3, decoupling of acous-

tic fluctuations from the incompressible flow dynamics (Helmholtz, 1858; Schoder et al., 2020). Such

formulations based on the acoustic potential are common to address sound propagation (Blokhintzev,

1946; Crighton and Leppington, 1970; Pierce, 1990; Eversman, 2001; Möhring, 2001), because they de-

liver physically consistent simplifications to a given problem. But, even though some models for the

source terms have been proposed (Marsh Jr., 1950; Yates, 1978; Goldstein, 1978; Ewert and Schröder,

2003; Perez Bergliaffa et al., 2004), the use of the potential acoustic has remained limited in aeroacoustics

(Kaltenbacher et al., 2013). It is only recently4, that Kaltenbacher et al. (2015) proposed a model suitable

for computational aeroacoustics based on an EIF formulation. Note that this model is in close similitude

with the contribution of Yates (1978). Encouraging results have been obtained with this methodology

(Tautz et al., 2018), nevertheless its use is restricted to low Mach number flows, due to the inherent lim-

itations of the EIF method. In this section, an acoustic analogy for the acoustic potential is presented.

To be adapted to the investigation of the noise of high speed jets, it is obtained from the linearisation of

the governing equations rather than from an EIF. To simplify the derivations, the base flow is supposed

steady and parallel, and the corresponding simplification of LEWE, equation (2.18), is used as a starting

point.

3Notice that another decoupling of acoustics from the flow dynamics is achieved in considering the Bernoulli constant
B as the appropriate dependent variable for acoustics. The Bernoulli constant B, corresponding also to the stagnation
enthalpy, is closely related with an acoustic potential formulation. In region without sound sources, Crocco’s equation
(Möhring, 1999, eq. (2)) delivers ∂u ∂t = −∇B and the velocity u is curl-free. This wave equation found more application
in aeroacoustics than original potential acoustic formulations u = ∇ψ, because sound sources were proposed for the latter
and acoustic analogies available (Howe, 1975a; Möhring, 1979).

4Surprisingly enough, whoever reviews Helmholtz’s and Lagrange’s contributions remarks, that these authors mentioned
source terms for their equations. Giving a volume force ∇Q acting on the fluid and deriving from a potential Q, Helmholtz
(1860, eq. (2)) wrote ∂2ψ/∂t2 − a2∆ψ = ∂Q/∂t, while Lagrange (1781, §23) derived ∂2ψ/∂t2 − k∆ψ = u · ∇Q. The sum of
these two sound sources with Q = −p0 delivers a term that closely resembles to the one computed within an EIF framework.
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Chapter 2 : Constitutive equations of aeroacoustics

2.5.1 Definition of the acoustic potential

Before detailing the analogy proposed, a preliminary remark will motivate the choice for this work of

an unusual definition for the acoustic potential. Recall first, that prior to his wave equation5, Helmholtz

(1858) proposed an ingenious decomposition for the fluid velocity u into a potential part ψ and a solenoidal

part A,

u = ∇ψ +∇×A (2.25)

It is well established that in presence of mean flow vorticity (∇ × u0), velocity fluctuations u do not

remain potential (Yates, 1978; Pierce, 1990). Nevertheless, according to this definition of the acoustic

potential and for an isobar mean flow at rest, spatial variations of the speed of sound a0 are also giving

rise to solenoidal fluctuations (∇× u). This is seen for an initial vorticity-free distribution of fluctuating

velocity u, by taking the curl of the wave equation,

∂2u

∂t2
− a20∇(∇ · u) = 0 (2.26)

which delivers,
∂2(∇×∇×A)

∂t2
= (∇a20)×∇(∆ψ) 6= 0 (2.27)

Consequently, fluctuations of the acoustic potential u = ∇ψ propagating in an isobar media at rest are not

guaranteed to remain potential. Pierce (1990) has shown that different definition for the acoustic potential

are legitimate, and in what follows a Helmholtz decomposition based on the fluctuating momentum ρ0u

is chosen, such that,

ρ0u = ∇φ+∇×B (2.28)

By multiplying equation (2.26) by ρ0, and taking its curl for an isobar medium, then for an initial

vorticity-free distribution of momentum fluctuations ρ0u,

∂2(∇×∇×B)

∂t2
= ∇×∇

(
∇ ·
(
a20∇φ

))
= 0 (2.29)

Thus it is ensured that potential fluctuations ρ0u = ∇φ remain potential for an isobar medium at rest.

For a uniform mean density ρ0, both definitions overlap, and they are expected to describe equivalently

the effect of flow shearing on acoustic propagation. The constraint that the mean flow be isobar is not

very stringent for jet flows, and in order to adequately model acoustic refraction caused by speed of sound

a0 heterogeneities the acoustic potential definition of equation (2.28), is preferred over the historical one.

2.5.2 Wave equations for the acoustic potential

From this Helmholtz decomposition of the fluctuating momentum ρ0u, a wave equation is sought for the

acoustic potential φ alone. Possible couplings with the vorticity mode are discarded, and it is assumed

that the momentum fluctuations are purely acoustical, i.e. ρ0u = ∇φ. Within this scope, it is possible

to reformulate the linearised Euler’s wave equation for the acoustic potential, taken as the dependent

variable for acoustics. This is demonstrated in appendix §C.2 for a base flow that is steady and parallel.

5And prior to the alternative decomposition of Clebsch (1859), which uniqueness is not ensured (Lamb, 1879, §167).
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2.5 Acoustic analogies for the acoustic potential

The so obtained wave equation is referred to as LEWE-AP, and writes,

∇
[
D2

u0
(φ) −∇ ·

(
a20∇φ

)]
+ (∇× u0)×

[
∇
(
Du0(φ)

)
−
[
(∇u0) + (∇u0)

T
]
· ∇φ

]

= Du0
(ρ0Su) + (∇u0)

T · (ρ0Su)−∇Sp

(2.30)

Considering the second order interaction terms from the LEE, equations (2.20), sound sources for LEWE-

AP may be defined, and thereby an acoustic analogy for the acoustic potential. This acoustic analogy

is obtained by linearisation, therefore it is by nature different from the EIF formulation proposed by

Kaltenbacher et al. (2015), and its validity extends over the Mach numbers. It is seen from LEWE-AP

that the wave equation of Pierce (1990, eq. (27)), does not consist in a high frequency approximation

of acoustics, but it accurately describes acoustic propagation for isobar potential flows. What is more, if

the momentum sound source ρ0Su can satisfactorily be represented by its potential part Sm, such that

ρ0Su ≈ ∇Sm, then whenever the effect of the mean flow vorticity (∇× u0) on the acoustic propagation

can be neglected a handy acoustic analogy can be built from Pierce’s equation,

D2
u0
(φ)−∇ ·

(
a20∇φ

)
= Du0

(Sm)− Sp (2.31)

where from equations (2.20), the sound source of Pierce’s equation is derived as,





∆Sm = ∇ · (ρ0Su) = −∇ · ∇ · (ρ0u⊗ u) +∇ ·
(
u∇ · (ρ0u)

)
+∇ ·

(
ρ∇p/ρ0

)

Sp = −u · ∇p− γp∇ · u
(2.32)

Whenever the Reynolds stress tensor is the principal source of sound, Sm is solution of Poisson’s equation,

∆Sm = −∇ · ∇ · (ρ0u⊗ u) (2.33)

which is very reminiscent of the sound source defined in Ribner’s theory of dilatation, equation (2.24).

Thus, in the low Mach number limit, Sm = −p0 and the analogy of Kaltenbacher et al. (2015, eq.

(11)) is retrieved exactly. At high Mach number, ∆p0 6= ∇ · ∇ · (ρ0u⊗ u) and equation (2.33), needs

to be solved explicitly. An analogous filtering of the momentum source has been proposed for the

acoustic perturbation equations (Ewert and Schröder, 2003), and some commercial software like Actran

(Free Field Technologies, 2018b, §33.5.4) are able to perform this processing on turbulent flows. This

split is to be viewed in parallel with the discussion on the energetic modes of a fluid presented in §1.2,

where it is illustrated that the potential part of the momentum sound source rather corresponds to an

acoustic source, while its incompressible part is responsible for the vorticity mode. With a second order

wave equation, as in equation (2.31), only acoustic fluctuations can be computed, and as a matter of

consistency and well-possessedness, a sound source filtering should be considered for this wave equation.

Note that this remark applies for any acoustic operator that aims at computing solely the acoustic mode.

All mode conversion mechanisms being discarded, neither instability waves nor noise generated by the

inhomogeneous convection of turbulent structures can be modelled with Pierce’s acoustic analogy. This

must be seen as a necessary tribute to pay to build an acoustic preserving wave equation. From equation

(2.30), it appears that this source filtering is not necessary for LEWE-AP. It is argued, in the following,

that this acoustic analogy is ill-posed, and that Pierce’s wave equation must be preferred over LEWE-AP.
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Chapter 2 : Constitutive equations of aeroacoustics

Leaving aside the issue of the source filtering, equations (2.30) and (2.31) correspond to two modelling

limits for which the mean flow vorticity is fully accounted for in the wave operator or entirely discarded.

It is clear that, for a potential mean flow, Pierce’s equation and LEWE-AP equivalently and exactly

describe the sound propagation. Apart from this specific case, an inconsistency appears when potential

perturbations ρ0u = ∇φ are considered superimposed on a vortical mean flow. Two strategies may be

conceived: 1/ Take into account the mean flow vorticity and endorse the ill-possessedness encountered

when forcing the momentum fluctuations to remain potential, or, 2/ Neglect the effect of the mean flow

vorticity on sound propagation, and mistakenly consider a wave equation valid for a potential mean flow

in the applications. Motivation to prefer the second approach are mentioned:

• If the vorticity mode is discarded, coupling mechanisms should be discarded accord-

ingly. When considering LEWE-AP mode conversion from acoustics to vorticity is discarded.

However the coupling terms are still present in the wave equation and are erroneously lined up with

propagation terms. When assuming the mean flow is parallel and the momentum fluctuations are

purely potential ρ0u = ∇φ, Euler’s momentum equation, equation (2.12), can be recast in,

∇(Du0
(φ) + p) = ρ0Su − (∇× u0)×∇φ (2.34)

where the term (∇× u0) × ∇φ describes the coupling mechanisms from acoustics to the vorticity.

This has been thoroughly been addressed by Yates (1978, §II.C) and is supported by the contribution

of Perez Bergliaffa et al. (2004, eq. (41) & (42)). In these contributions this term is stowed as a

source of vorticity, and as such, it should be discarded from a purely acoustic equation. For not

being removed, this contribution undoubtedly alters the ability of LEWE-AP to correctly describe

sound propagation.

• Most of potential acoustic operators of the literature do not consider the effect of

the mean flow vorticity in the propagation. The LPCE, presented equations (2.21), the

acoustic perturbation equations (Ewert and Schröder, 2003), but also the wave equations built for

the fluctuating enthalpy (Howe, 1975a; Möhring, 1999), can be considered as genuine potential

acoustic operators. In absence of sources, it is straightforward to show that these equations lead to

curl-free velocity fluctuations u. From the homogeneous momentum equations of LPCE, equations

(2.21), it comes,

ρ20
∂∇× u

∂t
= ∇ρ0 ×∇p ≈ 0 , and u = ∇ψ (2.35)

In the LPCE, terms expressing the mean flow vorticity are moved from the linear operator to the

source Su,LPCE as given in equations (2.21). This can be observed for the other acoustic models as

well (Ewert and Schröder, 2003, eq. (76) & (78)), (Howe, 1975a, eq. (4.14)) and (Möhring, 1999, eq.

(6) & (7)). For a constant density ρ0 and a parallel mean flow, the homogeneous LPCE equations

(2.21), may be recast in the convected wave equation,

D2
u0
(ψ)− a20∆ψ = 0 (2.36)

Such that, the LPCE, and these linear operators do only consider the potential flow contribution of

the actual flow in the acoustic propagation.

• Attempts to consider the mean flow vorticity in acoustic potential propagation led

to awkward acoustic predictions. Efforts to include the effect of the flow vorticity in acous-
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2.5 Acoustic analogies for the acoustic potential

tic potential wave equations are seldom. Notable contributions have been made in this scope by

Legendre et al. (2018), who compared different formulations that include the effect of the flow mean

vorticity in the propagation (Legendre, 2014). When compared on a sheared flow configuration,

encouraging results have been obtained for acoustic wavelengths λ that are small with respect to

the flow characteristic length scale L. In the low frequency limit of acoustics, when λ/L is large,

the wave equations that account for the flow vorticity diverged from the reference solution. Some

computations are performed for LEWE-AP with the in-house code PROPA and presented in §3.3.

Unreasonable acoustic field have been obtained, that are found much less accurate to represent

the acoustic field than Pierce’s equation. On parallel flow configurations, the implementation of

LEWE-AP in PROPA has been validated with an alternative implementation of the LEE for which

ρ0u = ∇φ, that delivered identical inconsistent solutions.

• Sound generation is at leading order a potential flow phenomenon. This can qualitatively

be understood from following reasoning. From Kelvin’s minimum energy theorem, potential motions

correspond to the flow realisation that satisfies given boundary conditions with a minimal energy

expense. Yet, whenever a fluid motion cannot be contra-balanced by a reciprocal incompressible

fluid movement, compressibility waves are generated to match the prescribed incompressible flow

boundary conditions. This outing of Stokes’ incompressible regime is accomplished with the creation

of acoustic potential fluctuations that provide, for a minimum energy cost, a suitable solution that

respects the imposed boundary conditions. Key idea for this interpretation is given in Lighthill’s

(1952) justification of the acoustic analogy, where he suggested that the sound sources correspond

to ‘the minute fraction in momentum flux which is not balanced by a local reciprocating motion’.

To this authors’ interpretation of Lighthill’s thoughts, if the momentum fluxes are caused by the

kinetic motion of turbulent flows, sound generation however consists essentially in a potential flow

mechanism. Mentioning the work of Stokes, Lighthill (1952, §2) provides a synthesis for the energy

conversion at play: ‘In brief the physical explanation is that any forcing motion on a scale comparable

with the wave-length is balanced partly by a local reciprocal motion, or standing wave, and partly

by compressions and rarefactions of the air whose effects is propagated outwards. The larger the

wave-length in comparison with the scale of the forcing motion, the more completely can the motion

be fully reciprocated by the local standing wave.’ What is more, with the multipolar expansion of the

sound sources, vortices appear to emit sound as vibrating spheres that can accurately be described

from an acoustic potential perspective (Ehrenfried, 2004, §5).

• Sound propagation solely depends on the local mean flow characteristics u0 ± a0. If

acoustic propagation is described solely with a potential flow wave equation, it seems that some

propagation effects are omitted. A more accurate acoustic preserving linear operator, that fully

accounts for the mean flow gradients, may be sought. This is not necessarily correct. From the

comparison of Pierce’s operator, equation (2.31), with d’Alembert’s equation a similar structure is

found. Yet, in reformulating the one-dimensional convected d’Alembert operator as,

(
∂

∂t
+ u0

∂

∂x

)2

− a20
∂2

∂x2
=

(
∂

∂t
+ (u0 + a0)

∂

∂x

)(
∂

∂t
+ (u0 − a0)

∂

∂x

)
(2.37)

it is seen, that this operator transports the variable of state along the x-axis at the characteristic

speeds u0 + a0 and u0 − a0. Remark that the decomposition presented in equation (2.37), is valid

for arbitrary u0 irrespectively of the spatial variations ∂u0/∂x. Section § 2.7 illustrates how Pierce’s
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Chapter 2 : Constitutive equations of aeroacoustics

equation may be split in similar characteristic equations. Hence, while Pierce’s equation is exact

for a potential mean flow, it accounts in the sound propagation for all variations of the mean

flow, whether they are potential or not. Since Riemann’s (1860) work on characteristics, it is

known that the characteristic writing of a problem are not, in any way, asymptotic simplifications

(Lappas et al., 1999). This method may address coupled non-linear problems as-well. It is argued

that the simplifications made in proposing Pierce’s equation as a generally valid wave operator, are

consequences of considering a linear propagation that is acoustic preserving. Section § 2.7 illustrates

in particular that this does not correspond to a high frequency limit of acoustics.

2.6 Acoustic energy conserved by Pierce’s equation

The analysis that led to propose Pierce’s wave equation assumed the base flow be steady and parallel.

This is because a more general expression for LEWE-AP could not be proposed. In the derivations of

Blokhintzev (1946, §II) however, the base flow is supposed steady, homentropic and potential. Appendix

§C.3 recalls his derivation using modern notations, and proposes a compressible generalisation of Pierce’s

wave equation. Let Pierce’s wave equation be tagged with L0(φ), then it expresses as,

L0(φ) = D2
u0
(φ)−∇ · (a20∇φ) + (∇ · u0)Du0

(φ) (2.38)

and if the generic forcing term q is introduced,

L0(φ) = q (2.39)

This compressible flow wave equation for the acoustic potential serves as a starting point for the derivations

hereafter.

2.6.1 Conservation of the acoustic energy

In this paragraph, relying on the work of Möhring (1999, §2.4), the acoustic energy conserved by Pierce’s

equation is computed. This author frequently insisted on the asset of using self-adjoint formulations

(Möhring, 1979; Möhring et al., 1983; Möhring, 1999, 2001) such as Pierce’s wave equation. A reason for

this, is that from their self-adjointness property, a variational principle

δL = 0 (2.40)

exist, from which the equation can be derived. As a corollary, the acoustic energy conservation in the

acoustic propagation is ensured. A possible Lagrangian L associated with equation (2.39) is,

L =
1

2
< φ,L0(φ) > − < φ, q > (2.41)

since,

δL =
1

2
< δφ,L0(φ) > +

1

2
< φ,L0(δφ) > − < δφ, q >=< δφ,L0(φ) − q > (2.42)

Integrating by parts equation (2.41) and discarding the boundary terms, one simply obtains,

L =

ˆ ˆ

Λ dt dx with Λ =
1

2

[
−
(
Du0

(φ)
)2

+ a20(∇φ)2
]
− qφ (2.43)
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where Λ corresponds to the Lagrangian density. If Euler-Lagrange’s equation was used,

∂Λ

∂φ
= ∇ ·

(
∂Λ

∂(∇φ)

)
+
∂

∂t

(
∂Λ

∂(∂φ/∂t)

)
(2.44)

then equation (2.39) would have been retrieved (recall that in Euler-Lagrange’s equation, variations of

φ, ∂φ/∂t and ∇φ are deemed unrelated). Thus, to compute the acoustic energy associated with Pierce’s

wave equation, another conservation formula must be considered. Introducing the Hamiltonian H from a

Legendre transformation of the Lagrangian Λ,

H =
∂φ

∂t

∂Λ

∂(∂φ/∂t)
− Λ (2.45)

the acoustic energy conservation formula is deduced from the relation,

∂H
∂t

+∇ ·Π = 0 (2.46)

where,

Π =
∂Λ

∂(∇φ)
∂φ

∂t
(2.47)

is the energy flux associated to the energy density formed by the Hamiltonian H. From equation (2.43),

these quantity can be evaluated for Pierce’s equation by noting that,

∂Λ

∂(∂φ/∂t)
= −Du0

(φ) and
∂Λ

∂(∇φ) = a20∇φ−Du0
(φ)u0 (2.48)

Then if the acoustic fluctuations are accurately described with an acoustic potential, i.e. p = −Du0(φ)

and ρ0u = ∇φ, then the acoustic energy density H and fluxes express as,

H = −p
2

2
− ρ0(u0 · u)p− γp0ρ0

u · u
2

+ qφ

Π = −(p+ ρ0u0 · u)(γp0u+ u0p)

(2.49)

Apart from the production term ∂(qφ)/∂t that is here not particularised, equations (2.46) and (2.49)

correspond to the generalised acoustic energy equation of Morfey (1971, eq. (22-24)). Note that similar

conservation equations for the acoustic energy have merely been derived in the literature considering the

Lagrangian (Whitham, 1965; Bretherton and Garrett, 1968; Hayes, 1970a; Campos, 1988).

2.6.2 Conservation of the acoustic intensity

The Hamiltonian conservation formula, given in equation (2.46), is deduced from the divergence free prop-

erty of the four dimensional stress energy tensor T (alias energy momentum tensor) (Landau and Lifshitz,

1951, §32),

∇̇ · T = 0 (2.50)
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where ∇̇ = (∂/∂t , ∇)T corresponds to the four-vector differentiation and the stress-energy tensor ex-

presses as,

T = ∇̇φ⊗ ∂Λ

∂(∇̇φ)
− I Λ =




∂φ

∂t

∂Λ

∂(∂φ/∂t)
− Λ

∂φ

∂t

∂Λ

∂(∇φ)

∇φ ∂Λ

∂(∂φ/∂t)
∇φ⊗ ∂Λ

∂∇φ − I Λ




(2.51)

where I is the identity matrix (which dimension adapts to the context). In fact, the acoustic energy

equation of Morfey (1971), that is equivalent to equation (2.46), only corresponds to the first relation that

can be deduced from equation (2.50)6, and an additional conservation relation for the acoustic field may

be derived,
∂

∂t

(
∇φ ∂Λ

∂(∂φ/∂t)

)
+∇ ·

(
∇φ⊗ ∂Λ

∂∇φ − I Λ

)
= 0 (2.52)

where for Pierce’s wave equation, and in the acoustic potential framework,

∇φ ∂Λ

∂(∂φ/∂t)
= −Du0(φ)∇φ

= ρ0pu
(2.53)

and,

∇φ⊗ ∂Λ

∂∇φ − I Λ = −∇φ⊗
[
Du0

(φ)u0 + a20∇φ
]
−
(
1

2

[
−
(
Du0

(φ)
)2

+ a20(∇φ)2
]
− qφ

)
I

= ρ0u⊗ [pu0 − γp0u] +
(
p2

2
− γp0ρ0

u · u
2

+ qφ

)
I

(2.54)

which delivers, after simplification by ρ0, a conservation law for the acoustic intensity,

Du0
(pu) +∇ · (a20ρ0u)u−∇(a20)ρ0

u · u
2

+
∇(p2)
2ρ0

+
∇(qφ)
ρ0

= 0 (2.55)

Conservation law for the acoustic intensity are less common than acoustic energy conservation laws,

and a correspondence for this equation was not found by this author in the literature. This conserva-

tion equation may find some application in sound source identification (Fernandez-Grande et al., 2012;

Fernandez-Grande and Jacobsen, 2014), all the more than acoustic intensity is measurable in experiments.

2.7 Exact ray theoretical formulation of Pierce’s equation

If acoustics has a wavy nature, its propagation can be modelled by ray tracing similarly as in optics.

This is illustrated in figure 2.4. While the solving of the wave equations in an eulerian paradigm requires

a mesh, ray acoustics is lagrangian by essence, and one understands why this method is also referred

to as geometrical acoustics. It is well acknowledged that in the high frequency limit of acoustics, any

wave equation simplifies to the geometrical acoustics formulation (Candel, 1972; Goldstein, 1982; Pierce,

1990; Wundrow and Khavaran, 2004). This section puts forward the existence of a one-to-one equivalence

between Pierce’s wave equation and the ray acoustics framework. Motivation for this analysis is to

gain insight in the energy conservation of Pierce’s equation (Hayes, 1970a,b; Candel, 1975). Blokhintzev

6Using vector calculus, equation (2.50) may be redraft into, ∇̇ · T = ∇̇ ·

(

∂Λ

∂(∇̇φ)

)

∇̇φ+ ∇̇∇̇φ ·

(

∂Λ

∂(∇̇φ)

)

− ∇̇Λ = 0.
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(1946, §III) first introduced geometrical acoustics, by drawing on the preexisting optical theory. In his

dissertation, Gainville (2008, §2.3.1) distinguishes three ways to settle the ray acoustics formulation:

1/ a geometric approach based on the notion of wavefront (Pierce, 1981), 2/ a method based on the

characteristics method (Candel, 1977), and 3/ a method based on Hamiltonian formalism (Bertschinger,

1999). The first two methods use a serial development to arrive at the ray equations, and thus only the

method based on analytical mechanics may lead to the equivalence between the two methods.

Figure 2.3: Illustration of the wave-based eulerian approach (left), and the ray-based lagrangian approach
(right). Both methods find application in real time auralisation for video games (Röber et al., 2007).

Some strong connections between geometrical acoustics and acoustic potential wave equations have already

been obtained. This has been achieved by relying on an analogy between sound waves and gravity waves.

In relativistic mechanics, the concept that a light beam propagates in a straight line in a curved space-time

is common; similarly in acoustics, sound rays are deemed to propagate straightly in a space curved by the

presence of heterogeneities in the speed of sound a0 and in the mean flow u0 (Unruh, 1981; Stone, 2000;

Perez Bergliaffa et al., 2004; Barcelo et al., 2011). These authors have exhibited the metrics associated

with potential acoustics to describe this curvature, and proposed a derivation for ray theory. However,

these demonstrations have two shortcomings; 1/ they lead to a dimensionally inconsistent result from

depending on the mean density of the fluid ρ0 (Barcelo et al., 2011, §2.6), (Stone, 2000, §III), and 2/,

the Hamiltonian proposed has inhomogeneous units (Stone, 2000, eq. (A10)). While the expression

of the Hamiltonian does not comply with the expression proposed here, the equations in the course of

Rienstra and Hirschberg (2004) are homogeneous. These authors end up with the ray tracing equation at

the price of simplifying hypotheses. Because Pierce’s wave equation is taken as a starting point, these two

mentioned locks can be lifted. And it seems presently possible to show the equivalence between acoustic

rays and acoustic potential waves. This section is organised as follows. The metric associated with the

equation of potential acoustics is first calculated, from the latter and without any further approximation,

the Hamiltonian is determined, the equation of acoustic rays are then presented. A parallel with exact

rays of Foreman (1989) is finally given.

2.7.1 Metric corresponding to Pierce’s wave equation

The metric is computed following Barcelo et al. (2011, §2.3). To this purpose, recast Pierce’s equation

(2.38) into the matrix expression,

(
∂

∂t
∇·

)
·








1 u0
T

u0 u0 ⊗ u0 − a20I


 ·




∂φ

∂t

∇φ








= 0 (2.56)
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Let fµν be the d + 1 order tensor appearing in previous equation, where d = 1, 2 or 3 corresponds to

the dimension of the physical configuration dealt, and where the Greek variables µ, ν refer to space-time

coordinates and range from 0 to d, with 0 ≡ t. If mute variables are implicitly summed, then Pierce’s

compressible equation (2.38) can be recast in the concise writing,

∂µ(f
µν ∂νφ) = 0 (2.57)

In a curved space-time, the inverse metric gµν of d’Alembert’s equation is given by,

1√−g∂µ(
√−g gµν∂νφ) = 0 (2.58)

where g ≡ det(gµν) and gµν = (gµν)−1 is the metric in related to the problem. A direct identification of the

terms, leads to fµν =
√−g gµν . By property of the inverse det(gµν) = g−1, then det(fµν) =

√−gd+1
g−1.

And by squaring this expression, det(fµν)2 = (−g)d−1. The direct computation of det(fµν) delivers

det(fµν) = −a2d0 , and thereby the determinant g of the metric, as well as the metric inverse gµν are

within reach,

g = −a
4d

d−1

0 gµν = a
−2d
d−1

0




1 u0
T

u0 u0 ⊗ u0 − a20I


 (2.59)

Note that the metric g is here independent of the mean density ρ0 and is more in line with the intuition

with respect to previous studies (Stone, 2000, §III). This gives an additional motivation to consider φ

instead of ψ as the most suitable acoustic potential variable, where ∇φ = ρ0u and ∇ψ = u. However, it

is deplorable that the formulation is ill-posed for one-dimensional configurations, i.e. with d = 1. This

is a fact acknowledged by the literature (Barcelo et al., 2011, §2.7.2). In the end, the acoustic metric

expresses as,

gµν = a
2

d−1

0




a20 − u20 u0
T

u0 −I


 (2.60)

The terminology of metric is motivated, because it is precisely gµν that enables to measure the geodesic

S =
´

ds covered by an acoustic ray. Owing on Fermat’s principle (Voronovich and Godin, 2003), the

actual ray is precisely the ray that minimise this distance S. The infinitesimal length ds of an acoustic

ray path is given by the expression,

ds2 = gµνdxµdxν ≡ a
2

d−1

0

(
dt dx

)
·




a20 − u20 u0
T

u0 −I


 ·




dt

dx


 (2.61)

Note that when the eigenvalues of gµν are positive, the matrix metric defines a scalar product and a norm.

By defining dx̃ as an infinitesimal element of space-time, then the acoustic route that should be minimal

ds, writes, ds2 =< dx̃, dx̃ >g= ||dx̃||2g. Thus after calculations,

ds2 = a
2

d−1

0

[
a20dt

2 − (dx− u0dt)
2
]

(2.62)

It can be fairly straightly be observed , that this relation for ds is consistent with the kinematic equation

of acoustics. For Fermat’s principle to be fulfilled, indeed, ds = 0 and a0dt = |dx − u0dt|. There exists

38



2.7 Exact ray theoretical formulation of Pierce’s equation

therefore a unit vector n, such that,
dx
dt

= a0n+ u0 (2.63)

Later derivations will show that n = k/|k|, and corresponds to the wavenumber k unit vector. In next

paragraph, drawing heavily on the lecture notes of Bertschinger (1999), it is shown how the Hamiltonian

formalisms offers a systematic method to deliver the equations of ray tracing.

2.7.2 Acoustic rays as solution of the Hamilton-Jacobi equations

It is usual in analytical mechanics to introduce x̃ = (t,x)
T as the position vector in the space-time frame,

and, the four-vector p = (ω,−k)T , which is chosen here in order to fulfil the convention p · x̃ = ωt−k ·x.

Let τ describe a parametrisation of the trajectory in this generalised framework. If the metric gµν is

known, the Hamiltonian H2(p, x̃, τ) may be computed by the relation,

H2(p, x̃, τ) =
1

2
gµνpµpν =

1

2
gµν

dxµ

dτ
dxν

dτ
, with pµ = gµν

dxν

dτ
(2.64)

When applied to the acoustic metric computed previously, the Hamiltonian H2(p, x̃, τ) becomes,

H2(p, x̃, τ) =
1

2

(
(ω − k · u0)

2 − a20|k|2
)

(2.65)

This equation of the Hamiltonian can identically be found in the literature, see (Stone, 2000, eq. (A9))

and (Revalor, 2007, eq. (C.5)), note the striking resemblance with the Lagrangian derived in equation

(2.43). Please note additionally, that different equally valid expressions of the Hamiltonian may lead to

the same equations of motion. Trajectories in space-time are governed by the Hamilton-Jacobi equations,

dxµ

dτ
=
∂H2

∂pµ
,

dpµ
dτ

= −∂H2

∂xµ
(2.66)

The link between this formalism and ray acoustics is recurrent (Landau and Lifshitz, 1959; Candel, 1977;

Stone, 2000; Virieux et al., 2004). Yet the details on the evaluation of the Hamilton-Jacobi equations

which lead to geometrical acoustics are seldom available. Referring to Bertschinger (1999), when the

Hamiltonian is computed from a metric, the equations (2.66) deliver 2 × 4 = 8 set of equations that are

parametrised by τ . Meanwhile, what is of interest in geometrical acoustics are the following 2 × 3 = 6

equations, that are parametrised by the physical time t,

dxi

dt
=
∂H

∂ki
,

dki
dt

= −∂H
∂xi

(2.67)

This change in the parametrisation, that consist in considering the physical three-dimensional space

instead of the four-dimensional space-time, is not straightforward. It is not possible in general to

choose τ = t. This is precisely what was missed in previous studies (Stone, 2000; Barcelo et al., 2011;

Rienstra and Hirschberg, 2004). The expression of the Hamiltonian H(k,x, t), parametrised by the time

t, may be deduced from H2(p, x̃, τ) by the following formula (Bertschinger, 1999),

H(k,x, t) =
g0iki
g00

+

√√√√gijkikj − 2H2(p, x̃, τ)

−g00 +

(
g0iki
g00

)2

(2.68)
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Chapter 2 : Constitutive equations of aeroacoustics

And as a result, the Hamiltonian for acoustics expresses in a physical space as,

H(k,x, t) = u0 · k + |ω − u0 · k| (2.69)

The here above absolute value |.| is of meaning, it will make it possible to recover the acoustic characteris-

tics. Note that the metric computed form Blokhintzev’s acoustic potential wave equation (Barcelo et al.,

2011, §2.3), would deliver the same Hamiltonian. This is because the transformation given in equation

(2.68) involves a normalised metric.

2.7.3 Energy conservation and dispersion relation for the acoustic potential

For the geometrical acoustics framework to be completed, the energy conservation law and the dispersion

relation must be established. This two equations of ray tracing are derived from Pierce’s wave equation,

D2φ

Dt2
−∇ · (a20∇φ) + (∇ · u0)

Dφ
Dt

= 0 (2.70)

for which the phase and the amplitude A of the solution φ are sought separately, by setting,

φ = Aei(k·x−ωt) (2.71)

For the dispersion relation ω ≡ ω(k) to be obtained, ω and k are supposed constant with respect to time

and space. In inserting this particular solution into Pierce’s wave equation, following relation is deduced,

−(−ω + u0 · k)2A2 + a20|k|2A2 +A∇ ·
[(

u0 ⊗ u0 − a20I
)
· ∇A

]
+ i∇ ·

[(
u0(−ω + u0 · k)− a20k

)
A2

]
= 0 (2.72)

The real part of this equation corresponds to the dispersion relation,

(−ω + u0 · k)2 − a20|k|2 =
∇ ·
[(
u0 ⊗ u0 − a20I

)
· ∇A

]

A
(2.73)

And the imaginary part of equation (2.72) guarantees the acoustic energy conservation,

∇ ·
([(

u0 ⊗ u0 − a20I
)
· k − ωu0

]
A2

)
= 0 (2.74)

2.7.4 Asymptotic equations of geometrical acoustics

It is instructive to remark that a different dispersion relation can be obtained from the conservation of

the Hamiltonian H2(p, x̃, τ) along the ray trajectory. That the Hamiltonian H2(p, x̃, τ) conserves along

its trajectory can be deduced from a composite derivation with respect to the parametrisation τ ,

dH2(p, x̃, τ)

dτ
=
∂H2

∂p
· dp
dτ

+
∂H2

∂x̃
· dx̃

dτ
+
∂H2

∂τ
(2.75)

From the expression of H2(p, x̃, τ) given in equation (2.65), it is seen that this Hamiltonian does not

explicitly depend on τ ; the last term of previous expression is therefore null. From the equations of

Hamilton-Jacobi given in (2.66), the two first terms compensate and finally dH2(p, x̃, τ)/dτ = 0. This

40



2.7 Exact ray theoretical formulation of Pierce’s equation

conservation along the ray path defined by the parameter τ delivers,

(−ω + u0 · k)2 − a20|k|2 = 0 (2.76)

which corresponds to the classical dispersion relation of ray acoustics (Landau and Lifshitz, 1959, eq.

(68.1)) (Candel, 1977, app. A). In fact, this dispersion relation corresponds to an acoustic high frequency

limit simplification of equation (2.73), such that (Foreman, 1989),

ω2 ≫ a20
∆A

A
(2.77)

That the Hamiltonian conservation equation delivers solely an asymptotic conservation law is understand-

able, to the extent that equation (2.76) is solely valid along the ray trajectory parametrised by τ . In that

respect, a ray trajectory corresponds to an infinitely thin tube rather than a cone. Within such a tube,

the acoustic energy is constant, and the energy conservation equation decouples from the equations of ray

tracing, so that the amplitude A of the rays may be computed a posteriori (Virieux et al., 2004).

The ray equations are summarised hereafter in the acoustic high frequency limit. Beforehand, it is noted

that the Hamiltonian, equation (2.69), consistently delivers the two characteristics of acoustics.

• for ω − u0 · k > 0 then
∂ω

∂k
= u0 + a0

k

|k| and H = ω = k · u0 + a0|k|

• for ω − u0 · k < 0 then
∂ω

∂k
= u0 − a0

k

|k| and H = 2(u0 · k)− ω = k · u0 + a0|k|

In this asymptotic framework, it is observed that the Hamiltonian has identical value on the two char-

acteristic branches, yet it only corresponds to H = ω along the + characteristic. Thus, the frequently

encountered expression for ray tracing, i.e. dx/dt = ∂ω/∂k and dk/dt = −∇ω (Landau and Lifshitz,

1959, eq. (67.4)), can only account for one direction of propagation. The high frequency simplification of

geometrical acoustics is given by,





H(k,x, t) = k · u0 + a0|k| Hamiltonian

dx

dt
=
∂H

∂k

dk

dt
= −∇H





Hamilton-Jacobi equations

ω = u0 · k ± a0|k| dispersion relation

(2.78)

The energy conservation equation given in (2.74) can be recast with the asymptotic dispersion relation,

and in particularising the trajectory laws, it comes to,





dx

dt
= u0 + a0

k

|k|

dk

dt
= −(∇u0)

T · k − |k|∇a0

∇ ·
(
a0ug|k|A2

)
= 0

(2.79)
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Chapter 2 : Constitutive equations of aeroacoustics

where the group velocity ug is computed as,

ug =
∂ω

∂k
= u0 ± a0

k

|k| (2.80)

2.7.5 Generalisation of Foreman’s exact rays

To solve the ray tracing equations, three unknowns must be determined, namely the ray trajectory x, its

wave number k and the acoustic field amplitude A. With help of equation (2.71), the acoustic potential φ

may be recomputed, and subsequently all other fields of interest. The equations for x and k are coupled

because a0 ≡ a0(x) and u0 ≡ u0(x). From the asymptotic ray equations (2.79), it is seen that the energy

conservation equation decouples from the trajectory equations; and A may be computed a posteriori.

This decoupling is legitimate as long as equation (2.77) is fulfilled. A detailed account of the specific

regimes of linear wave motion that may invalid this condition is given by Berry (1980). From equation

(2.77), it is clear that the large acoustic wavelength limit (wave dislocation) is such a configuration for

which the equations are coupled. In the asymptotic case of geometrical acoustics, focal surfaces for the

acoustic wavefronts may appear (caustics), which create sharp variations of the wave amplitude A, and

may also fault equation (2.77). Figure 2.4 illustrates the phenomenon of caustics, that is recognisable

by the focusing and crossing of acoustic rays. The asymptotic ray theory is compared to the reference

Eulerian wave equation solution. In the asymptotic theory, acoustic rays are supposed independent each

from another, and their merging occurring in caustics can consequently not be described. No physical

relevance should thus be given to the ray paths that exit the caustics (Foreman, 1989). Moreover in the

reference acoustic solution presented in figure 2.4, a blurring of the wavefront is visible that indicates that

the media is dispersive. Such a frequency dependant behaviour of the wave motion cannot neither be

accounted for with an asymptotic ray theory.

Figure 2.4: Acoustic refraction caused by heterogeneities in the sound speed a0 (Engquist and Runborg,
2003). Acoustic rays are computed in the short wavelength limit and are displayed superimposed on
the index of refraction map (left). Helmholtz’s wave equation is solved for this configuration giving an
accurate description of the caustics and the wave dispersion phenomena (right).

In the 1990s, a ray frequency-dependant formulation of the wave equation (Zhu, 1988; Foreman, 1989;

Biondi, 1992) has been proposed. Some variations of this theory exist (Floyd, 1990), and the exact ray

formulation of Foreman (1989) serves as reference for the present discussion. This formulation is an exact

recast of the wave equation that is uniformly valid over the acoustic frequency range. The wavefront

amplitude A is coupled with the equation of ray trajectory, this is seen in the table 2.1, where the

dispersion relation obtained by Foreman for the classical wave equation, and the dispersion relation for

Pierce’s equation are compared. These two approaches are mutually consistent. Some major differences

are noted by Foreman (1989) between exact rays and the classical asymptotic geometrical acoustic theory.
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2.7 Exact ray theoretical formulation of Pierce’s equation

classical equation Pierce’s equation

wave operator
∂2φ

∂t2
− a20∆φ = 0 D2

u0
(φ)−∇ · (a20∇φ) + (∇ · u0)Du0(φ) = 0

dispersion relation ω2 − a20|k|2 =
a20∆A

A
(−ω + u0k)

2 − a20|k|2 =
∇ ·
[
(u0 ⊗ u0 − a20I) · ∇A

]

A

Table 2.1: The exact ray formalism of Foreman (1989) is compared with the present reformulation of
Pierce’s equation. Relying on φ = A exp

(
i(k · x− ωt)

)
, the dispersion relation is computed.

In particular, Foreman’s acoustic exact rays do not cross. As a consequence, multipath do not exist in

this framework, meaning that there exist only a unique eigenray from a source to an observation point.

This eigenray is moreover always defined, and the observer may be located in the shadow zone of the

asymptotic theory, which is entirely mapped by Foreman’s exact rays. An illustration of exact ray tracing

is provided figure 2.5.

ω →∞

ω = 100π ω = 10π

Figure 2.5: Ray tracing computed by geometrical acoustics in the short wavelength limit (top) is compared
with exact rays (bottom). The media heterogeneity in sound speed a0 is modelled with a Kormilitsin profile
(Foreman, 1989). Exact rays do never cross, are frequency-dependant, and penetrate the shadow zone of
the asymptotic theory.

Consistently with Foreman (1989), a theoretical formulation in terms of exact rays may be given for

Pierce’s wave equation (2.38). The acoustic Hamiltonian, equation (2.69) H(k,x, t), may be recast with

help of the dispersion relation ω ≡ ω(k, A), equation (2.73), to form,

H(k,x, t) = u0 · k +

√
∇ ·
[
(u0 ⊗ u0 − a20I) · ∇A

]

A
+ a20|k|2 (2.81)

This expression for the Hamiltonian is valid in both characteristic directions. The Hamilton-Jacobi
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Chapter 2 : Constitutive equations of aeroacoustics

equations can then be re-expressed to deliver an exact reformulation of Pierce’s wave equation,





∂x

∂t
= u0 +

a20k√
∇ ·
[
(u0 ⊗ u0 − a20I) · ∇A

]

A
+ a20|k|2

∂k

∂t
= −(∇u0)

T · k +

−|k|2∇(a20)−∇
(
∇ ·
[
(u0 ⊗ u0 − a20I) · ∇A

]

A

)

2

√
∇ ·
[
(u0 ⊗ u0 − a20I) · ∇A

]

A
+ a20|k|2

∇ ·
[
a20A

2k ± u0A
2

√
∇ ·
[
(u0 ⊗ u0 − a20I) · ∇A

]

A
+ a20|k|2

]
= 0

(2.82)

This set of equations is coupled and its implementation may be cumbersome if no simplification is made

(Biondi, 1992). This ray reformulation of Pierce’s equation is expected to possess identical properties

to the exact rays of Foreman (1989). In addition to the conservation law of self-adjoint operators that

has been highlighted by Möhring (1999, §2.4), some alternative and perhaps more fundamental energy

conservation equation may be derived from the trajectory equations and the geodesic framework used

here (Ray and Reid, 1979; Bertschinger, 2002). To conclude, note that this entire discussion is based

on the metric of Pierce’s equation, the latter being solely computed from its linear operator. Thus,

identical conclusions would have been obtained with the wave equation of Phillips (1960) that relies on

the same wave operator. Because the range of validity for Pierce’s equation is wider than the one of

Phillips, it is expected that the energy conservation laws corresponding to Pierce’s equation are more

general. To confirm this assertion, future work will need to retrieve a conservation law that is based on

the thermodynamic state variable, so to enable a comparison with other acoustic energy conservation

law (Cantrell and Hart, 1964; Garrett, 1967; Hayes, 1968; Morfey, 1971; Andrews and McIntyre, 1978;

Campos, 1988). A general acoustic framework that is consistent with the acoustic potential formulation,

and simultaneously with asymptotic ray acoustics is provided with Pierce’s equation. Only for these

two configurations is acoustics decoupled from the other energetic modes, and is sound propagation

unequivocally defined. While this is an arbitrary, Pierce’s wave equation offers a pragmatic stance to

model sound propagation that is robust and energy conserving.
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3 Stable computation of sound propagation in

a sheared flow

Summary: The in-house finite difference code PROPA is presented and validated on the fourth CAA

workshop case. The concept of self-adjoint-kernel is introduced and some new stable wave equations are

derived. With help of PROPA, their stability is tested, and their ability to accurately compute sound

propagation on a sheared flow is compared.

3.1 Solving of acoustic equations in the frequency domain

The issue of achieving a reliable and stable acoustic propagation has been often stressed in previous

paragraphs, and some new acoustic operators have been proposed. In the present chapter, some additional

creative stable wave equations are proposed. For more insight, the stability property of these wave

equations must be challenged and the accuracy of their acoustic prediction characterised. This is the

purpose of PROPA, a malleable in-house finite difference code that is developed for this sake, and is

presented hereafter. Adjoint linear operators are also implemented in PROPA, so that this code proved

to be crucial in the discussion on the adjoint-based noise prediction technique of chapter 3 from part II.

The code aims at tackling free-field acoustic propagation problems for arbitrary sound source and mean

flow definitions in two-dimensions or in axisymmetric configurations.

The computed acoustic solution is discretised over a simple regular and uniform grid with help of finite

differences. With this technique, the derivative f ′ of a field f at a current point xi is computed from

the knowledge of the values at neighbouring points. The differentiation relation may be obtained from a

Taylor series expansion, as for the following simple three-points stencil approximation,

f ′(xi) =
f(xi + h)− f(xi − h)

2
+O(h2) (3.1)

The accuracy of the method increases when the grid spacing h decreases. Since this differentiation

technique summons the points nearby the current point xi, one-sided approximations must be conceived

for points close to the frontier edges. Such a treatment for a second order O(h2), three-points stencil

expresses as (Fornberg, 1988),

f ′(xi) =
−3f(xi) + 4f(xi + h)− f(xi + 2h)

2
+O(h2) (3.2)

The wider the stencils, the more room for optimisation it exists, and numerous finite difference schemes
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Chapter 3 : Stable computation of sound propagation in a sheared flow

have been proposed (Fornberg, 1988; Tam and Webb, 1993; Bogey and Bailly, 2004; Berland et al., 2007).

PROPA is written in the frequency domain, in a Matlab environment, and uses a direct inversion method

relying on the UMFPACK solver (Davis, 2004), which is Matlab’s direct inversion multithreaded algorithm

for sparse unsymmetric system. UMFPACK corresponds to one of the many algorithms that the generic

‘backslash’ operation may invoke. To implement finite differences in the frequency domain, a system

matrix for the acoustic equation must be built. Figure 3.1 illustrates differentiation matrices for a column

vector of N = 15 elements that are obtained for different stencil width. The derivative of any fifteen-

elements array is straightforwardly computed by its multiplication with the differentiation matrix.

Figure 3.1: Differentiation matrices for a vector of N = 15 elements. The approximation of the deriva-
tive are based on three-points, seven-points and eleven-points stencils (from left to right). Non-centred
schemes are used closed to the domain borders. Colours are indicative, and illustrate that higher order
approximations are corrections of lower order ones.

To address a two-dimensional structured computational domain of, say, (Nx1, Nx2) elements with this

technique, the two-dimensional array may be concatenated into a one-dimensional (Nx1×Nx2, 1) array.

The corresponding differentiation matrix diff_x1 and diff_x2 in the x1 and x2 direction, can then

simply be obtained with a Kronecker product,

diff_x1 = kron(eye(Nx2),stencil_pattern(Nx1))/dx1

diff_x2 = kron(eye(Nx1),stencil_pattern(Nx2))/dx2

where stencil_pattern(N) is the elementary stencil pattern for an array of size N as given in figure

3.1. eye(N) is the diagonal matrix of size N , dx1 and dx2 are the regular grid spacing in the x1 and x2

directions. As an illustration, figure 3.2 presents the system matrix corresponding to the two-dimensional

linearised Euler’s equations at rest without mean flow gradients. This system operator is obtained by a

left-side factorisation of the derivatives and apply on the state vector (ρ, ρ0u1, ρ0u2, p)
T , for a square

domain of Nx1= Nx2= 15 elements. The system matrix is consequently of size 900×900 (4×15×15 = 900)

and is very sparse. A trade-off between the matrix system sparsity (RAM requirements) and the accuracy

of the numerical method (grid refinement) is to be found. This has not been investigated in the present

study, and, the eleven-points stencils of Bogey and Bailly (2004), and Berland et al. (2007) are used as

reference in PROPA, as shown in figure 3.2. As an indication, the computations presented in chapter 3

of part II are obtained on a regular mesh composed of 800× 450 elements including 50 cells-thick PML

layers. Each run required approximatively 50 GB of RAM on a 16 core Dell T7810 computer of 64 GB

(CPU: Xeon E5-2609v4) with the version R2016b of Matlab.

To simulate free-field radiating conditions, a perfectly matched layer (PML) reformulation of the derivative

is used. This choice is motivated by the simplicity of implementation of PML in the frequency domain,

their effectiveness, and robustness. The basic idea is to associate in the surrounding of the numerical

domain a sponge layer with modified physical properties that renders the numerical solution evanescent.

This method as been introduced by Berenger (1994) to simulate free-field propagation of electromagnetic
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3.1 Solving of acoustic equations in the frequency domain

−iωρ+ ∂ρ0u1
∂x1

+
∂ρ0u2
∂x2

−→

−iωρ0u1 +
∂p

∂x1
−→

−iωρ0u2 +
∂p

∂x2
−→

−iωp+ a20
∂ρ0u1
∂x1

+ a20
∂ρ0u2
∂x2

−→

Figure 3.2: Linearised equations for a medium at rest, and the corresponding system matrix for a square
domain of 15×15 elements. Non-zeros elements of the system are shown with Matlab’s spy() function.

waves, and is by now very popular in the fluid mechanics community (Hu, 2008). Introductory lectures

on this topic (Johnson, 2010) may easily be found. Rao and Morris (2006) derived PML for the pulsation

ω, yet some preliminary investigations with PROPA (not presented) have shown that their formulation

may alter in some case the solution inside the domain, and the classical definition based on a modification

of the wavenumber k is preferred. At a point x located in the PML sponge layer, the derivatives along xi

are modified by the addition of an absorption coefficient Γ, such that,

∂

∂xi
→ 1

1 + i Γ(x)

∂

∂xi
(3.3)

To avoid an abrupt change in the media impedance and the onset of spurious reflections, the absorption

coefficient Γ is defined in PROPA to follow a cubic evolution in the directions normal to the frontier

edge. The sponge layer width and the amplitude of the damping are defined by trial and error so to

avoid visible PML reflections and in a way so that in the extremity of the sponge layer, the signal is

damped by at least 10 orders of magnitude. Hu (2005) highlighted that in presence of flow gradients

in the sponge layer, some categories of waves may destabilise the PML. This feature is likely to be a

characteristic of the implementation of the method in the time domain, since it has not been observed

with PROPA. No special treatment of the mean flow defined in the PML zones has thus been considered

for the computations presented in this study.

To conclude this descriptive section of the in-house code PROPA developed, the colourmap used for the

plotting of the data is given in figure 3.3. To make fluctuations easily traceable, it is centred around zero

with the central value coloured in white. The Matlab code to create the colourbar is also provided.

Figure 3.3: Colourmap used to visualise the solutions computed with PROPA.

1 levels = 59;

2 m_vec = linspace (0,1, levels )’;

3 sigma_white = 0.022; % controls the sharpness of the transition fom yellow to blue

4 sigma_color = 0.15; % controls the amount of purple and the fading from yellow to blue

5 fpos = 1/5;

6
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7 red_line = heaviside (1/3- m_vec ).*(0.3+0.7*3* m_vec) ...

8 + heaviside (m_vec -1/3) - heaviside (m_vec -1/2) ...

9 + heaviside (m_vec -1/2) .*exp (-( m_vec -1/2) .^2/(2* sigma_white ^2) ) ...

10 + 0.45* heaviside (1-fpos -m_vec ).*exp (-( m_vec -1+ fpos).^2/(2* sigma_color ^2) ) ...

11 + 0.45* heaviside (m_vec -1+ fpos).*exp (-( m_vec -1+ fpos).^2/(2* sigma_color ^2) );

12 green_line = heaviside (1/2- m_vec).*exp (-( m_vec -1/2) .^2/(2* sigma_color ^2) ) ...

13 + heaviside (m_vec -1/2) .*exp (-( m_vec -1/2) .^2/(2* sigma_color ^2) );

14 blue_line = heaviside (1/2- m_vec).*exp (-( m_vec -1/2) .^2/(2* sigma_white ^2) ) ...

15 + heaviside (m_vec -1/2) - heaviside (m_vec -2/3) ...

16 + heaviside (m_vec -2/3) .*(1 + 3*0.7*(2/3 - m_vec));

17

18 wave_map = flipud ([red_line ,green_line ,blue_line ]);

19 wave_map = min (wave_map ,1); % to ensure , no value greater than one is specified

20 % figure , rgbplot (wave_map )

21 % figure , pcolor (peaks), colormap (wave_map )

3.2 Stable acoustic propagation

3.2.1 Computation of the instability wave

Several acoustic equations are implemented in PROPA, many of which have no reference solution against

which the code could be validated. An enhanced and precise validation of the in-house code seems out of

reach. Only for Pierce’s equation could the implementation verified with help of the commercial software

Actran TM, for more details see chapter 4 of part II. In this section, the fourth computational aeroacoustic

(CAA) workshop is presented, and serves as a validation for Lilley’s equation and for the linearised Euler’s

wave equation (LEWE). In a second step, this configuration for which mode coupling occurs is used to

verify that the stable wave equations proposed truly are stable.

The category four of the fourth CAA workshop (Dahl, 2004) considers the mode coupling occurring by an

acoustic source set in a two-dimension heated Gaussian jet flow profile. The source is broadband, given

by Sp = A exp
(
−α1x

2
1 − α2x

2
2

)
and pulses at a frequency of f = 76Hz. This corresponds to a Strouhal

number of St2σ = 2σf/uj ≈ 0.073, and following value for the source are taken, A = 10−3 kg.m−1.s−3,

α1 = 0.04 log(2)m−2 and α2 = 0.32 log(2)m−2. The mean velocity profile follows a Gaussian evolution in

the transverse direction according to,

u0,1(x2)

uj
= exp

(
− x22
2σ2

)
(3.4)

where x = (x1, x2), uj = Mjaj , aj =
√
γRTj and σ =

√
0.845 · log(2)m is its standard deviation.

To model a high-speed and heated jet flow, the following values are taken: Mj = 0.756, Tj = 600K,

T∞ = 300K, γ = 1.4 and R = 287m2·s−2·K−1. Considering ρj = γp0/a
2
j and p0 = 103330Pa, the mean

density ρ0(x2) is defined with Crocco-Busemann’s law by,

ρj
ρ0(x2)

=
T∞
Tj
−
(
T∞
Tj
− 1

)
u0,1(x2)

uj
+
γ − 1

2
M2

j

u0,1(x2)

uj

(
1− u0,1(x2)

uj

)
(3.5)

The stability analysis of this mean flow profile has been performed and the spatial growth rate of the

Kelvin-Helmholtz instability wave is given in Bailly and Bogey (2003, fig. 1). Analytical solutions of the

radiated acoustic field have been calculated by Agarwal et al. (2004) along x2 = 15m and x2 = 50m
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3.2 Stable acoustic propagation

(with normalisation, this corresponds to x2/σ ≈ 13.6, x2/σ ≈ 45.3).

A symmetry boundary condition is used in PROPA to reduce the cost of the numerical simulation. The

solution to Lilley’s equation is computed over two regular grids, a fine mesh that consists in 800 × 450

elements (including a 75 elements wide layer of PML) and a coarse mesh composed of 170× 100 elements

(including a 20 elements wide layer of PML). The grid spacing (dx1/σ, dx2/σ) is of (0.313, 0.153) for

the fine mesh and (1.765, 0.8) for the coarse mesh. The real part of the pressure field computed on these

two grids is presented in figure 3.4. While the acoustic solution is consistently predicted on both mesh,

Figure 3.4: Solution to the fourth CAA workshop computed with Lilley’s equation for the fine mesh
(top) and the coarse mesh (bottom). Mach number M0 and density ρ0 profiles of the parallel mean flow
considered are shown (left). Dashed lines represent the position of maximal shearing (x2/σ = 1).

the development of the instability wave is found grid dependant and is only visible on the fine mesh.

More insight is gained with figure 3.5, where the numerical solutions are compared with the analytical

solution computed by Agarwal et al. (2004). For the extract along x2/σ ≈ 45.3 that is not affected by the

development of the instability wave, a perfect match is found between the analytical solution and the fine

grid solution. Some small discrepancies can be observed with the coarse mesh, but the fit remains very

satisfactory. For the extract along x2/σ ≈ 13.6, the three set of data collapse before x1/σ = 50. Further

downstream, while the coarse grid solution fairly well strikes the reference solution, the instability wave

develops its exponential growth on the fine mesh. From the confrontation of this instability wave solution

with this of Rao and Morris (2006), discordance is found. While for this second extract, at x1/σ ≈ 135

(i.e. x1 = 150m), an amplitude of 4.106 Pa is found by Rao and Morris (2006), this fine grid solution

indicates an amplitude of 6.106 Pa. The high sensitivity of the instability wave solution on the grid

discretisation must be acknowledged. A mesh convergence study is required here, and most likely, the fine

grid solution is not sufficiently refined. That instability waves are mesh sensitive, could be drawn from

(Li et al., 2004; Richter and Thiele, 2007), who proposed to remove the unstable hydrodynamic mode of
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Chapter 3 : Stable computation of sound propagation in a sheared flow

Figure 3.5: Pressure field along x2/σ ≈ 45.3 (top) and x2/σ ≈ 13.6 (bottom). The analytical solution
+ (Agarwal et al., 2004), the fine grid solution and the coarse grid solution are compared. The
pressure real part is in black, its absolute value is in turquoise.

the fourth CAA workshop using coarse meshes. Note that if this trick is used, then the convergence of the

solution is not guaranteed if a finer grid and smaller time step is chosen. The occurrence of an instability

wave in solutions of PROPA comes in opposition with a result of Rao and Morris (2006), who argued that

no instability wave solution can occur when a direct inversion method is used in the frequency domain.

This contradiction has already been pointed out in the literature, and (Casalino, 2012; Angeloski et al.,

2014) stressed that the use of a direct inversion method is not a sufficient condition to guarantee stability.

Karabasov and Hynes (2005); Karabasov et al. (2007) have shown that iterative solver are able to filter

out the unstable solution, note that this may be the temporal correspondence of grid filtering.

These observations motivated the use of an mesh discretised very finely to assess the stability properties of

the acoustic equations analysed in this chapter, and a grid spacing (dx1/σ, dx2/σ) of (0.1, 0.06) is chosen.

A grid of 650 × 300 elements (including a 50 cells thick PML layer) is considered in the following and

the meaningful computation region is shown in figure 3.6. In this figure the acoustic source Sp is visible.

As previously, a symmetry boundary condition is used in the south frontier to simplify the calculations.

In chapter 2, linearised Euler’s wave equation (LEWE) is derived. Applied to a parallel mean flow,

this equation, given in equation (2.18), is claimed to be the equal of the wave equation proposed by

Lilley et al. (1972). Both equations are exact reformulation of the LEE for an isobar steady flow, and, in

a linearised framework, describe accurately the acoustic mode, the vorticity mode and their interaction.

For both wave equations, the entropy mode is not computed. LEWE’s fluctuating velocity u is solved

for the fourth workshop configuration with PROPA, and its two components are presented in figure 3.7.

The Kelvin-Helmholtz instability, characterised by the change of sign for u1 across the line of maximal
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3.2 Stable acoustic propagation

Figure 3.6: Mach number M0 and density ρ0 profiles of the mean flow (left), and the broadband acoustic
source distirbution Sp (right). Dashed lines represent the position of maximal shearing (x2/σ = 1).

shear, and the steady growth of the amplitude when the spots are convected downstream are fairly easy

recognisable.

Figure 3.7: Solution of the fourth CAA workshop as computed with LEWE. The real part of the fluctuating
velocity u, u1 in the x1 direction(left), and, u2 in the x2 direction (right) are shown.

For a validation of LEWE, against the analytical solution (Agarwal et al., 2004) and the solution to

Lilley’s wave equation computed with PROPA, the fluctuating pressure p is rebuilt from the fluctuating

velocity u, by using the linearised energy equation,

Du0
(p) = Sp − γp0∇ · u (3.6)

The comparison between the pressure fields obtained with LEWE and Lilley’s equation is presented in

figure 3.8. The agreement is excellent for the instability wave, as well for the acoustic field, and matches the

available analytical solution Agarwal et al. (2004). The correctness of the new wave equation proposed,

its implementation in PROPA, and the a posteriori reconstruction method of the fluctuating pressure

p used for LEWE’s solution is thereby validated. For predicting identically the instability wave with

different acoustic operators, it can reasonably be deemed that mesh convergence is now satisfied.

If LEWE is equivalent to Lilley’s equation when applied to a parallel mean flow, some philosophical

differences may however be pointed out. First while Lilley’s formulation is a third order operator, LEWE

keeps the structure of a second order d’Alembertian so that, in a region at rest LEWE shrinks into the

wave equation for the fluctuating velocity u. The source term for LEWE is then interestingly simpler than

for Lilley’s equation. Lilley’s equation source term is given in (3.16) of part II, and LEWE’s source term

in equation (2.19) (to be simplified for a parallel mean flow). In LEWE’s source, no mean-flow derivative

appear any more in the term associated with Sp. According to Goldstein (2010, §3), the presence of

such contributions in the source term indicates that generation and propagation mechanisms are not fully

decoupled. This seems to be achieved here for the source term Sp of the energy equation.
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Chapter 3 : Stable computation of sound propagation in a sheared flow

Figure 3.8: Pressure field p computed from LEWE’s velocity fluctuations u (top-left) and from Lilley’s
equation (top-right). Pressure p extracts taken along x2/σ ≈ 13.6 (bottom-left) and along x2/σ = 0
(bottom-right). + + + analytical solution Agarwal et al. (2004), Lilley’s equation and LEWE.

3.2.2 Self-adjoint kernels of wave equations

The concept of self-adjoint kernel of a linear operator is introduced in this paragraph. The reader not

familiar with the adjoint may refer to (Stone and Goldbart, 2009, chap. 4), or in this script to §3.2 of

part II and appendix §B.1. In this paragraph, the discussion is conducted in the frequency domain for

convenience. The idea introduced is to split a linear operator L0 into a self-adjoint contribution K0, the

so-called self-adjoint kernel, and a non-self-adjoint part N0,

L0 = K0 +N0 (3.7)

The stabilisation strategy proposed here consists in restricting a linear operator L0 to its self-adjoint

kernel, i.e. L0 ≈ K0, and is based on a remark of Möhring (1999, §2.4). This author presented how a

variational principle can be derived from a self-adjoint equation, and simultaneously highlighted, that this

guarantees the energy conservation in the system. In this paragraph, the notion of self-adjointness of a

linear operator K0 is understood as K†
0 = ±K0, according to the enlarged acceptance introduce in §3.2.2

of part II. The decomposition given in equation (3.7) is obviously not unique, the idea is to find the best

approximation K0 of L0 that minimises the error in the acoustic computation when N0 is neglected.

To make this concept less abstract, this theory is applied to Lilley’s operator L0, which adjoint operator

L†0 is computed in §3.3.1. These two wave equations write for a variable p as,

L0 p = Du0

(
D2

u0
(p)−∇ · (a20∇p)

)
+ 2a20∇u0,1 · ∇

(
∂p

∂x1

)

L†0 p† = −Du0

(
D2

u0
(p†)−∇ · (a20∇p†)

)
+ 4a20∇u0,1 · ∇

(
∂p†

∂x1

)
+ 3a20∆u0,1

∂p†

∂x1
+ 3

∂p†

∂x1
∇a20 · ∇u0,1

(3.8)

Blatantly, L†0 6= ±L0 and Lilley’s wave equation is not self-adjoint. This is obvious, since this linear

operator could otherwise not describe any instability wave. A possible self-adjoint kernel decomposition
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of Lilley’s operator could be achieved in identifying K0 and N0 with,





K0 = Du0

(
D2

u0
(p)−∇ · (a20∇p)

)

N0 = 2a20∇u0,1 · ∇
(
∂p

∂x1

) (3.9)

This self-adjoint kernel of Lilley’s equation verifies K†
0 = −K0 and is stable; it is simply the material

derivative of Phillips’ wave equation (1960). Because in discarding the non-self-adjoint part, the mean

velocity gradients ∇u0,1 have been simultaneously removed, the ability of Phillips’ equation to account

for the flow acoustic refraction is expected to be altered with respect to Lilley’s equation.

It is crucial to bear in mind that the adjoint framework always relies upon the prior definition of a scalar

product, so does the self-adjointness concept. For Lilley’s equation which is scalar, the scalar product

introduced in §3.3.1 of part II seems self-evident. For a multi-dimensional linear operator, some non-

obvious scalar product may reveal interesting symmetry features in the equations. Let H
(
≡ H(x)

)
be

an hermitian matrix from which a scalar product < , >H can be built for a domain x ∈ Ω, and let

q
†
H

(
≡ q

†
H(x)

)
be the adjoint field associated to q

(
≡ q(x)

)
with respect to < , >H. Lagrange’s identity

can be written in this matricial context as,

< q
†
H ,L0q >H=

ˆ

x∈Ω

q
†
H

T ∗
·H · L0q =

ˆ

x∈Ω

(
L†0q†

H

)T ∗

·H · q =< L†0q†
H , q >H (3.10)

Note that this change in the scalar product should echo consistently on the representation theorem, which

may become more complex. Underline that the adjoint field q
†
H intrinsically relies upon an operator and

a scalar product. Thus, no comparison between adjoint fields obtained with different scalar products can

make sense Spieser and Bailly (2018), even less adjoint variables obtained with different operator, e.g.

adjoint Lilley’s equation and Phillips’ equation.

The multiple possibilities to define scalar products < , >H are as many occasions to find an appropriate

self-adjoint kernel K0 to approximate a linear operator L0. Another stable alternative to Lilley’s equation

is presented thanks to this enhanced multi-variable framework. This is achieved by recalling that Lilley’s

wave equation is equivalent to the linearised Euler’s equations L0 for a parallel base flow,

L0


 u

p


 ≡





Du0
(u) + (∇u0) · u+

∇p
ρ0

= 0

Du0
(p) + γp0(∇ · u) = 0

(3.11)

A self-adjoint kernel K0 for this operator can be defined as,

K0


 u

p


 ≡





Du0(u) +
∇p
ρ0

= 0

Du0(p) + γp0(∇ · u) = 0

(3.12)

That is, by removing the (∇u0) · u term. It is known that these set of equations are skew-symmetric

(Serre et al., 2012), and a symmetriser S for the latter therefore exists. The scalar product < , >S, for
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which K0 is self adjoint is given by,

S =




ρ0I 0

0
T

1

γp0


 (3.13)

Note that a similar symmetriser was proposed in (Barone et al., 2009, eq. (26)). It is straightforward to

verify that for a parallel mean flow, K†
0 = −K0 with respect to < , >S. As for Lilley’s equation, the set

of equations (3.12) can be combined together to eliminate u in favour of p, leading to the stable Lilley

equation of Bogey et al. (2002),

K0 p = Du0

(
D2

u0
(p)−∇ · (a20∇p)

)
+ a20∇u0,1 · ∇

(
∂p

∂x1

)
(3.14)

When comparing equations (3.9) and (3.14), it is apparent that the second proposition for K0 approximates

more closely Lilley’s wave equation. The solution for both wave equations to the fourth CAA workshop

with similar settings as shown in figure 3.6 is presented in figure 3.9. It is observed that both wave

equations are indeed stable.

Figure 3.9: Pressure fluctuations p computed for the fourth CAA workshop. The solutions obtained with
stable Lilley’s equation (left) and Phillips’ equation (right) are presented.

3.2.3 Two stable approximates of LEWE

In the LEWE, terms containing mean velocity gradients are manifold. It is expected that the reduction of

LEWE to one of his self-adjoint kernel can be achieved with less stringent simplifications of the mean flow

derivatives than for Lilley’s equation presented here above. The obtained self-adjoint kernels of LEWE

would then be twofold, stable and more accurate than stable Lilley’s equation. Recall firstly that for a

parallel mean flow, the operator of linearised Euler’s wave equations simplifies into,

L0(u) = D2
u0
(u) +

[
(∇u0) + (∇u0)

T
]
·Du0

(u) + (∇u0)
T · (∇u0) · u− a20∇(∇ · u) (3.15)

The canonical multivariable scalar product is the simplest variant of equation (3.10) for which H = I.

Computing the adjoint equation of LEWE associated with this scalar product reveals that only the term

containing the mean-flow strain rate, i.e.
[
(∇u0) + (∇u0)

T
]
·Du0

(u) , is non-symmetric. A self-adjoint

kernel for LEWE is then realised with,

K0,I(u) = D2
u0
(u) + (∇u0)

T · (∇u0) · u− a20∇(∇ · u) (3.16)

This stable wave equation is referred to in the following as LEWE-KI.

Another self-adjoint kernel is introduced from LEWE; it is induced by a scalar product that is worth of
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attention. For this parallel flow problem, without loss of generality, the first axis of the coordinate system

may be aligned with the mean-flow direction, so that u0 = (|u0|,0)T . An interesting hermitian matrix

H = T is then obtained by a twisting of the axis,

T = ρ0




1 0
T

0 - I


 (3.17)

From the computation of the associated adjoint operator, nearly all terms are found self-adjoint except

one involving ∇ × ∇ × u. Recalling that, ∇(∇ · u) = ∆u + ∇ × ∇ × u an other self-adjoint kernel of

LEWE is given by,

K0,T (u) = D2
u0
(u) +

[
(∇u0) + (∇u0)

T
]
·Du0(u) + (∇u0)

T · (∇u0) · u− a20∆u (3.18)

This stable wave equation is baptised as LEWE-KT. The latter wave equation provides hope for an

accurate description of acoustic propagation effects, since no mean flow derivatives have been removed in

the approximation.

To verify their stability, both operators LEWE-KI and LEWE-KT are implemented in PROPA and their

solution to the fourth workshop is calculated. The same source term as for LEWE is used in both

cases, and the corresponding pressure fields p are rebuilt a posteriori with the same procedure as for the

validation of LEWE. The results are shown in figure 3.10. As expected no instability wave are visible

and both operators are stable. However the author observed that LEWE-KI appeared to be numerically

unstable in the very low-frequency limit when the grid is underdiscretised in regions where the mean-flow

field is varying. Indeed, the stabilisation procedure proposed here guaranties the operator to preserve

acoustic energy but does not give any guaranty for it numerical well-posedness. No such problem was

observe with LEWE-KT.

Figure 3.10: Pressure fluctuations p computed for the fourth CAA workshop with LEWE-KI (left) and
LEWE-KT (right). Equation (3.6) is used to retrieve the pressure p from the velocity fluctuations u.

For completeness, the solution to the fourth CAA workshop on this ultra fine mesh is provided for LEWE-

AP and for Pierce’s wave equation in figure 3.11. These acoustic potential wave equations are two other

stable variants of LEWE which have been derived in §2.5.2.
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Figure 3.11: Pressure fluctuations p computed for the fourth CAA workshop with LEWE-AP (left) and
Pierce’s wave equation (right). The pressure field p is retrieved using p = −Du0

(φ).

3.3 Benchmark of nine linear acoustic operators

In this section, the acoustic prediction achieved with the eight linear operators mentioned previously are

compared on a numerical test case. Two of them, Lilley’s equation and LEWE, describe accurately the

acoustic mode as well as the vorticity mode, the six other are stable wave equations that meant to account

solely for acoustic propagation. For a more complete comparison of stable sound propagation operator,

the second version of the acoustic perturbation equations is added to the analysis (Ewert and Schröder,

2003, eq. (53)-(55)). The linear operators corresponding to the here investigated acoustic equations are

recalled in table 3.1; all of them have been implemented in PROPA.

The sound propagation of a point source set in a sheared and heated flow profile is considered for the

benchmark. For the acoustic field to present a realistic tree-dimensional decay, the configuration is

chosen axisymmetric, and the source is set on the symmetry axis. The author noted that axisymmetric

configurations are less susceptible to trigger instability waves than corresponding two-dimensional flows;

and the present mean flow is stable for the frequency range considered. The same type of base flow

as for the fourth workshop is considered, that is a Gaussian velocity u0 profile, as given in equation

(3.4), with an evolution of the mean density ρ0 that obeys Crocco-Busemann’s law, equation (3.5). The

same temperature ratio Tj/T∞ = 2, and the same ambient pressure p0 as in the workshop of (2004)

are considered. Yet, the jet flow Mach number is set to Mj = 0.9, and from Crocco-Busemann’s law,

the mean density ρ0 is consequently different from the evolution considered in the CAA workshop. The

mesh considered for the resolution is uniform, composed of 350× 350 cells, and includes a PML layer of

50 elements. The numerical domain with the PML ranges from (x1/σ, x2/σ) ∈ [−6, 12] × [0, 15]. The

standard deviation σs taken for the compact Gaussian sound source equals σs/σ = 0.136. A synthetic

visual of the configuration used for the acoustic operators benchmark is provided in figure 3.12.

This comparative study evaluates the nine linear operators for a set of acoustic pulsations ω = 2πf ranging

in ω ∈ (63, 126, 252, 630, 1260, 3780) rad.s−1, and associated with a Strouhal number of St2σ = 2σf/uj ∈
(0.05, 0.1, 0.2, 0.5, 1.0, 3.0). Figures 3.13 to 3.18 present the real part of the pressure p computed. Their

absolute part, also corresponding to the acoustic root mean square, are presented in figures 3.19 to 3.24.

At a given frequency, identical colormaps are considered for all real part and absolute part plots. The

range of the colormap is chosen to vary linearly with ω, so to compensate the efficiency increase of the

source radiation with the frequency. Lilley’s equation and LEWE do not neglect any term in the sound

propagation calculus and delivers the reference solutions. From these results some remarks are drawn:

• As a first observation, the more the frequency increases, the better the approximated acoustic

equations meet the correct solution. This was to be expected, since in the high frequency limit, the

geometrical acoustic limit is retrieved for all wave equations.
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Linear operator Homogeneous expression

Lilley’s equation
Du0

(
D2

u0
(p)−∇ · (a20∇p)

)
+ 2a20∇u0,z · ∇

(
∂p

∂z

)
= 0

stable Lilley’s equation
Du0

(
D2

u0
(p)−∇ · (a20∇p)

)
+ a20∇u0,z · ∇

(
∂p

∂z

)
= 0

Phillips’ equation
D2

u0
(p)−∇ · (a20∇p) = 0

Linearised Euler’s wave
equation (LEWE) D2

u0
(u)+

[
(∇u0) + (∇u0)

T
]
·Du0

(u)+(∇u0)
T ·(∇u0)·u−a20∇(∇·u) = 0

LEWE-KI
D2

u0
(u) + (∇u0)

T · (∇u0) · u− a20∇(∇ · u) = 0

LEWE-KT
D2

u0
(u)+

[
(∇u0) + (∇u0)

T
]
·Du0

(u)+ (∇u0)
T · (∇u0) ·u− a20∆u = 0

LEWE-AP ∇
[
D2

u0
(Φ)−∇ · (a20∇Φ)

]
+ (∇× u0)×A(Φ) = 0

with A(Φ) = ∇(Du0
(Φ)) −

[
(∇u0) + (∇u0)

T
]
· ∇Φ and ρ0u = ∇Φ

Pierce’s equation
D2

u0
(Φ)−∇ ·

(
a20∇Φ

)
= 0 with ρ0u = ∇Φ

Acoustic perturbation
equations (APE v. 2)





Du0
(ρ) +∇ · (ρ0u) = 0

∂u

∂t
+∇(u0 · u) +∇

(
p

ρ0

)
= 0

with p = a20ρ

Table 3.1: Summary of the linear acoustic equations investigated.
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Figure 3.12: Axisymmetric configuration on which the linear operators of table 3.1 are solved.

• An odd behaviour of LEWE-AP is yet to be deplored. The computed wavefronts have singu-

lar patterns that significantly differ from the reference solutions (Lilley’s equation, LEWE). Very

surprisingly with this wave operator, the RMS part of the pressure field does not monotonically

decreases with the distance to the sound source. Its numerical implementation in PROPA has been

validated in comparing the acoustic potential φ computed, with the solution obtained from the

linearised Euler’s equations for which the relation ρ0u = ∇φ was enforced; identical results were

obtained with both implementations. Different ways to reconstruct the pressure field p of LEWE-AP

have been reviewed in appendix §C.4, and none is giving a satisfactory result. It is argued in §2.5.2

of this script, that this wave equation is ill-posed and that Pierce’s wave equation must be preferred

over LEWE-AP.

• For the lower frequencies that have been investigated, streaks are visible in the solutions of LEWE-

KI and LEWE-KT. They likely find their origin in the mathematical simplification that have been

conducted in the wave operator without any regard to physics, to create a self-adjoint wave equa-

tion. Interestingly stable Lilley’s equation does not present such defects. As already mentioned

earlier, LEWE-KI, while energetically stable, faces numerical stability issues. Even for the fine grid

considered in this study, this is seen in the grid to grid oscillations visible in the low frequency

solutions (up to St = 0.5) computed by LEWE-KI.

• Even though unphysical streaks are visible in LEWE-KT, the pressure field p out of the sheared

flow region seems globally best to be approximated by this wave operator. This is especially true

for the lower acoustic frequencies studied. For higher frequencies, Pierce’s wave equation and the

APE appears to find better agreement with the reference solutions. The comparison of the pressure

root mean square given in figure 3.24 indicates this fairly clearly. Strong alikeness is found in the

pressure field radiated with stable Lilley’s equation and Pierce’s equation for the lower frequencies.

In this configuration, the low frequency prediction obtained with the APE are not very satisfactory.

• It is instructive also to compare the evolution of the pressure field computed with Lilley’s equation,

with its stable formulation, and with Phillips’ equation. It is observed how the directivity lobe

gradually, from Lilley’s to Phillips’ equation, is tilted in the upstream direction. Phillips’s equa-

tion consequently overestimates the upstream acoustic radiated field, and this wave equation offers

globally the worst acoustic predictions, LEWE-AP excluded. Oppositely, the overall predictions
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achieved with Pierce’s wave equation are amongst the most accurate. This is paradoxical, because

Phillips’ and Pierce’s wave equations rely upon an identical wave operator. The importance of the

choice of the acoustic variable is thereby underlined, the latter is likely to play a more important

role than the wave equation itself.

From this comparative benchmark, insight in the behaviour of the acoustic stable equations is gained. Al-

though the predictions achieved with Pierce’s equations are not flawless, encouraging results are obtained

for the configuration investigated. This result is all the more encouraging, that Pierce’s equation is simply

a scalar wave equation. For it is seen that the choice of the acoustic variable plays an important role in

the propagation, this study could be enhanced by including Möhring’s equation in the comparison. The

numerical domain is too small to enable a comparison of the far field radiated acoustic field, especially

at the lowest frequencies. A larger domain with more points is desirable for such a study. Yet for the

configuration investigated, the in-house code PROPA is about to reach the limit in RAM resources of a

competitive workstation. In chapter 4 of part II, computations of PROPA are compared to numerical

solutions obtained with Actran TM, and it is shown that the commercial software handles RAM mem-

ory in a much more efficient way than PROPA. Room for improving PROPA seems to exist, and more

meaningful domain size may be reached thereby.
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Lilley’s equation stable Lilley’s equation Phillips’ equation

LEWE LEWE-KI LEWE-KT

LEWE-AP Pierce’s equation APE (v.2)

Figure 3.13: Real part of the fluctuating pressure p computed for a Strouhal number of St = 0.05.
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Lilley’s equation stable Lilley’s equation Phillips’ equation

LEWE LEWE-KI LEWE-KT

LEWE-AP Pierce’s equation APE (v.2)

Figure 3.14: Real part of the fluctuating pressure p computed for a Strouhal number of St = 0.1.
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Lilley’s equation stable Lilley’s equation Phillips’ equation

LEWE LEWE-KI LEWE-KT

LEWE-AP Pierce’s equation APE (v.2)

Figure 3.15: Real part of the fluctuating pressure p computed for a Strouhal number of St = 0.2.
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Lilley’s equation stable Lilley’s equation Phillips’ equation

LEWE LEWE-KI LEWE-KT

LEWE-AP Pierce’s equation APE (v.2)

Figure 3.16: Real part of the fluctuating pressure p computed for a Strouhal number of St = 0.5.
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Lilley’s equation stable Lilley’s equation Phillips’ equation

LEWE LEWE-KI LEWE-KT

LEWE-AP Pierce’s equation APE (v.2)

Figure 3.17: Real part of the fluctuating pressure p computed for a Strouhal number of St = 1.
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Lilley’s equation stable Lilley’s equation Phillips’ equation

LEWE LEWE-KI LEWE-KT

LEWE-AP Pierce’s equation APE (v.2)

Figure 3.18: Real part of the fluctuating pressure p computed for a Strouhal number of St = 3.
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Lilley’s equation stable Lilley’s equation Phillips’ equation

LEWE LEWE-KI LEWE-KT

LEWE-AP Pierce’s equation APE (v.2)

Figure 3.19: Absolute part of the fluctuating pressure p computed for a Strouhal number of St = 0.05.
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Lilley’s equation stable Lilley’s equation Phillips’ equation

LEWE LEWE-KI LEWE-KT

LEWE-AP Pierce’s equation APE (v.2)

Figure 3.20: Absolute part of the fluctuating pressure p computed for a Strouhal number of St = 0.1.
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Lilley’s equation stable Lilley’s equation Phillips’ equation

LEWE LEWE-KI LEWE-KT

LEWE-AP Pierce’s equation APE (v.2)

Figure 3.21: Absolute part of the fluctuating pressure p computed for a Strouhal number of St = 0.2.
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Lilley’s equation stable Lilley’s equation Phillips’ equation

LEWE LEWE-KI LEWE-KT

LEWE-AP Pierce’s equation APE (v.2)

Figure 3.22: Absolute part of the fluctuating pressure p computed for a Strouhal number of St = 0.5.
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Lilley’s equation stable Lilley’s equation Phillips’ equation

LEWE LEWE-KI LEWE-KT

LEWE-AP Pierce’s equation APE (v.2)

Figure 3.23: Absolute part of the fluctuating pressure p computed for a Strouhal number of St = 1.
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Lilley’s equation stable Lilley’s equation Phillips’ equation

LEWE LEWE-KI LEWE-KT

LEWE-AP Pierce’s equation APE (v.2)

Figure 3.24: Absolute part of the fluctuating pressure p computed for a Strouhal number of St = 3.
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Part II

Adjoint-based sound propagation

for jet noise

73





1 Motivation for an adjoint-based method

Summary: An introduction to aircraft noise certification and turbofan engine installation effects high-

lights the need and the stakes for engine manufacturer to develop a reliable jet noise prediction tool.

Given the complexity of the geometry encountered in modern aircraft architectures and the available

computational capacities, the power spectral density of interest in the certification process needs to be

computed from RANS solutions. In such statistical modellings, the noise radiated from jets is accounted

for with an adjoint approach. The layout of the second part of the thesis is finally given.

1.1 Aircraft noise certification

Air transportation is constrained by strict noise regulations, which aim is to control the community noise

in the vicinity of airport. The legislation in force may vary from one airport to another, nonetheless noise

certifications are uniquely defined for all airplanes and are carried out at three positions defined with

respect to the take-off runway as presented in figure 1.1. These certification points - namely Approach,

Flyover and Lateral - accounts for the noise typically monitored nearby an airport during an aircraft land-

ing and take-off flight operation. This sketch also presents an indicative noise footprint for a commercial

airplane. The arrival footprint is significantly smaller than the departure one, this is because the aircraft

engine is spool down to idle regime before the touchdown.

Figure 1.1: Aircraft noise certification points and indicative noise footprint for a commercial flight (ECAC,
2016).
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Chapter 1 : Motivation for an adjoint-based method

The noisiness of an aircraft pass-by event is measured by the effective perceived noise level (EPNL).

This unit measures the intensity of the noise recorded, it accounts also for the physiology of human

ears, the annoyance perceived due to the presence of tones and the event duration. The physical input

that is relevant to compute EPNL, is the Power Spectral Density (PSD) of the pressure measured at

the certification point. Figure 1.2 presents the PSD obtained in a lab measurement for the DGEN

380 turbofan, a dual-stream business jet engine (Berton, 2016). The Fan tonal contribution at the Blade

Passing Frequency (BPF) and its harmonics are clearly visible, as well as the turbine tone and its energetic

haystack. The noise from the jet is broadband and corresponds to the low frequency hump in the PSD.

In general a logarithmic scale is more adapted for its study. Only frequencies below 11220 Hz, marked in

the plots of figure 1.2 with a dashed line, contribute to the EPNL metric. The relative importance of the

jet noise in the computation of the EPNL is consequently increased.
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Figure 1.2: DGEN 380 pressure PSD at 118o from inlet axis operating at 96 % of maximum low-spool
shaft speed in linear and logarithmic scales. Results are adapted from (Berton, 2016).

Together with considerations on fuel consumption, the regulation of the noise generated by the air traffic,

via the implementation of heavy fines or interdictions to operate in airports, are factors that greatly shaped

the design of modern commercial aircraft engines. In particular the bypass ratio (BPR), that is the ratio

between the mass flow going through the bypass stream and the one passing through the engine core,

largely increased in the last decades. The BPR is now above 10 on typical modern commercial aircraft

engines, e.g. of 10 for the GE9X, of 11 for the LEAP-1A and LEAP-1C and of 12.5 for the PW1100G.

This evolution leads to a new breakdown in the prominence of noise sources, in reducing significantly the

noise from the jet and giving an overriding importance to the noise of the fan as illustrated in figure 1.3.

Note that the BPR of business jets are lower, e.g. of 7.6 for DGEN 380, and for such airplanes the noise

emitted from the jet is still predominant. Jet noise plays no role at landing, however from figure 1.1, the

Lateral and Flyover points correspond to the cases for which the acoustic footprint is the widest, and are

thus the most critical ones. For the latter, the contribution of jet noise is substantial. In any event, the

acoustic spectrum of an operating turbofan engine is complex and broad over frequencies, so that every

relevant noise source needs to be studied and modelled by an engine manufacturer to achieve reliable noise

predictions.
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Figure 1.3: Noise sources breakdown at certification points for a modern middle-range commercial aircraft
(Lempereur, 2018).

1.2 Engine installation effects in modern aircraft architectures

The increase of the BPR leads in practice to the manufacture of larger engines, and yields integration issues

in modern aircraft architectures. The reduced space between the engine and the wing drastically modifies

the aircraft flight dynamic as well as the engine sound propagation. Figure 1.4 presents the axial mean

velocity of the flow exhausted from such an engine as computed with a Reynolds averaged Navier-Stokes

(RANS) solver (Mosson et al., 2014). In this study, the radiation of a fan mode is computed over the jet

mean flow and the presence of surfaces is accounted for in the propagation. This picture illustrates that

aircraft noise is not only broad over frequencies, but its spatial spreading is also complex. This change in

the radiated acoustic directivity, induced by the the presence of the mean flow as well as by the geometry,

needs to be addressed to enable accurate aircraft noise predictions and may even advantageously be used

in the design optimisation processes to reduce the community noise (Morris et al., 1973).

Figure 1.4: Exhaust velocity map and rearward radiation of a fan mode (Mosson et al., 2014).

It also appears from figure 1.4 that the engine installation, especially the presence of the pylon, dissym-

metrise the jet flow (Eastwood and Tucker, 2011). This modification in the jet development leads to

strong modifications of the jet turbulent kinetic energy field, and have thoroughly been assessed numeri-

cally and experimentally in the VITAL project (Dezitter et al., 2009). As will be discussed later, in §2.1,

the turbulent kinetic energy of the flow drives the mixing noise generation process of the jet. Thus, in

addition to the modification in the acoustic propagation, the engine installation alters the existing sound

source distribution as well. The nearness of the engine and the wing is also likely to create new sound

sources. Interaction of the jet with the airfoil flap have been observed experimentally (Huber et al., 2014)

and tackled numerically (Xia et al., 2012; Tyacke et al., 2016). The flow mean velocity and the Reynolds

shear stress tensor as modelled with a hybrid RANS-LES approach, as computed in the latter studies,
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is depicted in figure 1.5. The large area of high shearing stress downstream of the wing trailing edge

indicates the presence of a new source of sound. It is clear that the unsteady pressure loading of the

airfoil is drastically affected by the closeness of the jet as well, so does the airframe radiated noise.

Figure 1.5: Axial mean flow and resolved Reynolds shear stress computed for an installed turbofan
(Xia et al., 2012).

All these complex effects due to the engine installation, in the noise generation mechanisms as well as

in the sound propagation, need to be taken into account for a modelling strategy to predict accurately

the noise radiated from an aircraft engine. The successful design process of modern aircraft architecture

will see engine and aircraft manufacturers working side by side with smart numerical tools capable of

calculating all acoustic relevant effects in a timely efficient manner. The present study seeks to build a

method able to account for all the acoustic propagation effects caused by the presence of the jet mean

flow and aircraft surfaces, as encountered in such configurations.

1.3 Jet noise prediction from an engine manufacturer perspective

In the design process of new architectures, aircraft and engine manufacturers need to make sure that their

final product passes the acoustic certification process. The direct noise simulation of a complete aircraft is

however still technically and timely out of reach. As an illustration, the computation presented in figure

1.5 is based on a timely very competitive hybrid LES-RANS approach and only 53 million grid cells were

required (Xia et al., 2012). This computation extended over 7.4 . 105 h.CPU, which represents a month

calculation on 1024 CPU cores. This time corresponds solely to the CPU time needed to acquire the useful

signal and does not involve the time of residual convergence, and obviously it is not acknowledging the

engineer time to set-up such a complex mesh and computation. Moreover the engine studied is a small-

scale one, with a diameter D of 18 mm and Reynolds number of ReD=300 000 only. While it is known that

the computational cost of a resolved numerical simulation scales with Re11/4
D

, the computation of the same

configuration but full-scale would have been roughly 3.105 times more expensive. Even though steady

encouraging progresses are made in the increase of available computational power, such computations

will be unreachable for at least the next twenty years: Optimistically relying on Moore’s observation of

computational power doubling every 18 months, 30 years of continuous progresses in numerical techniques

are required from the publication time of (Xia et al., 2012) before the possible numerical prediction of

a full-scale installed engine... As a matter of fact, the numerical predictions of installed aircraft engines

needs to be addressed alternatively. This statement needs to be mitigated with the recent progresses made

in parallel computation on graphical cards. Markesteijn and Karabasov (2020) indeed demonstrated how
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1.3 Jet noise prediction from an engine manufacturer perspective

a fully installed engine case of around 250 million cells can be modelled with wall-modelled LES in six

days on two workstations, where each of them is equipped with four GPU cards. Realistic simulations can

be achieved with the use of smart indirect noise prediction techniques and by the separate investigation

of the contribution of each aircraft sub-elements. Then, the closer the design iteration reaches the final

aircraft architecture drawing, the more accurate the description should be. The aircraft sub-elements need

to be analysed in there environment to compute the impact of installation effects and to describe more

precisely the sound propagation. At each iteration step, a trade-off between physical representativeness

of the model, - that is the ability of the description to correctly represent the effect of a design parameter

change with regards to the overall optimum - and the model cost is to be found.

The following paragraph introduces how jet noise estimation can be addressed indirectly using statistical

modelling. Let us first recall here that the final aim of aircraft noise predictions is to obtain the airplane

EPNL at certification points. The calculation of EPNL is based on the computation of the Sound Pressure

Level (SPL) which simply is the PSD of the normalised pressure recorded at the certification point. From

now on, the pressure PSD is referred to as Spp and depends on the microphone position xm and the

frequency f , resp. the pulsation ω of interest expressed in Hz, resp. in rad.s−1, with ω = 2πf . The

pressure PSD, i.e. Spp, is the Fourier transform of the recorded pressure auto-correlation Rpp, these

statistical quantities expresses as,

Rpp(xm, τ) =

ˆ

R

dtm p(xm, tm)p(xm, tm + τ) and Spp(xm, ω) =

ˆ

R

dτ Rpp(xm, τ)e
iωτ (1.1)

where the convention for the Fourier transform considered here is detailed in § A.2. If p(xm, ω) is the

Fourier transform of the pressure time signal recorded, then from Plancherel’s theorem it appears that

the pressure PSD is also the square of this quantity.

Spp(xm, ω) = |p(xm, ω)|2 (1.2)

So apart from a phase information which is lost in the autocorrelation procedure, time signal, autocorre-

lation and PSD are equivalent descriptions of the same signal. To set these ideas down, figure 1.6 depicts

qualitatively a sample of the fields previously mentioned. These sketches for Rpp and Spp mimic jet noise

measurements (Tam et al., 2008), so to qualitatively represent the data of interest in the present study.

Because of its broadband and smooth frequency content, it appears intuitively easier for a modelling to

account for Spp rather than for the time signal p. In fact, reasons to model statistical quantities are

inherent to the physics of turbulence, quoting Lighthill (1952, §5), “at high Reynolds numbers, when the

flow field is fully turbulent, so that presumably the sound field partakes of the same chaotic quality, there

is no meaning to be attached to the concept of ‘amplitude’ for any frequency, or even for any band of

frequencies however small. This is because the phase is completely random and discontinuous, so that

the fluctuating physical quantities themselves (as distinct from the intensity) possess no spectral density,

because the limiting process which is used to define this concept does not converge. Hence intensity and its

spectrum are all that can be given a meaning in such cases, not simply all that we need to know.” When

the flow is not deterministic, a statistical modelling of the jet noise is thus ‘all that can be given’.

In a celebrated contribution, Tam et al. (1996) advocated for the existence of two components of the

jet mixing noise; one originating from the large scale turbulence instabilities and another caused by

the fine scale mixing of the turbulence. This view may correspond to the two limits of a generation

mechanisms processes that is continuous over the scale of perturbation, refer to §1.3 of part I. These
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Figure 1.6: Typical mixing noise signature of a jet. From left to right: the pressure time signal recorded
at microphone p(xm), its normalised auto-correlation Rpp(xm) and power spectral density Spp(xm).

authors convincingly demonstrated how from experimental data self-similar spectra (Powell, 1964, §7)

can be deduced for the mixing noise of axisymmetric jets. This is because the turbulence statistics, i.e.

the sound sources in the jet core, present themselves self-similarities as pointed out by Tam et al. (1996):

“In the mixing layer of a jet there is no inherent geometrical length scale. Also, it is well-known that

at high Reynolds number, viscosity is not a relevant parameter of turbulent jet flows. Based on these

observations, it is easy to see that there is no intrinsic length and time scales in the core region of the

jet flows. As a result, the mean flow as well as the turbulence statistics must exhibit self-similarity.”

Following these authors, two constants are enough to reproduce very closely the Spp associated to the

fine scale mixing noise of a simple axisymmetric jet. Note that the scaling parameters enabling data

to collapse with self-similar spectra can be deduced theoretically (Tam, 2006; Semiletov and Karabasov,

2017) or experimentally (Witze, 1974; Viswanathan, 2006). Such models, however, do only apply for

simple isolated jet configuration.

1.4 Adjoint in RANS-based noise prediction

On this basis, the averaged information on turbulence provided by RANS solvers may be sufficient to

characterise statistically the mixing noise sound source, and previous steady flow computations can be

intelligently used to predict the Spp associated to jet noise. RANS method are well adapted to industrial

and optimisation design processes, they provide indeed fairly accurate descriptions of the mean flow ,

handle complex geometries and take little time to run. This entailed many contributions in the literature

for RANS-based mixing noise prediction tools, which can be sorted in two categories.

1. A first category is based on the deterministic reconstruction of a statistical realisation of the sound

sources and their acoustics. The Spp is then rebuilt subsequently at the microphone location xm. The

core of this method lies in the reconstruction of the turbulent field time evolution, the acoustic field is

then assessed in a second step with an acoustic analogy and a standard Computational Aero-Acoustics

(CAA) tool. This is less time consuming than direct noise computations, because only a one-way coupling

from turbulence to acoustics is considered, and that turbulence is solely modelled with convection and

diffusion processes. Different methods exist in the literature, namely the Stochastic Noise Generation

and Radiation (SNGR) (Béchara et al., 1994; Bailly et al., 1995; Lafitte et al., 2012), the fast Random

Particle-Mesh (RPM) (Ewert, 2007, 2008; Ewert et al., 2011) and the Adaptive Spectral Reconstruction

(ASR) (Di Francescantonio et al., 2015).

2. In the second group of RANS-based prediction techniques the acoustic field is not computed.

The power spectral density is evaluated at the microphone location xm only, and the computation of

deterministic statistical realisations of the flow are unnecessary. This is because RANS solutions and
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1.4 Adjoint in RANS-based noise prediction

Spp, i.e. the input and output of the noise prediction tool, are both statistical quantities. In these noise

prediction methodologies, sound propagation and generation is split thanks to the use of Green’s functions.

As the sketch bellow illustrates, the autocorrelation of the pressure time signal p is passed on the sound

source terms q to form the sound source intercorrelation Rqq. Subsequently, the acoustic propagation is

tackled in a deterministic approach with the Green technique which can possibly account for mean flow

refraction effects, surface reflection or edge diffraction and can be computed by various means.

Rpp(xm, τ) =

ˆ

R

dtm p(xm, tm)p(xm, tm + τ)

p(xm, tm) =

ˆ

R

dt1

ˆ

Ω

dx1 G
(xm, tm − t1)
x1 q(x1, t1) p(xm, tm + τ) =

ˆ

R

dt2

ˆ

Ω

dx2 G
(xm, tm + τ − t2)
x2 q(x2, t2)

Rpp(xm, τ) =

ˆ

R

dt̃1

ˆ

R

dt̃2

ˆ

Ω

dx1

ˆ

Ω

dx2 G
(xm, t̃1)
x1 G

(xm, t̃2 + τ )
x2 Rqq(x1,x2, t̃1 − t̃2)

deterministic

propagation

statistical

sound source

pressure auto-

correlation at

microphone

This approach relies on the modelling of the sound source autocorrelation as described by acoustic analo-

gies. Different autocorrelation models exist for different sound sources, and this noise prediction strategy

is readily used to model mixing noise, Mach wave radiation and broadband shock associated noise (BB-

SAN). Note that the computation of different type of sound sources can be tackle simultaneously (Miller,

2014b). The scientific community published prolifically on this methodology in the past thirty years.

A non-exhaustive but representative list of contributions published by various researchers and groups is

given hereafter. The contributions that are to this author the most significant are underlined: Khavaran

et al.1, Goldstein and Leib2, Bailly et al.3, Tam, Pastouchenko et al.4, (Xu et al., 2015), Morris, Miller

et al.5, Brouwer and Nijboer (2005), Self, Deschamps et al.6, Karabasov, Afsar et al.7 A close focus on

the numerous previously mentioned contributions is not given here, since they differ only by the mod-

elling of the sound source autocorrelation term Rqq (Morris and Farassat, 2002, 2003; Tam, 2003) and

the taking into account of the propagation effects. For a synthetic review on these contributions, the

1(Khavaran et al., 1994), (Das et al., 1997), (Khavaran, 1999), (Barber et al., 2001), (Khavaran et al., 2005),

(Khavaran and Bridges, 2005), (Khavaran and Kenzakowski, 2007).
2(Goldstein, 1976, chap. 2), (Goldstein and Khavaran, 2005), (Goldstein et al., 2005a), (Goldstein et al.,

2005b), (Goldstein, 2005a), (Goldstein, 2006), (Goldstein and Leib, 2008), (Leib and Goldstein, 2011), (Leib, 2013),

(Goldstein and Leib, 2018).
3(Béchara et al., 1995), (Bailly et al., 1996), (Bailly et al., 1997), (Bodard et al., 2009), (Henry et al., 2012),

(Martelet et al., 2019).
4(Tam, 1987),(Tam and Auriault, 1999), (Tam et al., 2001), (Tam and Pastouchenko, 2002), (Tam et al., 2005),

(Tam and Pastouchenko, 2006), (Tam et al., 2006), (Pastouchenko and Tam, 2007), (Cheung et al., 2015).
5(Morris and Farassat, 2002), (Morris and Boluriaan, 2004), (Raizada and Morris, 2006), (Morris and Miller, 2010),

(Miller and Morris, 2012),(Miller, 2014b), (Miller, 2015).
6(Self, 2005), (Self and Azarpeyvand, 2008), (Azarpeyvand and Self, 2009), (Engel et al., 2014), (Ilário et al., 2017),

(Rosa et al., 2017).
7(Afsar et al., 2006), (Afsar et al., 2007), (Afsar, 2009), (Afsar, 2010), (Karabasov et al., 2010), (Afsar,

2012), (Depuru Mohan et al., 2015), (Karabasov and Sandberg, 2015), (Afsar et al., 2016a), (Afsar et al., 2016b),

(Semiletov and Karabasov, 2016), (Afsar et al., 2017b), (Kalyan and Karabasov, 2017), (Afsar et al., 2017a),

(Gryazev and Karabasov, 2018).
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reader is referred to (Morris, 2007, 2012). More details on statistical jet noise modelling can also be found

in following well-referenced doctoral thesis (Azarpeyvand, 2008; Bassetti, 2009; Almeida, 2009; Martelet,

2020).

To allow the calculation of the pressure autocorrelationRpp with the above formula, it is clear that Green’s

function Gxs,ts needs to be determined for each sound source position xs and time ts. If an installed

aircraft engine is considered, Green’s function is not known analytically, and this prediction methodology

becomes unreasonably expensive. Indeed the number of sound sources is usually extravagantly high in

practice and Gxs,ts needs to be assessed for each of them. In regard to this, Tam and Auriault (1998)

proposed to cleverly use the most general reciprocity principle to redraft Green’s function of the direct

radiation problem Gxs,ts with the so called adjoint Green’s functions G†
xm,tm . For xs, ts and xm, tm,

respectively the source and microphone position and time, the general reciprocity principle relates direct

and adjoint Green’s functions as,

G
(xm, tm)
xs,ts = G†(xs, ts)

xm,tm (1.3)

The Green function needed for the noise prediction is now associated to the microphone rather than to the

source as illustrated in figure 1.7. This is timely very efficient, since the acoustic propagation effects from

the sound sources to the microphone is handled now in a single computation. Recasting the expression

of the pressure autocorrelation Rpp with the adjoint Green functions leads to,

Rpp(xm, τ) =

ˆ

R

dt̃1

ˆ

R

dt̃2

ˆ

Ω

dx1

ˆ

Ω

dx2 G
†(x1,−t̃1)
xm

G†(x2,−t̃2 − τ )
xm

Rqq(x1,x2, t̃1 − t̃2) (1.4)

Tam and Auriault (1999) applied the adjoint approach in their formula to predict jet mixing noise. Its

use is now standard in the aeroacoustic community to model acoustic propagation effects in RANS-based

models wherever the pressure time evolution is not computed, i.e. in all contributions of the second

category of RANS-based prediction techniques previously mentioned. As a matter of fact, statistic jet

noise prediction formulae rely intrinsically in their derivation on adjoint.

G
(xm, tm)
x1,t1

G
(xm, tm + τ )
x2,t2

q

Rpp(xm, τ)

microphone

xm

x1, t1

x2, t2

G†(x1, t1)
xm,tm

G†(x2, t2)
xm,tm

Rqq(x1,x2, t1 − t2)

adjoint source

xm

x1, t1

x2, t2

Figure 1.7: Introduction of the adjoint problem to compute the pressure autocorrelation.

The present part of this work focuses on Tam and Auriault’s mixing noise model which is detailed in-depth

in § 2.1 and recast in § 2.2 for the acoustic potential as governed by Pierce’s wave equation. The reasons

to use Pierce’s equation are numerous. On the one hand Pierce’s equation is computationally efficient,

acoustic preserving and fairly accurate. This is supported by part I. On the other hand, the self-adjoint
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1.4 Adjoint in RANS-based noise prediction

property of Pierce’s equation can be advantageously used to compute its adjoint solution. Chapter 3

demonstrates this. Furthermore this equation consists in a simple convected wave equation that many

solver readily are able to solve. A procedure to solve Pierce’s equation with FFT ’s commercial solver

Actran TM is given, and the computation of adjoint field in application to a turbofan engine is finally

presented in chapter 4.
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2 Recast of Tam and Auriault’s mixing noise

model for Pierce’s equation

Summary: A detailed review on the mixing noise model of Tam and Auriault (1999) is provided here.

Effort is given to properly derive the prediction formula anew with a focus on a rigorous use of the adjoint

technique. Additionnaly to Tam and Auriault’s work, adjoint Green’s function correlation (1999, eq. (34))

is modelled using a Taylor expansion. The second part of this chapter is devoted to apply this technique to

a potential acoustics formulation based on Pierce’s equation. Some remarks on how to model the BBSAN

model of Morris and Miller (2010) within the present framework are given as a perspective.

2.1 Tam and Auriault’s mixing noise theory

Jet mixing noise is an ever-present and highly emblematic sound source in turbulent flows (Lighthill,

1952, 1954), and its study is of particular interest. Tam and Auriault (1999) developed a RANS-based

noise prediction method tackling this sound source, which for the first time, properly accounts for mean

flow refraction effects. The acoustic propagation is addressed with a smart use of the adjoint formalism

and is presented here succinctly. Deeper insight on the adjoint method is given later in chapter 3 of this

part. The model yields very satisfactory results (Morris and Farassat, 2002) and its use is widespread

in the aeroacoustic community. These reasons motivated in this work the focus on Tam and Auriault’s

formula. Note that this methodology can be cast alternatively (Morris and Boluriaan, 2004) and extended

to describe other sound sources (Miller, 2014b). The original derivation of Tam and Auriault’s formula is

duplicated with the greatest possible care here below.

2.1.1 Flow noise modelling based on a RANS

Reynolds averaged Navier-Stokes (RANS) equations are based on the Reynolds decomposition of the

variables used in the description of the fluid motion. That is a split of each variable f into its time-

averaged part f and its fluctuating part f ′,

f = f + f ′ with f ′ = 0 (Reynolds decomposition) (2.1)

The complete set of equations is then time-averaged, and because the fluctuations have zero mean, its ex-

pression simplifies greatly. To close the system of equations, the non-vanishing fluctuation correlations are

modelled with help of statistical quantities. This is achieved with conservation and transfer equations for

the flow energy statistics, e.g. k, ε or ω, leading to different turbulence models (Bailly and Comte-Bellot,
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2.1 Tam and Auriault’s mixing noise theory

2015, chap. 9). To avoid the modelling of new terms when the mean flow is compressible, it is convenient

to consider a Favre decomposition for the velocity field. The Favre average f̃ and its fluctuation f ′′ are

mass weighted averages defined as,

f = f̃ + f ′′ with ρf̃ = ρf and f ′′ 6= 0 (Favre decomposition) (2.2)

This is used in most RANS solvers, and the steady continuity and momentum equations on which statistical

noise predictions method relies are (Bailly and Comte-Bellot, 2015, § 9.3.1),

D̃ ρ

D̃t
+ ρ∇ · ũ = 0

ρ
D̃ ũ

D̃t
+∇ p = ∇ ·

(
Σ− ρu′′ ⊗ u′′

)
(2.3)

where D̃ /D̃t = ∂ /∂t + ũ · ∇ is the Favre averaged convective derivative. These equations resemble

very much to the general equations of fluid motion, equations (2.2), but with an additional external

force ρu′′ ⊗ u′′ that reminds one of the Lighthill stress tensor in absence of heat source and viscous

contributions. This term can be interpreted as the average effect of the turbulent structures on the mean

flow evolution. Starting from this RANS correlation tensor, Tam and Auriault proposed a source term

to mixing noise for the acoustic equations. To that purpose, they adopted the compressible Boussinesq

eddy viscosity model for the Reynolds stress (Bailly and Comte-Bellot, 2015, § 9.3.1), i.e.

−ρu′′ ⊗ u′′ = µt

[
(∇ũ) + (∇ũ)T

]
− 2

3
µt (∇ · ũ) I −

2

3
ρ ks I (2.4)

where µt is the turbulence eddy viscosity, ks = u′ · u′/2 is the specific kinetic energy of the turbulence

and I the identity tensor. The tensor off-diagonal terms weighted by µt account for the shearing effect of

the turbulence and are deemed negligible. It is indeed reasonable to consider that acoustic fluctuations

are caused by fluid compression and dilatation only (Ribner, 1962). These authors proposed in turn

an elastic particle collision viewpoint to describe sound generation mechanisms induced by turbulence.

Consistently with Boussinesq’s model and some experimental evidences measured in the jet far enough

from solid boundaries (Fleury et al., 2008), the turbulence is modelled as isotropic in the jet, and hence

a single time dependant scalar field qs is sufficient to account for the mixing noise generation in Tam and

Auriault’s model,

−ρu′′ ⊗ u′′ ≈ −ρu′ · u′/3 I = −qs I (2.5)

And finally, if flow noise can be computed with linearised equations (Bogey et al., 2002) by considering

the unsteady part of the Lighthill stress tensor (Lighthill, 1952, eq. (7)), Tam and Auriault proposed

following alternative to the acoustic analogy source of sound,

∇ · (ρu⊗ u)−∇ ·
(
ρu⊗ u

)
= ∇qs (2.6)

Note that in their model, instead of a classical temporal averaging for the Reynolds decomposition,

Tam and Auriault (1999) proposed a spatial averaging with a filtering out of the large scale structures.

This is meant to separate the large-scales of turbulence from the fine-scales with reference to (Tam et al.,

1996). Yet in practice RANS code are not able to do this distinction, neither does the parabolised RANS

equations used to develop the original model (Thies and Tam, 1996). For this reason reference to the
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Chapter 2 : Recast of Tam and Auriault’s mixing noise model for Pierce’s equation

fine-scale to characterise ks or the mixing noise model proposed in (Tam and Auriault, 1999) are omitted

here. Based on the discussions given in section §1.2 and §1.3 of part I, because the modelled momentum

source is potential it possesses an acoustic nature and no mode conversion is required for it to radiate.

While the turbulent structure scales considered are not necessarily ‘fine’, they appear to be associated

with turbulence self-noise.

2.1.2 Direct acoustic propagation

In their application Tam and Auriault (1999) accounted for the acoustic refraction effects of a steady

parallel flow. As in part I, §1.2 of this script, the acoustic propagation problem is sought as the solution

to a perturbation problem about a mean flow, as given by a Reynolds decomposition. From now on, the

mean flow is indexed by zero 0 and the prime ′ in superscripts of the fluctuating quantities are omitted

for the sake of legibility. The direct acoustic propagation problem for Tam and Auriault’s mixing noise

rewrites then as, 



ρ0
D(u)

Dt
+∇p = −∇qs

D(p)

Dt
+ γp0(∇ · u) = 0

(2.7)

where D /Dt = ∂ /∂t+u0 · ∇ is the convective derivative. If the associated linear operator L0 is defined,

previous expression can be recast into,

L0


 u

p


 =


 −∇qs

0


 (2.8)

Note that the mean flow considered for the acoustic propagation is parallel and that L0 thus corresponds

to the linearised Euler equations (LEE). Unlike Tam and Auriault’s contribution (1999), it seems more

straightforward in the derivations of the model to consider the time domain problem.

2.1.3 Governing adjoint equations

For an introduction on the adjoint framework and the definition of direct and adjoint problems, the reader

is referred to § 3.2 of this script. The governing adjoint equations are given by Lagrange’s identity,

<


 u†

p†


 ,L0


 u

p


 > = < L†0


 u†

p†


 ,


 u

p


 > (2.9)

where the scalar product < , > is introduced in §A.4 of the appendix. Accordingly to Tam and Auriault’s

model (1999), the free-space propagation problem will be considered, i.e. Ω ≡ R3, for which all boundary

conditions vanish for the direct problem as well as for the adjoint problem. In particular the radiating

boundary conditions associated with the direct problem and their associated anti-causal adjoint boundary

will be discarded. Taking benefit from the mean flow parallelism, multiple integration by parts in above

86



2.1 Tam and Auriault’s mixing noise theory

expression lead to following adjoint operator L†0,




−ρ0
D(u†)

Dt
− γp0∇p† = S

†
ρ0u

†

−D(p†)

Dt
−∇ · u† = S†

p†

(2.10)

where S† = (S†

ρ0u
†
1

, S†

ρ0u
†
2

, S†

ρ0u
†
3

, S†
p†)

T

is a generic writing of the adjoint source term. Because Tam and

Auriault’s model intends to compute the pressure field autocorrelation Spp at a microphone position xm,

and that the adjoint method relies on the reciprocity principle for which source and observer position

are switched, for more see § 3.2.2, a Dirac source term δxm,tm (≡ δ(x − xm)δ(t − tm)) in the equation

governing the adjoint field associated to the pressure p† is considered. This is depicted in figure 2.1.

u0

xm

u0

xm

Figure 2.1: The adjoint problem is solved for an impulsive source set at the observer location xm.

What is more, because an impulse response is considered the corresponding adjoint fields u† and p† are

Green’s functions. In the manipulations of Green’s functions, it is crucial to bear in mind the source

position xm and time tm at which they apply, so that this information will be specified in the notations.

Considering following adjoint problem,

L†0


 u

†
xm,tm

p†
xm,tm


 =


 0

δxm,tm


 (2.11)

then readily gives in the time domain an expression analogue to (Tam and Auriault, 1999, eq. (21)), when

replaced in Green Lagrange’s identity together with the direct problem source term. That is,

<


 u

†
xm,tm

p†xm,tm


 ,


 −∇qs

0


 > = <


 0

δxm,tm


 ,


 u

p


 > (2.12)

and finally, taking benefit from the delta Dirac property,

p(xm, tm) = − < u
†
xm,tm ,∇qs > (2.13)

Following Tam and Auriault’s steps, using integration by parts and the governing equation for p†, the
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previous right hand side is recast as,

− < u
†
xm,tm ,∇qs > = < ∇ · u†

xm,tm , qs > = − <
D(p†

xm,tm)

Dt
, qs > = < p†xm,tm ,

D(qs)

Dt
> (2.14)

where again, all the contour integrals are omitted since they vanish in free field and on solid boundaries

where qs is null. Note that <,> has been used above indifferently for different size of vectors without

ambiguity because the canonical scalar product is considered. This procedure can be applied for any scalar

product, notice however that, as a step by step derivation would show, the latter needs to be adapted to

each new couple of field considered.

2.1.4 Calculation of the pressure autocorrelation

Let the pressure p time-autocorrelation Rpp for a time-shift τ at position xm be defined as,

Rpp(xm, τ) =

ˆ

R

dtm p(xm, tm)p(xm, tm + τ) (2.15)

then Tam and Auriault’s expression for the autocorrelation (1999, eq. (24)) is retrieved:

Rpp(xm, τ) =

ˆ

R

dtm

〈
p†xm,tm ,

D(qs)

Dt

〉〈
p†
xm,tm+τ ,

D(qs)

Dt

〉

=

ˆ

R

dtm

(
ˆ

Ω

dx1

ˆ

R

dt1 p
†(x1, t1)
xm,tm

D(qs(x1, t1))

Dt, 1

)(
ˆ

Ω

dx2

ˆ

R

dt2 p
†(x2, t2)
xm,tm+τ

D(qs(x2, t2))

Dt, 2

)

(2.16)

where D/Dti = ∂/∂ti+u0 ·∇i is applied to time variable ti and space variable xi. After simple rearranging,

Rpp(xm, τ) =

ˆ

Ω

dx1

ˆ

Ω

dx2

ˆ

R

dt1

ˆ

R

dt2

ˆ

R

dtm p†
(x1, t1 − tm)

xm
p†

(x2, t2 − tm − τ )
xm

D(qs(x1, t1))

Dt1

D(qs(x2, t2))

Dt2
(2.17)

By defining following new variables t̃1 = t1 − tm and t̃2 = t2 − tm,

Rpp(xm, τ) =

ˆ

Ω

dx1

ˆ

Ω

dx2

ˆ

R

dt̃1

ˆ

R

dt̃2 p
†(x1, t̃1)
xm

p†
(x2, t̃2 − τ )
xm

ˆ

R

dtm
D(qs(x1, t̃1 + tm))

D(t̃1 + tm)

D(qs(x2, t̃2 + tm))

D(t̃2 + tm)
(2.18)

When in the dtm integral t̃i are constants with respect to tm, thus D/D(t̃i + tm) = D/Dtm. Moreover by

setting t̃m = tm + t̃2 and τ̃ = t̃1 − t̃2 = t1 − t2 then,

ˆ

R

dtm
D(qs(x1, t̃1 + tm))

D(t̃1 + tm)

D(qs(x2, t̃2 + tm))

D(t̃2 + tm)
=

ˆ

R

dt̃m
D(qs(x1, t̃m + τ̃ ))

Dt̃m

D(qs(x2, t̃m))

Dt̃m
(2.19)

Above appears clearly the space-time autocorrelation of the quantityQ ≡ D(qs)/Dt, namelyRQQ(x1,x2, τ̃ ).

The pressure time autocorrelation Rpp, hence simply expresses without assumptions,

Rpp(xm, τ) =

ˆ

Ω

dx1

ˆ

Ω

dx2

ˆ

R

dt̃1

ˆ

R

dt̃2 p†
(x1, t̃1)
xm

p†
(x2, t̃2 − τ )
xm

RQQ(x1,x2, t̃1 − t̃2) (2.20)

In our applications the Fourier transformed pressure autocorrelation Spp is of interest which is defined as,

Spp(xm, ω) =

ˆ

R

dτ Rpp(xm, τ)e
iωτ (2.21)
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Note that the convention for the Fourier transform considered here, given in § A.2 of the appendix, differs

from the one in use in (Tam and Auriault, 1999). Since, adjoint Green’s functions p†
xm

will be computed in

the frequency domain in the present study, the above integrand needs therefore to be Fourier transformed.

Spp(xm, ω) =
1

(2π)2

ˆ

Ω

dx1

ˆ

Ω

dx2

ˆ

R

dt̃1

ˆ

R

dt̃2

ˆ

R

dω1

ˆ

R

dω2

ˆ

R

dτ p†
(x1, ω1)

xm
p†

(x2, ω2)

xm
eiωτ−iω1 t̃1−iω2(t̃2−τ)RQQ(x1,x2, t̃1 − t̃2)

(2.22)

The dτ integral can be readily performed with,

ˆ

R

dτ eiτ(ω+ω2) = 2πδ(ω + ω2) (2.23)

and following expression is finally obtained:

Spp(xm, ω) =
1

2π

ˆ

Ω

dx1

ˆ

Ω

dx2

ˆ

R

dt̃1

ˆ

R

dt̃2

ˆ

R

dω1

ˆ

R

dω2 p
†(x1, ω1)

xm
p†

(x2, ω2)

xm
e−iω1 t̃1−iω2 t̃2RQQ(x1,x2, t̃1 − t̃2)δ(ω + ω2)

(2.24)

2.1.5 Modelling of the source autocorrelation term

The modelling of RQQ cannot be further postponed, since its expression is needed to perform analytically

the time integrations over dt̃1 and dt̃2. The Q-quantity space-time autocorrelation model proposed by

Tam and Auriault (1999, eq. (27)) is shift-invariant, i.e. by defining r = x1 − x2, then RQQ(x1,x2, τ̃ ) =

RQQ(r, τ̃), and writes,

RQQ(r, τ̃ ) =
q̂2s
c2τ2s

exp

(
−|r · u0|

u20τs
− ln(2)

l2s
(r − τ̃u0)

2

)
(2.25)

with u0 = |u0|. The reader can refer to Tam and Auriault (1999, §3) for the definition of the above other

variables and their origin. Simply note, that q̂s, τs and ls are measures of the turbulence intensity, decay

time and correlation length and are informed by RANS. Notice also that a similar Gaussian autocorrelation

function was introduced by Ribner (1962, § III.) and proved to be able to account for a number of

directivity effects encountered in jets.

Reproducing Tam and Auriault’s change of variable for the integration, let s = τ̃−r ·u0/u
2
0, then it comes

r− τ̃u0 = r⊥ − su0, where r⊥ = r− (r ·u0)u0/u
2
0 is the projection of r on the hyperplane associated to

u0 so that r⊥ · u0 = 0, and

RQQ(r, τ̃ ) =
q̂2s
c2τ2s

exp

(
−|r · u0|

u20τs
− ln(2)|r⊥|2

l2s
− ln(2)u20s

2

l2s

)
(2.26)

When applying the same change of variable on t̃1, i.e., t̃1 = s+ t̃2 + r ·u0/u
2
0, in the integrand it follows,

Spp(xm, ω) =

ˆ

Ω

dx1

ˆ

Ω

dx2

ˆ

R

dt̃2

ˆ

R

dω1

ˆ

R

dω2

ˆ

R

ds
q̂2s

2πc2τ2s
exp

(
−|r · u0|

u20τs
− ln(2)|r⊥|2

l2s
− ln(2)u20s

2

l2s

)
δ(ω + ω2)

×p†(x1, ω1)
xm

p†
(x2, ω2)
xm

e−iω1(s+t̃2+r·u0/u
2
0)−iω2 t̃2

(2.27)

The integration over ds can now be performed making use of (Gradshteyn and Ryzhik, 1963, eq. (3.323),
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p.337 in 7th ed.),

ˆ

R

ds exp

(
− ln(2)u20s

2

l2s
− iω1s

)
=

ls
u0

√
π

ln(2)
exp

(
−ω2

1l
2
s

4 ln(2)u20

)
(2.28)

The integral over dt̃2 is simpler,

ˆ

R

dt̃2 e−i(ω1+ω2)t̃2 = 2πδ(ω1 + ω2) (2.29)

Defining α =
l2s

4 ln(2)u20
and β =

q̂2s ls
c2τ2s u0

√
π

ln(2)
, the pressure autocorrelation Spp now writes,

Spp(xm, ω) =

ˆ

Ω

dx1

ˆ

Ω

dx2

ˆ

R

dω1

ˆ

R

dω2 β exp

(
−|r · u0|

u20τs
− ln(2)|r⊥|2

l2s

)
δ(ω + ω2)δ(ω1 + ω2)

×p†(x1, ω1)
xm

p†
(x2, ω2)
xm

exp

(
−iω1

r · u0

u20
− αω2

1

)

(2.30)

Evaluating the dω1 and dω2 integral is straightforward,

Spp(xm, ω) =

ˆ

Ω

dx1

ˆ

Ω

dx2 β exp

(
−|r · u0|

u20τs
− ln(2)|r⊥|2

l2s

)
p†

(x1, ω)

xm
p†

(x2,−ω)

xm
exp

(
−iω r · u0

u20
− αω2

)

(2.31)

By property of the Fourier transform of real valued signals, p†
(x2,−ω)
xm

= p†
(x2, ω)
xm

∗

, and a last change of

variable x1 = r + x2 leads to Tam and Auriault’s equation (33),

Spp(xm, ω) =

ˆ

Ω

dx2

ˆ

Ω

dr β p†
(r + x2, ω)

xm
p†

(x2, ω)

xm

∗

exp

(
−|r · u0|

u20τs
− ln(2)|r⊥|2

l2s
− iω r · u0

u20
− αω2

)

(2.32)

2.1.6 Approximated calculation of the double space integration

The computation of the above double space integral is numerically costly and a simplification is required.

Fraunhofer approximation

Because in Tam and Auriault’s work the observer is set in the acoustic far field, those authors proposed

to model two neighbour acoustic ray paths from the source region by a Fraunhofer-like approximation

(Tam and Auriault, 1999, fig. 4, eq. (34)) (Ribner, 1962, § 2.3), which expresses with vector notations

as1,

p†
(r + x2, ω)

xm
≈ p†(x2, ω)

xm
exp

(
iω xm · r
a∞|xm|

)
(2.33)

1In Fraunhofer’s approximation, only the difference in travel time between rays is accounted for, so that the ray coming

from x2 is the same as the one from x2 + r but with an additional phase φ = k · r, i.e. for the direct problem p
(xm, ω)
x2

=

p
(xm, ω)
x2+r

eiφ, where k is the wave number pointing toward the observer point xm. Then for a medium at rest, φ =

k · r = ω
a∞

(xm−x2)
|xm−x2|

· r ≈ ω
a∞

xm
|xm|

· r, so that, p
(xm, ω)
x2+r

= p
(xm, ω)
x2

exp
(

−i ω
a∞

xm
|xm|

· r
)

, the use of the reciprocity

principle p
(xm, ω)
xs = p

(xs, ω)
xm

∗
then permits to conclude. The difference between the expression proposed here and

given in (Tam and Auriault, 1999) is likely to be a consequence of differences in the considered reciprocity relations, see
(Tam and Auriault, 1998, eq. (2)).
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where a∞ is the ambient speed of sound. Note that this expression differs from the one proposed in the

literature by the phase shift sign (Tam and Auriault, 1999),(Raizada and Morris, 2006, eq. 14). Replacing

this formula in the expression of Spp leads to,

Spp(xm, ω) =

ˆ

Ω

dx2

ˆ

Ω

dr β

∣∣∣∣p
†(x2, ω)

xm

∣∣∣∣
2

exp


−|r · u0|

u20τs
− ln(2)|r⊥|2

l2s
− αω2 + iωr ·

(
xm

a∞|xm|
− u0

u20

)


(2.34)

The integration over r can be performed using the split r = r⊥ + r// defined by the mean flow direction

u0, where r⊥ · u0 = 0 and r// × u0 = 0. Previous integral then rewrites as,

Spp(xm, ω) =

ˆ

Ω

dx2 β

∣∣∣∣p
†(x2, ω)

xm

∣∣∣∣
2

e−αω2

ˆ

R

dr// exp


−|r// · u0|

u20τs
+ iωr// ·

(
xm

a∞|xm|
− u0

u20

)


×
ˆ

R2

dr⊥ exp

(
− ln(2)|r⊥|2

l2s
+
iωr⊥ · xm

a∞|xm|

)

(2.35)

The integral over r// is evaluated using classical integral formula with α =
1

u0τs
and β = ± ω

u0

(
1− u0 · xm

a∞|xm|

)
,

ˆ

R

dr// exp

(
−|r// · u0|

u20τs
+
iω(r// · u0)

u20

(
u0 · xm

a∞|xm|
− 1

))
=

2u0τs

1 + ω2τ2s

(
1− u0 · xm

a∞|xm|

)2 (2.36)

Similarly, the one running over r⊥ is obtaining with formula (Gradshteyn and Ryzhik, 1963, eq. (3.323),

p.337 in 7th ed.) setting pi =

√
ln(2)

ls
and qi =

iωxi
a∞|xm|

leading to,

ˆ

R2

dr⊥ exp

(
− ln(2)|r⊥|2

l2s
+
iωr⊥ · xm

a∞|xm|

)
=

πl2s
ln(2)

exp

(
−ω2l2s|xm,⊥|2
4 ln(2)a2∞|xm|2

)
(2.37)

where xm,⊥ = xm − (xm · u0)u0/u
2
0. The double integral finally simplifies with Tam and Auriault’s

simplification into,

Spp(xm, ω) =

ˆ

Ω

dx2
2q̂2s l

3
s

c2τs

(
π

ln(2)

)3/2 ∣∣∣∣p
†(x2, ω)

xm

∣∣∣∣
2
exp


 −ω2l2s
4 ln(2)u20

(
1 +

u20|xm,⊥|2
a2∞|xm|2

)


1 + ω2τ2s

(
1− u0 · xm

a∞|xm|

)2
(2.38)

which is Tam and Auriault’s mixing noise formula (1999, eq. (35)). Note that above expression differs

from the original one by a factor of 2π, which is related to a different Green’s function definition, refer to

(1999, eq. (19)), from which a 4π2 factor appears; then because of differences in the Fourier transform

conventions, see (1999, eq. (25)), the present relation should be divided by 2π to comply with Tam and

Auriault’s relation. Note furthermore that the here presented expression is slightly enhanced compared

to the original one, since it can tackle three dimensional propagation problems. If an axisymmetric jet

flow is considered, the microphone polar angle θm, defined as in figure 2.2, is enough to characterise the
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observer position. Tam and Auriault’s mixing noise formula can then be recast in

Spp(θm, ω) =

ˆ

Ω

dx2
2q̂2s l

3
s

c2τs

(
π

ln(2)

)3/2 ∣∣∣∣p
†(x2, ω)

θm

∣∣∣∣
2
exp

(
−ω2l2s

4 ln(2)u20

(
1 +M2

∞ sin2 θm

))

1 + ω2τ2s (1−M∞ cos θm)
2

(2.39)

where M∞ = u0/a∞. Note that the sin2 θm term appears to be missing in Tam and Auriault’s model

(1999, eq. (35)), this observation complies with independent alternative derivations of the mixing noise

formula (Brouwer and Nijboer, 2005; Martelet et al., 2019, eq. (39)).

u0θm

Figure 2.2: When the microphone is in the acoustic far field, the polar angle θm is enough to characterise
the adjoint function of a round jet.

Taylor expansion

As suggested by Lielens (2019), if the adjoint Green function p†xm
is computed numerically in the whole

space, benefit can be taken from the knowledge of its spatial evolution and the Fraunhofer approximation

can be replaced by a Taylor expansion; this will be done in this paragraph. If r = x1 − x2 is small

p†
(r + x2, ω)
xm

can be approximated by the first order Taylor expansion,

p†
(r + x2, ω)

xm
≈ p†(x2, ω)

xm
+ r · ∂p

†(x2, ω)
xm

∂x2
(2.40)

Replacing this expression in the formula for Spp leads to,

Spp(xm, ω) =

ˆ

Ω

dx2

ˆ

Ω

dr β

∣∣∣∣p
†(x2, ω)

xm

∣∣∣∣
2

exp

(
−|r · u0|

u20τs
− ln(2)|r⊥|2

l2s
− iω r · u0

u20
− αω2

)

+

ˆ

Ω

dx2

ˆ

Ω

dr β p†
(x2, ω)

xm

∗


r · ∂p

†(x2, ω)
xm

∂x2


 exp

(
−|r · u0|

u20τs
− ln(2)|r⊥|2

l2s
− iω r · u0

u20
− αω2

)

(2.41)

Again, both integral can be computed analytically considering a decomposition for r parallel and perpen-

dicular to the mean flow direction, i.e. r = r⊥ + r//, so that according to this split for the first integral,
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ˆ

Ω

dx2 β

∣∣∣∣p
†(x2, ω)

xm

∣∣∣∣
2

e−αω2

ˆ

R2

dr⊥ exp

(
− ln(2)|r⊥|2

l2s

)
ˆ

R

dr// exp

(
−|r// · u0|

u20τs
− iω r// · u0

u20

)

=

ˆ

Ω

dx2 β

∣∣∣∣p
†(x2, ω)

xm

∣∣∣∣
2

e−αω2 πl2s
ln(2)

2u0τs
1 + ω2τ2s

(2.42)

and for the second integral,

ˆ

Ω

dx2 β p
†(x2, ω)

xm

∗

e−αω2 ∂p†
(x2, ω)
xm

∂x2
·



ˆ

R2

dr⊥ r⊥ exp

(
− ln(2)|r⊥|2

l2s

)
ˆ

R

dr// r// exp

(
−|r · u0|

u20τs
− iω r// · u0

u20

)


=

ˆ

Ω

dx2 β p
†(x2, ω)

xm

∗

e−αω2


u0

u0
· ∂p

†(x2, ω)
xm

∂x2


 πl2s

ln(2)

−4iωτ3su20
(1 + τ2s ω

2)2

(2.43)

leading to following final formula for the pressure autocorrelation Spp where the double integral is ap-

proximated with a Taylor expansion,

Spp(xm, ω) =

ˆ

Ω

dx2
2q̂2s l

3
s

c2τs

(
π

ln(2)

)3/2

p†
(x2, ω)

xm

∗
exp

(
− ω2l2s
4 ln(2)u20

)

1 + ω2τ2s


p†(x2, ω)

xm
− 2iωτ2s

1 + ω2τ2s


u0 ·

∂p†
(x2, ω)
xm

∂x2







(2.44)

Discussion on the approximations

Comparing this simplified formula with Tam and Auriault’s one is not straightforward. If a plane

wave propagation toward the observer xm direction is assumed, then p
(xm, ω)
x2 ∝ exp

(
ik · (xm − x2)

)
∝

exp (−ik · x2) with k = ω
a∞

(xm−x2)
|xm−x2|

≈ ω xm

a∞|xm| and following adjoint Green’s function p†
(x2, ω)
xm

= p
(xm, ω)
x2

∗
∝

exp (ik · x2) is obtained. It can be noted that for a plane wave propagation, Tam and Auriault’s approach

is exact, indeed exp(ik · (x2 + r)) = exp(ik · x2) exp(ik · r), while the Taylor expansion only gives a first

order estimate exp(ik · (x2 + r)) = exp(ik · x2)(1 + ik · r) + O(k · r). To verify the correctness of the

here presented formula, a Taylor expansion of Tam and Auriault’s expression should be considered. This

is however not feasible since the source autocorrelation distance r −the small parameter− do not appear

any more in the final formula. Nonetheless, some comparison can be achieved, if in the calculation steps a

plane wave propagation is assumed, so to permit following estimate ∂p†
(x2, ω)
xm

/∂x2 = ikp†
(x2, ω)
xm

. With

this additional simplification, the second integral can then be integrated anew, leading to,

ˆ

Ω

dx2

ˆ

Ω

dr β

∣∣∣∣p
†(x2, ω)

xm

∣∣∣∣
2

(ik · r) exp
(
−|r · u0|

u20τs
− ln(2)|r⊥|2

l2s
− iω r · u0

u20
− αω2

)

=

ˆ

Ω

dx2 β

∣∣∣∣p
†(x2, ω)

xm

∣∣∣∣
2

e−αω2

(
u0 · xm

a∞|xm|

)
πl2s
ln(2)

4ω2τ3s u0
(1 + ω2τ2s )

2

(2.45)
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Adding the unchanged first integral gives for this verification analysis,

Spp(xm, ω) =

ˆ

Ω

dx2
2q̂2s l

3
s

c2τs

(
π

ln(2)

)3/2 ∣∣∣∣p
†(x2, ω)

xm

∣∣∣∣
2
exp

(
−ω2l2s

4 ln(2)u20

)

1 + ω2τ2s

(
1 + 2

(
u0 · xm

a∞|xm|

)
ω2τ2s

1 + ω2τ2s

)

(2.46)

For frequencies of interest ωτs ≈ 1, then if u0·xm

a∞|xm| is small as for an observer angle close to 90o fom the

jet axis, above formula can be obtained from a Taylor expansion of following expression,

Spp(xm, ω) =

ˆ

Ω

dx2
2q̂2s l

3
s

c2τs

(
π

ln(2)

)3/2 ∣∣∣∣p
†(x2, ω)

xm

∣∣∣∣
2

exp

(
−ω2l2s

4 ln(2)u20

)

(1 + ω2τ2s )

(
1−

(
u0 · xm

a∞|xm|

)
ω2τ2s

1 + ω2τ2s

)2 (2.47)

which has common features with the original formula of Tam and Auriault. For far-field noise predictions,

preference should be given to a Fraunhofer approximation, while for near-field noise predictions, a Taylor

expansion seems more accurate. Future investigations will have to verify this guess.

2.2 Tam and Auriault’s formula applied to Pierce’s wave equation

Tam and Auriault’s formula (1999, eq. (35)) relies on the prior computation of adjoint Green’s function

p†xm
given by the above set of equations. This presents two limitations for the practical use of this theory;

firstly efficient solvers that can twofold compute these adjoint equations and handle complex geometries

are scarce, and secondly as for the direct problem, these equations do also present a physical unstable

mode. A reformulation of Tam and Auriault’s formula with a propagation operator based on Pierce’s

equation (1990, eq. (27)) is a way to overcome these hardships. The formulation proposed by Pierce for

the potential acoustic φ is indeed energy preserving and solvers, e.g. Actran TM from FFT, do exist that

solve this wave equation.

The acoustic analogy based on Pierce’s wave equation was introduced in § 2.5 of part I and writes,

D2(φ)

Dt2
−∇ · (a20∇φ) =

D(Sm)

Dt
− Sp and ∆Sm = ∇ · (ρ0Su) (2.48)

where (Su,Sp) is the general formulation of a source term for the linearised momentum and the linearised

energy equations. Because Pierce’s wave equation describes solely the propagation of acoustic fluctuations

φ defined as the potential part of the fluctuating momentum ρ0u, the source term for this equation needs

to be potential as well. This is the meaning of the introduction of the linearised momentum source

potential Sm. From the source model for mixing noise of Tam and Auriault’s, it directly follows,

Sm = −qs and Sp = 0 (2.49)

The pressure field p is rebuilt subsequently from the acoustic potential φ considering p = −D(φ)/Dt while

the fluctuating velocity field is rebuilt with ρ0u = ∇φ.
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2.2.1 Calculation of the pressure autocorrelation

The adjoint equation for Pierce’s wave equation is obtained with the canonical scalar product, associated

Green’s function is defined as,

D2(φ†
xm,tm)

Dt2
−∇ · (a20∇φ†xm,tm) = δ(x− xm)δ(t− tm) (2.50)

The application of Lagrange’s identity then directly gives,

φ(xm, tm) = < φ†
xm,tm ,−

D(qs)

Dt
> (2.51)

The pressure time autocorrelation is defined by,

Rpp(xm, τ) =

ˆ

R

dtm p(xm, tm)p(xm, tm + τ) =

ˆ

R

dtm
D(φ)

Dtm,xm

D(φ)

Dtm+τ,xm

(2.52)

where
D

Dti,xj

=
∂

∂ti
+u0 ·

∂

∂xj
is the material derivative with respect to the position xj and the reference

time ti. This cumbersome notation is used in the following whenever there may be a confusion in the

variables on which the material derivative applies and is omitted elsewhere. Recasting φ with Lagrange’s

identity,

Rpp(xm, τ) =

ˆ

R

dtm
D

Dtm,xm

[
ˆ

Ω

dx1

ˆ

R

dt1 − φ†
(x1, t1)
xm,tm

D(qs(x1, t1))

Dt1,x1

]

× D
Dtm+τ,xm

[
ˆ

Ω

dx2

ˆ

R

dt2 − φ†
(x2, t2)
xm,tm+τ

D(qs(x2, t2))

Dt2,x2

]

(2.53)

Because τ is constant with respect to tm, D/Dtm+τ,xm
= D/Dtm,xm

, moreover x1, x2, t1 and t2 are

independent of xm, tm so that previous material derivatives only applies on the φ† fields leading to,

Rpp(xm, τ) =

ˆ

R

dtm

ˆ

Ω

dx1

ˆ

Ω

dx2

ˆ

R

dt1

ˆ

R

dt2

D

(
φ†

(x1, t1)
xm,tm

)

Dtm,xm

D

(
φ†

(x2, t2)
xm,tm+τ

)

Dtm,xm

D(qs(x1, t1))

Dt1,x1

D(qs(x2, t2))

Dt2,x2

(2.54)

Recalling the equivalent notation for the Green functions, G(xm, tm)
xs,ts ≡ G

(xm, tm − ts)
xs , and applying to

t1 and t2 the change of variable t̃1 ≡ t1 − tm and t̃2 ≡ t2 − tm gives,

Rpp(xm, τ) =

ˆ

R

dtm

ˆ

Ω

dx1

ˆ

Ω

dx2

ˆ

R

dt̃1

ˆ

R

dt̃2

D

(
φ†

(x1, t̃1)
xm

)

Dtm,xm

D

(
φ†

(x2, t̃2 − τ )
xm

)

Dtm,xm

D(qs(x1, t̃1 + tm))

Dt̃1+tm,x1

D(qs(x2, t̃2 + tm))

Dt̃2+tm,x2

(2.55)

Due to the time-shift invariance of φ†
xm

, their material derivatives can be expressed as function of t̃1 and

t̃2,
∂

∂tm
φ†

(x1, t̃1)
xm

=
∂

∂tm
φ†

(x1, t1 − tm)

xm
= − ∂

∂(t1 − tm)
φ†

(x1, t1 − tm)

xm
= − ∂

∂t̃1
φ†

(x1, t̃1)
xm

(2.56)

and similarly,
∂

∂tm
φ†

(x2, t̃2 − τ )
xm

= − ∂

∂t̃2
φ†

(x2, t̃2 − τ )
xm

(2.57)
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Since t̃1 and t̃2 are independent of tm the pressure time autocorrelation Rpp rewrites as,

Rpp(xm, τ) =

ˆ

Ω

dx1

ˆ

Ω

dx2

ˆ

R

dt̃1

ˆ

R

dt̃2

D

(
φ†

(x1, t̃1)
xm

)

D−t̃1,xm

D

(
φ†

(x2, t̃2 − τ )
xm

)

D−t̃2,xm

×
ˆ

R

dtm
D(qs(x1, t̃1 + tm))

Dtm,x1

D(qs(x2, t̃2 + tm))

Dtm,x2

(2.58)

Eventually the change of variables t̃m ≡ tm + t̃2 and τ̃ ≡ t̃1 − t̃2 = t1 − t2 allows to retrieve the Q-term

space-time autocorrelation RQQ defined as,

RQQ(x1,x2, τ̃ ) ≡
ˆ

R

dt̃m
D(qs(x1, t̃m + τ̃ ))

Dtm,x1

D(qs(x2, t̃m))

Dtm,x2

(2.59)

The pressure time autocorrelation Rpp expressed with the acoustic potential φ writes thus as,

Rpp(xm, τ) =

ˆ

Ω

dx1

ˆ

Ω

dx2

ˆ

R

dt̃1

ˆ

R

dt̃2

D

(
φ†

(x1, t̃1)
xm

)

D−t̃1,xm

D

(
φ†

(x2, t̃2 − τ )
xm

)

D−t̃2,xm

RQQ(x1,x2, t̃1 − t̃2)
(2.60)

As previously, the Fourier transformed pressure autocorrelation Spp can be computed, and after decom-

posing in the Fourier space the material derivatives of φ†
xm

, i.e.

D

(
φ†

(x1, t̃1)
xm

)

D−t̃1,xm

=

ˆ

R

dω1

2π

(
iω1φ

†(x1, ω1)

xm
+ u0 · ∇φ†

(x1, ω1)

xm

)
e−iω1 t̃1

= −
ˆ

R

dω1

2π
D−u0,xm

(
φ†

(x1, ω1)

xm

)
e−iω1 t̃1

(2.61)

in a similar fashion,

D

(
φ†

(x2, t̃2 − τ )
xm

)

D−t̃2,xm

= −
ˆ

R

dω2

2π
D−u0,xm

(
φ†

(x2, ω2)

xm

)
e−iω2(t̃2−τ)

(2.62)

where Du0
is the material derivative along u0 written in the frequency domain, possible additional vari-

ables in index refer to position or frequency for which this material derivative applies. After calculation,

following formula is obtained,

Spp(xm, ω) =
1

2π

ˆ

Ω

dx1

ˆ

Ω

dx2

ˆ

R

dt̃1

ˆ

R

dt̃2

ˆ

R

dω1

ˆ

R

dω2 D−u0,xm

(
φ†

(x1, ω1)

xm

)
D−u0,xm

(
φ†

(x2, ω2)

xm

)

×e−iω1 t̃1−iω2 t̃2RQQ(x1,x2, t̃1 − t̃2)δ(ω + ω2)

(2.63)
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2.2.2 Modelling of the source autocorrelation term

The Q-term space-time autocorrelation is modelled accordingly with Tam and Auriault’s work (1999, eq.

(27)). Repeating previous derivations, with r = x1− x2 = r⊥ + r//, all integrals except the double space

integration are evaluated,

Spp(xm, ω) =

ˆ

Ω

dx2

ˆ

Ω

dr β D−u0,xm

(
φ†

(x2 + r, ω)

xm

)[
D−u0,xm

(
φ†

(x2, ω)

xm

)]∗

× exp

(
−|r · u0|

u20τs
− ln(2)|r⊥|2

l2s
− iω r · u0

u20
− αω2

)

(2.64)

where α =
l2s

4 ln(2)u20
and β =

q̂2s ls
c2τ2s u0

√
π

ln(2)
have already been introduced previously.

2.2.3 Approximated calculation of the double space integration

The computation of the above double space integral is conducted analytically again with a Fraunhofer

approximation and a Taylor expansion.

Fraunhofer approximation

The Fraunhofer approximation for the adjoint acoustic potential φ† writes,

φ†
(r + x2, ω)

xm
≈ φ†(x2, ω)

xm
exp

(
iω xm · r
a∞|xm|

)
(2.65)

The quantity appearing in the integrand expresses then as,

D−u0,xm

(
φ†

(x2 + r, ω)

xm

)
= D−u0,xm

(
φ†

(x2, ω)

xm

)
exp

(
iω xm · r
a∞|xm|

)
−φ†(x2, ω)

xm
u0·

∂

∂xm

(
exp

(
iω xm · r
a∞|xm|

))

(2.66)

Since
∂

∂xm

(
xm · r
|xm|

)
=
|xm|2r − (r · xm)xm

|xm|3
, the derivative along u0 expresses as,

u0 ·
∂

∂xm

(
exp

(
iω xm · r
a∞|xm|

))
= iω

|xm|2(u0 · r)− (r · xm)(u0 · xm)

a∞|xm|3
exp

(
iω xm · r
a∞|xm|

)
≈ O

( |r|
|xm|

)

(2.67)

where |r|/|xm| tends toward zero in the Fraunhofer approximation. Replacing this expression in the

formula for Spp gives,

Spp(xm, ω) =

ˆ

Ω

dx2

ˆ

Ω

dr β

∣∣∣∣∣D−u0,xm

(
φ†

(x2, ω)

xm

)∣∣∣∣∣

2

exp


−|r · u0|

u20τs
− ln(2)|r⊥|2

l2s
− αω2 + iωr ·

(
xm

a∞|xm|
− u0

u20

)


(2.68)
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The integrand is almost the same as the one evaluated previously, hence the expression for the pressure

autocorrelation Spp results straightly from former derivations,

Spp(xm, ω) =

ˆ

Ω

dx2
2q̂2s l

3
s

c2τs

(
π

ln(2)

)3/2
∣∣∣∣∣D−u0,xm

(
φ†

(x2, ω)

xm

)∣∣∣∣∣

2
exp


 −ω2l2s
4 ln(2)u20

(
1 +

u20|xm,⊥|2
a2∞|xm|2

)


1 + ω2τ2s

(
1− u0 · xm

a∞|xm|

)2

(2.69)

This relation is identical to the one proposed by Tam and Auriault (1999, eq. (35)), apart from original

adjoint Green’s function p†
(x2, ω)
xm

that is replaced by D−u0,xm

(
φ†

(x2, ω)
xm

)
.

Taylor expansion

For completeness, the pressure autocorrelation Spp double integral is approximated here using a Taylor

expansion. At first order in r = x1 − x2,

φ†
(r + x2, ω)

xm
≈ φ†(x2, ω)

xm
+ r · ∂φ

†(x2, ω)
xm

∂x2
(2.70)

Because r and x2 are independent of xm, the material derivative of previous relation gives,

D−u0,xm

(
φ†

(r + x2, ω)

xm

)
≈ D−u0,xm

(
φ†

(x2, ω)

xm

)
+ r ·

∂

(
D−u0,xm

(
φ†

(x2, ω)
xm

))

∂x2
(2.71)

Mimic former derivations leads to following approximation for the sound pressure autocorrelation Spp,

Spp(xm, ω) =

ˆ

Ω

dx2
2q̂2s l

3
s

c2τs

(
π

ln(2)

)3/2
exp

(
− ω2l2s
4 ln(2)u20

)

1 + ω2τ2s

[
D−u0,xm

(
φ†

(x2, ω)

xm

)]∗

×




D−u0,xm

(
φ†

(x2, ω)
xm

)
− 2iωτ2s

1 + ω2τ2s


u0 ·

∂

(
D−u0,xm

(
φ†

(x2, ω)
xm

))

∂x2







(2.72)

2.2.4 Computation of D−u0,xm

(
φ†(x2, ω)

xm

)

In previous expression the material derivative with reversed flow D−u0,xm
of φ†

xm
needs to be evaluated.

When the observer is set in a region were the fluid is at rest, the derivation is straightforward. In other

cases, the knowledge of the gradient of φ†
xm

is required along the exterior mean flow uext. However with

the adjoint approach, Green’s functions are solely known at the position xm. From a general point of

view, the calculation of an estimate of u0 · ∇φ†xm
is possible by additionally computing the adjoint Green
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function φ†
x̃m

, where x̃m = xm + ε
uext

|uext|
and ε > 0. An estimate for the material derivative follows,

D−u0,xm

(
φ†

(x2, ω)
xm

)
= −iωφ†(x2, ω)

xm
− u0 · ∇φ†(x2, ω)

xm

= −iωφ†(x2, ω)
xm

− |uext|


φ

†(x2, ω)

x̃m
− φ†(x2, ω)

xm

ε




ε→0

(2.73)

If the observer is set in the acoustic far-field this calculation can be done analytically even in presence

of an ambient flow. Indeed φ†
(x2, ω)

x̃m
then differs from φ†

(x2, ω)
xm

by only a phase shift ϕ, this is il-

lustrated in the sketch given in figure 2.3. The anti-causal adjoint field travels with a phase velocity

u0

uext

θm

ε

ε

˜l

θm

θmuext

anti-causal
adjoint field

Figure 2.3: Moving from ε the adjoint source in the acoustic far-field is equivalent to add a phase shift ϕ.

|vp| = a∞ + |uext| cos θm towards the observer set in the far-field. From the anti-causality property it

comes φ†
(x2, ω)

x̃m
/φ†

(x2, ω)
xm

= eiωϕ with ϕ > 0. And the previous expression is recast into,

D−u0,xm

(
φ†

(x2, ω)
xm

)
=


−iω − |uext|

[
eiωϕ − 1

ε

]

ε→0


φ†

(x2, ω)
xm

(2.74)

The computation of ϕ with help of figure 2.3 follows straightly, cos θm = ˜l/ε with ˜l = ϕ|vp|. A Taylor

expansion for small ε of the exponential function then readily gives,

D−u0,xm

(
φ†

(x2, ω)
xm

)
=

(
−iω − i ω|uext| cos θm

a∞ + |uext| cos θm

)
φ†

(x2, ω)
xm

(2.75)

Since the previous expression depends on the adjoint source location only by its polar angle θm, by defining

φ†
(x2, ω)
xm

→ φ†
(x2, ω)
θm , a far-field expression for Tam and Auriault’s mixing noise formula is obtained,

Spp(θm, ω) =

ˆ

Ω

dx2
2ω2q̂2s l

3
s

c2τs

(
π

ln(2)

)3/2 ∣∣∣∣φ
†(x2, ω)

θm

∣∣∣∣
2 (

1 +
Mext cos θm

1 +Mext cos θm

)2
exp

(
−ω2l2s

4 ln(2)u20

(
1 +M2

∞ sin2 θm

))

1 + ω2τ2s (1−M∞ cos θm)
2

(2.76)

where M∞ = u0/a∞ and Mext = |uext|/a∞. It is fairly straightforward to include in these derivations an

azimuthal dependency on the microphone position ψm as well.
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2.3 Ideas to proceed with Miller’s BBSAN model

Tam and Auriault’s mixing noise model can equivalently be recast for the acoustic potential φ as given by

Pierce’s equation (2.48). This is because the momentum source term of Tam and Auriault’s mixing noise

model, equation (2.7), is itself potential, see equation (2.49). Though a promising statistic noise modelling

strategy needs to be able to account for all kind of sound sources. In perspective for future improvements,

some indications are given here on how Miller’s Broadband Shock Associated Noise (BBSAN) model could

be recast for the acoustic potential.

Assuming the mean flow is parallel to mimic Tam and Auriault’s model, Miller’s BBSAN noise model

(Morris and Miller, 2010) could be recast into,





ρ0
D(u)

Dt
+∇p = ρ0f

v

D(p)

Dt
+ γp0(∇ · u) = 0

(2.77)

where fv = −(∇vt) · vs − (∇vs) · vc is the sound source responsible for the BBSAN, vt and vs are

the velocity perturbations associated with the turbulence and the shock cells respectively. Miller (2010)

modelled the noise source fv with help of the shock-cell characteristic pressure ps and a characteristic

turbulent velocity fluctuation vt such as fv ∝ psvt. For this acoustic analogy to be recast identically

with Pierce’s equation, ρ0psvt would need to derive from a potential, what seems to be a tall order. Two

approaches are proposed here to proceed with an implementation of Miller’s BSSAN model, such bypasses

may possibly be used to model also other stochastic sound sources.

1. Miller’s BBSAN model is based on an ad-hoc dimensional analysis. The driving parameters are then

modelled from a RANS solution. This procedure can be fairly easily adapted to alternative expressions

that derive from a potential source term, e.g. ρ0f
v ≈ −∇(ρ0vt · vs). This strategy requires a new

calibration of the constants and a direct comparison with the original model of Miller may not be possible

any more. Though this action plan seems the most robust of the both proposed here.

2. Previous effort to retrieve Tam and Auriault’s mixing noise theory with a potential acoustic formulation

simply turned out to be equivalent to replace p† with −Du0
(φ†) in the final formula. To this end, compare

the prediction formula obtained within the Fraunhofer approximation equations (2.38) and (2.69). Yet, if

p = −Du0
(φ), the equality between p† and −Du0

(φ†) is wrong in general, a counter-example is provided in

(Spieser and Bailly, 2018, §§5-6). It is believed that this coincidence is due to the self-adjoint property of

Pierce’s equation. As this will be discussed later in § (3.4.3), if self-adjoint operators are considered the flow

reversal theorem (FRT) applies. The adjoint equation then corresponds to the direct problem solution but

with the flow direction reversed, and the equalities p† = −Du0
(φ†) and ρ0u† = ∇φ† are operable. Miller’s

BBSAN model can then be reused as is, but for adjoint Green’s function correspondingly approximated

with φ†, i.e. the adjoint variable to the acoustic potential. More generally, whatever L0 and L†0 may be,

by defining,

L0


 u

p


 =


 ρ0f

v

0


 and L†0


 u

†
xm,tm

p†xm,tm


 =


 0

δxm,tm


 (2.78)
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as long L†0 is computed from L0 with the canonical scalar product, then Lagrange’s identity applies,

p(xm, tm) = < ρ0f
v,u†

xm,tm > (2.79)

Then by setting S†
p† = δxm,tm and solving Pierce’s adjoint equation, see equation (2.50), the adjoint

variable to the velocity field can be approximated with u
†
xm,tm ≈ ∇φ†/ρ0. This strategy needs still to be

validated but seems more elegant and general than the previous one.

2.4 Calculus formulae

For Re(α) > 0,
ˆ

R

dx exp
(
−αx2

)
=

√
π

α
(2.80)

ˆ

R

dx x exp
(
−αx2

)
= 0 (2.81)

For Re(α) + Im(β) > 0,

ˆ

R

dx exp
(
−α|x|+ iβx

)
=

1

α− iβ +
1

α+ iβ
=

2α

α2 + β2
(2.82)

ˆ

R

dx x exp
(
−α|x|+ iβx

)
=

1

(α− iβ)2 −
1

(α+ iβ)2
=

4iαβ

(α2 + β2)2
(2.83)

Integral computation found in (Gradshteyn and Ryzhik, 1963, eq. (3.323), p.337 in 7th ed.) for Re(p2) >

0,
ˆ

R

dx exp
(
−p2x2 ± qx

)
=

√
π

p
exp

(
q2

4p2

)
(2.84)
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3 Reciprocity principle for self-adjoint wave

equations

Summary: The most general statement for reciprocity principle is based upon adjoint formalism. In this

chapter, a comprehensive description of the adjoint approach is proposed and the benefit of using self-

adjoint wave equations to solve acoustic propagation problem is highlighted. Tam and Auriault (1998)

presented how an adjoint approach can be built to predict the noise of distributed stochastic sources in a

complex environment (Tam and Auriault, 1999). A clear statement is also provided about the application

of the flow reversal theorem (FRT), and about its restriction to self-adjoint wave equations. As an

illustration, sound propagation is computed numerically over a sheared and stratified mean flow for Lilley’s

and Pierce’s wave equations. Acoustic solutions obtained with the adjoint approach are then compared

to predictions obtained with the FRT. The reader not familiar with the adjoint method is referred to §

B.1 for a very simple illustrative execution of the technique.

3.1 Introduction

In the early beginning of acoustics, Helmholtz (1860) already formulated the well known reciprocity

principle: a disturbance produced at a source location A and recorded at a receiver point B, is identical

to what would have been recorded at the source location A if the same disturbance occurred in B. This

principle, generalised to dissipative systems by Lord Rayleigh (Strutt, 1877, §§ 72-78, 107-111), indicates

that sound propagation is not a matter of the features of the sound emitter or receiver, but only depends

on the property of the considered medium. Despite this early discovery, the reciprocity principle has not

been widely used by the acoustics community. Eversman (1976) and Cho (1980) for ducted systems, and

Bojarski (1983) for the free-field problem, derived general reciprocity relations for acoustic media at rest.

An outstanding work was done by Levine and Schwinger (1948) who first used the reciprocity principle

to determine the directivity pattern of a complex sound propagation problem. In their investigation

of the far-field radiation from an unflanged duct, the authors exchanged observer and source positions,

and turned the complex radiation problem into the equivalent problem of a plane wave coming from

infinity and impinging at the duct end. In the same spirit, later the reciprocity principle has also been

employed by Crighton and Leppington (1970, 1971, 1973) to analytically derive the far-field radiation of

an acoustic source in the vicinity of a refracting body. These contributions permitting the continuation

of a near-field acoustic solution to the far-field are important, because they have since motivated most of

the investigations involving the reciprocity principle in aeroacoustics.
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The failure of the standard reciprocity principle in arbitrary media was also quickly identified. Rayleigh

(Strutt, 1877, § 111) already stated that: “It is important to remember that the Principle of Reciprocity

is limited to systems which vibrate about a configuration of equilibrium, and is therefore not to be applied

without reservation to such a problem as that presented by the transmission of sonorous waves through

the atmosphere when disturbed by wind.”. Several contributions thus aimed at properly delimiting its

domain of validity. Landau and Lifshitz (1959) proved the reciprocity principle for a variable index of

refraction. Lyamshev (1961) generalised the reciprocity principle in the presence of a uniform mean flow

with the so-called flow reversal theorem (FRT), illustrated in figure 3.1. A similar formulation was used

by Dowling et al. (1978) and by Dowling (1983) for piecewise uniform flows. Howe (1975b) proved the

reciprocity principle for potential mean flows to first order in Mach number. Möhring then extended the

FRT to all potential mean flows (Möhring, 1978, 1979) and gave indications on reciprocity for rotational

flow (Möhring, 2001). Godin et al. attempted to generalise the FRT to arbitrary mean flows (Godin,

1997), and proved a general version of Fermat’s principle for ray acoustics (Godin and Voronovich, 2004).

One of the objectives of this study is to carry out computations of reciprocal solutions involving the FRT

in order to assess the validity of this technique for propagation problems in complex mean flows.

◦ xA

◦ xB

u0

◦ xA

◦ xB

−u0

Figure 3.1: Green’s function for the acoustic pressure field GxA
generated by a harmonic source in a

uniform mean flow with an observer set at xB (left); G−
xB

for the reversed flow is depicted where source
and receiver locations have been switched (right). The FRT states that GxA

(xB) = G−
xB

(xA).

A proper mathematical generalisation of the reciprocity principle, however, requires the introduction of

the adjoint formalism (Morse and Feshbach, 1953, § 7.5; Lamb Jr., 1995, § 4.6.1; Stone and Goldbart,

2009, § 4.2.1). Although the use of the adjoint formalism is long-standing in the flow receptivity commu-

nity (Roberts, 1960; Hill, 1995; Luchini and Bottaro, 1998; Barone and Lele, 2005) and became a staple

in optimisation and control (Jameson, 1988; Giles and Pierce, 1997; Wei and Freund, 2006), its use in

aeroacoustic computations is fairly recent. The first correct generalisation of the reciprocity principle to

tackle acoustic propagation in arbitrary mean flows was formulated by Tam and Auriault (1998) for the

linearised Euler equations (LEE) and for Lilley’s equation (Lilley et al., 1972). Another aim of this study

is to recall the adjoint methodology in a synoptic and broader way.

Besides the general derivation of the methodology, Tam and Auriault (1998) mainly focuses on the formu-

lation of the adjoint as the sum of a quasi-analytical solution of a propagation problem on an axisymmet-

ric parallel mean flow for the adjoint Lilley equation, and an additional contribution induced by the jet

spreading is solved numerically using a Fourier mode decomposition. This remarkable analytical solution

has since been widely reused in the literature to assess jet noise polar directivity (Tam and Auriault,

1999; Tam et al., 2005; Khavaran and Bridges, 2005; Afsar et al., 2006; Raizada and Morris, 2006; Miller,

2014b; Gryazev et al., 2018), and has been simplified by Afsar (2009). This handy analytical model has

been improved by Goldstein and Leib (2008) in the low-frequency range to include jet spreading and then
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used repeatedly (Afsar, 2010; Goldstein et al., 2012; Afsar et al., 2016b,a). Afsar et al. (2017b) improved

the formulation further with a composite solution for Green’s function uniformly valid for all frequencies.

In the same line, Cheung et al. (2015) developed a method to solve semi-analytically Lilley’s equation for

non-axisymmetric parallel flows to address azimuthal directivity, yet without falling back to an adjoint

formalism.

In numerous relevant configurations, the mean flow topology in which acoustics propagates is complex, e.g.

consider the dissymmetric dual stream hot jet flow behind an aircraft engine as computed by Mosson et al.

(2014), and computational aeroacoustics tools are needed to address correctly the propagation problem.

In the present work a purely numerical method is therefore presented to solve adjoint-based propagation

problems. The aeroacoustics community has already computed numerically adjoint Green’s function

for arbitrary mean flows: Tam and Pastouchenko (2002), Pastouchenko and Tam (2007), and recently

Xu et al. (2015), used the method to assess the azimuthal directivity of non-axisymmetric jets. Tam et al.

(2010) also achieved with this method continuation of a near-field acoustic solution to the far-field in the

presence of flow heterogeneities. In parallel to these studies, the group of Karabasov et al. implemented

the adjoint linearised Euler equations first two-dimensionally (Karabasov and Hynes, 2005) then three-

dimensionally (Semiletov and Karabasov, 2013) and tackled numerically the acoustic far-field radiation

for an arbitrary jet profile (Karabasov et al., 2013; Depuru Mohan et al., 2015). Nevertheless, except

some scarce contributions (Alonso and Burdisso, 2007), in all the studies mentioned above, the adjoint

solution is always sought as the solution to a scattering problem, with furthermore the adjoint source

set in the far-field. In the present study, the adjoint method is recalled in a systematic and general way

valid for any linear operator, any propagation media and propagation distance. Even if some adjoint

computations including surfaces have been conducted (Pastouchenko and Tam, 2007; Tam et al., 2010;

Xu et al., 2015), including liners in (Alonso and Burdisso, 2007), as pointed out by Miller (Miller, 2014a)

the currently used formulation of the adjoint method cannot account for diffraction at surface edges. This

is because the adjoint field is already sought as the solution to a scattering problem to account for flow

refraction effects. Analogously with Barone and Lele (2005), the adjoint method as presented here has

the capability to tackle adequately diffraction phenomena.

The general derivation of the adjoint methodology, its validation for a non-trivial case, and its compar-

ison against the FRT are the main purposes of this chapter. To achieve these objectives, two different

waves equations − Pierce’s wave equation (Pierce, 1990) which is self-adjoint, and Lilley’s wave equation

(Lilley et al., 1972) − are considered. The script is organised here as follows: the theoretical background

of the adjoint formalism is laid out in §3.2, the adjoint method is then executed for a well-documented

sheared and stratified mean flow case for Lilley’s equation and compared with results obtained with the

FRT in §3.3. In §3.4 both methodology are compared for Pierce’s wave equation to illustrate numerically

the equivalence between the adjoint approach and the FRT for a self-adjoint wave equation. Concluding

remarks are finally drawn.

3.2 The adjoint method in the propagation problem

3.2.1 Lagrange’s identity

In the framework of the adjoint method, the physical relevant problem is often qualified as direct in

opposition to what is defined as the adjoint problem. Consider a pressure field p and a source term s,
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3.2 The adjoint method in the propagation problem

a linear acoustic propagation problem may be described by a linear operator L0 so that the physical

problem of interest − the direct problem − may be written over a domain Ω as




L0 p = s in Ω

B0 p = 0 on ∂Ω
(3.1)

with B0 the boundary conditions that are necessary for the problem to be well-posed. A cornerstone for

the adjoint method is Lagrange’s identity (Morse and Feshbach, 1953, § 7.5; Stone and Goldbart, 2009, §

4.2.1) which relates the direct and adjoint fields with help of a scalar product and reads: given a scalar

product <,>, there exists a unique operator L†0 and specific boundary conditions B†
0 (Giles and Pierce,

1997) such that for any field p†:

< p†,L0 p > = < L†0 p†, p > (3.2)

where p† is referred to as the adjoint field. Introducing the adjoint source s†, such that s† = L†0 p†, the

adjoint problem associated with (3.1) with respect to <,> may be written as




L†0 p† = s† in Ω

B†
0 p

† = 0 on ∂Ω
(3.3)

Lagrange’s identity can then be recast in the following convenient form:

< p†, s > = < s†, p > (3.4)

From this relation it is clear that there is no strict equality between the direct field p and the adjoint

field p†. Only the source and field projections are cross-related as defined in (3.4). Adjoint fields p† and

sources s† are only mathematical tools with consistent units. Let Xm be the coordinate of a microphone

point, then adjoint Green’s function G†
Xm

for an impulse Dirac source δXm
is defined by




L†0 G†

Xm
= δXm

in Ω

B†
0 G

†
Xm

= 0 on ∂Ω
(3.5)

Lagrange’s relation then directly gives the formula used in practice to rebuild the direct solution from the

adjoint one:

p(Xm) = < G†
Xm

, s > (3.6)

These statements are general and apply in the time domain, where Xm ≡ (xm; tm) and δXm
≡ δ(x −

xm)δ(t− tm), as well as in the Fourier domain for which Xm ≡ xm and δXm
≡ δ(x−xm). In the rest of

this study for the sake of simplicity only scalar wave equations are considered, but it is straightforward to

transpose these results to multivariable linear operators (Wapenaar, 1996) by making use of a multivariable

Hermitian scalar product, resulting in turn in the computation of vector adjoint Green’s functions.

In the literature, the relation (3.6) is sometimes referred to as the representation theorem (Vasconcelos et al.,

2009). In their pioneering work, Tam and Auriault (1998, eq. (A 12)), derived a first version of this re-

lation enabling fluctuating pressure predictions for sources of the momentum equations. An extension to

sources set in the energy equation has been given by Afsar et al. (2006, 2007). The expression given here

is its general expression and handles any linear operator L0 and any scalar product, any source term s

can be used to rebuild any field variable p from the considered linear operator L0 if corresponding adjoint
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Green’s function G†
Xm

is computed.

One convenient feature of the adjoint method, is to change the convolution nature of Green’s integral

representation of the solution into a correlation type representation (Vasconcelos et al., 2009). As an

illustration, consider a time domain problem, with < f, g > =
´

R
dt
´

Ω
dx f(x, t)g(x, t), then Green’s

formula reads

p(xm, tm) =

ˆ

R

dts

ˆ

Ω

dxs Gxs,ts(xm, tm)s(xs, ts)= < G†
xm,tm , s > (3.7)

where for the sake of clarity boundary conditions have been omitted. If now a shift-invariant problem

is considered, i.e. Gxs,ts(xm, tm) ≡ G(xm − xs, tm − ts), the previous expression can be expressed as a

double convolution product over the source position xs and emission time ts. In contrast, the operational

expression of Lagrange’s identity given in (3.6) writes

p(xm, tm) =

ˆ

R

dts

ˆ

Ω

dxs G
†
xm,tm(xs, ts)s(xs, ts) = < G†

xm,tm , s > (3.8)

Relying on conventional Green’s integral method, Gxs,ts should be recomputed for each xs, whereas if

the solution p of the propagation problem is sought at one single point xm, the adjoint method requires

only a single calculation of G†
xm,tm at xm. This approach shows to be very efficient from a computational

point of view, for acoustic prediction to a finite number of points of widespread stochastic sources; this is

precisely the appeal of this technique. What is more, as long as the mean flow of the propagation problem

and the observer are unchanged, adjoint Green’s function G†
xm,tm can be reused.

At last, recall that the adjoint representation is not unique (Roberts, 1960), different scalar products lead

indeed to different adjoint formulations. Attention must therefore be paid when comparing, for instance,

the adjoint pressure p† computed from the set of adjoint LEE with the adjoint pressure p† computed

with adjoint Lilley’s equation (Tam and Auriault, 1998, fig. 9), in general those both variables have no

common points.

3.2.2 Reciprocity relation and the notion of self-adjointness

Adjoint Green’s function G†
xm,tm for a source position xm at time tm, is defined by




L†0 G†

xm,tm(x, t) = δ(x− xm)δ(t− tm) in Ω

B†
0 G

†
xm,tm(x, t) = 0 on ∂Ω

(3.9)

when instead of the physical problem defined in (3.1), an impulsive problem at position xs and time ts is

considered: 


L0 Gxs,ts(x, t) = δ(x− xs)δ(t− ts) in Ω

B0 Gxs,ts(x, t) = 0 on ∂Ω
(3.10)

The general scalar reciprocity principle is recovered with help of Lagrange’s identity (3.4) and the above-

introduced scalar product < , >:

Gxs,ts(xm, tm) = G†
xm,tm(xs, ts) (3.11)

As the direct problem is causal, its adjoint is then necessary anti-causal, e.g. (Goldstein, 2006, eq. (A8)),

tm < ts, Gxs,ts(xm, tm) = 0 =⇒ ts > tm, G†
xm,tm(xs, ts) = 0 (3.12)

106



3.3 Application to Lilley’s equation

This complies with the analysis of Karabasov et al. (Semiletov and Karabasov, 2013;Karabasov and Sandberg,

2015) and Afsar et al. (2017b) who stressed that, the adjoint source acts as a sink and that the adjoint

acoustic solution is inward-going, but goes beyond. The adjoint solution needs furthermore to go back-

ward in time and is intrinsically anti-causal (Lamb Jr., 1995, §§ 4.5, 4.6;Stone and Goldbart, 2009, § 4.2).

This has been pointed out in the flow receptivity community by Luchini and Bottaro (1998) and since

then is well-established (Wei and Freund, 2006; Barone and Lele, 2005). A proof for this can be found in

the literature for the heat equation (Stone and Goldbart, 2009, § 6.4.2) and is given in appendix B.2 for

the convected Helmholtz’s wave equation.

As a consequence, only some very specific problems may verify (3.1) ≡ (3.3). Such problems are referred to

as self-adjoint (or symmetric) for which the well known symmetry property of Green’s function is recovered.

Strictly speaking, due to the boundary conditions, no self-adjoint problem exists for time-dependant

problems. The solution would indeed need to be causal and anti-causal at the same time. In this work, the

mathematical self-adjoint definition is gently relaxed so to also call self-adjoint, time problems for which

Green’s function, for the usual scalar product, verifies G†
xm,tm(xs, ts) = Gxs,−ts(xm,−tm). From this

standpoint, the acoustic problem governed by Helmholtz’s equation is self-adjoint, see Morse and Feshbach

(1953, § 7.3) or Eisler (1969). Skew-symmetric problems are also included in this enlarged definition of

self-adjointness. This seems reasonable, since for some well-chosen scalar products, the LEE for a uniform

and steady mean flow are skew-symmetric while Helmholtz’s equation, which is physically equivalent in its

description, is symmetric. This result, moreover complies with the work of Möhring (2001), in which the

classical reciprocity principle is derived from antisymmetric relations. Thus for an acoustic propagation

problem with ordinary boundary conditions to verify this enlarged definition of self-adjointness, it is

sufficient that L†0 = ±L0.

3.3 Application to Lilley’s equation

3.3.1 Derivation of Lilley’s adjoint problem

Acoustic propagation in a steady parallel mean flow is considered. In spite of their apparent limitations,

these mean flows are of practical importance since they correspond to configurations encountered in jets

and many subtle phenomena can be described with them. The equation derived by Lilley et al. (1972) is

known to take exactly the acoustic propagation effects over such parallel mean flows into account. This

section shows how an adjoint method based upon this wave equation can be used.

From now on, and in later sections, all results will be derived in the frequency domain for a pulsation

frequency ω, which is related to the time domain through Fourier transform,

F (x, ω) =

ˆ ∞

−∞

f(x, t)e+iωtdt and f(x, t) =
1

2π

ˆ ∞

−∞

F (x, ω)e−iωtdω (3.13)

Following this convention, the material derivative along the mean flow writes as Du0
= {−iω + u0 · ∇}.

Consistently, the canonical scalar product for complex valued functions, defined for f and g by

< f, g > =

ˆ

Ω

dx f(x)∗g(x) (3.14)

is considered, where f∗ denotes the complex conjugate of f . Let u0 = u0,1e1 be the mean velocity field

with e1 a unit vector in the flow direction, ρ0 the mean density and p0 the mean pressure considered.

The evolution of the fluctuating pressure p is governed by Lilley’s equation and obeys some radiating
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boundary condition B0, leading to the direct problem




L0 p = Du0

(
D2

u0
(p)−∇ · (a20∇p)

)
+ 2a20∇u0,1 · ∇

(
∂p

∂x1

)
= SLilley in Ω

B0 p = 0 on ∂Ω
(3.15)

where a0 =
√
γp0/ρ0 is the mean speed of sound. The source term SLilley of Lilley’s equation can be

expressed with some generic source term definition (Sρ,Su, Sp) of the LEE, and can be found in the

literature, e.g. in Bailly et al. (2010, eq. (26)),

SLilley = Du0

(
Du0

(Sp)− γp0 (∇ · Su)
)
+ 2γp0∇u0,1 ·

(
∂Su

∂x1

)
(3.16)

To define the corresponding adjoint problem, the linear operator L†0 and adjoint boundary conditions B†
0

which fulfil Lagrange’s identity are now sought. Starting with the left-hand side of Lagrange’s identity

(3.2),

< p†,L0 p > =

ˆ

Ω

dx p†
∗

{
Du0

(
D2

u0
(p)−∇ · (a20∇p)

)
+ 2a20∇u0,1 · ∇

(
∂p

∂x1

)}
(3.17)

the right-hand side of the equality is obtained after using integration by parts and other vector calculus

formulas, leading to

< p†,L0 p > =

ˆ

Ω

dx

{
−Du0

(
D2

u0
(p†)−∇ · (a20∇p†)

)

+4a20∇u0,1 · ∇
(
∂p†

∂x1

)
+ 3∇ ·

(
a20∇u0,1

) ∂p†
∂x1

}∗

p

+∇ ·
[(
D2

u0
(p†)

∗
p−Du0

(p†)
∗
Du0

(p)
)
u0

]

+∇ ·
[
p†

∗
(
D2

u0
(p)−∇ · (a20∇p)

)
u0

]

+∇ ·
[(
−2a20

∂p†

∂x1

∗

∇u0,1 − a20∇(Du0
(p†))

∗
)
p

]

+∇ ·
[
−2a20p†

∗
(∇p · ∇u0,1)x1 + a20Du0(p

†)
∗∇p

]

(3.18)

The Green-Ostrogradsky theorem helps to express the divergence term as a contour integral. B†
0 is

defined so that together with B0 this boundary term is zero. Thus, if p and p†, respectively, satisfy

their boundary conditions, the previous contour integral does not contribute and Lagrange’s identity,

< p†,L0 p > = < L†0 p†, p > is retrieved. Finally by identification, the adjoint problem associated with

Lilley’s equation is obtained as





L†0 p† = −Du0

(
D2

u0
(p†)−∇ · (a20∇p†)

)
+ 4a20∇u0,1 · ∇

(
∂p†

∂x1

)

+3a20∆u0,1
∂p†

∂x1
+ 3

∂p†

∂x1
∇a20 · ∇u0,1

in Ω

B†
0 p

† = 0 on ∂Ω

(3.19)

One has L†0 6= ±L0 and Lilley’s equation is therefore not self-adjoint.

In the following, a numerical execution of the adjoint method is conducted for a sheared and stratified mean
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3.3 Application to Lilley’s equation

flow, for which Lilley’s equation and its adjoint are solved. Computations are achieved with PROPA, an in-

house frequency domain code using a direct inversion method1. Care must be taken in the implementation

of the adjoint anti-causality conditions. A description of the numerical procedure is provided in §3.1 of

part I.

3.3.2 Solution to the direct problem

The direct problem under consideration here is the two-dimensional radiation of an acoustic source set in

a sheared and stratified flow and corresponds to the well-documented mean flow analysed in the fourth

computational aeroacoustic workshop (Dahl, 2004). The mean velocity profile follows a Gaussian evolution

in the transverse direction
u0,1(x2)

uj
= exp

(
− x22
2σ2

)
(3.20)

where x = (x1, x2), uj = Mjaj , aj =
√
γRTj and σ =

√
0.845 · log(2)m is its standard deviation.

To model a high-speed and heated jet flow, the following values are taken: Mj = 0.756, Tj = 600K,

T∞ = 300K, γ = 1.4 and R = 287m2·s−2·K−1. Considering ρj = γp0/a
2
j and p0 = 103330Pa, the mean

density ρ0(x2) is defined with Crocco-Busemann’s law

ρj
ρ0(x2)

=
T∞
Tj
−
(
T∞
Tj
− 1

)
u0,1(x2)

uj
+
γ − 1

2
M2

j

u0,1(x2)

uj

(
1− u0,1(x2)

uj

)
(3.21)

The stability analysis of this mean flow profile has been performed and the spatial growth rate of the

Kelvin-Helmholtz instability wave is given in Bailly and Bogey (2003, fig. 1). To avoid the triggering

of these hydrodynamic waves, a source pulsation of ω = 200π rad·s−1 is chosen, which ensures possible

vortical disturbances are damped and do not corrupt the acoustic solution. This frequency corresponds

to a Strouhal number of St2σ = 2σf/uj = 0.60 and to ωb/uj = 2.20 according to the notation given

in Bailly and Bogey (2003). The source for Lilley’s equation chosen here corresponds to a quadrupole

source ρ0Su of unitary amplitude, computed as the gradient of a Gaussian monopolar source Sm whose

spatial variation is given by Sm = σs
√
e e−(x2

1+x2
2)/(2σ

2
s), where σs = σ/4. This sound source for the direct

problem ρ0Su = ∇Sm is taken into account in Lilley’s equation with the relation (3.16), and is depicted

in figure 3.2. The channelling of acoustic waves propagating in the opposite direction to the mean flow

inside the jet, and the generation of a cone of silence downstream, can be easily identified in the computed

fields; however, the quadrupole nature of the acoustic source is not.

3.3.3 Reconstruction of the solution with the adjoint method

The adjoint method is now used to recover the direct field solution. For this analysis a sample of 69

equispaced adjoint sources along a line x2/σ = 9.0 is considered. For each of these adjoint sources the

anti-causal adjoint Lilley’s problem (3.19) is solved. The same base flow, the same mesh and the same

frequency as for the direct problem are considered. Figure 3.3 shows two samples of adjoint Green’s

problem solved among a total set of 69. Wherever the mean velocity gradient is zero, the adjoint Lilley

equation behaves like a classical acoustic propagation operator. This can be observed in figure 3.3 and

inferred from the self-adjoint property of Lilley’s equation for a constant flow profile (compare (3.15) and

(3.19)). Yet wherever the mean flow is sheared, the propagation problem ceases to be self-adjoint and

1Comment of a jury member: since the inverse system matrix is not directly computed, the system is solved with a
factorisation rather than with a direct inversion technique.
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Chapter 3 : Reciprocity principle for self-adjoint wave equations

Figure 3.2: Direct problem for Lilley’s wave equation. Linearised Euler equations equivalent quadrupole
source ρ0Su forcing the direct problem ρ0Su1 (top-left), and ρ0Su2 (top-right). Mach number M0 and
density ρ0 profiles of the parallel mean flow considered (bottom-left), and the real part of the pressure
field is shown (bottom-right). Dashed lines represent the position of maximal shearing (x2/σ = 1).

specific features of the adjoint formulation (3.19) are expected. The wave patterns warped in the flow

channel for numerical adjoint Green’s function computed at xm/σ = (25, 9.0) and shown in figure 3.3 is

such a phenomenon. Recall that the fields presented in figure 3.3 are anti-causal and focus toward the

adjoint source term.

To properly define adjoint Green’s function G†
xm

, the impulse response of the linear operator L†0 should

be considered, that is L†0 G†
xm

= δxm
. For most numerical solvers, computing the solution to an exact

Dirac delta function δxm
is tricky. A bypass to this is considered here; narrow Gaussian sources are

chosen to force the linear operator L†0 given in (3.19). Then when the size L of the numerical adjoint

source S†,N
xm

is small with respect to the acoustic wavelength λ, mathematical Green’s function G†
xm

can

be approximated with the following normalisation of numerical Green’s function G†,N
xm

:

G†
xm

(x) ≈ G†,N
xm

(x)

/
ˆ

Ω

S†,N
xm

∗
(y)dy (3.22)

where S†,N
xm

is the numerical source term of the adjoint problem, chosen presently to be a sharp Gaussian

around xm. For a Gaussian source, its size L is measured by its standard deviation σs, for the present

analysis, λ/σs ≈ 23. Following this procedure, for each adjoint solution adjoint Green’s function G†
xm

is defined. Lagrange’s identity (3.2) then readily gives at each sample position xm the physical pressure

field p(xm):

p(xm) = < G†
xm
, SLilley >=

ˆ

Ω

G†∗

xm
(x) SLilley(x)dx (3.23)
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Figure 3.3: Numerical adjoint Green’s problems associated with Lilley’s equation at xm = (x1, x2) for the
axial positions x1/σ = 0.0, x1/σ = 25 and x2/σ = 9.0. Adjoint Gaussian source terms S†,N

xm
considered

to mimic an impulse forcing (left); the associated adjoint fields p† regarded as numerical adjoint Green’s
functions G†,N

xm
(right).

Results obtained for the investigated sampled line are compared in figure 3.4 against the direct problem

Figure 3.4: Validation of the adjoint method along the line x2/σ = 9.0 for Lilley’s equation. Reference
data for the pressure p (real part: , imaginary part: ) is taken from the direct field computation
presented in figure 3.2. Rebuilt pressure field p (real part: ◦, imaginary part: +) is obtained with
Lagrange’s identity.

solution seen as a reference. Figure 3.4 shows an almost perfect reconstruction of the reference field with

the adjoint method, demonstrating thus the viability of the approach, and gives an a posteriori validation

of the utilised numerical trick to compute an anti-causal solution (refer to appendix B.2). In practice,

the only limitation of the method is the ability to properly compute numerical adjoint Green’s function.
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The bypass procedure, given in (3.22), requiring that the adjoint source is compact (λ/L >> 1) proves to

work correctly as well.

3.3.4 Reconstruction of the solution with the flow reversal theorem (FRT)

The FRT introduced by Lyamshev (1961) and Howe (1975b), and formulated in a more general statement

by Godin (1997), exploits alternatively the reciprocity principle to rebuild the physical field. The FRT is

used here and applied to Lilley’s wave equation to enable comparison with the adjoint method.

In the framework of the FRT, the reciprocal problem is obtained from the direct one (3.1) by turning the

velocity dependences in u0 in the linear operators L0 and B0 into −u0. The corresponding operators will

be referred to as L−0 and B−
0 , the reciprocal field p− is then governed by the FRT equations




L−0 p− = s− in Ω

B−
0 p− = 0 on ∂Ω

(3.24)

where s− is the source for the FRT problem considered. In practice, it is sufficient to invert the mean flow

u0 direction in the direct problem solver to compute p−. This has been achieved for Lilley’s wave equation

for which simulations are conducted for the same sampling of sources as for the adjoint problem presented

in the previous paragraph, that is by taking s− ≡ s†. The same mean density ρ0, pulsation frequency ω

and mesh as for the direct problem are considered. Again, Green’s solutions to L−0 are considered and

(3.16) is therefore discarded. Some realisations for the reciprocal field p− for different sample locations

are shown in figure 3.5.

A normalisation procedure similar to (3.22) is used to compute from the numerical FRT field G−,N
xm

FRT

reciprocal Green’s function G−
xm

. In a similar fashion to (3.2), the pressure field p solution of the direct

problem is rebuilt with

p(xm) = < G−
xm
, SLilley >R (3.25)

where the scalar product for real-valued functions <,>R should be used, according to (Lyamshev, 1961,

eq. (14)), defined for the functions f and g by

< f, g >R =

ˆ

Ω

dx f(x)g(x) (3.26)

The explanation why a non-Hermitian scalar product in the application of the FRT is needed, is discussed

later in § 3.4.3. The pressure field p obtained along the sampled line with the FRT is compared in figure

3.6 against the direct problem solution taken as reference.

In this example, the FRT recovers very poorly the direct problem solution both qualitatively as quantita-

tively. In this configuration a relative error greater than 300% is observed at some observer locations, this

error grows when the considered pulsation frequency ω decreases. A comparative look at the reciprocal

fields obtained with the FRT, in figure 3.5, and with the adjoint method, in figure 3.3, reveals striking

differences in both computed reciprocal fields. Subtle phenomena seem indeed to occur in the region of

flow gradients in the adjoint approach which are not described by the FRT methodology; note that this

region coincides with the region for which L0 is not self-adjoint. Furthermore this region of flow gradient

is precisely where the source SLilley for the direct problem is located and, according to (3.23) and (3.25),

it is the part of the reciprocal fields that contributes to the value of the rebuilt pressure p at the sample

locations xm. This paragraph highlights hence, that the rigorous computation of an acoustic field over a

shear mean flow is typically a case for which the commonly used reciprocity principle − even if extended
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Figure 3.5: Numerical FRT Green’s problems associated with Lilley’s equation at xm = (x1, x2) for the
axial positions x1/σ = 0.0, x1/σ = 25 and x2/σ = 9.0. Gaussian source terms S−,N

xm
considered to mimic

an impulse forcing (left); the associated reciprocal fields p− regarded as numerical FRT Green’s functions
G−,N

xm
(right). The same range for the colourmaps as in figure 3.3 is used.

Figure 3.6: Validation of the FRT method along the line x2/σ = 9.0 for Lilley’s equation. Reference
data for the pressure p (real part, ; imaginary part, ) is taken from the direct field computation
presented in figure 3.2. Rebuilt pressure field p (real part, ◦; imaginary part, +) is obtained with (3.25).

with the FRT − fails and where the general adjoint framework is required.

113



Chapter 3 : Reciprocity principle for self-adjoint wave equations

3.4 Application to Pierce’s equation

The adjoint method is a general and powerful technique which could be applied to any linearised operator.

However, to compute acoustic propagation with this technique, there is an interest in operators which are

self-adjoint. Reasons for this are twofold. First, from a practical point of view, if a self-adjoint operator

is chosen, the set of equations governing the direct and the adjoint problem are identical apart from the

causality/anti-causality conditions, leading obviously to an easier implementation of the technique and

enabling the use of some off-the-shelf solvers. Second, the adjoint method suffers from the same stumbling

block as for the direct problem, in particular when the mean flow field considered is sheared, instability

waves may also occur in the adjoint space (Karabasov and Hynes, 2005) and corrupt the acoustic solution.

Möhring (1999) pointed out that self-adjoint propagation operators are energy preserving and, in turn, do

not trigger any instability waves. Choosing a self-adjoint operator is then an elegant means to guarantee

the stability of the acoustic propagation problem.

In the present section, the study conducted for Lilley’s wave equation is repeated for Pierce’s wave

equation (Pierce, 1990). This wave operator is self-adjoint for the usual scalar product (3.14) and relies

on a potential description of acoustic fluctuations. From the authors’ investigations, this wave equation has

been found to be among the most accurate stable operator governing acoustic propagation in an arbitrary

mean flow. Note that, unlike Blokhintzev’s wave equation for the acoustic potential (Blokhintzev, 1946)

or the acoustic perturbation equations (Ewert and Schröder, 2003), no barotropic assumption of the mean

flow is required. If φ refers to the acoustic potential, Pierce’s wave equation reads





p = −Du0
(φ)

D2
u0
(φ)−∇ · (a20∇φ) = SPierce ≡ Du0

(Sm)− Sp

∆Sm = ∇ · (ρ0Su)

(3.27)

where the first equation relates the fluctuating pressure p to the acoustic potential φ (Pierce, 1990, eq.

(26)). Because this wave equation relies upon a potential description of the flow and the acoustics, the

source term should be potential as well. The third equation links the linearised momentum equation

source term Su to the corresponding filtered potential term Sm. The adjoint method could be applied

to the first and second equations of (3.27) taken as a whole, provided that a suitable multivariable scalar

product is defined. But for the sake of considering an unambiguous self-adjoint operator in the sense of §

3.2.2 and for simplicity, the adjoint method and the FRT will only be applied here to the wave equation

for φ and for the scalar product (3.14). The fluctuating pressure p will be rebuilt subsequently.

3.4.1 Solution to the direct problem

The direct problem under consideration is made of Pierce’s wave equation completed with some radiating

boundary conditions B0




L0 φ = D2
u0
(φ)−∇ · (a20∇φ) = SPierce in Ω

B0 φ = 0 on ∂Ω

(3.28)

where SPierce is built according to (3.27) and is based on the same LEE equivalent source terms (Sρ,Su, Sp)

as used for SLilley . For simplicity, the quadrupole source ρ0Su considered in § 3.3.2 was chosen in this

study to derive from a potential source Sm. For arbitrary sources, a filtering process based on a Poisson
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solver has proved to give very satisfactory results for Pierce’s equation when compared with the solution

for the unfiltered source computed with Lilley’s equation. The computation of φ described in Pierce’s

direct problem (3.28) is achieved with the in-house code PROPA. The same mean flow field and the

same frequency are analysed as previously for Lilley’s wave equation. The fluctuating pressure p is then

straightforwardly rebuilt with p = −Du0
(φ) and is shown in figure 3.7.

Figure 3.7: Direct problem for Pierce’s wave equation. Source for Pierce’s potential acoustic wave equation
Sm equivalent to the quadrupole ρ0Su(= ∇Sm) shown in figure 3.2 (top). Mach number M0 and density
ρ0 profiles of the parallel mean flow considered (bottom-left); and the real part of the pressure field
p = −Du0(φ) is shown with the same range for the colourmap as in figure 3.2 (bottom-right). Dashed
lines represent the position of maximal shearing (x2/σ = 1).

3.4.2 Reconstruction of the solution with the adjoint method

Repeating the procedure given in § 3.3.3, the adjoint method is used here to recover the acoustic potential

φ associated with the direct field. The fluctuating pressure p is rebuilt subsequently. The same sampling

of adjoint sources used previously, partly shown in figure 3.3, is considered here. Each of these adjoint

sources is defined as a sink term to the anti-causal adjoint Pierce problem





L†0 φ† = D2
u0
(φ†)−∇ · (a20∇φ†) in Ω

B†
0 φ

† = 0 on ∂Ω

(3.29)

Because Pierce’s wave equation is self-adjoint for the scalar product (3.14) chosen here, its associated

adjoint problem is nothing other than Pierce’s wave equation completed with some anti-radiating boundary

conditions B†
0. The same features for the mean flow and the numerical settings as for previous calculations
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are considered. Figure 3.8 shows the adjoint acoustic potential fields φ† solution to Pierce’s adjoint problem

taken at two sample locations.

Figure 3.8: Numerical adjoint Green’s problems associated with Pierce’s equation at xm = (x1, x2) for the
axial positions x1/σ = 0.0, x1/σ = 25 and x2/σ = 9.0. Adjoint Gaussian source terms S†,N

xm
considered

to mimic an impulse forcing (left); the associated adjoint fields φ† regarded as numerical adjoint Green’s
functions G†,N

xm
(right). The range for the colourmaps used here differs from the one used in figure 3.3

and 3.5.

As previously, adjoint Green’s functions G†
xm

are computed from previous numerical adjoint functions

G†,N
xm

using the compacity assumption of the adjoint source. Lagrange’s identity then gives straightfor-

wardly at each sample position xm,

φ(xm) = < G†
xm
, SPierce > (3.30)

and subsequently the acoustic pressure p = −Du0
(φ). Results obtained for the fluctuating pressure p along

the sampled line are compared in figure 3.9 against Pierce’s direct problem solution taken as reference.

Again in figure 3.9, an almost perfect reconstruction of the reference pressure field p is obtained with the

adjoint method. On an indicative basis, figure 3.9 also shows the pressure field p computed previously with

Lilley’s wave equation. The satisfactory ability of Pierce’s wave equation to compute acoustic refraction

effects for the high-speed heated sheared mean flow encountered here is enlightening. This potential

acoustic prediction is all the more satisfactory, since Pierce’s equation is known to be accurate in the

high-frequency limit (Pierce, 1990), which is not fulfilled here, λ/σ ≈ 3.
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Figure 3.9: Validation of the adjoint method along the line x2/σ = 9.0 for Pierce’s equation. Reference
data for the pressure p (real part, ; imaginary part, ) is rebuilt from the direct field computation
using p = −Du0(φ) as presented in figure 3.7. Similarly, the rebuilt pressure field p (real part, ◦; imaginary
part, +) is computed from the acoustic potential field φ computed with Lagrange’s identity. Dotted lines,

, display the corresponding real and imaginary parts of the pressure p solution to Lilley’s equation
given in figure 3.4.

3.4.3 The adjoint method and the FRT equivalence for self-adjoint operators

In this study on Pierce’s wave equation, the field reconstruction achieved with the FRT is not shown.

Rigorously the same results as those presented for the adjoint method in figures 3.8 and 3.9 would have

indeed been obtained. This is because the adjoint method and the FRT are fully equivalent for self-

adjoint operators. A proof for this is given here for Helmholtz’s wave equation written for a uniform

steady background flow. Three-dimensional Green’s function for the latter is recalled in appendix B.2

and solutions to the direct and adjoint propagation problems can be expressed as

Gxs
(x, ω) = exp

(
−i ω
a0

M0 · (x− xs)

1−M2
0

) exp

(
i

1

1−M2
0

ω

a0
rxs

)

4πrxs

(3.31)

and

G†
xm

(x, ω) = exp

(
−i ω
a0

M 0 · (x− xm)

1−M2
0

) exp

(
−i 1

1−M2
0

ω

a0
rxm

)

4πrxm

(3.32)

where rxi
=
√
(1 −M2

0 )|x− xi|2 + (M 0 · (x− xi))2 and M0 = u0/a0 is the vectorial Mach number.

Furthermore, let G−
xm

be Green’s function in xm solution of the FRT. Then G−
xm

can be deduced from

the expression of Gxs
by switching the source xs and the observer xm positions and reversing the mean

velocity u0 direction. Consistently with what is carried out for the numerical simulations in the frequency

domain, it is argued that the anti-causal solution for the adjoint problem G†
xm

can be selected considering

the usual radiating solution, but for an opposite pulsation frequency ω. From the above obtained analytical

expressions, the equivalence of the reciprocal fields computed with the adjoint method or the FRT are

then easily verified:

G†
xm

(x, ω) = G−
xm

(x,−ω) (3.33)

Since analytical solutions to acoustic propagation problems are scarce, directly assessing this symmetry

with respect to the flow reversal on general analytical solutions is hopeless. However, this symmetry in

the exchange of the mean flow direction and the sign of the pulsation frequency ω of the acoustic solution
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can already be assessed from the linear operator L0 governing the wave propagation. And effectively, in

Pierce’s wave operator, changing the sign of ω or u0 appears to be fully equivalent. This remark holds

for all self-adjoint wave equations describing acoustic propagation over a moving flow, namely the ones

introduced by Galbrun (1931), Phillips (1960), Goldstein (1978) Godin (1997) and Möhring (1999).

On top of that, a critical literature review reveals that in the studies illustrating the FRT, only self-adjoint

wave equations written in the frequency domain are considered. The proof for the FRT reciprocity relation,

classically starts with the multiplication of the wave equation governing the direct propagation problem

by a field variable, and its integration over the entire propagation domain. In fact, this operation closely

resembles a scalar product multiplication with a test function or a Lagrange multiplier. Integration by

parts of the direct problem wave equation then frees the direct field variable and defines the reciprocal

wave equation with reversed flow to which the previously introduced test function is subject, i.e. the

FRT for the considered wave equation is readily demonstrated. The difference with the adjoint method

lies in the scalar product which is not well-posed for the FRT. As a matter of fact, manipulating a wave

equation written in the frequency domain requires the introduction of a Hermitian scalar products. If the

latter condition were fulfilled in the FRT proof, the self-adjoint property of the equation would have been

retrieved and in turn no flow reversal needed. It appears now clearly why only R space scalar products

should be considered in the final solution reconstruction with the FRT, to say,

φ = < G†
xm
, SPierce >= < G−

xm
, SPierce >R (3.34)

The reciprocal field G−
xm

computed with the FRT is in fact, the complex conjugate of the adjoint field G†
xm

.

This is easily seen, taking benefit of the Fourier transform property of a real-valued field G−
xm

(x,−ω) =
G−∗

xm
(x, ω) for which it follows from (3.33):

G−
xm

(x, ω) = G†∗

xm
(x, ω) (3.35)

The equivalence between the adjoint method and the FRT for self-adjoint operators has pragmatic im-

plications. The solving of anti-causal adjoint equations can indeed be advantageously replaced by direct

computations over reversed flow. An interesting question to answer is whether some linear operators may

all at once describe exactly acoustic propagation over a sheared mean flow and be self-adjoint. Möhring

(1999) answered this question and illustrated how from a self-adjoint operator an energy-conserving law

could be derived for the acoustic field. Yet, it is well known that for sheared flows, instability waves may

occur converting acoustic energy into vortical energy (Yates, 1978; Maestrello et al., 1981) and thus that

no such conservation law for acoustic energy exist. Hence for arbitrary mean flows, acoustic energy is not

preserved, and a linear operator which is twofold self-adjoint and exactly describes acoustic propagation

does not exist. If acoustic propagation in a complex media needs to be conducted very accurately, a

non-self-adjoint operator needs therefore to be considered. Nevertheless if a decoupling of the acoustic

with the vortical mode is required for stability purposes, and approximations tolerated, Pierce’s wave

equation seems to achieve nicely the prediction of flow refraction effects on sound.
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3.5 Final remarks

3.5.1 Conclusion

In the present study, the adjoint method is analysed in-depth and demonstratively applied to the model

problem of a source radiating in a sheared and stratified mean flow. This approach offers a fully equiv-

alent alternative to ordinary computational aeroacoustics to rebuild locally the solution of a non-trivial

propagation problem. With respect to the pioneering work of Tam and Auriault (1998), the adjoint field

is not sought as the solution of a scattering problem. The presented approach wraps around Lagrange’s

identity, which offers a robust mathematical basis for the method. A well-defined scalar product is con-

sidered leading to a consistent expression of the representation formula. The anti-causality of the adjoint

field is also stressed. In addition, the adjoint method is compared against the flow reversal theorem, that

is shown to work properly only for self-adjoint wave equations. This property is sometimes overseen or

confusingly addressed in aeroacoustics. Finally, solving an adjoint problem can be sometimes cumbersome

due to the presence of instability waves, and to the numerical implementation of anti-causality boundary

conditions, for instance. Another contribution of this work is to propose a stable and accurate alternative

methodology based on Pierce’s equation and the rigorous use of the flow reversal theorem. A general ex-

pression of the source terme is derived that enables the prediction of aerodynamic noise. No limitation on

the physical source is imposed, and this method has already changed the game for computation of acous-

tic radiation of widely distributed physical sources such as those found in jets (Tam and Auriault, 1999;

Morris and Farassat, 2002; Raizada and Morris, 2006), and there is some interest in computing accurately

the quantities appearing in the model for complex configurations. Compared with the classical adjoint

formulation encountered in aeroacoustics, the presented approach has the ability to account for acoustic

diffraction at surface edges (Barone and Lele, 2005) and describes near-field propagation as well. Future

contributions should verify the ability of the technique to properly account for realistic configurations.

3.5.2 Perspectives

In its essence, the adjoint method furnishes an equality between, in one hand, the projection of a physical

unknown field on a adjoint source, and in the other hand, the projection of the physical sound source

on the computed adjoint field. This is what states Lagrange’s identity. This techniques is attractive

as long as the observer is ‘simpler’ as the physical sound source, and suits therefore very well to the

computation of the acoustic propagation toward sensors. What is more, since adjoint Green’s functions

are computed irrespectively from the physical sound source, this technique appears to be tailored to

sound source localisation algorithms. Analogously to Tam and Auriault (1998), the adjoint method has

been outlined here as an alternative approach to locally compute the noise originating from a broadband

stochastic sound source. The adjoint source is defined as a delta Dirac source and in turn acoustic is only

predicted locally at the microphone position. If different shapes of adjoint sources are considered, the

method possibilities are enhanced. For instance, if the fundamental vibration modes of a surface panel

are identified, they can then be taken as adjoint sources for the propagation problem. Lagrange’s identity

would straightforwardly give the amplitude of the considered mode when exited by the physical sound

source. There is thus a large scope of application of the adjoint method in interior noise assessment. Just

as the noise perceived in cabin of an plane or in a car (Khalighi et al., 2010; Blanchet and Golota, 2014).

The vibration of a surface due to turbulent boundary layers is often modelled with empirical models (e.g.

Corcos, Chase), thanks to the adjoint method the contribution of exterior acoustic sound sources on the
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surface vibration could be predicted from a simple RANS solution. The expense of this approach increases

with the number of Fourier mode considered to account for the surface vibration.

3.5.3 Tribute to Lagrange

Reading original material from pioneer researcher is always edifying. Such an investigation reveals that

Lagrange (1761) applied the adjoint methodology to solve the motion of a vibrating string. He then

applied his technique to the acoustic propagation of spherical waves in air. It is striking to remark that

the philosophy of his technique remained unchanged over the years. As for Tam and Auriault’s work

(1998), the present study relies on the same idea. For documentation, let us recopy and translate here

below Lagrange’s comments on his technique (1761, p. 176). This remark was written in investigations

on the movement of arbitrarily perturbed vibrating string. Note how close these statements could apply

for acoustic propagation of stochastic sound sources as encountered in turbulent jet flows.

“Since the question is to determine the movement of an infinite number of mobile points, with the supposi-

tion that their equilibrium state is arbitrarily disturbed, one cannot, as we have previously proven, express

all these movements by a unique and general formula. Contrariwise, each moving point must be treated

separately, and its movement determined by solving as many isolated problems as there are mobile points

in the given system. Such a question therefore requires, for it to be entirely solved, other means than those

ordinarily provided by analysis.”

His next sentences highlights how groundbreaking his discovery was,

“This is what M. d’Alembert took care to underline on the subject of the vibrating strings in the article

II he added to his Mémoire sur la courbe que forme une corde tendue mise en vibration and printed in

the year 1750 in the Mémoires de l’Académie de Berlin. «In any case, he said [...], the problem cannot

be solved, with my method at least, and I do not even know whether the strength of any known analysis

would succeed.»”

This analysis unknown by d’Alembert was the adjoint. But Lagrange’s talent is only equalled by his

humility, and few lines later he wrote,

“The main foundation of both of these methodologies is the ingenious analysis invented by M. d’Alembert

to integrate differential equations of any order, and containing any number of variables, as long as they

appear with a linear dependence. Hence it is only justice for this erudite Geometrician for us to recognise

that we owe him the principal support of overcoming the difficulties that apparently he himself believed

impassable.”

3.5.4 Afterword

A variant of this chapter has been accepted for a journal publication (Spieser and Bailly, 2020). The

article is in very close similitude with this chapter, only a footnote, the perspective paragraph, the histor-

ical paragraph on Lagrange, the appendix B.1 and the present paragraph have been added here. I long

hesitated about the most appropriate name to give to equation (3.2). Indeed, in the literature the rela-

tionship defining the adjoint is rather called Lagrange’s identity by mathematicians (Stone and Goldbart,

2009), whereas physicists refer to it rather as Green’s identity (Lanczos, 1996; Morse and Feshbach,

1953). I found then myself lucky to discover the online recordings of Lagrange’s works (available at

https://gallica.bnf.fr). In fact, not only his work, but also the faithful epistolary correspondences

he had with his fellow European scientists (d’Alembert, Condorcet, Euler, Laplace, Gauss, Monge) was
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gathered. Reading the private communications, steeped in immense respect, he had with Euler was mov-

ing. At the same time, as I meant to illustrate with previous paragraph, many of his ideas were incredibly

modern. The literature dedicated to the history of mathematics (Kline, 1990; Roy, 2011), associates the

origin of adjoints to Lagrange. Even though strictly speaking the name of ‘adjoint’ was introduced more

than a century later by Fuchs (1873). Considering this, I resolved to render unto Caesar the things that

are Caesar’s, and name this fundamental relation of functional analysis after the name of this brilliant

mind.
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4 Solving adjoint Pierce’s equation with

Actran TM

Summary: This section details how Actran TM, designed to solve Möhring’s equation, is turned into a

solver for Pierce’s equation. After presenting the normalised Möhring equation solved by Actran TM, the

accuracy of the solver is compared with respect to the in-house code PROPA. Because Pierce’s equation is

self-adjoint, the adjoint problem is solved with help of Actran TM using the FRT. A template enabling the

computation of adjoint Green’s function for a bidimensional jet flow is provided. As a proof of concept,

the reciprocal acoustic solution for a realistic dual-stream aircraft engine with flight effects is presented.

4.1 Insight into Actran TM

4.1.1 Introduction to FFT ’s software

FFT (Free Field Technologies) commercialises a software suite to model and solve linear acoustic prop-

agation problems for industry relevant applications. In 2011, FFT has been acquired by MSC Software

Company the multi-physics simulation company which owns numerous code among which MSC Nastran,

Patran, Adams and since recently, the flow solver Cradle. Actran is the generic name for the different

software developed by FFT. Each of them can be regarded as add-ons to the basic Actran Acoustics tool

which can be initiate in command lines or manipulated with the dedicated GUI Actran VI. This GUI

enables amongst other the creation of meshes of intermediate degree of complexity with the inbuilt Box-

pro tool. Actran Parallel enables to solve the linear propagation in a HPC environment using MPI. The

overlayer of FFT ’s products are coded in a python environment with a devoted library actranpy enabling

thus fairly easy and extensive post-processing possibilities but also scripting. FFT ’s programs are using

FEM (see femtown environment in actranpy) and provides efficient means to interpolate fields on un-

structured meshes for complex geometries. The software suite is composed of Actran TM, Actran DGM,

Actran SNGR, Actran SEA, Actran Aero-Acoustics, Actran Trimmed Body and Actran Vibro-Acoustics.

Actran DGM is a discontinuous Galerkin time-domain solver for the LEE and finds application in the

computation of noise from aircraft engines (Mosson et al., 2014) and jets (Legendre et al., 2016). In the

present work, the Actran TM solution is considered.

Actran TM (TM: Turbo-Machinery) aims at predicting the propagation of tonal engine noise components

in a moving fluid in the presence of acoustically lined ducts and is typically meant for the acoustic design

of engine nacelles. Actran TM solves a normalised Möhring’s equation in the frequency domain and can

rely on state of the art numerical sparse parallel solvers (Mumps, Pardiso, ...). More details on Actran TM
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can be found in its user guide (Free Field Technologies, 2018b,c), refer to the user interface user guide

(Free Field Technologies, 2018a) for setting up Actran TM computations in practice.

4.1.2 Möhring’s equation as implemented in Actran TM

In his work, Möhring (1999) defined an acoustic analogy based on a wave equation for the total enthalpy

B. His wave equation describes the propagation of sound over an irrotational and isentropic flow. As

in Lighthill’s acoustic analogy, vortices and entropy fluxes occur as sources term of the analogy. But

while the paragon acoustic analogy is valid for a flow at rest, Möhring’s wave analogy is exact for steady

irrotational and isentropic base flows. But its use is not restricted to such flow. Möhring notably insists

on the self-adjointness of his operator which guarantees that the acoustic energy is preserved (Möhring,

1999). This makes his operator very handy to use in complex configurations.

Actran TM is a frequency domain solver, as such it is known that the group velocity locally vanishes

wherever the flow speed is sonic leading to singularities in the system matrix. To prevent from this

numerical issue the equation solved in Actran TM is normalised by the total density ρT . With this

normalisation it is possible to rescale the mean flow variables so the flow remains subsonic and hence

to guarantee robustness (ref. to CUT_SOS (Free Field Technologies, 2018b, § 51.7)). Note that this

normalisation is effective even though no flow region is supersonic. Möhring’s equation governs the total

enthalpy B = h + v2/2, which is computed from the first thermodynamic principle δh = Tδs+ (δp)/ρ.

Where v is the fluid velocity, p its pressure, ρ its density, T the fluid temperature and s its entropy. If Sρ,

Su, Sp are generic forcing terms for the Navier-Stokes equation when written for the principal variables

ρ, u and p (see appendix E), then the normalised Möhring equation writes,

∂

∂t

[
ρ

ρTa2
DB
Dt

]
+∇ ·

[
ρu

ρTa2
DB
Dt
− ρ

ρT
∇B

]
= ∇ ·

[
− ρ

ρT
Su +

ρu

ρTa2
(u · Su) +

u

ρTa2(γ − 1)
Sp −

u

γρT
Sρ

]

+
∂

∂t

[
ρ

ρTa2
(u · Su) +

1

(γ − 1)ρTa2
Sp +

γ − 1

γρT
Sρ

]
+R
(4.1)

with R = ∇ ·
[
ρ

ρT
ω × u− ρ

ρT
T∇s− ρsu

ρT

∂s

∂t
− u

ρT a2
∇ · q − ρ

ρT
∇ ·Σ+

u

ρTa2
∇ · (Σ · u)− ρu ∂

∂t

(
1

ρT

)]

+
∂

∂t

[
− ρs
ρT

∂s

∂t
− ∇ · q
ρT a2

+
∇ · (Σ · u)
ρTa2

+ ρu · ∇
(

1

ρT

)]

(4.2)

where, D/Dt = ∂/∂t+ u · ∇ is the material derivative, a =
√

∂p
∂ρ

∣∣
s

is the speed of sound, and ρs =
∂ρ
∂s

∣∣
p
.

Σ denotes the friction-related stress tensor, q = −λ∇T is the heat flux and ω = ∇× u is the vorticity.

The detailed derivation of the normalised Möhring equation is provided in appendix E.

In most applications, acoustic fluctuations have weak amplitudes with respect to the base flow, so that

it is legitimate to consider the linearised equations to compute sound propagation. As usually in CAA

practices, a Reynolds decomposition of the flow (B = B0+B
′, ρ = ρ0+ρ

′, u = u0+u′, etc.) is considered

to derive the equation of Actran TM. Legendre (2014, §§ 6.3-6.5), (Legendre et al., 2012) conducted such

a linearisation and proposed different formulation for the linearised Möhring equation, one of which is

multivariable and is almost equivalent to LEE, and four scalar acoustic-vortical wave equations. The
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extension of Möhring’s equation proposed by those authors showed promising results for low vorticity but

diverges for strongly sheared mean flows (Legendre et al., 2012). Another closure strategy for Möhring’s

equation is given in Delfs’ lecture notes (2016, § 3.2.2). This author argued that if the mean flow is assumed

potential, the Lamb vector term appearing in Crocco’s equation (see appendix E) solely contributes as

a source term. So that, for acoustic propagation over a potential mean flow, the momentum equation

furnishes,

∇B0 = T0∇s0 (4.3)

If the mean flow is supposed isentropic, then the stagnation enthalpy B0 is conserved along the streamlines

and equals the Bernoulli constant (Delfs, 2016). This second simplified framework assuming a potential

and homentropic base flow is retained for the linearisation procedure. If the viscous stresses and the heat

fluxes are discarded in the linearisation, and if moreover the forcing terms have no mean contributions,

then the linearised normalised Möhring equation is obtained,

∂

∂t

[
ρ0

ρT,0a20

DB′

Dt

]
+∇ ·

[
ρ0u0

ρT,0a20

DB′

Dt
− ρ0
ρT,0
∇B′

]
= R′ (4.4)

with,

R′ = ∇ ·
[

1

ρT,0a20

(
ρ0(u0 ⊗ u0 − a20Id) · S′

u +
u0

(γ − 1)
S′
p −

u0

γ
a20S

′
ρ

)]

+
∂

∂t

[
1

ρT,0a20

(
ρ0u0 · S′

u +
1

γ − 1
S′
p +

γ − 1

γ
a20S

′
ρ

)]

+∇ ·
[
ρ0
ρT,0

ω′ × u0 −
ρ0
ρT,0

T0∇s′ −
ρs,0u0

ρT,0

∂s′

∂t

]
− ∂

∂t

[
ρs,0
ρT,0

∂s′

∂t

]

(4.5)

where Id is the identity tensor, and from here on, D/Dt = ∂/∂t+ u0 · ∇ is the material derivative along

the mean flow streamlines. Note that additionally the contributions relative to variations in ρT have

been discarded in the source term. Eventually, this equation, with a rescaled definition of the stagnation

enthalpy b given by,

δb = ρT,0 δB
′ (4.6)

and some generic monopole Sm and dipole Sd source definition (Legendre, 2019), is solved in Actran TM

in the frequency domain,

∂

∂t

[
ρ0

ρ2T,0a
2
0

Db
Dt

]
+∇ ·

[
ρ0u0

ρ2T,0a
2
0

Db
Dt
− ρ0
ρ2T,0

∇b
]
=

∂Sm

∂t
+∇ · Sd (4.7)

where, by introducing the Mach number M0 = u0/a0, the mean total density ρT,0 is given by,

ρT,0 = ρ0

(
1 +

γ − 1

2
M2

0

)1/(γ−1)

(4.8)

The pressure is built then subsequently with,

ρT,0

ρ0

∂p

∂t
=

Db
Dt

(4.9)
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4.2 Solving Pierce’s equation with Actran TM

Pierce’s equation is identified previously as a good candidate to compute acoustic propagation over sheared

and stratified flows, this section explains how Actran TM can be hijacked to solve this wave equation.

The general idea, is to manipulate the stagnation enthalpy b computed with Actran TM and to rebuilt

a posteriori the associated fluctuating pressure field p′ with the chosen relevant relationship. In FFT ’s

software, b is referred to as VELOCITY_POTENTIAL and p′ with the keyword PRESSURE.

1. Obviously, by setting ρT,0 = 1 and considering b ← B′ Möhring’s linearised equation (Delfs,

2016; Legendre, 2014) is retrieved, for which, the fluctuating pressure p′ is deduced from ∂p′/∂t =

ρ0 DB′/Dt.

2. Still considering ρT,0 = 1 but setting b← −ψ, and retaining another reconstruction of the pressure

field p′ = −ρ0 Dψ/Dt , then Blokhintzev’s equation (Pierce, 1990, eq. (21) & eq. (23)) is obtained.

3. Choosing ρT,0 = ρ0, linearised and normalised Möhring’s equation is equivalent to the linearised

Phillips’ equation (1960) for a direct identification of the stagnation enthalpy with the fluctuation

pressure field b← p′.

4. At last Pierce’s equation (1990) is obtained, setting ρT,0 = ρ0 by identifying the enthalpy with the

acoustic potential b← φ. The acoustic pressure field is then rebuilt with p′ = −Dφ/Dt.

Note that the differences between these wave equations in their ability to describe refraction effects, lays

in their proper taking into account of the stratification effects (density gradients) and the choice of the

relevant acoustic variable. The latter is the leading order effects and brings back the much addressed

issue of what is the correct acoustic variable.

4.2.1 Preprocessing of the mean flow given in input

In FFT ’s software, it is not possible however to force the equality ρT,0 = ρ0 to solve Pierce’s equation,

because the expression of the mean stagnation density ρT,0 is directly computed from the mean density

ρ0 and the mean Mach number M0. This hardship is overcome by preprocessing the mean flow fields

ρ0, p0 and u0 given in input, so to compensate in the solved equation the presence of the total mean

density ρT,0. A similar manipulation was performed by Legendre (2019) to rebuilt solutions of Möhring’s

equation without the stagnation density ρT,0 normalisation encountered in Actran TM. Those corrected

mean flow fields are defined so to change Actran TM ’s equation into Pierce’s equation for the physically

relevant mean flow fields ρ0, p0 and u0. Let those customisable variables be renamed by adding a C in

subscript. Inspection of Actran TM ’s equation indicates that subsequent relationship exist between the

physical relevant mean flow variables u0, a0, ρ0 and the variables u0,C , a0,C , ρ0,C provided in input of

Actran TM, so to transform Möhring’s wave equation into Pierce’s one,

u0,C = u0 a0,C = a0
ρ0,C
ρ2T,0

=
1

ρ0
(4.10)

where, because in general ρ0,C 6= ρ0, equation (4.8) needs to be replaced by,

ρT,0 = ρ0,C

(
1 +

γ − 1

2

ρ0,C
γp0,C

u2
0,C

)1/(γ − 1)

(4.11)
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It comes out, that the mean velocities u0 and a0 are not affected by this transformations. Therefore,

because the mean density ρ0 is modified, the mean pressure p0 needs to be corrected in order for a0 =√
γp0/ρ0 to remain unchanged. Finally, to solve Pierce’s equation with Actran TM, the adjustment that

should be applied to the mean flow field to obtain the suitable corrected input fields ρ0,C and p0,C is

computed from equations (4.10) and (4.11) and reads,

p0,C
p0

=
ρ0,C
ρ0

=

[
1 +

γ − 1

2

u2
0

a20

]−2/(γ − 1)

(4.12)

It must be mentioned, that to identically retrieve Pierce’s equation from the relation (4.10) and equation

(4.7), the gradients in the physical mean flow pressure p0 have been neglected. These gradients do not

exist in steady parallel flows and their effect in acoustic propagation are generally negligible.

4.2.2 Correction of the source amplitude

Because Actran TM ’s VELOCITY_POTENTIAL output is used in a postprocessing procedure to rebuilt man-

ually the fluctuating pressure p′, the source amplitude A needs also to be corrected accordingly. In Actran

TM, there are three kinds of source amplitude definitions, sources referred to as P type, Q type or V

type (keyword AMPLITUDE_TYPE (Free Field Technologies, 2018c)). The type P amplitude is default and

is related with the pressure field, while the Q type amplitude is related to mass flow rate and the V type

source is related to volume source (Free Field Technologies, 2018c, § 9.50.3). In the present study, a source

amplitude of type P is considered. When the above preprocessing step is conducted to turn Actran TM

into a Pierce’s equation solver, the acoustic potential φ solution of Pierce’s normalised equation, given for

δxs
a pointwise source in xs by,

1

a20

(
D2φ

Dt2
−∇ · (a20∇φ)

)
= A δxs

(4.13)

is related to the computed stagnation enthalpy b by,

φ∗ =
−iωA

4

(
1 +

γ − 1

2
M 2

0,S

)−1/(γ − 1)
b (4.14)

where φ∗ is the complex conjugate of φ, A the complex source amplitude defined in the software, ω the

investigated acoustic pulsation and M0,S the Mach number at the source position. This expression is

deduced (painstakingly) from the comparison of the computed field b with the reference analytical solution

presented in next paragraph.

4.3 Validation of Actran TM ’s hijacking

The ability of the code to solve Pierce’s equation is validated for a uniform mean flow were the analytical

solution is available. For a sheared and stratified mean flow, the solution computed with PROPA is taken

as a reference. These validations are presented here for a bidimensional configuration, for which a Dirac

delta source is computed in Actran TM with a cylindrical source. Let xs be the position of this source.
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4.3.1 Validation over an uniform mean flow

For a uniform mean flow when the above flow preprocessing is considered, the equation solved by Actran

TM reduces to,
1

ρ0

{
(−k0 +M 0 · ∇)2 −∆

}
b(2D)
xs

(x) = A δ(x− xs) (4.15)

where k0 = ω/a0 and b
(2D)
xs is the bidimensional Green function computed by the software, let similarly

φ
(2D)
xs (x) be the solution of Pierce’s equation. When the amplitude correction is taking into account as

well, the solved problem writes,

{
(−k0 +M 0 · ∇)2 −∆

}
φ(2D)
xs

(x) = A δ(x− xs) (4.16)

For |M0| < 1 and A = 1, the analytical solution for the associated radiating problem is,

φ(2D)
xs

(x) =

i exp

(
−ik0

M 0 · (x− xs)

1−M 2
0

)

4
√
1−M 2

0

H
(1)
0

(
|k0|rxs

1−M2
0

)
(4.17)

with rxs
=
√
(1−M2

0)|x− xs|2 + (M 0 · (x− xs))2. Figure 4.1 presents φ(2D) for a pointwise source set

at the origin, for ω = 20π rad · s−1, M0 = 0.756, p0 = 103330 Pa and a0 =
√
γRT0, where T0 = 300 K.

Figure 4.1: Bidimensional acoustic potential field φ(2D) over the investigated uniform mean flow, real part
on the left, absolute part on the right.

The solution to Pierce’s equation computed with Actran TM is compared to the above analytical solution

and the solution obtained with PROPA, for which the acoustic source is modelled by a Gaussian of

standard deviation σs chosen to be compact λ/σs ≈ 1.4 · 102, where λ = 2πa0/ω. To comply with the

analytical expression and Actran TM ’s normalised Pierce’s equation, the field computed with PROPA

is divided by the integral of the Gaussian source term set in input and multiplied by a20 (evaluated at

the source position). Figure 4.2 compares extracts obtained for the different means and shows an almost

perfect match. What is more, the ability of Actran TM to accurately compute a delta Dirac source term

is observed.

4.3.2 Source compactness issue for the solutions of PROPA

PROPA is only capable to mimic a delta Dirac source term with a sharp Gaussian distribution. Yet

due to RAM limitations, the regular mesh set in PROPA cannot be fine at will for large domains,

leading to broader Gaussian profiles for the source distribution. Obviously for such cases where the
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Chapter 4 : Solving adjoint Pierce’s equation with Actran TM

Figure 4.2: Extracts along x1 = 0 and x2 = 0 of the acoustic potential field φ computed with Actran TM
with the in-house code PROPA and the analytical solution , real part on the left, absolute

part on the right.

source is not compact with respect to the wavelength λ, the source−Green function convolution should be

computed properly to be compared with the computed solution. In the next validation step of Actran TM ’s

prediction capabilities over a sheared and stratified flow, a larger domain than previously is considered

for PROPA, where λ/σs ≈ 23 instead of λ/σs ≈ 1.4 · 102. Before further investigations, the effect of this

source broadening is presented in figure 4.3 for the uniform mean flow.

Figure 4.3: Potential field φ obtained with PROPA for λ/σs ≈ 1.4 ·102 on the top and λ/σs ≈ 23 bottom.
From left to right, the forcing term, the real part and the absolute part of the computed potential field.

This solution for a broad source is validated with respect to the analytical solution for which the convolu-

tion is properly computed. Figure 4.4 presents extracts of computed fields and shows a very satisfactory

fit with the corresponding analytical solutions.

From this study, it appears that for the considered Helmholtz and Mach numbers, the loss of compactness

blurs the acoustic field in the near field of the source. What is surprising is that this change of the source
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4.3 Validation of Actran TM’s hijacking

Figure 4.4: Extracts of the acoustic potential field φ along x1 = 0.0 and x2 = 0.0 with the solution
computed with Actran TM, and solutions for a compact and a non-compact source computed with
PROPA, the corresponding analytical solution, real part on the left, absolute part on the right.

width has almost no effects upstream where the wavelength paradoxically are shorter and vice-versa has

most significant effect in the downstream region where the wavelength are the longest.

4.3.3 Validation on the fourth CAA workshop flow

The ability of Actran TM to solve properly Pierce’s equation over a sheared and stratified flow is verified

for the Gaussian heated jet flow profile taken from the fourth CAA workshop. This parallel flow toy model

is presented in §3.3.2 and a source pulsation of ω = 200π rad · s−1 set in the flow region is considered.

In this paragraph, four simulations are presented and their extracts compared. Two simulations are

computed with Actran TM, the first with IE (infinite elements) boundary conditions1 and the other with

PML (perfectly matched layers) radiation conditions. Two other simulations are conducted with PROPA,

the first on a large domain for a source−wavelength ratio of λ/σs ≈ 23 and the second on a finer but

smaller mesh (with same number of grid points) where a ratio of λ/σs ≈ 1.4 · 102 is achieved, ensuring

a proper description of the delta Dirac source term. This later fine mesh calculation is taken as the

reference solution. Convergence on the boundary condition tuning parameter have been verified for the

Actran TM computations. For the IE condition, interpolation order of 25 and 100 have been tested

showing no modifications in the computed solution. For the PML condition, a PML width of λ and 2λ

have been separately considered giving identical solutions.

Figure 4.5 shows the computed fields without the boundary condition layers. Figure 4.6 and 4.7 compare

the horizontal and vertical extracts of the computed fields for x2/σ = 0.0, x2/σ = 9.0 and x1/σ = 0.0,

x1/σ = 25.0 respectively, where σ corresponds to the standard deviation of the Gaussian velocity profile.

Figure 4.5 indicates an overall good qualitative agreement. Except for the field computed in Actran TM

with IE boundary conditions, the quantitative agreement for the three other fields is excellent. Outside

of the shadow zone where the acoustic amplitude is low (and apart from the source compactness issue

discussed later on), these three fields coincide with a deviation of less than 2%. The small discrepancies

are likely to correspond to acoustic reflection at NRBC. On the cut x1/σ = 25.0 in figure 4.7 it appears

clearly that the field computed with the IE is not symmetric with respect to the jet axis, while the

propagation problem is, suggesting a misbehaviour of the boundary condition in presence of a sheared

flow. This appreciable dysfunction of the IE boundary conditions with non-uniform flow at the boundaries

is likely to explain the qualitative differences observed. However from a quantitative point of view along

the jet axis, see figure 4.6, there is almost no difference between this field, the reference solution (compact

1They rely on the multipole expansion of the uniform flow solution of the convected wave equation (Astley et al., 1998).
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Figure 4.5: Real and absolute map of the acoustic potential field φ computed, from top to bottom, with
Actran TM with IE boundary conditions, Actran TM with PML, PROPA with a non-compact source
(λ/σs ≈ 23) and PROPA for a finer mesh enabling the source to be compact (λ/σs ≈ 1.4 · 102).

acoustic computation with PROPA) and the solution obtained with Actran TM with PML.

As expected some amplitude differences close to the source for the non-compact PROPA computation

exist. This is most easily seen when the absolute part of the potential field φ is considered, see the extract

along the jet axis in figure 4.6. As for the uniform flow case, the source downstream region has got

higher absolute acoustic amplitude than the upstream region, yet this time the acoustic upstream of the

broad source does not fit the reference acoustic solution upstream of the compact source. This analysis
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Figure 4.6: Extracts of the acoustic potential field φ along x2/σ = 9.0 on the top and x2/σ = 0.0 on the
bottom computed with PROPA with non compact source term, PROPA with compact source,

Actran TM with PML and Actran TM with IE, real part on the left, absolute part on the right.

Figure 4.7: Extracts of the acoustic potential field φ along x1/σ = 0.0 on the top and x1/σ = 25.0 on the
bottom computed with PROPA with non compact source term, PROPA with compact source,

Actran TM with PML and Actran TM with IE, real part on the left, absolute part on the right.

furthermore highlights that the source compactness has almost no effect further away of the source vertical

to the flow direction, since both extracts along x2/σ = 9.0, obtained with PROPA for a compact and not

compact source coincide and thus that the computation done with PROPA for a broad source term can

be taken as reference away from the source. This observation is confirmed in figure 4.7 with the extract

at x1/σ = 0.0.
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In this section, the equation coded in FFT ’s software are derived. A procedure to transform the solved

equation into Pierce’s equation is given and proved to work perfectly for a uniform mean flow. For a

strongly sheared and stratified flow, IE boundary conditions are not suited to perform Actran TM com-

putations and PML are required. When compared to computations performed with PROPA a qualitative

and quantitative very good agreement is obtained for Pierce’s equation solved with Actran TM.

The computations achieved with the code PROPA for Pierce’s equation are computed over a regular

structured domain of 800× 450 requiring 43GB of RAM. Whereas the resolution with Actran TM over a

mesh of 430 000 nodes (215 000 quadratic two-dimensional unstructured elements), which has approxima-

tively the size of mesh used in PROPA, needs only 1.7GB. Finite difference and finite element methods

are fairly different techniques and a too strict comparison may not be fair, however PROPA and Actran

TM with second order elements require both a minimum of 4 elements per wavelength to resolve acoustic

travelling waves. This enormous gain in computation cost, and the ability of Actran TM to consider

complex geometries, represent tremendous advantages over the in-house code, when Pierce’s equation has

to be solved in realistic applications.

4.4 Illustration of adjoint field in application with jet flows

Capabilities of Actran TM to compute adjoint solutions for jet noise relevant configurations is illustrated

here. A template based on actranpy syntax for the computation of reciprocal solutions in application to

a jet flow model is provided in appendix F. As a proof of concept, the second part of this section presents

results obtained for a realistic aircraft engine geometry.

4.4.1 A template to compute φ† with Actran TM

Besides the possibility of handling unstructured geometries at affordable costs, another attractive aspect

of Actran TM is to enable scripting with the inbuilt python library actranpy. This is an advanced feature

of the tool that makes parametric studies and optimisation procedures possible. It was found valuable to

present here how such a computation could be set-up without resorting to the GUI ActranVI.

This template, appendix F, considers a bidimensional heated jet exiting an unflanged duct as presented in

figure 4.8. The duct is straight and hard walled, possible internal reflection are discarded by assuming the

duct infinitely long. The flow is computed from Panda and Seasholtz (1999) with some slight modifications

to fiddle about flight effects. This analytical non-uniform flow is mapped on the numerical grid with help

of the field_data structures of actranpy. With the script variable WhichFlowField, the base flow used

for the computation is selected. It is possible to compute the direct solution to default Möhring’s equation

or to Pierce’s equation but also to compute the FRT-reciprocal solution associated to Pierce’s equation.

When solution to Pierce’s equation is chosen, the base flow is preprocessed to compensate for the ρT,0.

The source amplitude is modified accordingly apart from the pulsation ω and the complex conjugation

of the VELOCITY_POTENTIAL field that is straightforward to compensate later on in the analysis, compare

§4.2.2 and appendix F. The free field boundary condition is modelled either with infinite elements (IE)

or with perfectly matched layer (PML). Depending on the choice of the radiating condition, the mesh

is automatically generated either with a linear or with a quadratic interpolation order. For a linear

interpolation order, 7 elements per wavelength are required while for a quadratic interpolation order, a

minimum of 4 elements is needed.
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4.4 Illustration of adjoint field in application with jet flows

hard walled duct

free-field

infinite duct

Figure 4.8: Definition of the domain and the flow as computed with the script given in appendix F. The
jet Mach number ranging from 0.3 (white) to 0.7 (dark red) is depicted.

The sound sources can be either planar or pointwise. They can be set in or out of the computational

domain. This is the keystone to enable far field noise prediction at affordable computational costs. In this

way indeed, the mesh does not need to extend up to the adjoint source position, that is the location of the

observer. Only flow heterogeneities needs to be meshed. During the design of this template, investigations

with the team of Free Field Technologies have shown that field_data could not be used together with

sound sources set out of the computational domain. When far field analysis are done, this means in

practice that the mean flow must be uniform at the domain boundaries, unlike what is presented in figure

4.5. This feature is not functional yet and should be fixed in future releases. An alternative solution

using IE is employed here instead. That is, an additional region of uniform flow is defined to wrap the

region of flow heterogeneities and to achieve the interface with the non reflecting boundary condition.

This transition layer can be defined as thin as one cell width as in the template of appendix F or much

thicker as in figure 4.11. Since this flow region is uniform, field_data are not needed and the definition of

exterior sound source is readily operable. To avoid discontinuity in the mean flow field, the flow specified

in the field_data needs to be uniform at the outer domain frontier. In practice this is achieved here

with the use of a buffer domain for the base flow. It was previously observed in figure 4.5, that flow

heterogeneities at IE frontier may create spurious reflections. The use of such a buffer layer for the flow is

therefore a recommended practice for IE radiating conditions. Results obtained for the jet flow of figure

4.8 for sources set in and out of the meshed domain have been obtained with this alternative procedure

and are presented in figure 4.9.

Figure 4.9: Adjoint solution φ† to Pierce’s equation computed by flow reversal for a Strouhal number of
St = 0.32. Adjoint sources are set at a distance of 50 and 100 diameter with respect to the duct exit and
with a polar angle of 30o. The transition layer with uniform flow is so thin, it cannot be spot.
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4.4.2 Dual stream engine with chevrons

A further benefit of commercial software lies in their robustness, versatility and maintenance. As such

Actran TM enables amongst others the reading of RANS computations, the generation and the handling

of unstructured meshes, the interpolation of the flow on the acoustic grid, the computation and the

post-processing of the results. An illustrative implementation of an adjoint computation for a realistic

industrial configuration is presented here. The EXEJET dual-stream engine with chevrons is considered

for that purpose Huber et al. (2014). The dealt configuration presents realistic features of an aircraft

engine. The primary jet exiting the core is heated with respect to the secondary flow originating from

the fan with a temperature ratio Tc/Tf ≈ 2.6. The local jet Mach numbers for both flow are respectively

Mf = 0.84 and Mc = 0.67. Some in-flight effects are moreover accounted for with an external flow of

Mext = 0.27.

The Actran TM analysis is based on a RANS solution computed with the flow solver ElsA developed at

Onera. The geometry presents 9 inner chevrons and 18 outer chevrons, so that the flow simulation could

benefit from angular periodicity simplifications, and hence only an angular sector of 20o of the flow was

modelled with RANS. Steps to build an Actran TM analysis are overviewed hereafter.

1. In order to rebuilt the complete engine, an intermediate grid of 40o angle is first created. The Boxpro

toolbox of ActranVI enables to duplicate the 20o geometry and to generate an unstructured mesh

such as presented in figure 4.10 (use interior shrinkwrap for multi-bloc geometries).

2. Import the flow field with actranpy, if need is, dimensionalise the CFD data and apply flow reversal

and/or ρT,0 corrections. Using iCFD device of Actran TM and the geometry planar symmetry,

interpolate the 20o flow field from structured multi-bloc CFD mesh on the 40o unstructured grid.

Figure 4.10: Detail of the structured and multi-bloc CFD mesh spanning on 20o (left) and detail of the
unstructured mesh computed with planar symmetry and used for the first flow interpolation (right).

3. With Boxpro, an unstructured 360o acoustic mesh of 3.9 .106 three-dimensional elements is built

(900 000 grid points). The geometry is cylindrical with a diameter three time larger as the engine

end extending over 10 diameters In the mesh generation process, the Hexacore option is selected, so

to use hexahedral elements in the core of the mesh as shown in figure 4.11. This is a recommended

practice to diminish the RAM requirements of the computation.

4. With help of the iCFD hand-tool, the mean flow previously mapped on the 40o angular sector is

now interpolated using angular periodicity on the complete 360o geometry, as shown in figure 4.11

(left). Note that it is presently not possible with iCFD to map a three-dimensional axisymmetric

geometry with a planar axisymmetrical flow.
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5. A transition layer is wrapped around the numerical domain so to enable acoustic computations from

source set out of the domain. 2.2 .106 three-dimensional elements are additionally created (440 000

grid points). A buffer region forces smoothly the interpolated flow to uniformity at the domain

frontier so to guarantee flow continuity at the interface with the transition layer.

Figure 4.11: Interpolation over the 360o acoustic grid of the heterogeneous mean-flow. Mean speed of
sound a0 from 331m.s−1 to 570m.s−1 (left - top), and reversed mean axial velocity u0,1 required to
solve the adjoint Pierce problem, from −377m.s−1 to 3.37m.s−1 (left - bottom). To enable far field
computations, grid points are created to form a transition layer where uniform flow is specified in the
analysis. The present transition layer represents about 1/3 of the total number of elements. Absolute
value of the Mach number M0 that is specified with field_data in the analysis, from 0.04 to 0.94, the
ambient Mach number is 0.27. A buffer region delimited with dashed line is build to ensure the base flow
continuity (right).

6. Eventually the computation is parametrised as for the previous analysis given in appendix F. For

this configuration, 85 GB of RAM and about 45 min per frequency were required. Note that Actran

TM simulations can be run in parallel and/or with iterative solvers. This figures are indicative

for a sequential use of the MUMPS solver. As further indication, 43 GB of RAM would have been

required to perform similar computation without the extra layer, i.e. half memory for 1/3 less grid

points. To divide the memory requirement by two, the computations may be achieved with single

precision. The price to pay for these cost savings are the errors in the mantissa; the accuracy of this

compromise has to be estimated.

A compact monopole oscillating at a Strouhal number of Stf = 2.0 is considered in the presented analyses.

Where Stf = 1
Mf

Df

λ is based on the fan flow exit diameter Df . This corresponds to a mixed Strouhal

number Huber et al. (2014) of Stmix = 1.3. Before presenting the computed adjoint fields, a qualitative

comparison of the effect of the ρT,0 correction procedure is given figure 4.12. In both solutions, the chan-

nelling of acoustic wave upstream of the flow is observed. The flow refraction effect is clearly identifiable

and fairly similar for both solutions, yet of higher amplitude and slightly more directional for the potential

field obtained with Pierce’s equation. Larger discrepancies arise downward of the source; while a part
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of the amplitude is trapped on the jet axis with the default equation solved in Actran TM, the cone of

silence is more pronounced in the solution computed with Pierce’s wave equation.

Figure 4.12: Green solution to the direct propagation problem for Stf = 2.0. The solution b to the
default Möhring’s equation of Actran TM, with p = iρ0

ωρT,0
Du0(b) (left) and φ to Pierce’s wave equation,

with p = −Du0
(φ) (right) are shown.

The adjoint Green solution φ† to Pierce’s equation is computed with Actran TM by using the FRT. For an

illustrative purpose, computations performed for adjoint sources set in the near-field, figure 4.13, and in

the middle range to far-field, figure 4.14, are presented. Reminding that the adjoint field φ† is relevant in

Lagrange’s identity where the physical sound source are located, commentaries on these fields must thus

focus on the jet sheared flow region. It is seen that in these regions that the adjoint solution φ† experiences

some sharp variations in phase. This will translate into constructive and destructive interferences of

the sound source. From these preliminary results, it is expected that reliable computations of adjoint

Green’s solutions may notably improve the taking into account of acoustic propagation effects. This

work will receive further attention in future work. Attention will be paid in a step by step validation,

with increasing geometrical complexities, of the complete jet mixing noise prediction methodology. In

particular, it appears instructive to compare the original Tam and Auriault mixing noise model §2.1 with

analytical adjoint Green function computation (Afsar et al., 2017b) to the alternative proposed in §2.2

and in the present section.

136



4.4 Illustration of adjoint field in application with jet flows

Figure 4.13: Adjoint Green’s function φ† of Pierce’s equation computed with the flow reversal theorem
for Stf = 2.0. These two near-field solutions to the reciprocal propagation problem exhibit a complex
behaviour in the jet flow region.

Figure 4.14: Adjoint Green’s function φ† of Pierce’s equation computed with the flow reversal theorem
for Stf = 2.0. The computations are run for sources set at a distance of 10Df (left) and 500Df (right)
from the engine.
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Conclusion

This study is concerned with the modelling of the propagation of sound emitted by a high-speed turbulent

jet. The standpoint adopted is that of acoustic analogies and the approach selected involves largely

analytical modelling. Within this simplified framework, the acoustic field produced by the aerodynamic

flow does not retroact on the latter, and the problems of sound generation and propagation can be treated

separately. This thesis is divided into two parts as follows.

The objective of this study’s first part is to propose a simplified model for the sound propagating on a

base flow, that is both accurate and robust. To guarantee the robustness of the approach, a formulation

that uses the acoustic potential is proposed. This method conserves acoustic energy. This is an asset of

the method, which is found thereby consistent with the two limit cases of sound propagation around a

potential flow and geometrical acoustics. This is to say that the model proposed coincides with the only

formulations in the literature for which acoustics is unambiguously defined. The enforced conservation of

acoustic energy equally means that mode conversion phenomena cannot be dealt from this approximated

perspective. This represents a limitation of the methodology presented, which by construction is unable

to describe certain noise generation mechanisms, such as instability waves or the acoustic radiation of a

vortex sheared as it moves with the flow. Equivalent acoustic sources must be defined to address these

noise mechanisms. This appears as a necessary price to pay to ensure that the acoustic energy is conserved.

To arrive at this formulation, Euler’s equations are rearranged into Euler’s Wave Equation (EWE). Under

the assumption of perfect gases, a closing equation for the fluid equations is derived, and it is shown that

Euler’s equations can be restated with only two variables. From the linearisation of EWE (LEWE), a wave

equation for the fluctuating velocity is obtained which is equivalent to linearised Euler’s equations provided

that the entropic mode is not generated. This is not particularly constraining for Euler’s equations which

presuppose an adiabatic flow. LEWE is thus more general than the equation of Lilley et al. (1972).

For a parallel mean flow, the equivalence of the two equations is verified numerically on a configuration

exhibiting an instability wave. Taking good advantage of the energy conservation property of self-adjoint

operators (Möhring, 1999), several stable approximations of LEWE are proposed. Then, by opting for

a definition of the acoustic potential based on the momentum rather than on the velocity, an acoustic

analogy is constructed. The propagation operator so formed corresponds to the wave equation of Pierce

(1990), whose operational relevance is greatly enhanced by the novelty of a source term. It is only by

choosing this definition of the acoustic potential that the equivalence of potential acoustics and exact

ray formalism (Foreman, 1989) could be formally demonstrated. The choice in favour of this original

convention for acoustic potential is reinforced through this. The sound field calculated with Pierce’s

equation is compared with other stable propagation operators on a benchmark case, and its agreement with

the reference solution obtained with Lilley’s equation is found satisfactory. While Pierce’s equation and

Phillips’ equation (1960) have the same wave operator, it was found that their predictions differ greatly.

The paramount importance of judiciously choosing the acoustic variable is emphasised through this. It has

not been proven that the definition of the acoustic potential used here offers the best approximation of the

acoustic field, and other definitions of acoustic potentials, such as the fluctuating enthalpy (Howe, 1975a),

could be explored in future investigations. Thanks to the development of the PROPA in-house code, the

stability of the propagation operators that have been proposed could be validated. The accuracy of the

different formulations are compared on a test case, which due to the inherent limitations of PROPA that

is very greedy in RAM, considers a simple configuration that extends over a relatively small calculation

domain. A more thorough comparative study would require the use of a more advanced development

environment such as provided by the FreeFEM open source libraries (Hecht, 2012).
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The second part of this thesis illustrates how the acoustic analogy formed from Pierce’s equation can ad-

vantageously be used to reformulate existing jet noise models. The targeted application is the prediction

of the noise radiated by the jet of an aircraft engine installed under the wing. Due to the complexity of

the flow exhausting from such a turbofan engine, only a statistical description of the flow is numerically

achievable, and the usual methods for simulating acoustic propagation are rendered inoperable. The ad-

joint method, initially introduced by Lagrange (1761) and reformulated for jet noise by Tam and Auriault

(1998), ingeniously overcomes this difficulty by using the reciprocity principle. This study reviews this

technique as meticulously as possible by this author, and compares it to the competing and more intuitive

technique of flow reversal. These two techniques, the adjoint method and flow reversal, are then applied

to Pierce’s equation and Lilley’s equation. While the adjoint method is always exact, flow reversal only

applies to self-adjoint equations such as Pierce’s equation. As a result, the use of Pierce’s wave equation

has several major advantages in this context. Since flow reversal does not require the development of anti-

causal boundary conditions, the numerical resolution of the adjoint field associated with Pierce’s equation

is simplified, and existing numerical tools can be used to this end. Furthermore, Pierce’s wave equation is

scalar and its expression is extremely simple, so that the computational cost associated with its resolution

is minimal. This is an undeniable advantage when solving problems with a large number of degrees of

freedom as encountered in industrial applications. Finally, its self-adjoint nature guarantees the stability

of the propagation problem. This seems to have been the stumbling block preventing a more widespread

use of the numerical resolution of adjoint equations until now. As a matter of fact, Lilley’s equation and

linearised Euler’s equations used so far in the adjoint formulations (Tam and Auriault, 1998) describe

the instability mode, and approximated analytical methods of the WKBJ type have been privileged to a

numerical resolution of the equations (Goldstein, 2003).

In order to demonstrate the viability of using Pierce’s acoustic analogy to reformulate jet noise models, the

turbulent mixing noise model of Tam and Auriault (1999) has been rewritten for the acoustic potential.

A methodology to consistently transpose into this framework other noise source modellings, such as the

broadband shock-associated noise (BBSAN), has been sketched, and future work will have to prove its

appropriateness. To indicate a possible way of implementing the method, that is compatible with the

requirements of the aeronautics industry, a calculation strategy based on the commercial software Actran

TM has been implemented and carefully detailed. A realistic turbofan engine geometry is considered as

a proof of concept and different adjoint fields could be computed in near and far field in times compatible

with engineering requirements. Future work will have to focus on implementing the entire prediction chain,

from the calculation of the RANS solution to the noise spectrum, and to validate each step. The presence

of surfaces in acoustic propagation can be taken into account by the adjoint method as formulated here,

this represents a major improvement over the original formulation of Tam and Auriault (1998), and awaits

to be carried out and validated in concrete applications. The adjoint method reveals its full potential

when the noise sources are only known statistically, and has no rival when the acoustic propagation

cannot be solved analytically. This technique is moreover general and can be used to tackle the acoustic

propagation of all kind of sound sources. The same adjoint fields would thus allow the computation of

the sound propagation of all aircraft engine noise sources. This approach treats the sound propagation

independently of the noise generation mechanisms, and the adjoint fields fully characterise a propagation

medium. In a sense, with the decoupling achieved in the noise computation, this method can be seen as

a logical extension to the acoustic analogies.
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A Conventions and formulae

A.1 Convention for the Fourier transform

In this study, a non-unitary Fourier transform is considered in time,

F (x, ω) =

ˆ

R

dt f(x, t)e+iωt and f(x, t) =
1

2π

ˆ

R

dω F (x, ω)e−iωt (A.1)

and in space,

f̂(k, t) =

ˆ

Rn

dx f(x, t)e−ik·x and f(x, t) =
1

(2π)n

ˆ

Rn

dk f̂(k, t)e+ik·x (A.2)

where n is the dimension of the space considered, x and t are the position and the time, ω corresponds

to the pulsation and k is the wave number. If f is a generic function of space and time, F is its Fourier

transform in time and f̂ in space. Both transformation may possibly be achieved simultaneously,

F̂ (k, ω) =

ˆ

R

dt
ˆ

Rn

dx f(x, t)ei(ωt−k·x) and f(x, t) =
1

(2π)n+1

ˆ

R

dω
ˆ

Rn

dk F̂ (k, ω)e−i(ωt−k·x) (A.3)

The space-time Fourier transform of the one dimensional advection equation,

∂f(x, t)

∂t
+ a

∂f(x, t)

∂x
= δ(x− ξ)δ(t− τ) (A.4)

is considered to observe how these conventions apply on PDE. Here a is the advection speed, ξ and τ are

the reference position an time of the impulsive source term considered. If the Fourier transform in time

is done first,
ˆ

R

dt

{
∂f(x, t)

∂t
+ a

∂f(x, t)

∂x
= δ(x− ξ)δ(t − τ)

}
eiωt (A.5)

Since x and t are two independent variables, derivation in space and time integration may be switched,

ˆ

R

dt
∂f(x, t)

∂t
eiωt + a

∂

∂x

(
ˆ

R

dt f(x, t)eiωt

)
= δ(x− ξ)eiωτ (A.6)

Integrating by parts and because real signal have a finite time support, the first term can be recast into,

ˆ

R

dt
∂f(x, t)

∂t
eiωt =

[
f(x, t)eiωt

]t=+∞

t=−∞
−
ˆ

R

dt f(x, t)
∂eiωt

∂t
= −iω

ˆ

R

dt f(x, t)eiωt = −iωF (x, ω) (A.7)
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The advection equation therefore writes in the frequency domain as,

−iωF (x, ω) + a
∂F (x, ω)

∂x
= δ(x − ξ)eiωτ (A.8)

The Fourier transform in space is analogous to the one in time but with an opposite sign. Finally these

convention turn the advection equation in the wave number - pulsation domain (k , ω) into,

{−iω + iak} F̂ (k, ω) = ei(ωτ−kξ) (A.9)

Note that throughout this work, the upper/lowercase convention is not systematically followed for the

sake of convenience.

A.2 Fourier transform in time of Green’s function

Different time Fourier transform definitions for Green’s functions are possible (Chong, 2016), the one

chosen for this study takes benefit from the time-shift invariance. Let xs, xm and ts, tm be respectively

the source, microphone positions and corresponding times. Source-observer Green’s functions are defined

in the frequency domain as G(xm, ω)
xs and in the time domain as g(xm, tm)

xs,ts ≡ g(xm, τ )
xs , where τ ≡ tm − ts

is the source-observer time-shift. Fourier transform of Green’s functions are thus defined as,

G
(xm, ω)
xs =

ˆ

R

dτ g(xm, τ )
xs eiωτ =

ˆ

R

dτ g(xm, ts + τ )
xs,ts eiωτ (A.10)

and,

g
(xm, tm)
xs,ts = g

(xm, τ )
xs =

1

2π

ˆ

R

dω G
(xm, ω)
xs e−iωτ (A.11)

A.3 Free field Green’s functions for Helmholtz’s equation

Two dimensional analytical solutions can be obtained by integration of the three dimensional analytical

solution (Ehrenfried, 2004, §6.6),

Wave equation Green’s function

{
1

a20

∂2

∂t2
−∆

}
Gxs,ts(x, t) = δ(x− xs)δ(t− ts)

G3D
xs,ts(x, t) =

δ
(
t− ts − |x− xs|/a0

)

4π|x− xs|

G2D
xs,ts =

H
(
t− τ − |x− y|/a0

)

2π
√
(t− τ)2 − |x− y|2/a20

Table A.1: δ is the Dirac delta function, H corresponds to the Heaviside step function.

and according to the Fourier transform convention considered here,
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Wave equation Green’s function

{(
−i ω
a0

+M0 · ∇
)2

−∆

}
Gxs

(x) = δ(x− xs)

G3D
xs

(x) = exp

(
−i ω
a0

M 0 · (x− xs)

1−M2
0

) exp

(
i

1

1−M2
0

ω

a0
rxs

)

4πrxs

G2D
xs

(x) =

i exp

(
−i ω
a0

M 0 · (x− xs)

1−M2
0

)

4
√
1−M2

0

H
(1)
0

(
1

1−M2
0

ω

a0
rxs

)

where, rxs
=
√
(1 −M2

0 )|x− xs|2 + (M 0 · (x− xs))2

Table A.2: δ is the Dirac delta function, and H(1)
0 is the Hankel function of first kind with order zero.

A.4 Choice of the scalar product

Let a and b be two vectors of a space Ω and H a definite positive symmetric matrix. If problems in the

time domain are considered, a real valued scalar product <,>H induced by H may be introduced,

< a, b >H =

ˆ

Ω

dx
ˆ

R

dt a(x, t) ·H(x, t) · b(x, t) (A.12)

When a frequency domain problem is investigated, the symmetry of the H matrix needs to be hermitian,

that is H = HT ∗, where T is the matrix transpose and ∗ is the element-wise complex conjugation. The

hermitian scalar product <,>∗H induced by H may then be defined as,

< a, b >∗H =

ˆ

Ω

dx a(x, ω)
∗ ·H(x, ω) · b(x, ω) (A.13)

Notice that hermitian symmetry applies on the scalar product < b,a >∗H= (< a, b >∗H)∗. The canonical

scalar product are given by defining H as the identity matrix, they express as,

< a, b > =

ˆ

Ω

dx
ˆ

R

dt a(x, t) · b(x, t) and < a, b >∗ =

ˆ

Ω

dx a(x, ω)∗ · b(x, ω) (A.14)

In most cases there is no ambiguity whether the real or the hermitian scalar product needs to be considered

an the ∗ in index is omitted for legibility.

A.5 Vector identities for the material derivative

From the chosen Fourier transform conventions, if the material derivative is given in the time domain by
D
Dt

=

{
∂

∂t
+ u0 · ∇

}
, then the latter writes in the frequency domain as Du0

= {−iω + u0 · ∇}, were u0

is the mean velocity. To complete this section, recall following identities which useful to settle the adjoint

problem.

< a,
D b

Dt
>= − < Da

Dt
, b > +∇ · (< a, b > u0)− < a, b > (∇ · u0) +

[
< a, b >

]
R

(A.15)
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< a,Du0
(b) >∗= − < Du0

(a), b >∗ +∇ · (< a, b >∗ u0)− < a, b >∗ (∇ · u0) (A.16)

Different higher order derivative of the material derivative are given, they identically apply in time or in

Fourier domain. The special case in which the flow is parallel, i.e. ∇(u/||u||) = 0 simplifies the formulae

in some cases and is discussed.

Gradient of the material derivative1

∀f ∈ K, ∀u0 ∈ K
n, ∇(Du0(f)) = Du0(∇f) + (∇u0)

T∇f

when ∇(u0/||u0||) = 0, ∇(Du0
(f)) = Du0

(∇f) +
(
∇f · u0

||u0||

)
∇||u0||

(A.17)

Divergence of the material derivative 23

∇ ·
(
Du0

(v)
)
= Du0

(∇ · v)− (∇× u0) · (∇× v) +
1

2

[
∆(u0 · v)− u0 ·∆v −∆u0 · v

]

∇ ·
(
Du0

(v)
)
= Du0

(∇ · v) + tr((∇u0) · (∇v))

when ∇(u0/||u0||) = 0, ∇ ·
(
Du0(v)

)
= Du0(∇ · v) +

(
(∇v) u0

||u0||

)
· ∇||u0||

(A.18)

Curl of the material derivative4

∇×
(
Du0

(v)
)
= Du0

(∇× v) + (∇ · u0)(∇× v)− (∇u0) · (∇× v)−∇×
(
(∇u0)

T · v
)

(A.19)

Laplacien of the material derivative5

when ∇(u0/||u0||) = 0, ∆(Du(f)) = Du(∆f) + 2

(
∇(∇f) u

||u||

)
· ∇||u||+

(
∇f · u

||u||

)
∆||u|| (A.20)

Derivation along the flow direction of the material derivative6

when ∇(u0/||u0||) = 0,
(
∇Du0

(v)
) u0

||u0||
= Du0

((
∇v
) u0

||u0||

)
+

(
u0

||u0||
· ∇||u0||

)
(∇v) u0

||u0||
(A.21)

A.6 Some classical vector identities

In the formulae presented hereafter f , g and h correspond to scalar fields in a space K (R or C), u, v, w,

x and z are vector fields defined in Kn where n ∈ N, T and I are tensor field defined in Kn×n. The tensor

1Use of formula (A.63) and of the symmetry property of the Hessian tensor (i.e. (∇∇f)T = ∇∇f).
2Green’s vector identity is used: ∀u, v ∈ Kn, ∇ ·

[

(u · ∇)v
]

= 1/2
[

∆(u · v) + u ·∆v −∆u · v
]

+ ∇ ·
[

(∇× v) × u
]

,

the RHS last term needs to be redraft into, ∇ ·
[

(∇× v)× u
]

= u · (∇ ×∇ × v) − (∇ × u) · (∇ × v) = u · ∇(∇ · v) − u ·
∆v − (∇× u) · (∇× v), and hence (A.18). The formula involving the trace operator is demonstrated with (A.70).

3Starting from ∇·(u·∇v) = ∇·((∇v)u), together with the formula (A.41), then ∇·(u·∇v) = (∇·((∇v)T ))·u+∇v : ∇u.
Making use of (A.59) and (locally) decomposing u into its norm and its unitary vector, one obtains, ∇ · (u · ∇v) =
u · (∇(∇ · v)) + ((∇v) u

||u||
) · ∇||u||, and finally the divergence of the material derivative.

4Consider ∇×
(

(∇u) · v
)

= ∇×

(

[

(∇u)− (∇u)T
]

· v

)

+∇×
(

(∇u)T · v
)

and distribute ∇×
(

(∇× u)× v
)

.

5Successive use of (A.18) and (A.17) is made.
6By defining u = uzz, with z = u

||u||
, one can write, ∇

(

(∇v)u
)

z = z · ∇
(

uz{(∇v)z}
)

, equation (A.39) can then be

used to recast the formula into (z · ∇uz)(∇v)z + uz
(

∇{(∇v)z}z
)

= (z · ∇uz)(∇v)z + u · ∇{(∇v)z}
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product is noted with ‘⊗’ and the double tensor product with ‘:’. The convention for the latter considered

here is T : I = T jiIij = TjiI
ij = T j

i I
i
j = T i

j I
j
i = tr(T · I) = tr(I · T ) = tr(T T · IT ) = tr(IT · T T ). In

this work, the following convention is taken ∀u,v ∈ Kn (u · ∇)v = (∇v)u, so that in a bidimensional

Cartesian system of coordinate,

∇u =

(
∂ui
∂xj

)
=




∂u1
∂x1

∂u1
∂x2

∂u2
∂x1

∂u2
∂x2


 and u⊗ v = (ui vj) =


 u1 v1 u1 v2

u2 v1 u2 v2


 (A.22)

The use of vector calculus is widespread in this work, this section is a toolbox of identities gathered from

different sources (Bonnet and Luneau, 1989; Plaut, 2017) some are also found in the online encyclope-

dia Wikipedia, from the pages Vector calculus7 and Green’s identities8 in particular. Additional useful

formulae may be found in the work of Uosukainen (2011).

Mixed scalar product

u · (v ×w) = w · (u× v) = v · (w × u) (A.23)

u× (v ×w) = (u ·w)v − (u · v)w (A.24)

Jacobi’s identity

u× (v ×w) = (u× v)×w + v × (u×w) (A.25)

(u× v) · (w × x) = (u ·w)(v · x)− (v ·w)(u · x) (A.26)

(u · (v ×w))x = (u · x)(v ×w) + (v · x)(w × u) + (w · x)(u× v) (A.27)

(u× v)× (w × x) = (u · (v × x))w − (u · (v ×w))x (A.28)

(u⊗ v) ·w = u(v ·w) (A.29)

(u⊗ v)
T
= v ⊗ u (A.30)

T : (u⊗ v) = tr
(
T · (u⊗ v)

)
= (T · u) · v (A.31)

(u⊗ v) · (w ⊗ x) = (v ·w)(u ⊗ x) (A.32)

(u⊗ v) : (w ⊗ x) = (v ·w)(u · x) (A.33)

7https://en.wikipedia.org/wiki/Vector_calculus_identities .
8https://en.wikipedia.org/wiki/Green%27s_identities .
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(u ⊗ v)×w = u⊗ (v ×w) (A.34)

w × (u ⊗ v) = (w × u)⊗ v (A.35)

[T × u]
T
= −

[
u× T T

]
(A.36)

∇ · (u⊗ v) = (∇u) · v + u(∇ · v) (A.37)

∇(fv) = f∇v + v ⊗∇f (A.38)

(u · ∇)(fv) = v(u · ∇f) + f(u · ∇)v (A.39)

∇ · (fT ) = f∇ · T + T · ∇f (A.40)

∇ · (Tu) =
(
∇ ·
(
T T
))
· u+ tr

(
T · (∇u)

)
(A.41)

∇ · (∇f) = ∆f (A.42)

∇ · (∇u) = ∆u (A.43)

∇ (∆f) = ∆ (∇f) (A.44)

∇ · (∇× u) = 0 (A.45)

∇× (∇f) = 0 (A.46)

∇× (fu) = f∇× u+∇f × u (A.47)

∇× (u× v) = (∇u)v + u(∇ · v)− (∇v)u− v(∇ · u) (A.48)

∇ · (u× v) = (∇× u) · v − (∇× v) · u (A.49)

Green’s identity (first)

u · ∇f + f∇ · u = ∇ · (fu) (A.50)

Green’s identity (second)

f∆g − g∆f = ∇ · (f∇g − g∇f) (A.51)
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Green’s identity (third)

u ·∆v − v ·∆u = ∇ ·
(
(∇ · v)u + u× (∇× v)− (∇ · u)v − v × (∇× u)

)
(A.52)

Corollary 1

u ·∆v − v ·∆u = ∇ ·
(
(∇v) · u+ u× (∇× v)− (∇u) · v − v × (∇× u)

)
(A.53)

Corollary 2

∇ ·
[
(∇v) · u− (∇ · v)u

]
= ∇ ·

[
(∇u) · v − (∇ · u)v

]
(A.54)

Corollary 3

∆(u · v) = u ·∆v − v ·∆u + 2∇ ·
(
(∇u) · v + v × (∇× u)

)
(A.55)

Corollary 4

u · ∇(∇ · v)− v · ∇(∇ · u) = ∇ ·
(
u(∇ · v)− v(∇ · u)

)
(A.56)

(∇v)u + (∇u)v = ∇(u · v) + (∇× v)× u+ (∇× u)× v (A.57)

∇(u · v) = (∇u)T · v + (∇v)T · u (A.58)

∇ (∇ · u) = ∇ ·
(
(∇u)T

)
(A.59)

∆(fg) = f∆g + 2∇f · ∇g + g∆f (A.60)

∆(fu) = f∆u+ 2(∇u) · ∇f + u∆f (A.61)

∆u = ∇(∇ · u)−∇×∇× u (A.62)

∇ (u · v) = (∇u)Tv + (∇v)Tu (A.63)

∇× u = ∇u− (∇u)T (A.64)

(∇× u) · v = (∇× u)× v (A.65)

∇× (∇u) = 0 (A.66)

∇× (∇u)T = ∇(∇× u) (A.67)

∀z ∈ K
n,∇z = 0 (∇× T ) · z = ∇× (T T · z) (A.68)
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A.7 Some original identities involving the trace operator ‘:’

Starting from the formula,

∇ · (Tu) =
(
∇ ·
(
T T
))
· u+ T : ∇u

Some alternative writing of the trace operator ‘:’ are proposed. Setting T = ∇u and making use of

(∇× u) × v =
[
(∇u)− (∇u)T

]
v, it can be shown that, ∇ ·

(
(∇u)v

)
= ∇ ·

(
(∇× u) × v + (∇u)Tv

)
.

Distributing the divergence in both member of the equality, using ∇ · (u× v) = (∇×u) · v− (∇× v) ·u,

and the expression involving the trace operator, then

(
∇ ·
(
(∇u)T

))
· v + (∇u) : (∇v) = (∇×∇× u) · v − (∇× u) · (∇× v) + (∇ · (∇u)) · v + (∇u)T : (∇v)

Since ∇ ·
(
(∇u)T

)
= ∇(∇ · u) with the usual relationship ∇ × ∇ × u + ∆u = ∇(∇ · u), the following

formula is shown:

[(∇u)− (∇u)T ] : (∇v) = −(∇× u) · (∇× v) (A.69)

From a corollary of Green’s identity, u ·∆v−v ·∆u = ∇·
(
(∇v) ·u+u× (∇×v)− (∇u) ·v−v× (∇×u)

)

recasting the curl operator with (∇× v)× u =
[
(∇v)− (∇v)T

]
u, then

u ·∆v − v ·∆u = ∇ ·
(
(∇v)T · u− (∇u) · v − v × (∇× u)

)
Using the same recast of the curl operator,

yet reversely, and also ∇(u · v) = (∇u)T · v + (∇v)T · u, this corollary of Green’s identity is obtained,

u ·∆v − v ·∆u = ∇ ·
(
∇(u · v)− 2(∇u) · v − 2v × (∇× u)

)

By distributing the divergence with the formula ∇ · (u× v) = (∇× u) · v − (∇× v) · u hence,

∆(u · v) = u ·∆v − v ·∆u+ 2∇ ·
(
(∇u) · v

)
+ 2(∇× v) · (∇× u)− 2(∇×∇× u) · v

From the equality ∇×∇× u+∆u = ∇(∇ · u) then,

∇ ·
(
(∇u)v

)
=

∆(u · v)− u ·∆v − v ·∆u

2
− (∇× v) · (∇× u) + (∇(∇ · u)) · v

After a simple identification with the formula of the divergence involving the trace operator,

(∇u) : (∇v) = ∆(u · v)− u ·∆v − v ·∆u

2
− (∇× v) · (∇× u) (A.70)

Finally from equation (A.69),

(∇u)T : (∇v) = ∆(u · v)− u ·∆v − v ·∆u

2
(A.71)
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B.1 A toy model to get insight into the adjoint

Summary: The advection equation is investigated with care to understand on this very simple example

how adjoint and FRT are related. It is verified that the adjoint is indeed anti-causal and that the gener-

alised reciprocity principle is working. The link between the temporal and frequency domain formulation

of adjoint is addressed as well.

B.1.1 Time domain formulation

Computation of the adjoint problem

The Green problem for the advection equation for a source set in x = ξ (xi) at time t = τ (tau) writes,

{
∂

∂t
+ a

∂

∂x

}
gξ,τ (x, t) = δ(x− ξ)δ(t − τ) (B.1)

where a represents the advection speed. For the problem to be well-posed, boundary conditions needs to

be settled, 



gξ,τ (x,−∞) = 0

gξ,τ (−∞, t) = 0
(B.2)

Let the adjoint problem be computed with help of the canonical scalar product < , > for an adjoint

source set in x = א (aleph) at time t = ד (daleth). The adjoint Green problem is obtained classically

by projection of the adjoint field gד,א on the PDE of the physical problem to form Lagrange’s identity

(Stone and Goldbart, 2009).

< g†
ד,א ,

{
∂

∂t
+ a0

∂

∂x

}
gξ,τ >=< g†

ד,א , δξ δτ > (B.3)

The adjoint field is chosen here to be the adjoint Green function, this is to directly recover the reciprocity

principle as the derivation will show. By simply detailing previous equation with help of the definition of

the scalar product §A.4,

ˆ ∞

-∞

dt

ˆ ∞

-∞

dx g†
,x)ד,א t)

{
∂

∂t
+ a0

∂

∂x

}
gξ,τ (x, t) =

ˆ ∞

-∞

dt

ˆ ∞

-∞

dx g†
,x)ד,א t)δ(x − ξ)δ(t− τ) (B.4)
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The right-hand side delivers,

ˆ ∞

-∞

dt

ˆ ∞

-∞

dx g†
,x)ד,א t)δ(x − ξ)δ(t− τ) = g†

,ξ)ד,א τ) (B.5)

The left-hand side can be recast by using integration by parts,

ˆ ∞

-∞

dt

ˆ ∞

-∞

dx g†
,x)ד,א t)

{
∂

∂t
+ a0

∂

∂x

}
gξ,τ(x, t) =

ˆ ∞

-∞

dt

ˆ ∞

-∞

dx

[
−
{
∂

∂t
+ a0

∂

∂x

}
g†

,x)ד,א t)

]
gξ,τ (x, t)

+

ˆ ∞

-∞

dx
[
g†

gξ,τד,א

]t=∞

t=-∞

+

ˆ ∞

-∞

dt
[
a0g

†
gξ,τד,א

]x=∞

x=-∞

(B.6)

The boundary conditions of the adjoint problem are defined so to vanish the contour integral terms of

previous expression. Therefore,





gξ,τ (x,−∞) = 0

gξ,τ (−∞, t) = 0
=⇒





g†
(∞+,x)ד,א = 0

g†
,∞+)ד,א t) = 0

(B.7)

The adjoint PDE to the advection equation is formed by the integrand of the remaining volume integral.

It follows that the advection equation is skew-symmetric (skew-self-adjoint),

−
{
∂

∂t
+ a0

∂

∂x

}
g†

,x)ד,א t) = δ(x− −δ(t(א (ד (B.8)

Finally from Lagrange’s identity informed with corresponding Green’s functions and appropriate boundary

conditions the reciprocity principle is recovered,

gξ,τ ,א) (ד = g†
,ξ)ד,א τ) (B.9)

Derivation of the analytical solutions

Direct problem

Because the one dimension advection problem is simplistic, its analytical solution can very straightfor-

wardly be obtained by double Fourier transform. The Fourier of the advection equation has readily been

computed in § A.2 and writes,

{−iω + iak} Ĝξ,τ (k, ω) = ei(ωτ−kξ) (B.10)

The inverse Fourier transform in time is first considered,

ĝξ,τ (k, t) =
1

2π

ˆ

R

Ĝξ,τ (k, ω)e
−iωt dω =

e−ikξ

2iπ

ˆ

R

eiω(τ−t)

−ω + ak
dω (B.11)

This integral can be evaluated with help of the residue theorem. For the integral to be well defined when

τ > t, the contour needs to be closed in the upper half-plane, while when t > τ the integration path needs

to be defined in the lower half-space. The integrand has a real pole in ω = ak. A priori it is possible to

circumvent this singularity by the upper or the lower half-plane. Both possibilities are mathematically

correct. The causality of the direct problem resolves this indecision and leads to the following integral
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contour drawings.

for t < τ : for t > τ :

Re(ω)

Im(ω)

a k

C
+

Re(ω)

Im(ω)

a k

C
−

The contours are defined in a way such that dω runs over R in increasing sense. From Jordan’s lemma, it

can be shown that the contribution from the outer circle tends to zero when its radius tends to infinite.

Since the lace C
+

does not contain any pole, the residue theorem states,

for t < τ : ĝξ,τ (k, t) = 0 (B.12)

The orientation of the lace C
−

is negative and contains one residue. Thus,

ˆ

C
−

eiω(τ−t)

−ω + ak
dω =

ˆ

R

eiω(τ−t)

−ω + ak
dω + 0 = −2iπRes(ak) (B.13)

where, Res(ak) = limz→ak

(
(z − ak) e

iz(τ−t)

−z + ak

)
= −eiak(τ−t) which delivers,

for t > τ : ĝξ,τ (k, t) = e−ikξeika(τ−t) (B.14)

and therefore: ĝξ,τ (k, t) = H(t− τ)e−ikξeika(τ−t)

Considering now the inverse spatial Fourier transform leads to sought answer,

gξ,τ (x, t) =
1

2π

ˆ

R

ĝξ,τ (k, t)e
ikx dk =

H(t− τ)
2π

ˆ

R

eik[(x−ξ)−a(t−τ)] dk (B.15)

gξ,τ (x, t) = H(t− τ)δ
(
(x− ξ)− a0(t− τ)

)
= δ

(
|x− ξ| − a0(t− τ)

)
(B.16)
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ξ

τ

t

x

gξ,τ (x, t) = 1

Adjoint problem

The adjoint problem is identical to the direct one apart from the causality condition and sign change.

The space-time Fourier transform of the adjoint equation writes

{iω − iak} Ĝ†
,k)ד,א ω) = ei(ωד−kא) (B.17)

Again the inverse Fourier transform in time is first considered,

ĝ†
,k)ד,א t) =

1

2π

ˆ

R

Ĝ†
,k)ד,א ω)e

−iωt dω =
e−ikא

2iπ

ˆ

R

e−iω(t−ד)

ω − ak dω (B.18)

Again when ד > t, the contour needs to be closed in the upper half-space, whereas when t > ,ד the

integration path needs to be chosen in lower half-space for the integral to be well defined. Nevertheless

this time, to comply with the anti-causality boundary condition, the lace is chosen to pass around the

real pole by a downward going integration route. Following contour integral paths follows.

for t < :ד for t > :ד

Re(ω)

Im(ω)

a k

C
+

Re(ω)

Im(ω)

a k

C
−

As previously, Jordan’s lemma shows that the contribution of the exterior half-circle vanishes when the

radius increases. The theorem of residue enable then to calculate the value of the integral along the real

axis. The lace C
+

is orientated in positive direction, and

ˆ

C
+

e−iω(t−ד)

ω − ak dω =

ˆ

R

e−iω(t−ד)

ω − ak dω + 0 = 2iπRes(ak) = 2iπe−iak(t−ד) (B.19)
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therefore,

for t < :ד ĝד,א(k, t) = e−ikאeika(ד−t) (B.20)

Since the contour C
−

does not contain any singularity,

for t > :ד ĝד,א(k, t) = 0 (B.21)

Which delivers ĝ†
,k)ד,א t) = H(ד− t)e−ikאe−iak(t−ד)

By inverse spatial Fourier transform, the expression of g†
ד,א is readily obtained,

g†
,x)ד,א t) =

1

2π

ˆ

R

ĝ†
,k)ד,א t)e

ikxdk =
H(ד− t)

2π

ˆ

R

eik[(x−א)−a0(t−ד)]dk (B.22)

g†
,x)ד,א t) = H(ד− t)δ

(
(x − −(א a0(t− (ד

)
= δ

(
|x− +|א a0(t− (ד

)
(B.23)

א

ד

t

x

g†
,x)ד,א t) = 1

Summary for the time-domain analysis

The adjoint problem to the advection equation is given for the classical scalar product and solved. The

adjoint boundary conditions are defined so to cancel the boundary integral appearing in the manipulation

of Lagrange’s identity. From this procedure, it comes that if the direct problem is causal, its adjoint is

necessarily anti-causal. The reciprocity principle is verified from the analytical solutions,

gξ,τ ,א) (ד = g†
,ξ)ד,א τ) (B.24)

For the record,the solution for the direct and adjoint advection problem are,





gξ,τ (x, t) = δ
(
|x− ξ| − a0(t− τ)

)

g†
,x)ד,א t) = δ

(
|x− +|א a0(t− (ד

)
(B.25)

Notice that no resort to time reversal (see eq. (7.3.3) in Morse and Feshbach, 1953; Eisler, 1969) nor

flow reversal (Godin, 1997; Howe, 1975b) was required to achieve the general reciprocity principle. It is

easy to observe from the analytical solutions that the Flow Reversal Theorem would however have given

the correct answer. Note that the advection equation is skew-symmetric and enters into the enlarged

definition of self-adjoint equation as proposed in § 3.2.2. The analysis is performed in the following in the

frequency domain.
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B.1.2 Frequency domain formulation

The Green problem for the advection equation writes in the frequency domain for a pulsation ω as

{
−iω + a

∂

∂x

}
Gξ(x) = δ(x − ξ) (B.26)

To guarantee the uniqueness of the solution of this PDE, a boundary condition needs to be specified. The

causality condition does not apply in the frequency domain, however to be consistent with the problem

set in the time domain, following boundary condition is imposed,

Gξ(−∞) = 0 (B.27)

Anew if the Green adjoint problem is considered for an adjoint source set in x = א (aleph), the adjoint

equations are deduced from Lagrange’s identity. The projection of the adjoint Green function on the

direct problem PDE is,

< G†
א
,

{
−iω + a

∂

∂x

}
Gξ >∗=< G†

א
, δξ >∗ (B.28)

where < , >∗ is the hermitian scalar product. The right-hand side delivers G†
א

∗
(ξ), while the left-hand

side can be recast into,

ˆ ∞

-∞

G†
א

∗
(x)

{
−iω + a

∂

∂x

}
Gξ(x)dx =

ˆ ∞

-∞

[
−
{
−iω + a

∂

∂x

}
G†

א
(x)

]∗
Gξ(x)dx

+
[
a0G

†
א

∗
Gξ

]x=∞

x=-∞

(B.29)

Again, the adjoint boundary condition need to make the contour integral vanish. It follows,

Gξ(−∞) = 0 =⇒ G†
א
(+∞) = 0 (B.30)

The adjoint advection equation is deduced from the remaining volume integrand. And it comes, that in

the frequency domain as well, the advection equation is skew-symmetric.

−
{
−iω + a

∂

∂x

}
G†

א
(x) = δ(x− (א (B.31)

Echoing these definitions in Lagrange’s identity, the reciprocity principle in the frequency domain is

obtained.

Gξ(א) = G†
א

∗
(ξ) (B.32)

Derivation of the analytical solutions

Direct problem

The spatial Fourier transform of the direct advection equation is,

{−iω + iak} Ĝξ(k) = e−ikξ (B.33)
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The inverse spatial Fourier transform enables the computation of the solution.

Gξ(x) =
1

2π

ˆ

R

Ĝξ(k)e
ikx dk =

1

2iπ

ˆ

R

eik(x−ξ)

−ω + ak
dk (B.34)

As previously this integral can be solved with the residue theorem. When ξ > x the integration over k

needs to be conducted in the upper half-space, and conversely when x > ξ, the integration path needs

to be achieved in the lower half-space. For the boundary condition Gξ(−∞) = 0 to be fulfilled, the real

pole k = ω/a needs to be circumvent from above. Eventually similar integration routes C
−

and C
+

are

obtained as for the temporal approach.

for x < ξ: for x > ξ:

Re(k)

Im(k)

ω/a

C
+

Re(k)

Im(k)

ω/a

C
−

This time also, the residue theorem and Jordan’s lemma are used to conclude. Finally,

Gξ(x) = H(x− ξ)e
iω(x−ξ)/a

a
(B.35)

Adjoint problem

The computation of the adjoint problem solution is similar to the solving of the direct problem. Yet with

the boundary condition G†
א
(+∞) = 0, the pole needs to be circumvent from below. After calculations,

G†
א
(x) = H(א− x)e

iω(x−א)/a

a
(B.36)

Summary for the frequency-domain analysis

From this toy example, it is illustrated that adjoint analysis could be achieved as well in the time domain

as in the frequency domain. The reciprocity principle in the frequency domain writes,

Gξ(א) = G†
א

∗
(ξ) (B.37)
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The solutions obtained in the frequency domain,





Gξ(x) = H(x− ξ)e
iω(x−ξ)/a

a

G†
א
(x) = H(א− x)e

iω(x−א)/a

a

(B.38)

verify this fundamental relationship. These solutions are moreover consistent with the time-domain solu-

tion by recalling that δ(ax) = δ(x)/|a|.

Care must be taken to the proper definition of a hermitian scalar product. If a non-hermitian scalar

product was used, the skew-symmetry behaviour of the advection equation would have been lost. And

the conclusion would have been drawn that for the reciprocity to be fulfilled, the sign of the advection

speed a should be changed. This is how the flow reversal theorem (FRT) was introduced (Howe, 1975b).

In turn, the FRT appears more to be a calculus artefact, than a physically general and meaningful law.

B.2 Anti-causality of adjoint Helmholtz’s equation

Summary: The purpose of this section is a reminder that if the direct problem is radiating, its adjoint

is not. Illustration for this is given in the frequency domain for the convected Helmholtz’s equation.

A methodology is proposed moreover to compute the anti-causal solution in the frequency domain by

changing the sign of the pulsation in the PDE.

B.2.1 Green’s function for the direct problem

Introducing the vectorial Mach number M0 = u0/a0, the homogeneous solution F to Helmholtz’s equation

is defined as (
−iω/a0 +M0 · ∇

)2
F (x)−∆F (x) = 0 (B.39)

If F1 and F2 are two independent solutions of the problem, any solution of the homogeneous problem

can be expressed in the (F1,F2) basis as, F (x) = A1 F1(x) + A2 F2(x), where the values of the A1, A2

constants are determined from the boundary conditions. One can verify that the following expressions for

F1 and F2 are independent and are solutions of the homogeneous problem:





F1(x) = exp

(
−i ω
a0

M 0 · x
1−M2

0

) exp

(
i

1

1−M2
0

ω

a0
x̃

)

4πx̃

F2(x) = exp

(
−i ω
a0

M 0 · x
1−M2

0

) exp

(
−i 1

1−M2
0

ω

a0
x̃

)

4πx̃

(B.40)

where x̃ =
√

(1−M2
0 )|x|2 + (M 0 · x)2. Without flow, the boundary condition of the radiating problem

is given by the Sommerfeld conditions. The far-field asymptotic solution to the radiating problem for a

uniform mean flow are given by Tam and Webb (1993) in two dimensions, and by Bogey and Bailly (2002)

in three dimensions. In the frequency domain, boundary conditions for the three-dimensional uniform
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B.2 Anti-causality of adjoint Helmholtz’s equation

flow case are given by

for |x| → ∞, then

{
−iω + vg,∞

(
∂

∂|x| +
1

|x|

)}
F (x) = O

(
1

|x|

)
,

with
vg,∞
a0

=
x̃+M0 · x
|x| From the expression given for F , it can be now deduced that radiating solutions

are given by F ∝ F1, thus that the F2 solution to the Helmholtz’s equation is not a radiating one. The

remaining constant is determined with the forcing term of the problem. It is now possible to define

properly the Green function Gxs
associated with Helmholtz’s radiation problem for a source term in xs

as 



(
−iω/a0 +M0 · ∇

)2
Gxs

(x)−∆Gxs
(x) = δ(x− xs)

for |x| → ∞,
{
−iω + vg,∞

(
∂

∂|x| +
1

|x|

)}
Gxs

(x) = O

(
1

|x|

) (B.41)

for which the solution is uniquely defined as

Gxs
(x) = exp

(
−i ω
a0

M0 · (x− xs)

1−M2
0

) exp

(
i

1

1−M2
0

ω

a0
rxs

)

4πrxs

(B.42)

where rxs
=
√

(1−M2
0 )|x− xs|2 + (M 0 · (x− xs))2. It is interesting to note that for the impulse prob-

lem, the far-field boundary conditions are more than just an asymptotic solution. In the impulse problem,

since the source term is infinitely small, boundaries are always far from the source and the above given far-

field solution is everywhere exact for the Green problem, so that the second-order radiating Helmholtz’s

problem is equivalent to the following first-order problem:

{
−iω + vg

(
∂

∂|x− xs|
+

1

|x− xs|

)}
Gxs

(x) = 0, with
vg
a0

=
rxs

+M0 · (x− xs)

|x− xs|

B.2.2 Green’s function for the adjoint problem

It is well known that Helmholtz’s operator is formally self-adjoint, but that the radiation problem gov-

erned by Helmholtz’s equation is not, due to non-symmetries of the boundary conditions. Thus, the

solution of the adjoint problem is different from the one of the direct problem. This complies with the

reciprocity principle for complex valued scalar functions which can be deduced from Lagrange’s identity

(Alonso and Burdisso, 2007, eq. (48)) (Stone and Goldbart, 2009, § 5.3.1):

Gxs
(xm) = G†∗

xm
(xs) (B.43)

The adjoint solution to the considered problem can be deduced from this previous fundamental relation,

G†
xm

(x) = exp

(
−i ω
a0

M0 · (x− xm)

1−M2
0

) exp

(
−i 1

1−M2
0

ω

a0
rxm

)

4πrxm

(B.44)

where rxm
=
√
(1 −M2

0 )|x− xm|2 + (M0 · (x− xm))2. In turns out that the adjoint solution corre-

sponds to the F2 solution of the homogeneous convected equation studied above. One can verify that this

solution has indeed a non-radiating behaviour in the far-field. From the solution to the direct problem and
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adjoint problem, the classical out-going (causal) and in-going (anti-causal) waves solution of Helmholtz’s

equation without flow can be retrieved:

Gxs
(x) =

exp

(
i
ω

a0
|x− xs|

)

4π|x− xs|
, G†

xm
(x) =

exp

(
−i ω
a0
|x− xm|

)

4π|x− xm|
(B.45)

where the causal and anti-causal behaviour of the solution is more easily seen.

B.2.3 Recovering the anti-causal adjoint solution

From the Green function of the direct problem, it can be seen that the solution is invariant under

source−observer position exchange and flow direction reversal. This is an example where the FRT could

be used. In this study the symmetry of the problem with respect to time is used to simplify the numer-

ical implementation. Unlike symmetries from space on which the FRT relies, the time symmetry of the

operator cannot be violated. Indeed for real-valued signals p(t), their Fourier transform always verify

p(ω) = p∗(−ω). Applying this rule to the reciprocity principle yields

G†
xs
(xm, ω) = G†∗

xs
(xm,−ω) (B.46)

As can be inferred for the case of previously treated convected Helmholtz’s equation, solving the non-

radiating adjoint equation for positive pulsation ω or solving the radiating problem, that is complex

conjugated to the latter, for negative pulsation −ω are equivalent. The generality of this property is

assumed. Instead of developing and coding anti-radiation numerical boundary conditions, standard PML

conditions are used. The anti-causality of the adjoint field is accounted for by changing the sign of the

pulsation ω in the adjoint linear operator L†0. The capability of the adjoint method, using this numerical

trick, to recover the direct field serves as a verification for the latter assumption.
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C Derivation of the wave equations

C.1 Linearised Euler’s wave equation (LEWE)

Calculations to obtain the LEWE are presented, these derivations refer to §2.2 of part I of this script. In

what follows, the primes are omitted in superscript of the fluctuating quantities. The linearisation could

be achieved directly from Euler’s wave equation, but it is found easier to cast anew a wave equation for

the fluctuating velocity u. This equation is referred to as the linearised Euler’s wave equation (LEWE).

The linearisation considered is performed over an unsteady base flow that obeys,





Du0
(ρ0) + ρ0(∇ · u0) = 0 (a0)

ρ0Du0(u0) +∇p0 = 0 (b0)

Du0
(p0) + γp0(∇ · u0) = 0 (c0)

(C.1)

The material derivative along the base flow is introduced, Du0
= ∂/∂t + u0 · ∇. The linearised Euler’s

equations are recalled hereafter for some generic source term (Sρ,Su, Sp) as,





Du0(ρ) +∇ · (ρ0u) + (∇ · u0)ρ = Sρ (a1)

Du0(u) + (∇u0) · u+
∇p
ρ0
− ∇p0

ρ20
ρ = Su (b1)

Du0
(p) +∇p0 · u+ γp0(∇ · u) + γ(∇ · u0)p = Sp (c1)

(C.2)

The expression of LEWE is obtained by combining (b1) and (c1) as Du0
(b1) + (∇u0)

T · (b1) − ∇(c1)
ρ0

.

Let f be scalar, u and v be vectors, the following two vector identities are particularly useful for the

derivations:
∇(fv) ·w = (∇f ·w)v + f(∇v) ·w (d)

∇(v ·w) = (∇v)T ·w + (∇w)
T · v (e)

(C.3)

where following convention (∇w) · v = (v · ∇)w is adopted. Based on the below intermediate steps, from

equation (C.4) to equation (C.8), the derivation of LEWE is fairly straightforward. From (d) and (a0),

Du0

(∇p
ρ0

)
=

Du0
(∇p)
ρ0

+ (∇ · u0)
∇p
ρ0

(C.4)
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From (d), (e) and using (a0) and (c0),

Du0

(
∇p0
ρ20

ρ

)
=
∇p0
ρ20

Du0
(ρ)− (∇u0)

T · ∇p0
ρ20

ρ− a20
ρ0
∇(∇ · u0)ρ+ (2− γ)(∇ · u0)

∇p0
ρ20

ρ (C.5)

And directly from (e):

∇
(
Du0

(p)
)
= Du0

(∇p) + (∇u0)
T · ∇p (C.6)

Based on previous calculations Du0
(b1) writes:

D2
u0
(u) + Du0

((∇u0) · u) +
Du0

(∇p)
ρ0

+
∇p
ρ0

(∇ · u0)−
∇p0
ρ20

Du0
(ρ) +

a20
ρ0
∇(∇ · u0)ρ

+(γ − 2)(∇ · u0)
∇p0
ρ20

ρ+ (∇u0)
T · ∇p0

ρ20
ρ = Du0

(Su)
(C.7)

Whereas (∇u0)
T · (b1)−

∇(c1)
ρ0

derives as:

(∇u0)
T ·Du0

(u) + (∇u0)
T · (∇u0) · u− (∇u0)

T · ∇p0
ρ20

ρ− Du0(∇p)
ρ0

− (∇∇p0) ·
u

ρ0

−(∇u)T · ∇p0
ρ0
− γ∇p0

ρ0
(∇ · u)− a20∇(∇ · u)− γ(∇ · u0)

∇p
ρ0
− γ∇(∇ · u0)

ρ0
p

= (∇u0)
T · Su −

∇Sp

ρ0

(C.8)

Using (a1) , (d) and (e) are used to reformulate the terms depending on ∇p0, following exact reformulation

of the LEE can be obtained:

D2
u0
(u) + Du0

((∇u0) · u) + (∇u0)
T ·Du0

(u) + (∇u0)
T · (∇u0) · u− a20∇(∇ · u)

+(1− γ)∇p0
ρ0

(∇ · u) + ∇p0
ρ20

(∇ρ0 · u)−∇∇p0 ·
u

ρ0
− (∇u)T · ∇p0

ρ0

−γ∇(∇ · u0)

ρ0
p+

a20
ρ0
∇(∇ · u0)ρ+ (1− γ)(∇ · u0)

[
∇p
ρ0
− ∇p0

ρ20
ρ

]

= Du0(Su) + (∇u0)
T · Su −

∇Sp

ρ0
+
∇p0
ρ20

Sρ

(C.9)

The expression involving ∇p are recast with (b1), while (b0) enables to reformulate the ∇p0/ρ0 terms.

Finally, the bellow reformulation of the LEE is obtained:

D2
u0
(u) + Du0

((∇u0) · u) + (∇u0)
T ·Du0

(u) + (∇u0)
T · (∇u0) · u− a20∇(∇ · u)

+(γ − 1)Du0
(u0)(∇ · u) +∇

(
Du0

(u0)
)
· u+ (∇u)T ·Du0

(u0)

+(γ − 1)(∇ · u0)
[
Du0(u) + (∇u0) · u

]
+ a20∇(∇ · u0)

[
ρ

ρ0
− p

p0

]

= Du0
(Su) + (∇u0)

T · Su + (γ − 1)(∇ · u0)Su −
∇Sp

ρ0
− Du0

(u0)

ρ0
Sρ

(C.10)

This equation is very general and apart from the term
(
ρ/ρ0 − p/p0

)
is function of the fluctuating velocity

164
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u only. In fact, this term corresponds to fluctuations of the speed of sound a, since,

a2 =
γp

ρ0
− γp0ρ

ρ20
= a20

(
p

p0
− ρ

ρ0

)
(C.11)

For a parallel base flow, LEWE conveniently simplifies into,

D2
u0
(u) +

[
(∇u0) + (∇u0)

T
]
·Du0

(u) + (∇u0)
T · (∇u0) · u− a20∇(∇ · u)

= Du0
(Su) + (∇u0)

T · Su −
∇Sp

ρ0

(C.12)

C.2 Linearised Euler’s wave equation for the acoustic potential

(LEWE-AP)

LEWE-AP is the the acoustic potential rewriting of LEWE. It is derived for an arbitrary parallel mean

flow. For such a specific mean flow some remarkable simplifications will be first given by noting following

tensor calculus formula,
∇(fv) = f∇v + v ⊗∇f (f)

(a⊗ b)
T
= b⊗ a (g)

(C.13)

where by definition of the tensor product (a⊗ b) · x = a (b · x). Let u0 = u0,zz be the mean velocity

field, where z is a fixed unit vector in the flow direction. Using (f) and (g), then for a parallel mean flow:





(∇u0)
T · v = (v · z)∇u0,z

(∇u0) · v = (v · ∇u0,z)z
(C.14)

And thus for any v: 



(∇u0)
T · (∇u0)

T · v = 0

(∇u0) · (∇u0) · v = 0
(C.15)

Based on this observation, it is easy to show that (∇u0) commutes with the material derivative Du0 .

Moreover for parallel mean flows (a0) implies (u0 · ∇ρ0 = 0), and (d) proves that ρ0 also commutes with

Du0
. Thus LEWE’s expression for parallel mean flows, multiplied by ρ0 is:

D2
u0
(ρ0u) +

[
(∇u0) + (∇u0)

T
]
·Du0

(ρ0u) + (∇u0)
T · (∇u0) · (ρ0u)− γp0∇(∇ · u) = 0 (C.16)

The acoustic propagation is sought as the solution of a potential scalar field φ defined as ∇φ = ρ0u, and

LEWE-AP expresses for an arbitrary parallel mean flow as,

D2
u0
(∇φ) +

[
(∇u0) + (∇u0)

T
]
·Du0

(∇φ) + (∇u0)
T · (∇u0) · ∇φ− γp0∇

(
∇ ·
(∇φ
ρ0

))
= 0 (C.17)

Hereafter equations (C.18) to (C.21) are intermediate results, that are helpful to reformulate in a handy

way LEWE-AP. Firstly, the gradient of the material derivative of a scalar f can be computed from (e),
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using the symmetry property of the Hessian:

∇
(
Du0

(f)
)
= Du0

(∇f) + (∇u0)
T · ∇f (C.18)

And,

D2
u0
(∇f) = ∇

(
D2

u0
(f)
)
− 2(∇u0)

T · ∇
(
Du0

(f)
)
+ (∇u0)

T · (∇u0)
T · ∇f︸ ︷︷ ︸

=0

(C.19)

Similarly,

[
(∇u0) + (∇u0)

T
]
·Du0(∇f) =

[
(∇u0) + (∇u0)

T
]
· ∇
(
Du0(f)

)
− (∇u0) · (∇u0)

T · ∇f

− (∇u0)
T · (∇u0)

T · ∇f︸ ︷︷ ︸
=0

(C.20)

Using below vector calculus formulas,

(∇× u)× v =
[
(∇u)− (∇u)T

]
· v (h) (C.21)

LEWE-AP can be written without more assumptions in following attractive form,

∇
[
D2

u0
(φ) −∇ ·

(
a20∇φ

)]
+ (∇× u0)×

[
∇
(
Du0

(φ)
)
−
[
(∇u0) + (∇u0)

T
]
· ∇φ

]
= 0 (C.22)

LEWE-AP is given in its homogeneous form, the corresponding source term is the same as for LEWE but

multiplied by ρ0.

C.3 Compressible generalisation of Pierce’s equation

In §2.5 of part I, Pierce’s wave equation is derived for a steady and parallel base flow. In the present

section, a compressible generalisation of this wave equation is proposed, it is obtained from a change of

variable of Blokhintzev’s wave equation. Euler’s momentum equation in Crocco’s form serves as a starting

point for this discussion,
∂u

∂t
+
∇(u · u)

2
+ (∇× u)× u+

∇p
ρ

= 0 (C.23)

The flow is then supposed homentropic and potential, and Gibbs’ relation furnishes,

ρ δh = a2δρ = δp (C.24)

where h is the flow enthalpy and expresses for a perfect gas as, h = a2/(γ− 1) with γ the ratio of specific

heats. Following Yates (1978), Euler’s equation can then be recast in,





∂u

∂t
+
∇(u · u)

2
+∇h = 0

Dh
Dt

+ a2∇ · u = 0

(C.25)

with D/Dt = ∂/∂t+u · ∇ is the material derivative. A linearisation is then performed following a simple

Reynolds decomposition of the flow, and u = u0 + u′ and h = h0 + h′. The fluctuations are assumed

166



C.4 Recovering the pressure p from the acoustic potential φ

potential and Blokhintzev’s acoustic potential ψ is introduced, such as u′ = ∇ψ. The base flow is steady

and is solution of the problem, 



∇(u0 · u0) + 2∇h0 = 0

u0 · ∇h0 + a2∇ · u0 = 0

(C.26)

As for the first order fluctuations, they are given by





Du0(ψ) + h′ = 0

Du0
(h′) +∇h0 · ∇ψ + a20∆ψ + (γ − 1)(∇ · u0)h

′ = 0

(C.27)

where second order interactions are omitted in this description of sound propagation. Multiplying the

second equation by ρ0/a20, and reformulating following term,

ρ0
a20

Du0(h
′) = Du0

(
ρ0
a20
h′

)
− h′∇

(
ρ0
a20

)
· u0 and ∇

(
ρ0
a20

)
· u0 = (γ − 2)

ρ0
a20

(∇ · u0) (C.28)

leads to the compressible Blokhintzev equation, defined for u′ = ∇ψ

Du0

(
ρ0
a20

Du0(ψ)

)
−∇ · (ρ0∇ψ) +

ρ0
a20

(∇ · u0)Du0(ψ) = 0 (C.29)

That can alternatively be expressed as,

Du0

(
1

a20
Du0

(ψ)

)
− 1

ρ0
∇ · (ρ0∇ψ) = 0 (C.30)

Assuming following change of variable,

δψ =
ρ0
a20
δφ (C.31)

The variant of Blokhintzev’s wave equation given in equation (C.29) is used to propose a compressible

generalisation for Pierce’s wave equation,

D2
u0
(φ) −∇ · (a20∇φ) + (∇ · u0)Du0

(φ) = 0 (C.32)

C.4 Recovering the pressure p from the acoustic potential φ

Many acoustic problems involve propagation on a vortical mean-flow, and one may be interested to use,

though abusively, the simple formalism of acoustic potential in such cases. In §2.5.2 of part I, it is

addressed how the acoustic potential framework can be employed outside of its domain of validity to

tackle sound propagation on arbitrary mean flows. Because the propagation problem is approximated

it is overdetermined, and different non-equivalent ways to recover the pressure field p from the acoustic

potential φ exist. It is shown in this paragraph, that with the different approaches, similar results are

obtained. By no means, the differences obtained in the post-processings can explain the aberrant results

obtained for the pressure field p computed with LEWE-AP and presented in §3.3 of part I. LEWE-AP

considers a simplification of the linearised Euler’s equation valid for a parallel mean flow and assumes the
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fluctuating momentum ρ0u be potential, such as ρ0u = ∇φ. Therefore, LEWE-AP is equivalent to,





Du0
(∇φ) + (∇u0) · ∇φ+∇p = ρ0Su

Du0
(p) + γp0∇ ·

(∇φ
ρ0

)
= Sp

(C.33)

Different ways to recover the pressure field p are now reviewed.

1. It is seen, that the linearised energy equation can straightly be used to post-process the pressure

field p from the acoustic potential φ. The momentum fluctuations ρ0u are directly rebuilt from the

acoustic potential φ, and the energy equation does not directly rely on the gradients of the mean

flow. This expression is then valid regardless of the considered mean flow, whether it is potential or

not. This strategy is a general one, and has already been validated for the wave equations based on

the fluctuating velocity u, see the validation performed figure 3.8 in §3.2 of part I.

2. Without more assumptions, the linearised momentum equation can be rearranged into,

∇
(
Du0

(φ) + p
)
+ (∇× u0)×∇φ = ρ0Su (C.34)

Notice that the term (∇ × u0) × ∇φ that appears here, has been identified in the literature to be

responsible for the mode conversion (Yates, 1978; Perez Bergliaffa et al., 2004). It is questionable

whether this term should be kept or not in an acoustic potential theory. The latter has not been

neglected in the derivations of LEWE-AP, and the above expression is investigated as an attempt

to consistently recover p.

3. By neglecting the flow mean vorticity, the linearised momentum equation LHS becomes potential,

so must be also the RHS. As in §2.5.2 of part I, a potential momentum source term Sm is introduced

such that ∆Sm = ∇ · (ρ0Su). The linearised momentum equation can then be recast in,

p = −Du0
(φ) + Sm (C.35)

A similar expression is derived by Pierce (1990, eq. (16)), and this relation is referred to in the

following as asymptotic expression.

These three post-processings formulae are tested and compared, so to estimate their influence on the

pressure field p. The recovering of the solution obtained with LEWE-AP on the benchmark for a Strouhal

number of St = 0.2, presented in figure 3.15 in §3.3, is investigated. Figure C.1 presents the real part of

the pressure field p obtained from the acoustic potential φ computed with LEWE-AP and rebuilt with

three different presented methods.

Extracts for these three solutions are compared in C.2. Note that because the reconstruction procedure

involving the mean-flow vorticity, equation (C.34), is defined within a constant, the pressure field p

computed in that way needs to be recalibrated. The calibration constant is defined so that in the outer-

edge of the PML zone p vanishes as illustrated in figure C.2.

The striae in the pressure field p computed with help of the linearised energy equation, visible in figures

C.1 and C.2, are a result of the numerical inversion of the material derivative Du0
(p). Such a behaviour

has not been observed for the pressure field p computed for the wave equations based on u and presented

in §3.3. Differences are observed in the computed field p, yet qualitatively the solutions are alike. The

reconstruction procedure is believed not to play a predominant role, and in the present study, when the
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linearised energy equation linearised momentum equation asymptotic expression

Figure C.1: Real part of the fluctuating pressure p obtained with LEWE-AP and recovered from the
acoustic potential φ with the different methods. Colour scales are identical, the fifty-cells wide PML
region is shown and delimited with solid lines.

Figure C.2: Extraction along x1/σ = 0.0 (left), x2/σ = 1.0 (center) and x2/σ = 12.0 (right) of the
fluctuating pressure p obtained from the acoustic potential φ computed with PEWE with different recon-
struction procedures. linearised energy equation, asymptotic expression, expression including
mean-flow vorticity, expression including mean-flow vorticity with recalibration.

acoustic potential φ is computed with LEWE-AP, the linearised momentum equation is used (involves a

recalibration of φ). When the acoustic potential φ is computed with Pierce’s wave equation, the asymptotic

expression is used to rebuilt the pressure field p.

The surprising acoustic predictions obtained with LEWE-AP, seem consequently not to be caused by the

procedure used to recover the pressure p. Figure C.3 presents for the studied case, the acoustic potential

field φ obtained for LEWE-AP and for Pierce’s wave equation. Significant differences in the real part of

the acoustic potential field φ presented are observed. When the root mean square of the acoustic potential

φ is computed, an abnormal decrease of the acoustic intensity is seen, and LEWE-AP clearly is ill-posed.
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LEWE-AP Pierce’s wave equation

Figure C.3: Acoustic potential fields φ computed with LEWE-AP (left) and Pierce’s wave equation (right)
corresponding to the benchmark configuration for a Strouhal number of St = 0.2. The real part (top)
and the absolute part (bottom) of the acoustic potential φ are presented. Colour scales are identical, the
fifty-cells wide PML region is delimited with solid lines.
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D Eigenvalue analysis of Euler’s equations

The different families of solutions of Euler’s equation are recalled here. Effort to recast these results in

vector form is made, and the flow velocity u, the speed of sound a and the entropy s are considered as

the dependence variables. So that for a perfect gas Euler’s equations reads,





Du

Dt
+

2a

γ − 1
∇a− a2

γr
∇s = 0

Da
Dt

+
γ − 1

2
a∇ · u = 0

Ds
Dt

= 0

(D.1)

Euler’s wave equation (EWE) that is a reformulation of Euler’s equation with the flow velocity u and

speed of sound a only. Some insights in the structure of the solution of EWE is sought.

D.1 Classification of the linearised operator

Euler’s equations form a system of quasilinear first order partial differential equations. To provide a

classification of this system of differential equations, these equations are linearised with a Reynolds de-

composition of the flow variables u = u0 + u′, a = a0 + a′ and s = s0 + s′,





Du0(u
′)+(∇u0) · u′ +

2a0
γ − 1

∇a′+
[
2∇a0
γ − 1

− 2a0∇s0
γr

]
a′ − a20

γr
∇s′ = 0

Du0
(a′)+u′ · ∇a0 +

γ − 1

2
a0(∇ · u′)+

γ − 1

2
(∇ · u0)a

′ = 0

Du0
(s′)+u′ · ∇s0 = 0

(D.2)

where Du0
= ∂/∂t+u0 · ∇ is the material derivative along the mean flow u0. In this analysis a three di-

mension space is considered, so that u0 = (u0,1, u0,2, u0,3)
T , and the state vector is q = (u′1, u

′
2, u

′
3, a

′, s′)
T

so that these equations rewrite in matrix form as,

∂q

∂t
+A1 ·

∂q

∂x1
+A2 ·

∂q

∂x2
+A3 ·

∂q

∂x3
+B · q = 0 (D.3)
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with,

A1 =




u0,1
2a0

γ−1 − a2
0

γr

u0,1

u0,1
γ−1
2 a0 u0,1

u0,1




A2 =




u0,2

u0,2
2a0

γ−1 − a2
0

γr

u0,2
γ−1
2 a0 u0,2

u0,2




A3 =




u0,3

u0,3

u0,3
2a0

γ−1 − a2
0

γr
γ−1
2 a0 u0,3

u0,3




(D.4)

The nature of the solution is determined by the higher order fluxes in black. The system is hyperbolic if

each matrix Ai is diagonalisable with real eigenvalues. From their expression, it is seen that the matrices

Ai can be individually diagonalised considering the decomposition,

Ai = V i ·Di · V −1
i with i = 1, 2, 3 (D.5)

The eigenvalues of Ai are the non-zeros terms of the diagonal matrix Di and write,

Di = diag(u0,i, u0,i, u0,i, u0,i + a0, u0,i − a0) (D.6)

they are real and linearised Euler’s equations are therefore hyperbolic. The eigenvectors V i for which

each flux is diagonal are however different in each direction, so that a simultaneous diagonalisation of

the fluxes is not possible. These eigenvalues correspond to the characteristic speeds of the fluxes, the

invariants that are transported by this hyperbolic system are now sought. The fluxes for the quantity

Qi = V −1
i · q are independently computed in each directions,

V −1
i ·

∂q

∂t
+Di · V −1

i ·
∂q

∂xi
+V −1

i ·B = 0 (D.7)

∂V −1
i · q
∂t

+Di ·
∂V −1

i · q
∂xi

−∂V
−1
i

∂xi
· q − ∂V −1

i

∂t
· q + V −1

i ·B = 0 (D.8)

and S̃ =
∂V −1

i

∂xi
· q +

∂V −1
i

∂t
· q − V −1

i ·B is introduced, so that in each directions the characteristic form

of Euler’s linearised equations is obtained,

∂Qi

∂t
+Di ·

∂Qi

∂xi
= S̃ (D.9)
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where,

Q1 =




u′2

u′3

s′

2

γ − 1
a′ + u′1 −

a0
γr
s′

2

γ − 1
a′ − u′1 −

a0
γr
s′




Q2 =




u′1

u′3

s′

2

γ − 1
a′ + u′2 −

a0
γr
s′

2

γ − 1
a′ − u′2 −

a0
γr
s′




Q3 =




u′1

u′2

s′

2

γ − 1
a′ + u′3 −

a0
γr
s′

2

γ − 1
a′ − u′3 −

a0
γr
s′




(D.10)

The entropy mode s′ is convected at the characteristic speed u0. The transverse fluctuating velocities

u′i are transported at the same speed, however the components of the fluctuating vector are twisted so

that it does not seem possible to derive a conservation equation for this variable (note that the modified

transport equation ∂u′/∂t+(∇×u′)×u0 = 0 also fails). In addition the quantity u′i±
(

2

γ − 1
a′ − a0

γr
s′
)

propagates in each direction with the local acoustic group velocity u0,i±a0 and corresponds to the acoustic

mode.

D.2 Computation of the nonlinear fluxes

The characteristic writing of Euler’s equations was first achieved by Riemann (1860) who thereby built

the first valid model for nonlinear sound propagation. Drawing inspiration from (Lappas et al., 1999), a

generalisation of Riemann’s invariants is computed from Euler’s equation. Introducing n, an arbitrary

but constant vector, the two first equations of (D.1) are combined to form,

Du

Dt
+ a(∇u) · n+

2

γ − 1

Da
Dt

n+
2a

γ − 1
∇a = a(∇u) · n− a(∇ · u)n+

a2

γr
∇s (D.11)

By defining,

Gn = a(∇u) · n− a(∇ · u)n+
a2

γr
∇s (D.12)

and introducing the quantity,

R = u+
2a

γ − 1
n (D.13)

A vectorial writing of Riemann’s invariants is obtained,

∂R

∂t
+ (∇R) · (u+ an) = Gn (D.14)

where it is seen that the quantity R is conserved in the direction u + an provided Gn vanishes. Note

that the RHS is exactly zero in a mono-dimensional isentropic configuration, as studied by Riemann, but

non-zero in general. Moreover, the invariant (D.13) corresponds to a nonlinear recast of the two last

invariants given in (D.10). To be closer to the linearised expression found in (D.10), the nonlinear flux

as/(γr)n can be added to the invariant R given in equation (D.13), but at the cost of a more complex

secular term Gn.

The nonlinear flux associated with the entropy variable is directly obtained from the conservation equation,

∂s

∂t
+ (∇s) · u = 0 (D.15)
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It is seen that entropy is conserved along the flow.

From previous linear analysis, it is seen that the fluctuations of the transverse velocity are also convected

with the flow movement. However, as for the linearised case a conservation equation for the transverse

velocity components is tedious to derive. Simply note, that a transport equation for the vorticity ω = ∇×u
can be derived from Crocco’s form of Euler’s equation,

∂u

∂t
+
∇(u · u)

2
+ (∇× u)× u+

∇a2
γ − 1

− a2∇s
γr

= 0 (D.16)

By considering its curl, following transport equation is obtained,

∂ω

∂t
+ (∇ω) · u = Hω (D.17)

where,

Hω = (∇u) · ω − (∇ · u)ω +
∇a2 ×∇s

γr
(D.18)

One remarks that the RHS Hω possesses a structure comparable to Gn.

174



E The normalised Möhring equation

In this appendix, all considered quantities are non-linear. Möhring’s equation is obtained as an exact

reformulation of the Navier Stokes equations written in Crocco’s form1,





∂ρ

∂t
+∇ · (ρu) = Sρ

∂u

∂t
+∇B = ∇ ·Σ+ T∇s− ω × u+ Su

ρ
DB
Dt

=
∂p

∂t
+∇ · (Σ · u)−∇ · q + ρu · Su +

1

γ − 1
Sp −

a2

γ
Sρ

(E.1)

where, D/Dt = ∂/∂t + u · ∇ is the material derivative, Σ denotes the friction-related stress tensor,

q = −λ∇T is the heat flux, ω = ∇× u is the vorticity, and Sρ, Su, Sp are generic forcing terms for the

Navier-Stokes equation when written for the principal variables ρ, u and p. To simplify the derivations,

let S1 = ∇ · Σ + T∇s − ω × u + Su and S2 = ∇ · (Σ · u) − ∇ · q + ρu · Su + 1
γ−1Sp − a2

γ Sρ. Since

ρ = ρ(p, s), the continuity equation can be recast into,

∂ρ

∂t
=
∂ρ

∂p

∣∣∣∣
s

∂p

∂t
+
∂ρ

∂s

∣∣∣∣
p

∂s

∂t
=

ρ

a2
DB
Dt
− S2

a2
+ ρs

∂s

∂t
(E.2)

where a =
√

∂p
∂ρ

∣∣
s

is the speed of sound, and ρs =
∂ρ
∂s

∣∣
p
. Through integration by part, previous expression

can be related to ρ∂u/∂t with,

ρ
∂u

∂t
=
∂ρu

∂t
− u

∂ρ

∂t
=
∂ρu

∂t
− ρu

a2
DB
Dt

+
u

a2
S2 − ρsu

∂s

∂t
(E.3)

Additionally the LHS can be recast with the momentum equation leading to,

∂ρu

∂t
− ρu

a2
DB
Dt

+ ρ∇B = ρS1 −
u

a2
S2 + ρsu

∂s

∂t
(E.4)

By dividing previous expression by −ρT , the normalisation factor, and adding −ρu ∂
∂t

(
1
ρT

)
on each side

1With B = h+v2/2 the momentum equation is recast with Tδs = δh− δp
ρ

and (∇× v)×w = (∇v) ·w− (∇v)T ·w, the

energy equation ρDe
Dt

+ p∇ · v+∇ · q =
Sp

γ−1
(e.g. (Delfs, 2016, eq. 37 & eq. 43)) is reformulated with δe = δh+ p

ρ2
δρ− δp

ρ
.

The use of the continuity equation and the momentum equation projection along u with u · Du

Dt
= 1

2
Du

2

Dt
leads to the energy

equation for B.
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Chapter E : The normalised Möhring equation

of the equation, the normalised momentum equation is obtained,

− ∂

∂t

(
ρu

ρT

)
+

ρu

ρT a2
DB
Dt
− ρ

ρT
∇B = − ρ

ρT
S1 +

u

ρTa2
S2 −

ρsu

ρT

∂s

∂t
− ρu ∂

∂t

(
1

ρT

)
(E.5)

The final step leading to Möhring’s equation is to take the divergence of previous expression. Beforehand

the divergence of the first term is considered separately,

∇ ·
[
∂

∂t

(−ρu
ρT

)]
=

∂

∂t

[
−∇ · (ρu)

ρT
+

ρ

ρ2T
u · ∇ρT

]
=

∂

∂t

[
1

ρT

∂ρ

∂t
− Sρ

ρT
+

ρ

ρ2T
u · ∇ρT

]
(E.6)

Making use of the expression of ∂ρ/∂t gives,

∇ ·
[
∂

∂t

(−ρu
ρT

)]
=

∂

∂t

[
ρ

ρTa2
DB
Dt
− S2

ρTa2
− Sρ

ρT
+
ρs
ρT

∂s

∂t
+

ρ

ρ2T
u · ∇ρT

]
(E.7)

enabling a straight calculation of the divergence of the above expression,

∂

∂t

[
ρ

ρTa2
DB
Dt

]
+∇ ·

[
ρu

ρTa2
DB
Dt
− ρ

ρT
∇B

]
=

∂

∂t

[
S2

ρTa2
+
Sρ

ρT
− ρs
ρT

∂s

∂t
+ ρu · ∇

(
1

ρT

)]

+∇ ·
[
− ρ

ρT
S1 +

u

ρTa2
S2 −

ρsu

ρT

∂s

∂t
− ρu ∂

∂t

(
1

ρT

)]

(E.8)

Replacing S1 and S2 by their expression give the normalised Möhring equation,

∂

∂t

[
ρ

ρTa2
DB
Dt

]
+∇ ·

[
ρu

ρTa2
DB
Dt
− ρ

ρT
∇B

]
= ∇ ·
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− ρ

ρT
Su +

ρu

ρTa2
(u · Su) +

u

ρTa2(γ − 1)
Sp −

u

γρT
Sρ

]

+
∂

∂t

[
ρ

ρTa2
(u · Su) +

1

(γ − 1)ρTa2
Sp +

γ − 1

γρT
Sρ

]
+R

with R = ∇ ·
[
ρ

ρT
ω × u− ρ

ρT
T∇s− ρsu

ρT

∂s

∂t
− u

ρTa2
∇ · q − ρ

ρT
∇ ·Σ+

u

ρTa2
∇ · (Σ · u)− ρu ∂

∂t

(
1

ρT

)]

+
∂

∂t

[
− ρs
ρT

∂s

∂t
− ∇ · q
ρT a2

+
∇ · (Σ · u)
ρTa2

+ ρu · ∇
(

1

ρT

)]

One verifies that in absence of viscous stresses, heat fluxes and for unitary ρT the source term R given by

Möhring (1999) is retrieved and complies with the derivations done by Delfs (2016, § 3.2.2) and Legendre

(2014, § 6.2).
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F A template for Actran TM

In the following section a template to parametrise a simple Actran TM analysis is provided. It relies on

the extensive use of actranpy that is a python-based environment enabling the parametrisation and the

run of Actran TM analyses. As is, the script requires less than 2 GB of RAM and needs few minutes to

run. It has been set-up with Actran TM 20.0 (compatible with 19.0) and python 2.7.5 on a CentOS linux

distribution. To generate and launch the analysis, save this script in a python file, ActranAnalysis.py,

and simply enter following command line in a terminal,

1 actranpy -u VI -x ActranAnalysis.py -n

This analysis computes the bidimensional solution of a point/planar source over a typical jet mean flow.

The script is build up so to enable the acoustic computation of sound source located in or out of the

computational domain. The variable ‘WhichFlowField’, enables to run a classical Actran TM analysis

based on Möhring’s equation, but also to compute the solution of Pierce’s equation with or without

flow reversal (FRT). Some development of Actran TM are on-going, and it will soon be possible in the

future to compute acoustic solution for sources set outside of a computational domain that presents flow

heterogeneities. For now, it is recommended the Infinite Elements (IE) are used and that the mean flow

is uniform at the Non Reflecting Boundary Condition (NRBC). The design of this script would not have

been possible without the invaluable support of César Legendre from Free Field Technologies.

1 import numpy as np

2 import os

3

4 def step(x): # numpy .heaviside is defined from version 1.13.0 of numpy only

5 return 1 * (x > 0) + 0.5 * (x == 0)

6

7 #---------------------------------------------------------

8 # PARAMETRISATION OF THE ANALYSIS

9 #---------------------------------------------------------

10

11 output_folder = ’PandaSeasholtz_2Danalysis ’

12

13 # DEFINITION OF THE SOURCE

14

15 freq_sample = [10, 50, 100] # list of frequency considered

16 source_type = ’cylindrical ’ # ’planar ’,’cylindrical ’: sound source type

17 R = 50 # polar definition of the sound source position

18 incommingWaveAngle = 25.0 # planar /cylindrical source angle wrt . the flow (X axis)

19 source_pos = [R*np.cos(incommingWaveAngle*np.pi /180.0) , R*np.sin(incommingWaveAngle*np.pi

/180.0) ]

20
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21 # DEFINITION OF THE MEAN FLOW

22

23 M0j = 0.7

24 M0inf = 0.3

25 T0j = 500.0 # K

26 T0inf = 300 # K

27 p0 = 103330.0 # Pa

28

29 # CHOICE OF THE BASE FLOW TO PERFORM THE ANALYSIS

30

31 WhichFlowField = ’rhoT_corrected_FRT_flow ’ # ’physical_flow ’, ’rhoT_corrected_flow ’, ’

rhoT_corrected_FRT_flow ’

32

33 # DEFINITION OF THE MESH (jet diameter is unitary )

34 x_min = -15.0

35 x_max = 70.0

36 y_min = -10

37 y_max = 35.0

38

39 elemSizeFluid = 0.15

40 elemSizeFF = 0.2

41 elemSizeDuct = 0.1

42

43 interpOrder = 1 # 1 or 2: interpolation order of the solution

44

45 FF_type = ’IE’ # ’PML ’ or ’IE ’: choice of the Non -Radiating Boundary -Condition (use ’IE’

by default )

46

47 if FF_type ==’IE’:

48 InfiniteElemInterpOrder = 50 # Increase up to 100 when source is close to a corner

49 elif FF_type ==’PML ’:

50 PML_width = 2*np.sqrt (1.4*287* T0inf)/ freq_sample [0] # 2xlambda PML width based on the

largest frequency

51

52 UniformFlowInPML = True # Developments to account for heterogeneous flow in PML when

source is out of the domain are on-going at FFT (june 2020) . When using PML and

sources out of the domain , the flow must be everywhere uniform .

53

54 memoryReguirement_MB = 16000 # maximum RAM memory in MB available to Actran

55

56 #---------------------------------------------------------

57 # START OF THE ACTRANVI ANALYSIS

58 #---------------------------------------------------------

59

60 try :

61 os.mkdir(output_folder)

62 except OSError :

63 print ("Creation of the directory failed ")

64 else:

65 print ("Successfully created the directory ")

66

67 current_path = os.getcwd ()

68 res_path = os.path.join(current_path ,output_folder)

69 os.chdir(res_path )

70

71 actranvi = ActranVI ()

178



72

73 # GENERATION /LOADING OF THE MESH

74

75 if interpOrder ==1:

76 MeshInterp = ’LINEAR ’

77 FieldInterp = ’linear ’

78 elif interpOrder ==2:

79 MeshInterp = ’QUADRATIC ’

80 FieldInterp = ’quadratic ’

81

82 if os.path.isdir(os.path.join( os.path.dirname (os.getcwd ()), ’2D_’+FieldInterp +’

Mesh_unflangedDuct_ ’+FF_type +’.nff ’)): # .nff are considered as directories and not

files

83 [topology ] = actranvi .read_mesh (file=os.path.join( os.path.dirname (os.getcwd ()), ’2D_’+

FieldInterp +’Mesh_unflangedDuct_ ’+FF_type +’.nff ’), load_topology=True)

84 else:

85 [ pid_domain_1] = actranvi .create_points_mesh(method =’custom ’,coordinates =[[0.0 , 0.5,

0.0], [0.0, 0.55, 0.0], [x_min , 0.55, 0.0], [x_min , y_max , 0.0], [x_max , y_max , 0.0],

[x_max , y_min , 0.0], [x_min , y_min , 0.0], [x_min , -0.55, 0.0], [0.0, -0.55, 0.0],

[0.0, -0.5, 0.0], [x_min , -0.5, 0.0], [x_min , 0.5, 0.0]] , topology =None)

86 [ pid_domain_2] = actranvi .link_edges_mesh(element_size=elemSizeDuct ,input ={’topologies ’

: {actranvi . get_topology( id=1 ): {’external_nodes_ids ’: zipped_list (11, 12) }}},

replace_input=False ,sort_by_node_ID=False)

87 [ pid_domain_3] = actranvi .link_edges_mesh(element_size=elemSizeDuct ,input ={’topologies ’

: {actranvi . get_topology( id=1 ): {’external_nodes_ids ’: zipped_list (10, 11) }}},

replace_input=False ,sort_by_node_ID=False)

88 [ pid_domain_4] = actranvi .link_edges_mesh(element_size=elemSizeDuct ,input ={’topologies ’

: {actranvi . get_topology( id=1 ): {’external_nodes_ids ’: zipped_list (9, 10) }}},

replace_input=False ,sort_by_node_ID=False)

89 [ pid_domain_5] = actranvi .link_edges_mesh(element_size=elemSizeDuct ,input ={’topologies ’

: {actranvi . get_topology( id=1 ): {’external_nodes_ids ’: zipped_list (8, 9)}}},

replace_input=False ,sort_by_node_ID=False)

90 [ pid_domain_6] = actranvi .link_edges_mesh(element_size=elemSizeFF ,input ={’topologies ’:

{actranvi .get_topology( id=1 ): {’external_nodes_ids ’: zipped_list (7, 8)}}},

replace_input=False ,sort_by_node_ID=False)

91 [ pid_domain_7] = actranvi .link_edges_mesh(element_size=elemSizeFF ,input ={’topologies ’:

{actranvi .get_topology( id=1 ): {’external_nodes_ids ’: zipped_list (6, 7)}}},

replace_input=False ,sort_by_node_ID=False)

92 [ pid_domain_8] = actranvi .link_edges_mesh(element_size=elemSizeFF ,input ={’topologies ’:

{actranvi .get_topology( id=1 ): {’external_nodes_ids ’: zipped_list (5, 6)}}},

replace_input=False ,sort_by_node_ID=False)

93 [ pid_domain_9] = actranvi .link_edges_mesh(element_size=elemSizeFF ,input ={’topologies ’:

{actranvi .get_topology( id=1 ): {’external_nodes_ids ’: zipped_list (4, 5)}}},

replace_input=False ,sort_by_node_ID=False)

94 [ pid_domain_10] = actranvi .link_edges_mesh( element_size=elemSizeFF ,input ={’topologies ’:

{actranvi .get_topology( id=1 ): {’external_nodes_ids ’: zipped_list (3, 4)}}},

replace_input=False ,sort_by_node_ID=False)

95 [ pid_domain_11] = actranvi .link_edges_mesh( element_size=elemSizeDuct ,input ={’topologies

’: {actranvi .get_topology( id=1 ): {’external_nodes_ids ’: zipped_list (2, 3)}}},

replace_input=False ,sort_by_node_ID=False)

96 [ pid_domain_12] = actranvi .link_edges_mesh( element_size=elemSizeDuct ,input ={’topologies

’: {actranvi .get_topology( id=1 ): {’external_nodes_ids ’: zipped_list (1, 2)}}},

replace_input=False ,sort_by_node_ID=False)

97 [ pid_domain_13] = actranvi .link_edges_mesh( element_size=elemSizeDuct ,input ={’topologies

’: {actranvi .get_topology( id=1 ): {’external_nodes_ids ’: zipped_list (1, 12) }}},

replace_input=False ,sort_by_node_ID=False)
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98 actranvi .set_prop ( actranvi . get_topology( id=1 ), model_dimension=2 )

99 [ pid_domain_14] = actranvi .surface_mesh( fill_method =’planar ’,element_type=’tria’,

element_size=elemSizeFluid , gradation_factor=2, group_by_loops=False ,input =[

pid_domain_2 , pid_domain_3 , pid_domain_4 , pid_domain_5 , pid_domain_6 , pid_domain_7 ,

pid_domain_8 , pid_domain_9 , pid_domain_10 , pid_domain_11 , pid_domain_12 ,

pid_domain_13])

100 [ pid_domain_6] = actranvi .move_elements( renumbering =True ,new_pid_name=u’FreeField ’,

input =[ pid_domain_6 , pid_domain_7 , pid_domain_8 , pid_domain_9 , pid_domain_10],

new_topology=False ,copy=False)

101 [ pid_domain_7] = actranvi .move_elements( renumbering =True ,new_pid_name=u’InfiniteDuct’,

input =[ pid_domain_2], new_topology=False ,copy=False)

102 [ pid_domain_3] = actranvi .move_elements( renumbering =True ,new_pid_name=u’DuctWall ’,input

=[ pid_domain_3 , pid_domain_4 , pid_domain_5 , pid_domain_11 , pid_domain_12 ,

pid_domain_13], new_topology=False ,copy=False)

103

104 if FF_type ==’IE’:

105 # CREATION OF THE TRANSITION LAYER TO TACKLE OUT OF THE DOMAIN SOURCES

106 [pid_domain_15 , pid_domain_16 , pid_domain_17] = actranvi .extrude_mesh(

layers_thickness=[ elemSizeFF ], normal_method=’vertex ’,baffle_planes=[None , None , None

],input =[actranvi . get_pid_domain( actranvi .get_topology(id = 1) , pid =15 )])

107 actranvi .set_prop ( actranvi .get_pid_domain( actranvi . get_topology(id = 1) , pid =18 )

, basename =’NRBC_TransitionLayer ’ )

108 actranvi .set_prop ( actranvi .get_pid_domain( actranvi . get_topology(id = 1) , pid =19 )

, basename =’FreeField_WithTransitionLayer ’ )

109

110 elif FF_type ==’PML ’:

111 # CREATION OF THE PML LAYER

112 [pid_domain_18] = actranvi .create_points_mesh(method =’custom ’,coordinates =[[ x_min ,

0.55] , [x_min -PML_width , 0.55] , [x_min -PML_width , y_max+PML_width ], [x_max+PML_width ,

y_max +PML_width ], [x_max+PML_width , y_min -PML_width ], [x_min -PML_width , y_min -

PML_width ,], [x_min -PML_width , -0.55], [x_min , -0.55]], topology =actranvi .get_topology

( id=1 ))

113 [pid_domain_19] = actranvi .link_edges_mesh(element_size=elemSizeFF ,input =[

pid_domain_18], replace_input=False ,sort_by_node_ID=True)

114 [pid_domain_2 , pid_domain_6 , pid_domain_8] = actranvi .merge_nodes_mesh(distance =1e

-06, replace_input=True ,input =[ pid_domain_6 , pid_domain_19])

115 [pid_domain_9] = actranvi . move_elements(renumbering =True ,new_pid_name=u’

PML_outerLayer’,input =[ pid_domain_6], new_topology=False ,copy=False )

116 [pid_domain_6] = actranvi . surface_mesh(fill_method =’planar ’,element_type=’quad’,

element_size=elemSizeFF , gradation_factor=2, group_by_loops=False ,input =[ pid_domain_2 ,

pid_domain_9])

117

118 actranvi .reinterpolate( topology =actranvi .get_topology( id=1 ), interpolation=

MeshInterp )

119

120 actranvi .write_mesh (source =actranvi .get_topology( id=1 ), format =’nff ’, file=os.path.

join( os.path.dirname (os.getcwd ()), ’2D_’+FieldInterp +’Mesh_unflangedDuct_ ’+FF_type +’

.nff ’), check_duplicated_nodes =True , export_fields=True , fields =[])

121

122 # DEFINITION AND MAPPING OF THE MEAN FLOW FIELD

123

124 First_MeanFlowBuffer_ratio =0.7 # normalised extent in X where the mean flow is not

modified

125 Second_MeanFlowBuffer_ratio = 0.8 # normalised extent in X where the flow in the buffer

reaches ambient value

126 BufferPow = 1 # quickness of the damping
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127

128 # Default ActranTM value for Cp and Cv are 1004.0 and 716.0 , they are modified to tune

gamma

129 fluid_cp = 1004.

130 fluid_cv = fluid_cp /1.4

131 gamma = fluid_cp /fluid_cv

132 R_gaz = 287.0

133

134 a0j = np.sqrt(gamma*R_gaz*T0j)

135 a0inf = np.sqrt(gamma *R_gaz *T0inf )

136

137 u0j = M0j *a0j

138 u0inf = M0inf*a0inf

139

140 u0j_eff = u0j -u0inf # out of the blue flow modification to simulate flight effects ,

u0j_eff is the relative jet velocity

141 M0j_eff = u0j_eff /a0j

142

143 rho0j = gamma*p0/a0j **2

144 rho0inf = gamma *p0/a0inf **2

145

146 if FF_type ==’IE’:

147 domains_involved = [14 ,15 ,16 ,17 ,18]

148 elif FF_type ==’PML ’:

149 if UniformFlowInPML:

150 domains_involved = [14 ,16 ,17 ,20]

151 else:

152 domains_involved = [14 ,16 ,17 ,18 ,20 ,23 ,24]

153

154 for dom_id in domains_involved:

155 print("Mean flow is computed on the domain with id=%s"%(dom_id ))

156 pid_domain = actranvi . get_pid_domain( actranvi .get_topology( id=1 ) , pid =dom_id )

157 coo_field = actranvi . get_coordinate_field(pid_domain )

158 x_vec = coo_field .array ()[0,:,0];

159 y_vec = coo_field .array ()[0,:,1];

160

161 [ velocity_field] = actranvi .add_field (field =coo_field ,

162 name =’Mean_Velocity’,

163 quantity =’MEAN_VELOCITY’,

164 continuous =True ,

165 interpolation=FieldInterp ,

166 vtype =’float ’,

167 num_comp =coo_field .num_comp ,

168 num_realisations=1,

169 default_value=’0.0 ’)

170

171 x_c = 4.2 + 1.1* M0j_eff **2

172 h = (1- x_vec/x_c )/2

173 b = 1.2658*( elemSizeDuct+abs (x_vec ))/10.7*(1 -0.273* M0j_eff **2)

174 u_c = (step(x_c -x_vec) + step(x_vec -x_c)*(1-np.exp ( -1.35/( elemSizeDuct+abs (1- x_vec /x_c)

))))*u0j_eff # expression of the mean axial velocity given in Panda & Seasholtz (

Physics of Fluid , 1999) , thank you Bertrand M.

175

176 velocity_field.array ()[0,:,0] = ( step(h-abs (y_vec))*u_c + step(abs (y_vec )-h)*u_c*np.

exp (-np.log (2) *(( abs (y_vec)-h)/b)**2) )*step(x_vec) + u0j_eff *step(-x_vec)*step (0.53 -

abs (y_vec )) + u0inf # value of 0.53 in [0.5 ,0.55] is to delimit the volume inside the

181



Chapter F : A template for Actran TM

duct
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178 # CREATION OF A BUFFER ZONE FOR THE MEAN FLOW , TO ENSURE UNIFORM FLOW AT NRBC

179

180 x_buffer = First_MeanFlowBuffer_ratio *x_max

181 x_maxBuffer = Second_MeanFlowBuffer_ratio *(x_max -x_buffer ) + x_buffer

182 L_buffer = x_maxBuffer -x_buffer

183 velocity_field.array ()[0,:,0] = step(x_buffer -x_vec)*velocity_field.array ()[0,:,0] +

step(x_vec -x_buffer )*step(x_maxBuffer -x_vec )*( ((x_vec -x_buffer )/L_buffer )**

BufferPow * u0inf + (1 - ((x_vec -x_buffer )/L_buffer )** BufferPow ) *

velocity_field.array ()[0,:,0] ) + step(x_vec - x_maxBuffer )*u0inf

184

185 [ density_field] = actranvi .add_field (field=coo_field ,

186 name =’Mean_Density’,

187 quantity =’MEAN_DENSITY’,

188 continuous =True ,

189 interpolation=FieldInterp ,

190 vtype =’float ’,

191 num_comp =1,

192 num_realisations=1,

193 default_value= ’0.0 ’ )

194

195 density_field.array ()[0,:,0] = 1/( -0.5*( gamma -1) /( gamma *p0)*(( velocity_field.array ()

[0,:,0]- u0inf) -(u0j -u0inf))*( velocity_field.array ()[0,:,0]- u0inf) + 1/ rho0j *(

velocity_field.array ()[0,:,0]- u0inf)/(u0j -u0inf) + 1/ rho0inf *(( u0j -u0inf )-(

velocity_field.array ()[0,:,0]- u0inf))/(u0j -u0inf ) ) # modification of u0j <- u0j -

u0inf and velocity_field <- velocity_field - u0inf with respect to original

formulation to tinker some flight effects

196

197 if M0j ==M0inf :

198 print (’WARNING !!! T0j is not taken into account in the definition of the mean flow

field !!! WARNING !!! ’)

199 density_field.array ()[0,:,0] = p0/( R_gaz*T0inf)

200

201 [ pressure_field] = actranvi .add_field (field =coo_field ,

202 name =’Mean_Pressure’,

203 quantity =’MEAN_PRESSURE’,

204 continuous =True ,

205 interpolation=FieldInterp ,

206 vtype =’float ’,

207 num_comp =1,

208 num_realisations=1,

209 default_value= p0 )

210

211 [ speedOfSound_field] = actranvi .add_field (field=coo_field ,

212 name =’Speed_Of_Sound’,

213 quantity =’SPEED_OF_SOUND’,

214 continuous =True ,

215 interpolation=FieldInterp ,

216 vtype =’float ’,

217 num_comp =1,

218 num_realisations=1,

219 default_value= ’0.0 ’ )

220

221 speedOfSound_field.array ()[0,:,0] = np.sqrt(gamma *p0/density_field.array ()[0,:,0])

222
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223 [ Mach_field ] = actranvi .add_field (field=coo_field ,

224 name =’Mach_number ’,

225 quantity =’MACH_NUMBER ’,

226 continuous =True ,

227 interpolation=FieldInterp ,

228 vtype =’float ’,

229 num_comp =1,

230 num_realisations=1,

231 default_value= ’0.0 ’ ) # a0 = np.sqrt(gamma *p0/

rho0)

232

233 Mach_field .array ()[0,:,0] = velocity_field.array () [0,:,0]/ speedOfSound_field.array ()

[0,:,0]

234

235 if np.amax( ( Mach_field .array ()[0,:,0]) .reshape (-1) ) >=1 :

236 print (’WARNING !!! SUPERSONIC REGION DETECTED !!! WARNING !!! ’)

237

238 actranvi . write_mesh (source =actranvi . get_topology( id=1 ), format =’nff ’, file=’

PandaSeasholtz_2DFlow_ ’+FieldInterp +’Mesh_ ’+FF_type +’_physical_flow.nff ’,

check_duplicated_nodes =True , export_fields=True , fields =[])

239

240 # ACTRAN TM’S HIJACKING : MODIFY P_0 AND RHO_0 TO TURN MOHRING ’S EQ. INTO PIERCE ’S EQ.

241

242 if ~( WhichFlowField==’physical_flow’):

243 rho_T_corr_inf = (1+( gamma -1) /2*( M0inf)**2) **( -2/( gamma -1) )

244 rho0inf = rho0inf *rho_T_corr_inf

245 p0 = p0*rho_T_corr_inf # the ‘hijacked ’ mean -pressure is non -uniform . From here on , p0

reffers to p0inf and is used in the NRBC (IE + transition layer )

246

247 rho_T_corr_j = (1+( gamma -1) /2*( M0j )**2) **( -2/( gamma -1))

248 rho0j = rho0j *rho_T_corr_j

249

250 for dom_id in domains_involved:

251 print ("Flow is modified in PID %s to change Mohring ’s eq. into Pierce ’s eq."%(dom_id )

)

252 velocity_field = actranvi .get_field ( actranvi .get_pid_domain( actranvi . get_topology(

id=1 ) , pid =dom_id ) , quantity =’MEAN_VELOCITY’ )

253 speedOfSound_field = actranvi .get_field ( actranvi . get_pid_domain( actranvi .

get_topology( id=1 ) , pid=dom_id ) , quantity =’SPEED_OF_SOUND’ )

254 density_field = actranvi .get_field ( actranvi .get_pid_domain( actranvi .get_topology(

id=1 ) , pid =dom_id ) , quantity =’MEAN_DENSITY’ )

255 pressure_field = actranvi .get_field ( actranvi .get_pid_domain( actranvi . get_topology(

id=1 ) , pid =dom_id ) , quantity =’MEAN_PRESSURE’ )

256

257 rho_T_corr = (1+( gamma -1) /2*( np.sqrt( np.array(velocity_field.array ()[0,:,0]) **2

+ np.array( velocity_field.array ()[0,:,1]) **2 )/np.array( speedOfSound_field.array ()

[0,:,0]) )**2) **( -2/( gamma -1))

258

259 density_field.array ()[0,:,0] = np.array(density_field.array ()[0,:,0]) *np.array(

rho_T_corr )

260 pressure_field.array ()[0,:,0] = np.array( pressure_field.array ()[0,:,0]) *np.array (

rho_T_corr )

261

262 actranvi .write_mesh (source =actranvi .get_topology( id=1 ), format =’nff ’, file=os.path.

join(res_path ,’PandaSeasholtz_2DFlow_ ’+FieldInterp +’Mesh_ ’+FF_type +’

_rhoT_corrected_flow .nff ’), check_duplicated_nodes =True , export_fields=True , fields
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=[])

263

264 if WhichFlowField==’rhoT_corrected_FRT_flow ’:

265 u0inf = -u0inf

266 u0j = -u0j

267 for dom_id in domains_involved:

268 print ("Flow is reversed for PID number :%s"%( dom_id ))

269 velocity_field = actranvi .get_field ( actranvi .get_pid_domain( actranvi .get_topology

( id=1 ) , pid=dom_id ) , quantity =’MEAN_VELOCITY’ )

270 speedOfSound_field = actranvi .get_field ( actranvi .get_pid_domain( actranvi .

get_topology( id=1 ) , pid=dom_id ) , quantity =’SPEED_OF_SOUND’ )

271 density_field = actranvi .get_field ( actranvi . get_pid_domain( actranvi .get_topology(

id=1 ) , pid=dom_id ) , quantity =’MEAN_DENSITY’ )

272 pressure_field = actranvi .get_field ( actranvi .get_pid_domain( actranvi .get_topology

( id=1 ) , pid=dom_id ) , quantity =’MEAN_PRESSURE’ )

273

274 velocity_field.array ()[0,:,0] = -np.array( velocity_field.array ()[0,:,0])

275 velocity_field.array ()[0,:,1] = -np.array( velocity_field.array ()[0,:,1])

276

277 actranvi .write_mesh (source =actranvi .get_topology( id=1 ), format =’nff ’, file=os.path.

join(res_path ,’PandaSeasholtz_2DFlow_ ’+FieldInterp +’Mesh_ ’+FF_type +’

_rhoT_corrected_FRT_flow .nff ’), check_duplicated_nodes =True , export_fields=True ,

fields =[])

278

279 # CORRECTION OF THE SOURCE AMPLITUDE

280

281 if ( WhichFlowField==’physical_flow’):

282 SourceAmplitude =1.0

283 else:

284 # check if the source point is located in this PID . Calculate distance of the source

position to the nearest point of the mesh

285 ThisPID_sourceDist = np.amin(np.sqrt((np.array(source_pos )[0]- x_vec)**2 + (np.array (

source_pos )[1]- y_vec)**2))

286 LargestCellMeasure = np.sqrt( elemSizeFluid**2+ elemSizeFF **2+ elemSizeDuct**2)

287 if (ThisPID_sourceDist <= LargestCellMeasure):

288 sourceIndex = np.argmin (np.sqrt((np.array(source_pos )[0]- x_vec)**2 + (np.array (

source_pos )[1]- y_vec)**2))

289 sourceMach = np.sqrt( velocity_field.array ()[0, sourceIndex ,0]**2+ velocity_field.

array ()[0, sourceIndex ,1]**2) /speedOfSound_field.array ()[0, sourceIndex ,0]

290

291 if ~( WhichFlowField==’physical_flow’):

292 if ~(’sourceMach ’ in locals ()): # if the variable sourceMach was not created

293 sourceMach = M0inf

294

295 SourceAmplitude = -1j/4*(1+( gamma -1) /2* sourceMach **2) **( -1/( gamma -1) )

296

297 ’’’

298 IMPORTANT : In post -processing , this amplitude correction needs still to be multiplied

with the source pulsation . The computed velocity potential then represents the

complex conjuguate of Pierce ’s wave equation solution , normalised by the sound speed

at the observer location . Please compare the formula coded here , with the one

provided in the chapter "Solving adjoint Pierce ’s equation with Actran TM".

299 ’’’

300

301 #---------------------------------------------------------

302 # SET -UP OF THE DIRECT FREQUENCY RESPONSE (.EDAT)
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303 #---------------------------------------------------------

304

305 # CREATION OF THE DOMAINS

306

307 domain_0 = actranvi .auto_create_domain( pid_domain =actranvi . get_pid_domain( actranvi .

get_topology( id=1 ) , pid =17 ) )

308 actranvi .set_prop ( domain_0 , name=’DuctWall ’ )

309 domain_1 = actranvi .auto_create_domain( pid_domain =actranvi . get_pid_domain( actranvi .

get_topology( id=1 ) , pid =14 ) )

310 actranvi .set_prop ( domain_1 , name=’MovingFluid ’ )

311 domain_2 = actranvi .auto_create_domain( pid_domain =actranvi . get_pid_domain( actranvi .

get_topology( id=1 ) , pid =16 ) )

312 actranvi .set_prop ( domain_2 , name=’InfiniteDuct’ )

313

314 if FF_type ==’IE’:

315 domain_3_trans = actranvi .auto_create_domain( pid_domain =actranvi .get_pid_domain(

actranvi . get_topology( id=1 ) , pid =18 ) ) # moving fluid domain

316 domain_3 = actranvi .auto_create_domain( pid_domain =actranvi .get_pid_domain( actranvi .

get_topology( id=1 ) , pid =19 ) ) # free -field radiation condition

317 actranvi .set_prop ( domain_3 , name=’FreeField ’ )

318

319 elif FF_type ==’PML ’:

320 domain_3 = actranvi .auto_create_domain( pid_domain =actranvi .get_pid_domain( actranvi .

get_topology( id=1 ) , pid =24 ) )

321 actranvi .set_prop ( domain_3 , name=’PML_layer ’ )

322 domain_4 = actranvi .auto_create_domain( pid_domain =actranvi .get_pid_domain( actranvi .

get_topology( id=1 ) , pid =23 )) # free -field radiation condition

323 actranvi .set_prop ( domain_4 , name=’PML_outer_skin’ )

324

325 # INITIATE THE ANALYSIS

326

327 analysis_1 = actranvi .add_analysis(type=’Direct Frequency Response ’)

328

329 N_freq = np.size(freq_sample )

330 this_freq_sample = np.zeros ([N_freq ,1]) # change freq_sample into a column array

331 this_freq_sample [:] = np.array (freq_sample ).reshape (-1,1)

332 actranvi .set_prop ( analysis_1 , freq= this_freq_sample.tolist () ) # change array into list

again to have correct formatting ...

333

334 # CREATE THE FIELD DATA FROM THE .NFF FILES

335

336 field_data_1 = actranvi . add_field_data(analysis =analysis_1 ,type=’File Field Data ’)

337 actranvi .set_prop ( field_data_1 , field_ndim =2 )

338 actranvi .set_prop ( field_data_1 , name=’U0’ )

339 actranvi .set_prop ( field_data_1 , file_format =’NFF ’ )

340 actranvi .set_prop ( field_data_1 , file=’PandaSeasholtz_2DFlow_ ’+FieldInterp +’Mesh_ ’+

FF_type +’_’+WhichFlowField+’.nff ’)

341

342 field_data_2 = actranvi . add_field_data(analysis =analysis_1 ,type=’File Field Data ’,

field_ndim =1)

343 actranvi .set_prop ( field_data_2 , name=’P0’ )

344 actranvi .set_prop ( field_data_2 , file_format =’NFF ’ )

345 actranvi .set_prop ( field_data_2 , file=’PandaSeasholtz_2DFlow_ ’+FieldInterp +’Mesh_ ’+

FF_type +’_’+WhichFlowField+’.nff ’)

346

347 field_data_3 = actranvi . add_field_data(analysis =analysis_1 ,type=’File Field Data ’,
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field_ndim =1)

348 actranvi .set_prop ( field_data_3 , name=’rho0’ )

349 actranvi .set_prop ( field_data_3 , file_format =’NFF ’ )

350 actranvi .set_prop ( field_data_3 , file=’PandaSeasholtz_2DFlow_ ’+FieldInterp +’Mesh_ ’+

FF_type +’_’+WhichFlowField+’.nff ’)

351

352 field_data_4 = actranvi . add_field_data(analysis =analysis_1 ,type=’File Field Data ’,

field_ndim =1)

353 actranvi .set_prop ( field_data_4 , name=’a0’ )

354 actranvi .set_prop ( field_data_4 , file_format =’NFF ’ )

355 actranvi .set_prop ( field_data_4 , file=’PandaSeasholtz_2DFlow_ ’+FieldInterp +’Mesh_ ’+

FF_type +’_’+WhichFlowField+’.nff ’)

356

357 # PARAMETRISATION OF THE FLUID DOMAIN (acoustic_1 )

358

359 acoustic_1 = actranvi .add_component(type=’Finite Fluid ’, analysis =analysis_1 )

360 actranvi .add ( where=acoustic_1 , what=domain_1 )

361

362 actranvi .set_prop ( acoustic_1 , mean_velocity= field_data_1 )

363 actranvi .set_prop ( acoustic_1 , mean_pressure= field_data_2 )

364 actranvi .set_prop ( acoustic_1 , mean_density=field_data_3 )

365 # actranvi .set_prop ( acoustic_1 , mean_sos =field_data_4 ) # avoid redundancy for

robustness

366

367 fluid_material_1 = actranvi .add_material(’Fluid Material ’)

368 actranvi .set_prop ( fluid_material_1 , cp=fluid_cp )

369 actranvi .set_prop ( fluid_material_1 , cv=fluid_cv )

370 actranvi .set_prop ( acoustic_1 , material =fluid_material_1 )

371

372 # PARAMETRISATION OF THE INFINITE DUCT BC (numerical_duct_1)

373

374 numerical_duct_1 = actranvi .add_component(type=’Modal Duct (numerical )’, analysis =

analysis_1 )

375 actranvi .add ( where=numerical_duct_1 , what=domain_2 )

376 actranvi .set_prop ( numerical_duct_1 , material =fluid_material_1 )

377 actranvi . compute_duct_center( node=numerical_duct_1 )

378 actranvi . compute_duct_axes( node= numerical_duct_1 )

379 actranvi .set_prop ( numerical_duct_1 , visible =True )

380 actranvi . compute_duct_reverse_propagation_axis ( node=numerical_duct_1 )

381 actranvi . compute_duct_geometrical_parameters ( node= numerical_duct_1 )

382

383 propagating_mode = actranvi .add_propagating_mode ( duct=numerical_duct_1)

384 actranvi .set_prop ( propagating_mode , direction =-1 )

385 actranvi .set_prop ( propagating_mode , frange =True )

386 actranvi .set_prop ( propagating_mode , min_freq =0.0 )

387 actranvi .set_prop ( propagating_mode , max_freq =10*np.amax(np.array(freq_sample )).tolist ()

) # set maximum frequency at least 1.5 times the maximal frequency of analysis

388 actranvi .set_prop ( propagating_mode , format =’Free’ )

389 actranvi .set_prop ( propagating_mode , offset =0.0 )

390 actranvi .set_prop ( numerical_duct_1 , mean_velocity=u0j )

391

392 if FF_type ==’IE’:

393

394 # CREATION OF A TRANSITION DOMAIN PARAMETRISED WITHOUT FIELD DATA (acoustic_2 ) TO

ENABLE OUT OF THE SOURCE COMPUTATION (Cesar ’s ’divide et impera ’ - 17/06/20)

395
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396 acoustic_2 = actranvi . add_component(type=’Finite Fluid ’, analysis =analysis_1 )

397 actranvi .add( where =acoustic_2 , what= domain_3_trans )

398

399 actranvi .set_prop ( acoustic_2 ,

400 mean_velocity=[u0inf , 0],

401 mean_pressure=p0 ,

402 mean_density = rho0inf ,

403 material = fluid_material_1 ,

404 power_evaluation=0,

405 incident_scattered_evaluation =1 )

406

407

408 # PARAMETRISATION OF THE INFINITE ELEMENT BC ( infinite_acoustic_1)

409

410 infinite_acoustic_1 = actranvi . add_component(type=’Infinite Fluid ’, analysis =analysis_1

)

411 actranvi .add( where =infinite_acoustic_1 , what=domain_3 )

412 actranvi .set_prop ( infinite_acoustic_1 , material = fluid_material_1 )

413 # actranvi .set_prop ( infinite_acoustic_1 , center =np.array (source_pos ).tolist () ) #

precise here the center for the chosen source

414 actranvi . compute_infinite_fluid_center ( node=infinite_acoustic_1 ) # let Actran compute

the source position

415 actranvi .set_prop ( infinite_acoustic_1 , axes =[[ np.sign(u0inf+ np.finfo (float ).eps )

*1.0, 0.0], [0.0, 1.0]] ) # add epsilon so that the axis is always well -defined . Axes

must be oriented in the flow direction , so that the flow velocity is always positive

wrt . the axis.

416 actranvi .set_prop ( infinite_acoustic_1 , mean_velocity= np.abs (u0inf ) ) # AMBIENT MEAN -

FLOW (working )

417 # actranvi .set_prop ( infinite_acoustic_1 , mean_velocity= ’AUTO’ ) # AMBIENT MEAN -FLOW (

working )

418 actranvi .set_prop ( infinite_acoustic_1 , interp_order=InfiniteElemInterpOrder ) #

increase the order ( <100) may reduce the reflection at the BC

419

420 elif FF_type ==’PML ’:

421

422 # CREATION OF THE PML BOUNDARY CONDITION (pml_1 )

423

424 pml_1 = actranvi .add_component(type=’PML ’, analysis =analysis_1 )

425 actranvi .set_prop ( pml_1 , material =fluid_material_1 )

426 actranvi .add( where =pml_1 , what=domain_3 )

427 # actranvi .set_prop ( pml_1 , center =np.array (source_pos ).tolist () ) # let Actran compute

the source position

428

429 if UniformFlowInPML:

430 # UNIFORM MEAN FLOW IN PML

431 ### auto velocity definition :

432 # actranvi .set_prop ( pml_1 , mean_velocity=" AUTO" )

433 # actranvi .set_prop ( pml_1 , auto_direction=[1.0 , 0.0] )

434 ### manual velocity definition :

435 actranvi .set_prop ( pml_1 , mean_velocity=[u0inf , 0] )

436 #

437 actranvi .set_prop ( pml_1 , mean_pressure=p0)

438 actranvi .set_prop ( pml_1 , mean_density=rho0inf )

439 # actranvi .set_prop ( pml_1 , mean_sos =a0inf ) # avoid redundancy for robustness

440 else:

441 print ("THIS IS NOT SUPPORTED BY ACTRAN YET - 05/06/20 ")
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442 # FLOW FROM FIELD DATA

443 actranvi .set_prop ( pml_1 , mean_velocity=field_data_1 )

444 actranvi .set_prop ( pml_1 , mean_pressure=field_data_2 )

445 actranvi .set_prop ( pml_1 , mean_density=field_data_3 )

446 # actranvi .set_prop ( pml_1 , mean_sos = field_data_4 ) # avoid redundancy for robustness

447

448 # CREATION OF THE NRBC AT THE PML OUTER -SKIN ( non_reflecting_bc_1)

449

450 non_reflecting_bc_1 = actranvi .add_bc (type=’Non Reflecting Boundary ’, analysis =

analysis_1 )

451 actranvi .add( where =non_reflecting_bc_1 , what=domain_4 )

452

453 # CREATION OF THE ACOUSTIC SOURCE

454

455 if source_type ==’planar ’:

456 # PLANAR SOURCE

457 source_1 = actranvi .add_bc (type=’Source (planar )’, analysis =analysis_1 )

458 actranvi .set_prop ( source_1 , direction =(-np.array (source_pos )/R).tolist () ) # unitary

inward propagation direction

459 elif source_type ==’cylindrical ’:

460 # CYLINDRICAL SOURCE

461 source_1 = actranvi .add_bc (type=’Source (cylindrical )’, analysis =analysis_1 )

462 actranvi .set_prop ( source_1 , name=’AcousticMonopole ’ )

463 actranvi .set_prop ( source_1 , amplitude_type=’P’ )

464

465 actranvi .set_prop ( source_1 , origin =np.array(source_pos ).tolist () )

466 actranvi .set_prop ( source_1 , amplitude = SourceAmplitude )

467

468

469 # DEFINITION OF THE SOLVER

470

471 mumps = actranvi .add_solver (analysis =analysis_1 ,type=’Mumps ’)

472

473 # ADD FIELD MAP

474

475 field_map_1 = actranvi .add_field_map(analysis =analysis_1 )

476 actranvi .add ( where=field_map_1 , what=domain_0 )

477 actranvi .add ( where=field_map_1 , what=domain_1 )

478 actranvi .add ( where=field_map_1 , what=domain_2 )

479 actranvi .add ( where=field_map_1 , what=domain_3 )

480 if FF_type ==’IE’:

481 actranvi .add( where =field_map_1 , what=domain_3_trans )

482 elif FF_type ==’PML ’:

483 actranvi .add( where =field_map_1 , what=domain_4 )

484 actranvi .set_prop ( field_map_1 , format =’NFF ’ )

485 actranvi .set_prop ( field_map_1 , result_name =’Acoustic_MovingFluid_ ’+FieldInterp +’Elem_ ’+

WhichFlowField+’_’+source_type +’Source_ ’+str (int (incommingWaveAngle))+’deg_R=’+str (

int (R)))

486 actranvi .set_prop ( field_map_1 , step =1 )

487

488 # EXPORT THE ANALYSIS

489

490 actranvi . write_analysis( analysis =analysis_1 , file=’PandaSeasholtz2D_ ’+FieldInterp +’Elem_

’+WhichFlowField+’_’+source_type +’Source_ ’+FF_type +’_’+str (int (incommingWaveAngle))+’

deg_R =’+str (int (R))+’.edat ’, format =’edat ’ )

491
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492 #---------------------------------------------------------

493 # LAUNCH THE ANALYSIS

494 #---------------------------------------------------------

495

496 analysis_1 = actranvi .read_analysis(file=’PandaSeasholtz2D_ ’+FieldInterp +’Elem_ ’+

WhichFlowField+’_’+source_type +’Source_ ’+FF_type +’_’+str (int (incommingWaveAngle))+’

deg_R =’+str (int (R))+’.edat ’, type=’ACTRAN ’ )

497

498 if FF_type ==’IE’:

499 actranvi .run_analysis(analysis =analysis_1 , memory =memoryReguirement_MB , working_dir =

res_path )

500 elif FF_type ==’PML ’:

501 actranvi .run_analysis(analysis =analysis_1 , memory =memoryReguirement_MB , options =u’-e

distance ’, working_dir =res_path ) # prior computations with ’-e distance ’ when PML are

jointly considered with mixed BC

502 edat2run = os.path.join(res_path ,’PandaSeasholtz2D_ ’+FieldInterp +’Elem_ ’+WhichFlowField

+’_’+source_type +’Source_ ’+FF_type +’_’+str (int (incommingWaveAngle))+’deg_R =’+str (int (

R))+’.edat ’)

503 os.system (’cd ’+res_path +’&& actranpy -i ’+edat2run +’ -e distance && actranpy -i ’+

edat2run +’ -m ’+str ( memoryReguirement_MB ))

504

505 #---------------------------------------------------------

506 # GO BACK TO INITIAL PATH AND CLEAR ANALYSIS

507 #---------------------------------------------------------

508

509 actranvi .clear_all () # clear analysis to enable another analysis to start afterward

510 os.chdir( current_path) # go back to initial directory
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