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In this paper, the propagation of a broadband sound pulse in three-dimer&Dhahallow water
waveguides is investigated numerically. Two cases are examingide 3D ASA benchmark wedge,
and(ii) the 3D Gaussian canyon. The numerical method used to solve the four-dimensional acoustic
problem is based on a Fourier synthesis technique. The frequency-domain calculations are carried
out using the fully 3D parabolic equation based mog@APE, recently modified to include a
wide-angle paraxial approximation for the azimuthal component. A broadband sound pulse with a
central frequency of 25 Hz and a bandwith of 40 Hz is considered. For both test cases, 3D results
corresponding to a 25 Hz cw point source are first presented and compared with predictions from a
3D adiabatic modal model. Then, the acoustic problem is solved considering the broadband source
pulse. The modal structure of the received signals is analyzed and exhibits multiple mode arrivals
of the propagating signal. @005 Acoustical Society of AmericdDOI: 10.1121/1.1855791

PACS numbers: 43.30.Bp, 43.30.Dr, 43.30.J&\T | Pages: 1058-1079

I. INTRODUCTION The aim of this work is to study the propagation of
It has been demonstrated both experimentaflyjand ~ broadband sound pulses in three-dimensional shallow water
numerically® that in some particular oceanic environments,waveguides. The numerical method used to solve the rel-
the horizontal refraction of propagating sound waves cannogvant 4D acoustic problems is based on Fourier synthesis of
be neglected and leads, far from the source, to significarfrequency-domain solutions. The calculations in 3D are done
three-dimensional (3D) effects. Fully three-dimensional using the3abwAPE code based on a fully three-dimensional
models are needed to predict such 3D effects. Note that iparabolic equatiof® Two 3D acoustic problems are treated
this work, a model is referred to as 3D if it allows horizontal in this paper. They both consist of an isovelocity water layer
refraction to be considered. Otherwise, the model is said toverlying a lossy, homogeneous, half-space sedimental layer.
be two-dimensional2D), NX 2D, or pseudo-3D. Among ex- They only differ in the description of the bottom geometry.
isting 3D codes available in the underwater acousticsThe first acoustic problem considered is a 3D benchmark
community’~1° parabolic equation(PE) based models are wedge based on a three-dimensional extension of the original
largely used since they are efficient for solving complextwo-dimensional ASA wedge configuratidhPreliminary re-
sound propagation problems in various oceanic environsults of broadband sound pulse propagation obtained using
ments. The reader is referred to Ref. 11 for an exhaustivepware for this specific 3D wedge problem can be found in
review of the 3D codes based on modal theory, paraboliRef. 15. They showed that the modal structures of the propa-
equation, rays, and hybrid models, and in particular to Refgating pulses calculated using a 3D PE model were qualita-
12 for a specialized review of existing 3D PE models. Thetively consistent with previous results obtained by
main drawback of 3D models in cylindrical coordinates Westwood® for a similar case using an analytical method.
(which is the case for most 3D PE modeis that they are  Though these results were satisfying and encouraging, no
computationally expensive. Indeed, a 3D code is at least twguantitative comparison with any exact solution was made.
orders of magnitude slower than aNy<2D code sincéi) a  Note that in its original configuration, trEwAPE code had a
very large number of points is required in the azimuthal di-yery-wide-angle capability along the vertical direction but
rection to maintain the necessary arclength between adjaceghly a narrow-angle capability along the azimuthal direction.
bearing angles, an(ii) a differential operator with respect to |t has recently been modified to handle higher-order paraxial
the azimuthal coordinate must be incorporated into the soluapproximations along the azimuthal direction. The results of
tion. However, rising computer performance as well as theref. 15 were obtained using the azimuthal narrow-angle ver-
development of efficient numerical technigi&sallows 3D sjon of the code. In the present paper, the issue of using
PE models to be treated at a reasonable computational Cogfide-angle approximation in azimuth is addressed. In par-
A calculation in four-dimensiongkD) (i.e., three spatial di-  icylar, numerical solutions obtained using various paraxial
mensions and timeusing Fourier synthesis methods is thus pnroximations in azimuth are compared with a reference
now possible(at least at low frequencigsallowing the im-  4naiviical solution based on the image method. Broadband
portant question of broadband signal dispersion in generglyicylations are now carried out using the azimuthal wide-

3D waveguides to be addressed. angle version of the code. The second problem considered is

the 3D Gaussian canyon test case. It corresponds to a variant
dElectronic mail: frederic.sturm@ec-lyon.fr of the original 3D Gaussian canyon test case created for the
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SWAM'99 Shallow Water Acoustic Modeling Workshdp. wherew=2#f is the angular frequendiexpressed in radys
Results for the original SWAM'99 test case were obtainedandf is the frequencyexpressed in Hz Then, Fourier trans-
for a 25 Hz cw point sourcé!® Modifications have been form of Eq. (1) leads to the frequency-domaier Helm-
made such that only three propagating modes exist at thieoltz) equation
source position(as in the 3D benchmark wedgevhich 1
makes the modal structure analysis of the received signals pV~(—VI5
easier. Note that in its original form, eleven propagating P

modes were present. The_problem involving a broadba”q/herekazk(lﬂna) is the complex(to account for lossy
sound pulse is analyzed with the same methodology as f%yers) wave number, wittk=w/c, « is the attenuation ex-
the 3D wedge problem. pressed in decibels per wavelengthy=1/(40m log,ye)

The prganizatior_l of this_pape_r is as follows: In_ Sec. ”'éwith na<1), andS(w) is the source spectrum defined by
the Fourier synthesis technique is briefly summarized, an

the 3DWAPE model is presented. Its wide-angle azimuthal ca-
pability is discussed; a review of the existing 3D PE code is
also given. In Sec. lll, the two acoustic shallow water prob- ) )
lems are described. For both test cases, a broadband sourEaé angular frequency is treated as a parameter in Eg).
pulse with a central frequency of 25 Hz and a bandwidth off N complex-valued field=P(r,0,z;«) is sought as a
40 Hz is considered. The 3D ASA benchmark problem isfunction of the spatial variables 6, andz, for selectednon-
studied in Sec. IV. First, the 3D results corresponding to a 2%€gativé discrete frequencies within the frequency band of
Hz cw point source are presented, analyzed, and compardaterest. The acoustic pressuRe is assumed to satisfy a
with other solutions. Then, the acoustic problem is solved irPressure-release condition on the ocean surface, an outgoing
4D considering the broadband source pulse. The signals réadiation condition at infinity(in both range and deptha
ceived by a set of vertical arrays placed in the cross-slop@m-periodicity condition in the azimuthal direction, and ap-
direction are analyzed. Section V deals with the 3D GaussiaRropriate transmission conditions at each sedimental inter-
canyon test case. Again, results corresponding to both ciace. The frequency-domain solutid®, is then transformed
calculations and time series are presented and discussed. Mothe time-domain using the following inverse Fourier trans-
reference solution is available for this test case. The receivefdrm:
signals on two distinct vertical arrays placed along the can- 1 [+
yon axis are then analyzed. In Sec. VI, a summary of the P(F.6.z0)= EJ
results of this work is provided and future improvements are R
suggested. where P(r,0,z;,— w)=P(r,6,z;w) so that the real-valued
time-domain acoustic pressufe satisfies the initial time-
dependent wave equatidi). In summary, solving a pulse
propagation problem with the Fourier synthesis apprbath
requires one tdi) decompose the source pulse using a Fou-
A. Fourier synthesis method rier transform,(ii) select a frequency spacing and solve the
A multilayered waveguide composed of one water layer3P Propagation problem for each discrete frequency within a
overlying one(or several fluid sedimental layés) is consid-  frequency-band of interest, ariil ) perform inverse Fourier
ered. The model for each layer is three-dimensional. Cy"n_t_ransf(_)rms of the frequency-domain solutions to obtain the
drical coordinates are used, wherés the depth(increasing ~ iMme signal at any given receiver. As in Ref. 21, stgpis
downwards below the ocean surface] is the azimuthal achieved by using a three—dlmen_5|onal parabo!lc equatlon
(bearing angle, and is the horizontal range, related to the based model. Note that an alternative to the Four!er synthesis
Cartesian coordinates by=r cos§ andy=r siné. An iso- approach would be to solve the pulse propagation problem

tropic, broadband point sourc, is located ar =0 andz  directly in the time-domaif®#2~%® In _particular, - time-
—z5. The acoustic wave equation domain methods related to various PE formulations can be

found in Refs. 23-26.

+K2P= _:9((0)—25(2—:5) o0 &)

~ +oo .
S(w)= ﬁw S(t)e'“tdt. (4)

P(r,0,z,w)e “dow, (5)

—

Il. MATHEMATICAL MODELING

2 2 —
Lop|- L7020
c” at r

V~<—VP
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B. Three-dimensional parabolic equation
is solved, wherd®=P(r, 6,z;t) is the acoustic pressure as a

function of the three spatial variables#, z, and timet, and
S(t) is the time-dependence of point sougeln Eq. (1) ¢ .
and p represent, respectively, the varyifig space sound source spectrum from E¢3) yields

speed and the densitgonstant within each layerLet P 1 . bn 28(z—25) 8(r)

denote the Fourier transform of the time-domain acoustic pV'(;VPnorm) +KeProm=————F— (6)
pressureP, defined by

The acoustic problem is solved in the frequency-domain
using a parabolic equatiofPE) approach. Dropping the

where the unknown is now the normalized acoustic pressure

~ +o ) i . . . . )
P(r,a,z;w)zf P(r,0,zt)e e, @) Pnom(.r,q,z,w). Cylindrical spreading is handled by ex
—w pressingPom(r, 0,2, w) as
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s Y=L . Eq. (8) into Eq. (7), and neglection of the term in
Prom(r,6,Z,0) =Hg" (Kor ) ¢(1, 0,2, 0), O(¥2% 112, 1Y) leads (o0
whereH{" denotes the zeroth-order Hankel function of the .
first kind andky= w/c,¢ With C¢f @ reference sound speed. 5_¢_.k § ak,an n }
Assuming thatr 2 approximately commutes with/dr for ar Ko k=1 Z+b, X 2
r>0, the left-hand side of Eq6) can be factorized, and ] ) P ] ]
assuming only outward propagation in range, the 3D prob:l'hls equation accounts for refractlon effects Whl_ch are
lem based orielliptic-type) Eq. (6) is reduced to an initial- greater along than altlasnga.. It has been |mplemen'ged in the
and boundary-value problem. For any given valuewofa ~ €S€arch codepwape™ This model has a very-wide-angle
complex functiong=y(r,6,z;w) is sought, which repre- capability in _d_epth, and a narrow-angle capability in azi-
sents the acoustic field fop<r<r ., 0O<¢<27 and 0<z  Muth. The original 3D PE proposed by Tappertan be ob-

Y. (10

<Z,m, and which satisfies tain_ed_ by expanding the square-root in a Taylor series and
retaining only the linear terms iA and)),
J
Y ko (VT X YD) @ VIFXEY=T+ Y X+ ) +O(X2Y2AY). (1)

_ O 4 - ©) The resulting parabolic equatigknown as the standard 3-D
and (r=ro,6,z,0)=7(6,z,w). Here, ™ denotes the  pg) thus has a narrow-angle capability in both depth and

initial outgoing field atr =r, Z is the identity operatorX'is  57imuth:
the 2D depth operator in the plane, andy is the azimuthal ik
operator, defined as oy 1Ko
o= (X (12
5 p 019 . ,
X=(ny(r,0,2)-1)I+ — E(_ E) , Note that whem,=1 (which leads to the Claerbout’s coef-
ko 72\pP ficients a, ;=1/2 and by ;=1/4), Eq. (10) reduces to the
5 three-dimensional parabolic equation used by Cokinal X
)= 1 7 and by Fawcett,
(kor)2 962’ 1 ¥
_ - ; iy 2 1
wheren (r,6,z) =(C.f/c(r,0,2))(1+ina) is the complex — =ikg +=y | v (13)
index of refraction. In order to prevent spurious reflections ar T+ EX 2
from a pressure-release imposed boundary conditiap,at 4

an increasing attenuation coefficient is introduced in the
lower part of the domain. The operatdt handles the azi-
muthal diffraction term. Neglecting in Eq. (7) but retaining
azimuthal dependence in,(r,6,z) would lead to anN

X 2D or pseudo-30i.e., azimuthally uncouplgdPE model
which could not predict horizontal refraction. The square-
root operator present in E¢f) is then approximated using a

Since the higher-order terms neglected are in
O(X3,Y?, X)), this 3D PE has dClaerbout wide-angle
capability in depth and a narrow-angle capability in azimuth.
Instead of using a higher-order Pagigproximation along,
Lee—Saad—Schultz use a Taylor series expansion alangd

a linear approximation along:

higher-order Pad@pproximation alongz and a linear ap- VI+X+Y=T+3x-tx°+ )+ 0(x%,)2,x)). (14
proximation alongy: Neglecting the higher-order terms @( 3,12, X)), the re-
oA, X 1 sulting equation(referred to in the literature as the LSS-3D
VI+X+Y=T+> —F—+ - wide angle wave equatiotis
1 T4 byt 2 A 1 1 1
—=iko| s X— X2+ V| ¢ 15
+O(X " Y2, XY), (8) ar el et Y)Y ”

where n,, is the number of terms, and,, , by, , 1=k This 3D PE has been implem%nted by Bqtseaal. in t_he_
P P research computer codeor3p® and applied to realistic

<n,, are real coefficients given B . . . . .
P g Y three-dimensional environments with bottom topographic

2 ] kar variations and sound-speed profifes.
B, = 2np+13m2 2n, 1) 1sk<n, Parabolic equations can be solved numerically using
9) various techniques. For example, Smithses a marching
kr algorithm based on the split-step Fourier technique in both
by, = COS 2n,+ 1)’ 1sk=n, depth and azimuth. IBDWAPE, instead of the SSF algorithm,

an alternating direction method is used. This technique is
Complex coefficients can be used to attenuate Gibb'gsed in many 3D PE codé3®'%*¥The alternating direction

oscillations?® The Padeseries expansion is very convenient method consists in splitting EQ10) into the following sys-
since it allows for a very-wide-angle propagation alanthe  tem of equations:

angular limitation depending on parametgyr. It is thus able P .

to model energy at vertical angles approachin§0° with (Z+ Dy n, X) —-(1,0,Z 0) =iKody n XY(1, 6,2 0),
respect to the horizontal. The linear approximation allows (16)
only for narrow-angle propagation alor@g Substitution of 1<ks=ng,
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A iko and thus assume that 3D effects are sufficiently gra@he
o (10.20)=2"Y(1,0,7,0), (170 will be discussed in the next sectjoThey only differ in the
way they approximate the tergiZ+ X. In Eq. (20), the op-
and then thes@,+1 equations are solved sequentially aterator &’ and the operato) are separated. Any PE model
any discrete range using an implicit Crank-Nicolson schemebased on this formulation is thus amenable to the alternating
Let Ar be the increment in range. Given the 3D figidat  direction method. It is worth mentioning that this approach is
discrete range value,, ¢ is obtained at the next discrete very advantageous for 3D modeling. Assume, for instance,
range valuer,+Ar in two steps. Following the notations that an implicit Crank—Nicolson scheme is used instead of
used in Ref. 7, the first step consists in computmgnter- the alternating direction method, and is applied directly on
mediate fields denotedi)(6,z), u®(6,2),....u"(6,2) Eqg. (12). Given the 3D fieldy at the discrete rangs,, ¢ is

solving obtained at the next discrete rangger Ar by solving
ikoAr ® (I—IkoAr(X+y))¢//(rn+Ar,0,z;w)
I+ bk’np_Takynp X|u (0,2) 4
koAr (k1) 2+ 5 ) |t 0,200, (21)
=7+ bk,np+ Tak’np Xu (0,2), (18) 4

Then, applying a FD discretization mand 6, Eq. (21) leads
for 1<ksn(§,, where u(®)(6,z) denotes the 3D fields at  to a large block-tridiagonal linear system of orddrx N.
ranger ,: u©(6,2)=y(r,,0,z;»). The second step consists Unfortunately, because of its block-tridiagonal structure, this
in computing #(r,+Ar,0,z;w) from the last intermediate |arge linear system cannot be decomposed into smaller aux-

field u"?(6,z) obtained in step 1, by solving iliary linear systems. Furthermore, since realistic acoustic
. wave propagation problems generally require a large number
_ ikoAr ) of points in both the and # direction, it is not possible to use
T V|u(r,+Ar,0,z,0) . . . . Lo
4 any direct algorithm(like Gaussian elimination due to

. memory storage limitations. Instead, a preconditioned itera-
ikoAr . . L
=(I+ y)ump)(g,z)_ (19  tive algorithm must be used, the efficiency of the solver
4 highly depending on the preconditioning procedureTim
PARADIM, the standard narrow-angle 3D PE model was re-
o ritten in a new coordinate system in an effort to handle
E/roperly the varying bottom topography of the three-
dimensional waveguide. The resulting mathematical formu-
grid requires the inversion ai, large algebraic linear sys- lation did not allow the coordinate decomposition of the op-
P erator as for other 3D PEs. The use of the alternating

tems of ordeM X N. The matrix for each of tha, systems o . :
: . p == direction method was thus not possible and a numerical tech-
has a block-diagonal structure. Each inversion is hence

. 7 . - . ni imilar to Eq(21) w. hosen. The r r is referr
equivalent to the inversion & (auxiliary) linear systems of que similar to Bq(21) was chose e reader s referred

orderN. Since each block is a square tridiagonal matrix ofto Ref. 31 for more details on th@RIPARADIM_ model,
' . . 4 ag Though the resulting linear systems were sparse and could be
orderN, these inversions are performed using a fast and ro-

. . . - - solved using an efficient preconditioning technique at each
bust Gaussiaridirect) algorithm optimized for tridiagonal : . . )
matrices. The discretization of EQL9) is achieved using an range step, it has been shown that using such an iterative

- . T algorithm could lead to prohibitive computation times in
efficient h_lgher-order a_ccurate f_|n|te_d|fferer( ) sche_me. comparison with other 3D PE models that are amenable to
The solution of Eq(19) involves in this case the inversion of

N linear systems of ordell with entries in the upper right alternating direction methods, when solving practical prob-

. lems in three-dimensional environmefts® Computation
and lower left corners of the banded matrices to account fO{. . . o . :
the 2m-periodicity condition alongd. The bandwidth of each ime considerations are of major importance in 3D modeling,
P y g specially when broadband pulse propagation problems are
block depends on the order of the centered FD formula use

Adain. a fast and robust Gaussian alaorithm ootimized for iddressed. In this latter case, any numerical technique using
gain, . . . 9 P n alternating direction method should definitely be preferred
banded matrices is used. Using a higher-order accurate F

scheme along allows a significant reduction of the azi- 0 basic implicit Crank—Nicolson schemes.
muthal sampling, and faster computatigase the discussion
in Ref. 13. Alternatively, Eq.(19) can also be solved using

The discretization of Eq(18) for any 1s<ks=n, is achieved
using a piecewise-linear finite-element/Galerkin scheme. L
N and M denote the numbers of mesh points alaand 6,
respectively. Solving Eq.18) for theNX M points of thefz

C. Azimuthal wide-angle capability

any Fourier-based transformation techniquesy., FFT$. The azimuthal narrow-angle capability of the 3D PE
The 3DWAPE code offers the possibility to use both FD- and model 3DWAPE is now discussed. It is clear that the linear
FFT-based techniques for solving E49). approximation with respect to the azimuth operatarsed in

Note that all three-dimensional parabolic equations reEq. (8), or more generally in Eq20), is only valid when
viewed in this section make use of the following approxima-|V#{<|X|. This means that any horizontal deviation should

tion: be small compared to the vertical in-plane deviation of the
propagating energy. This assumption is valid for slowly vary-
VI+ X+ Y= I+ X+ 1Y+ 0(Y?%, X)), (20 ing properties. The azimuthal narrow-angle approximation

J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 1, March 2005 Frédéric Sturm: Broadband sound pulse propagation 1061

Downloaded 28 Feb 2013 to 128.197.27.9. Redistribution subject to ASA license or copyright; see http://asadl.org/terms



may be inappropriate for problems with large out-of-planeNeglecting terms irO(X3,x),V3) in Eq. (27) leads to the
deviations of the outward propagating field. For such prob{ollowing parabolic equation:

lems, one should utilize a three-dimensional parabolic equa-

tion that handles wide-angle propagation in both thand Iy
the 6 directions. Siegmann—Kriegsmann—E£&& developed or
a three-dimensional parabolic equation with a wide-angle ca-
pability applying the Claerbout’s coefficients to the operatorEquation(28) can be seen as an azimuthal quadratic correc-

11,11
:Iko EX—§X +§y—§y lﬂ (28)

X+Y: tion of theLSS-3-D Wide Angle Wave Equatigiven in Eq.
(15). It has been implemented in tif®R3D code. Notice that
%(th ) 'Ehe) azir;u:]hal ration:l—lfuncltion ap||o][oximation used in Eq.
—_ 3 25) and the azimuthal polynomial-function approximation
It V=1+ 1 FOUATI)). (22) used in Eq.(27) are correct to quadratic terms in azimuth,
I+ 7(X+ D) but both neglect the term i®(X)). Retaining this term
would not allow the use of an alternating direction method.
Neglecting the higher-order terms@((X+))°) then yields In its original configuration, thesowaPE code had a
narrow-angle capability in azimuflsee Eq(10)]. It has been
1 - . R
—(X+Y) modified to handle higher-order approximations aloég
‘"7_‘1”: ik 2 y 23) while keeping the two operators and ) separated. Instead
ar 0 ' of the azimuthal linear approximation in E@), a Padese-
I+ Z(X+ V) ries azimuthal expansion is used:
The wide-angle capability of this 3D parabolic equation has o oa, X My ay g,V
been demonstrated using an asymptotic multiscale andfysis. 7+ X+ Y=7+ >, > P
However, it is not amenable to the use of an alternating di- SN bk'”pX =1 It bk*mpy
rection method. Instead, the following numerical scheme is +O(X2HL, Y2+l ) (29)
obtained by applying an implicit Crank—Nicolson range-
stepping procedure directly on E@®3): wherem,, is the number of Padeerms anday . bim,, 1
1 ikoAr <k=m,, are real coefficients given analytically by E)
(I+ (Z_ 2 (X+D) | (ry+Ar,0,z;0) whereinn,, is to be replaced byn,. Then, by neglecting the

last term in Eq(29), Eq.(7) yields

1 ikoAr
:<I+<Z+ 7| (XD e, 0.z 0). (24) [ A T agmV
ar =ikl 2 7p 7t 2 Trh Ly GO
A FD technique inz and 6 has been proposed and validated k=1 kg™t k=1 kimp

on several test examplé% Following our previous discus-
sion, solving Eq{(24) may be costly. In order to take advan-
tage of the alternating direction technique, higher-orde
terms may be incorporated while keeping the two operator
X and Y separated. For instance, RECAN,” the following
[1/1] Padeazimuthal expansion is used:

The 3D PE has now a very-wide-angle capability in depth
'and a very-wide-angle capability in azimuth, but, due to the
germ in0(X)), the 3DWAPE model does not, strictly speak-
ing, have a wide-angle capability. Since the depth oper&tor
and the azimuthal operat@t are well separated in E¢30),
an alternating direction method is used. Given the 3D field
1 ¢ at the discrete range,, ¢ is obtained at the next
53) discrete range ,+Ar in two steps. The first step consists
+0(Y3,xY). (25  in computing n, intermediate fields denoted®(6,z),

T+-y u(z)(e,z),...,u(”ps’(a,z) solving Eq.(18) for 1<k=<n,. The

4 second step consists in computing, intermediate fields

By neglecting higher-order term®(»%,A), in (25), Eq. v (6:2), v@(6,2),...0(™(6,2) solving
(7) then yields

NI+ X+ Y=VI+ X+

ikoAr "
1 T+| bm, =~ &km, | Y]0(6,2)
W iky| VT I+ 2” (26) ikoAr
— = , -
o T+ ’ :(I+ D, + —5— 8k, y)v(k Y62, (3D
4

dar 1=k=mj, wherev(®(6,2) denotes the last intermediate

field u("(6,z) computed in the first step, and™(6,z)

corresponds to the 3D fielg at the discrete range,+ Ar:

P(ro+Ar,0,z;0)=vM)(0,z). Note that for the particular

I+ X+ Y=T+3x— X%+ 3y— 2?2+ 0(x%,x),»%.  valuem,=1 (for which we havea, ;=1/2 andb, ;= 1/4),
(27 Eq. (31 reduces to

where the square-root operator present on the right-hand si
is approximated using the split-step Padgorithm®’ Chen
et al. use a quadratic Taylor series azimuthal expan&ion,
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( (1 ikOAr) )
T+|=— V| y(r,+Ar,6,z;,0)

4 4
1 ikpAr
=7+ R, YIu™(9,2), (32

which corresponds exactly to the equation useddnAN to
account for 3D couplingsee Eq.(2.38 of Ref. 7).

IIl. DESCRIPTION OF THE THREE-DIMENSIONAL
TEST CASES

Two three-dimensional test cases are investigated, re
ferred to as test cases A and B. Test case A is based on
three-dimensional extension of the original two-dimensional
ASA wedge configuration and is similar to the 3D test case ¢
considered by other modelers in more recent papérsest
case A has been proposed as a 3D benchmark problem at t
141st ASA meeting held in Chicago in June 2001. It consists
of an isovelocity water layer of sound speeg= 1500 m/s
and densityp,,=1 g/cn?, overlying a lossy homogeneous In this paper,ho=20m, h;=180m, ando=4h,=720m.
half-space sedimental layer of sound spegd=1700m/s, The configuration used in test case B is depicted in Fig. 2.
density psei=1.5g/cnt and attenuationag.s~0.5dBI\, The water depth decreases from 200 nr &t0 to 20 m at
which leads to a critical grazing angle value of approxi-r—o along the#=0° and #=180° azimuthgcross-canyon
mately 28°. There is no attenuation in the water layer. Thalirectiong. It is invariant along the#=90° and6§=270° azi-
parametrization of the water-sediment interface is given bynuths (along-canyon directions It makes a varying angle
Zsed T, 0) =hged X) Wherex=r cosé and with respect to the ocean surfa@eith a maximum value of

B . approximately 12.1° at=509.12 m) at¥=0° and 6=180°,
200(1-x/4000  if |x|<3600 and leads to a zero-slope &t90° and#=270°.

1
1
;
1
Sediment :
1
1
1
I

z

IG. 1. Geometry of the 3Dtruncatedl wedge shaped waveguide consid-
d in test case A.

hsedX)=1 20 if x=3600 (33 For both test cases, an isotropic point source is located at
380 if x=<—3600. point S=(xs=0,ys=0,2s=40m). Its time dependence is a
. Hanning-weighted four-period sine waysee Fig. 3 given
The water depth decreases linearly from 200 m=a0 to 20 by
m at r=3.6km, and is range-independent for 3.6 km
along thef=0° azimuth(up-slope direction It increases lin- 1 . .
early from 200 m ar=0 to 380 m atr=3.6km, and is S(t)= 2 (1-cododti)sintect) if O=<t=4ff.
range-independent far= 3.6 km along the#=180° azimuth 0 if t>a/f
(down-slope direction It is invariant along the#=90° and @ (35)

0#=270° azimuthgcross-slope directionslt thus makes an
angle with a constant value of 2.86° with respect to the ocean
surface at botlP=0° and#=180°, and leads to a zero-slope
at both#=90° and#=270° (see Fig. 1 Water
Test case B is based on a modification of the three-
dimensional gaussian canyon test case devised for thi
SWAM’'99 Workshop’ held in Monterey CA in September
1999, and only differs from test case A in the description of
the bottom topography. Test case B consists of an isovelocity
water layer overlying a lossy homogeneous half-space sedi
mental layer(the geoacoustic parameters corresponding to
each layer are identical to the ones used in test caseith
a parametrization of the water-sediment interface given by

heed X) =ho+ hy exp(—x%/02), (34

where the parametelg, h,, ando are expressed in meters.
Like test case A, the water depth only depends onxhe ,
direction. Assumingo=4h,, the maximum slope of the

bathymetry in thex direction (which we will refer to as the l
cross-canyon directioris approximately 12.1° at=o/+/2.

The valueshp=200m, h;=500m, ando=4xh;=2000M  [g 2. Geometry of the 3D Gaussian canyon waveguide considered in test
correspond to the ones used during the SWAM’'99 workshopcase B.

Sediment
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FIG. 3. Time-dependence of the source pulse, for test
cases A and B.

Amplitude

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Time (in's)

where w.=27f; and f.=25Hz. The source pulse is cen- =16km andrg,=20km from the sourcés Each of the
tered at frequency.= 25 Hz with a 40 Hz bandwidth cover- vertical arrays is composed of 19 elements evenly spaced in
ing the band 5-45 Hz. The amplitudes of both the real an@jepth between 10 and 190 m. Note that, for both test cases,
imaginary parts of the source spectrum are very small fothe vertical arrays and the source lie in the same 200 m
frequencies below 5 Hz and above 45(ske Fig. 4 The sobath vertical plane. All the numerical simulations shown
pulse length is 0.16 s. For both test cases, the geometry @i the next sections were performed on a 2.2 GHz mono-
the waveguide a=90° (which corresponds to the cross- processor Dell-workstation. Neither vectorization nor paral-
slope direction for test case A and to the canyon axis for tedel computing was used. Unless specified otherwise, all the
case B is characterized by a zero-slophe water depth is  following numerical results were obtained using the 3D PE
constant and equal to 200)nDue to the geometry of the two model 3pwAPE.

waveguides, large 3D effects are expected in this direction,

along which several vertical arrays are placed. In test case Ay, RESULTS FOR THE 3D ASA WEDGE

three vertical arrays labeled A1, A2, and A3 are placed acro
slope at ranges =16 km, rpp=22km, andrz=25km
from the sources. In test case B, two vertical arrays labeled Since the source pulse is centeredfat25Hz, the

B1 and B2 are placed along the canyon axis at ramges acoustic problem at that specific frequency is treated first.

S :
i. cw point source results
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FREQUENCY (Hz) FIG. 4. Spectrum of the source pulse, for test cases A
and B.
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. FIG. 5. Transmission losén dB re 1 m) at 25 Hz at a
s 2 ASQOSS_SLOPE (1k?-n) L 2 depth of 30 m for test case A corresponding No
X 2D (upper subplotand 3D(lower subplo} PE calcu-
3-D - HORIZONTAL SLICE - RECEIVER DEPTH = 30 m lations. For both calculations, a modal sum was used as
a starting field. The 200 m isobath is indicated by a
dashed white line.
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The NX2D and 3D computations were carried out usingFigure 6 shows transmission loss-vs-range curvesz at
Ar=10m, Az=1m(i.e., Ar=\/6 andAz=\/60 where\ =30 m andf#=90° (across-slope The thin dashed curve is a
denotes the acoustic wavelengtmdn,=2. The maximum NX2D PE calculation and the bold solid curve is a 3D PE
computation range is.,,,=25km and the reference sound calculation. Comparing the two subplots of Fig. 5, the effects
speed isc= 1500 m/s. TheNxX2D and 3D PE algorithms of azimuthal coupling are evident, mainly in the vicinity of
were initialized atr=0 using a modal source. Since long- the cross-slope direction and at long ranges. These effects are
range propagation is considered, the modal sum was limitediell known and have been explained in detail by several
to the discrete modal spectrum. Only three propagatinguthors. They correspond to intramodal interference effects.
modes are present at a frequency of 25 Hz at the sourdRecall that three propagating modes are excited at the source.
location. The maximum depth of the computational grid isSince the vertical geometry in the cross-slope direction
Zmax=600m. An increasing attenuation coefficieq},dz) (characterized by a zero-slgps a classical 200-m-deep Pe-
was introduced in the lower part of the doma&aorrespond-  keris waveguide, any 2D diX2D model can predict the

ing to depths between,,=450 m andz,,,,=600m) to pre- presence of the three initial modes &6t90° for O<r

vent spurious reflections from the pressure-release imposed
boundary condition at,,,,. For the 3D calculations, a Pade
approximation in azimutfti.e., m,=1) and an eighth-order 40
FD azimuthal scheme withM =3240 points(i.e., an azi-

muthal step size of 1/9th of a degyesere used. This azi-

muthal increment corresponds to an arclength incremé&t ¢

of the order of 3/4 at the maximum computation range %
Imax- AS shown in Ref. 32, using a second-order FD azi-g -60
muthal scheme would require in this cake=23 040 dis-
crete points in azimuth, i.e., an azimuthal step size of 1/64t
of a degree(this azimuthal increment corresponding to an
arclength incremeni S of the order ofn/10 at the maximum
computation range .-

Gray-scale images of the transmission loss (TL .E(E |
=—20logyo(|4(r,0,Z;0c)|/INF with w,=27f,) at a re- -90t
ceiver depth of 30 m corresponding kX 2D and 3D cal-
culations are displayed in Fig. 5. Ti#e=90° direction corre- _100 s .

. . . . . 0 5 10 15 20 25
sponding to the 200 m isobath is indicated by a dashed line ACROSS-SLOPE RANGE (km)
The positions of the sourc® and the three vertical arrays
Al, A2, A3 are also indicated on each subplot. Due to thé;'G-tG- Nr><2'_3 arnge3'?ht§n§3“25i§|f;r']°i§ gc?or?n 1i£b063ﬂ1?ﬁrgﬁg”§rg;:ilo .
geqmetncal symmetry of the prObI.em about the up-slope dlaifeitisn fiietgset casz A. The thin dasged curve ifNan2D PE calculation P
rection, bothNx2D and 3D solutions are displayed as @ ang the bold solid curve is a 3D PE calculation. For both calculations the
function of range and azimuth in a limited azimuthal sector.Greene’s source was used as a starting field.

RECEIVER DEPTH = 30 m — AZIMUTH = 90 deg

3-D PE
———————— N x 2-D PE

-70

-80
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FIG. 7. 3D transmission losén dB re 1 m comparisons at 25 Hz at a FIG. 8. 3D transmission losgn dB re 1 m) comparisons at 25 Hz at a
receiver depth of 30 m along a 200 m isobath in the cross-slope direction fofeceiver depth of 30 m along a 200 m isobath in the cross-slope direction
test case A. The thin solid curve corresponds to the image solution. The twt/=90°, 14 kmsr <25 km) for test case A. The bold solid curve is a 3D PE
other curves are 3D PE calculations using a wide-afimdéd solid curve or calculation withc,e= 1500 m/s(same solution as shown in Fig) @&nd thin

a narrow-anglethin dashed curyeapproximation in azimuth. The source dashed curve is a 3D PE calculation withy=1512.94 m/s. The source
depth is 100 m. Both 3D PE calculations were initialized using the Greene’slepth is 100 m. The Greene’s source was used as a starting field.

source.

_ mations in azimutki.e., increasing the numben, of Pade
=25km. The use of a full 3-D PH.e., azimuthally coupled  {ermg does not improve phase predictions. Recall that the
mode) causes these three propagating modes to be horizoe gqjutions depend on the value of the reference sound
tally refracted down the slope, which leads to a succession Cgpeed Co. For the solutions shown in Fig. 76

three distinct zones in the cross-slope directisee Fig. 8 _ 1500 m/s. Figure 8 shows 3D PE solutions obtained using
For ranges less than approximately 11 km, the three initiafq gistinct values o,.;. The bold solid curve corresponds
propagating modes are present. Only two modes are presegf¢ — 1500 m/s(the value of the sound speed in the homo-
for r=11km up tor~16 km, due to the 3D shadowing gf- geneous water laygrand the thin dashed curve to
fect of mode 3. After ~16 km where the mode shadowing — 1512 94 m/s(the value of the horizontal phase speed of
effet of mode 2 occurs, only mode 1 is present. The mterfer-mode 1 at the source locatipmAs already pointed out by

ence pattern in the 3D solution startingrat 17.5km corre-  gith® changing the reference sound speed value induces a
sponds to the 3D mode self-interference effect of mode 1. ghifi in the PE solutions. This shift is yet less pronounced

To show that no significant 3D effects are omitted in thethan that between PE solutions shown in Fig. 7. This sug-

3D PE calculations, the results were compared with a refergacts that the disagreement between the image and the PE
Yesults is mainly due to the fact that the 3D PE model does

ence solution based on the image source method and ori
nally provided by Westwootdf This analytical solution is not have a wide-angle capability since the tern©ip)) is

expressed as a sum of ray fields, each of which take the formg; handled(see the discussion in Sec. Il.CHowever, de-

of a double integral over plane waves. Details of the method e the mismatch in the mode 1 interference pattern, all the

are given in Ref. 16. Note that the source depth was 100 m (tﬁhysical 3D effects are reproduced by the 3D PE model.
match the original ASA benchmark problem. The 3D PE an

the image solutions are plotted in Fig. 7. The bold solid
curve is the 3D PE solution obtained using two Ptaens in
depth fi,=2) and one Padeerm in azimuth (h,=1). Also
plotted on the same figure as a thin dashed curve is the 3D Azimuthal coupling effects may be easily observed by
PE solution obtained using two Paterms in depth and a exciting individual modes at the source location and propa-
narrow-angle azimuthal approximation. The 3D PE calculagating them outward in range. The 3D PE marching algo-
tions were initialized using the Greene’s souftaVe ob-  rithm was initialized by each of the three propagating modes
serve an overall good agreement between the two 3D PEeparately. Figure 9 shows TL pldtsorizontal slices at con-
solutions and the image solution in the cross-slope directiorstant depthz=30m) obtained by initializing the 3D PE
showing that both models predict the same 3D effects. Howmodel using mode 1, mode 2, and mode 3. In order to reduce
ever, there are some differences, notably a shift in the phashe phase error in PE calculations, the horizontal modal
ing at long ranges mainly where mode 1 interferences occuphase speed was used for the reference sound speed, i.e.,
Note that the 3D PE solution obtained using a Padap-  C,=1512.94 m/s for mode &= 1554.44 m/s for mode 2,
proximation in azimuth is closer to the reference solutionandc= 1632.42 m/s for mode 3. For each mode, the source
than the azimuthal narrow-angle 3D PE solution, although dield was assumed to be omnidirectional. Vertical cross sec-
phase shift is still present. The use of higher-order approxitions of the 3D PE solutions for mode 1, mode 2, mode 3

B. Modal initialization results
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FIG. 9. Transmission losén dB re 1 m) at 25 Hz at a
depth of 30 m for test case A corresponding to 3D PE
calculations and different omnidirectional mode excita-
tions. From top to bottom: mode 1, mode 2, and mode
3. On each subplot, the 200 m isobath is indicated by a
dashed line.

UP-SLOPE (km) —

o 5 10 15 20 25
ACROSS-SLOPE (km)

along the#=90° direction are shown in Fig. 10. Also shown {1,2,3} and any value offge]—90°,901, the modal-ray
in Fig. 10 is the 3D PE solution obtained initializing by the pathl“m,d,0 is a representative functionym,d,o(y) satisfy-

Greene’s source. ing the following Cauchy problem
The 3D PE results were compared with the predictions
from adiabatic modal theof{. Figure 11 shows the modal dx _ V1—(cp(X) X cos do)/C; m)? ~0
ray diagrams in théhorizonta) yx plane for each omnidi- dy Cm(X) X cog ¢o)/Cy - Y=
rectional modal initialization. The modal ray paths were cal- (36)

culated using the method given in Ref. 8. Hereafter, a modal- *(Y=0)=0.

ray path that corresponds to theth mode and makes Here, ¢,=90° (o= —90°) corresponds to an initial launch
initially an angle ¢, with the y axis (i.e., ¢o=0° points  in the up-slope directioriin the down-slope directionand
across slopeis denoted’r, 4 (see Fig. 12 According to the ¢ is thex-dependent phase velocity of theth mode satis-
Cartesian coordinate system chosen, for any valugnof fying c,,<cCp(X) <Cgeq and c(x=0)=c, r,, Wherec, , is

FIG. 10. 3D transmission losén dB
re 1 m at 25 Hz for test case Aver-
tical slices in the cross-slope directjon
corresponding to 3D PE calculations
and(a) mode 1,(b) mode 2,(c) mode
3, and(d) Greene’s source excitations.

5 10 15 20 25
(d) ACROSS-SLOPE RANGE (km)
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FIG. 11. Modal ray diagram&op view) for test case A,
obtained solving the differential equation given(86)
for —90°<¢y<90°. From top to bottom: mode 1,
mode 2, and mode 3.

UP-SLOPE (km) —

) = e m e e

ACROSS-SLOPE (km)

the horizontal phase speed of theh mode at the source than for lower modes. No shadow zone is observed for mode
location. The value ot ,(x) for any givenx is numerically 1 forr<25km in the cross-slope direction. Computations for
evaluated by solving ranges greater than 25 km for mode 1 would also show a
7 5 shadow zone in the cross-slope direction. Following Glegg
tan(V(we/Cu) = (0c/Cm(X))*X eed X)) et al.,? three regions exist in the wedge-shaped waveguide

peed. (@clCy) 2= (we/Crp(X))2 for each modal initialization(1) an inner region(corre-
=—— J > > sponding to¢, greater than a critical launch anglg.)
Pw (@c/Crm(X))"~ (w/Csed where the modal rays propagating upslope exceed the critical

where w,=2mf.. Note that a modal ray is stopped if it grazing angle and are not turned arou(®};an outer region
reaches ax coordinate such that,,(x) does not belong to (corresponding tap, less thaneg.;) where the modal-ray-
]Cw:Csed (i.€., when modam becomes leaKy Characteris- turn-around occurs; an() a shadow region where there is
tics of the modal rays that connect the sougwith one of  no propagation. The value of the critical launch anglg;
the three arrays Al, A2, and A3, are listed in Table I. depends on the mode numbeh~27° for mode 1,
Comparison of the results displayed in Figs. 9 and 11=23.7° for mode 2, ang.;~16° for mode 3.
shows that the 3D PE solutions are in good agreement with ~ Results obtained with both mode(®E and adiabatic
the predictions from adiabatic modal theory. A modal raymode confirm the presence of mode 1 at the three vertical
which has an initial launch directios, toward the wedge arrays Al, A2, and A3. Note that arrays A2 and ABlike
apex turns around, as long as its grazing angle does not egsray Al) both lie in the multiple mode arrival area of mode
ceed the critical angle. A region of multiple arrivals is cre- 1, which means that multiple modal ray path arrivals exist
ated in the vicinity of the cross-slope direction for suffi- for mode 1 on array A2 and array A3ee Table )l Indeed,
ciently large ranges from the source, followed by a shadowihere are two modal ray path arrivals for mode 1 on array A2
region. Due to the increasing grazing angle with respect t¢on array A3, the first one with a shallow anglep,
the mode number, 3D effects are stronger for higher modes

TABLE I. Characteristicgfor a 25 Hz cw point source, test case & the

x modal rays launched from the sourS@nd connected with one of the three
arrays Al, A2, A3. The anglé, denotes the initial launch angleb¢=0°
points across-slopef the modal eigenray, a”dm,d>0 denotes the length of

Erubo the modal eigenray paﬂ’mm,%.
do Array Modem ¢o (deg) Lim,g, (M)
Y Al 1 +1.8 16 002
0 Al 2 +135 16 186
Al 2 +16.5 16 300
A2 1 +2.7 22008
FIG. 12. Schematic of a modal-ray pdth, 4, in the (horizonta) yx plane A2 1 +19.7 22845
corresponding to modm, with initial launch angleg,. They axis (the x
axis) corresponds to the cross-slofgep-slope direction in the wedge A3 1 +3.2 25013
shaped waveguide considered in test case A. The source is plagedyat A3 1 +16.7 25 640
=0.
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=+2.7° (¢po= +3.2°) with respect to the cross-slope direc- using a less restricting criterion with respect to the acoustic
tion, and the second one with a steeper anglg  wavelength:Ad (or equivalentlyM) was selected such that
=+19.7° (po= +16.7°). Two distinct time arrivals of the AS~3\/4, whereAS denotes the arclength increment at the
signal carried by mode 1 on both arrays A2 and A3 are thusnaximum computation range,.,. Note that using a second-
expected, but only one single time arrival of the signal carorder FD scheme in azimuth would require the$~\/10.
ried by mode 1 on array Al. The array Al lies in the limit of Our calculations were carried out usiiMy=648 atf=5 Hz
the insonified region of mode 2. The signal carried by modeand M =5832 atf=45Hz. For intermediate values of the
2 should be present at array Al only. In addition, the arrayfrequency within the band 5—45 Hz, the number of discrete
Al lies in the multiple mode arrival area of mode 2. Two points in azimuth is obtained by linearly interpolating be-
distinct modal ray path arrivals for mode 2 with initial tween 648 and 5832. For each frequency-domain calculation,
launch anglegbo= +13.5° and¢,= + 16.5° are detected on the 3D PE marching algorithm was initializedrat O using
array Al. Hence, two distinct arrival times of the signal car-the Greene’s source. Two Pati¥ms in depthi.e., n,=2)
ried by mode 2 on Al are expected. Obviously, the threeand one Padeerms in azimutt(i.e., m,=1) were used. The
arrays A1, A2, and A3 lie in the shadow zone region of modemaximum depthz,,,, of the computation grid was placed
3. No arrival of the signal carried by mode 3 is thus detectegeveral wave-lengths below the maximum depth of the sea-
by any of the three arrays. floor and a layer of increasing absorption was placed in the
lower part of the domairfjust abovez,,,,) to attenuate the
reflected energy, its width also depending on the acoustic

C. Broadband results wavelength.

The case of the broadband source signal given in Eq.  The signal arrivals on the three vertical arrays Al, A2,
(35) is now discussed. The pulse response at a specific ré&nd A3 were calculated. Comparisons of the signals received
ceiverR of ranger g, azimuthég, and depttzg, is obtained ~on vertical array Al at a depth of 20 m corresponding to 2D

via a Fourier transform of the frequency-domain solutionand 3D computations are shown in Fig. 13. Both 2D and 3D
using solutions were multiplied by a facten; =16 000 m to com-
pensate for spherical spreading. The pulse responses on ver-
tical arrays Al, A2, and A3 were calculated using;,
1 [+*a . _ =10.6s, t,,j,=14.6s, t,,,=16.6s, respectively. They are
= Zﬁm S(0)Prom(Tr,0r 2R @) “'dw, (37 displayed in Figs. 14, 15, and 16. The received signals are
R plotted intentionally as stacked time series versus depth

where S(w) is the source spectrum given by E@), and  which is helpful when analyzing the modal structure of the
Pnorm is the solution of the normalized frequency-domainsignal arrivals. Snapshots of the propagating pulse in the
wave equatior(6). In Eq. (37), P,om iS set to zero for any cross-slope direction at two distinct timetss10.7 s andt
(non-negative frequencyf outside the band 5-45 Hz. The =16.7s, are shown in Figs. 17 and 18, respectively. For
frequency integral in E((37) is evaluated numerically using comparison, the signals obtained using 2D calculations are
a discrete Fourier transfor@®FT). A time window of length  also shown.
T=7s, with 4096 points, is used in the DFT algorithm. This Let us analyze first the signal arrivals on receiver arrays
yields values of the received signalRin the time window Al, A2, and A3, computed using a 2D PE model. The geom-
[ tmin tminT T] with a very fine time resolutioat of 0.0017 s  etry of the waveguide in the cross-slope directioharacter-
(At=T/4096). The length of the time window correspondsized by a zero-slopes seen by the 2D PE model as a clas-
to a frequency sampling f of 0.1429 Hz Af=1/T), which  sical 200-m-deep waveguide, which leads to the existence of
leads to 281 discrete values within the frequency-band 5—4#hree propagating modes when a 25 Hz cw source signal is
Hz. Producing a pulse response at receiRerequires first  considered. As expected, considering a broadband source
computing values oP ., at 281 discrete frequencies. This pulse with a central frequency of 25 Hz, the propagating
is achieved through repeated solution of the 3D PE model fosignal splits up in three distinct wave packets, which corre-
uniformly distributed discrete frequencies ranging from 5 tospond to the signal carried by the three propagating modes of
45 Hz and for Gsr=<rpg, 0<6<2m, 0<Z<Z,. the waveguide. Now, using a 3D PE model, the signal arriv-

For each solution at a single frequerfegeveral param- als exhibit only two distinct mode arrivalinstead of three
eters need to be changed, their values depending on the valas predicted by 2D calculationat each of the three vertical
of the frequencyf, or equivalently, of the acoustic wave- arrays Al, A2, and A3. For each of them, it is clear that the
length \. Suitable selections of the range, azimuthal, andirst wave packet corresponds to the signal carried by mode
depth incrementar, A6, Az are crucial. For instance, un- 1. Indeed, its amplitude is low near the ocean surface, in-
dersamplingoversampling the azimuthal direction may ap- creases with depth toward mid-depth, then decreases toward
pear inappropriate to accurately compute the 3D effenty  z=200m. This is obviously the depth dependence of mode
lead to untimely computationslt is well established that the 1. Following the same analysis, the second wave packet re-
range and depth incremenis andAz should be sufficiently ceived on Al(respectively, on A2 and AZorresponds to the
small in comparison to the acoustic wavelengthOur cal-  signal carried by mode Rrespectively, by mode )l These
culations were carried out usingr=A/6 and Az=\/60. observations are coherent with the predictions of the previ-
Since an eighth-order FD scheme was used in azimuth, seus section. Indeed, as expected, the signal carried by mode
lection of the azimuthal incremetd=27/M was achieved 1 is present for each of the three vertical arrays A1, A2, and

P(rg,0r,Zg;t)
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A3. Since only A2 and A3 lie in the multiple mode arrival merger of the two distinctbut close time arrivals of mode
area of mode 1, two distinct mode 1 arrivals are observed oR. It thus appears more dispersed in time than the single
A2 and A3(and only one single mode 1 arrival on Athe  mode 2 arrival predicted by a 2D calculation. Since the three
first one corresponding to a modal ray path with a shallowyrays A1, A2, and A3 all lie in the shadow zone region of
angle with respect to the cross-slope d_irection, and the se¢qode 3, no mode 3 signal arrival is observed at A1, A2, and
ond o_ne(weakeif to a modal ray path with a stgeper a_ngle.A3_ Note that all the modal eigenrays have been constantly
The time delay between the first and second time arrival of

mode 1 is shorter at A3 than at A2. As expected, the Signarlefracted in the horizontal direction during their upslope and

carried by mode 2 is only present at &recall that Al lies in downslope propagation. Thus, the corresponding wave pack-
the limit of the insonified region of mode)2Note that the ~ €tS are different from the wave packets predicted using a 2D

second wave packet received on Al corresponds to thelodel.
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(right) 3D calculation.
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V. RESULTS FOR THE 3D GAUSSIAN CANYON culations, a third-order Pad& approximation in azimuth

(i.e.,my=1) andM = 2880 points were used. The number of
discrete points used in azimuth is less than in test case A

e T o e e By because e value of he masmum compuater
y ; P ranger ax has been reduced from 25 to 20 km. As in test

after were obtained using the same range and depth incre- . .
ments as in test case gA(=10m Az=gl m) Botﬂ N case A, the azimuthal incremenit#=27/2880 corresponds

x 2D and 3D calculations were generated using a fifth-ordef® an arclength incremenkS of the order of 3/4 at the
Pade3 approximation in deptki.e.,n,=3). For the 3D cal- Maximum computation rang&a,—20 km.

A. cw point source results
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E E FIG. 16. Stacked time series vs depth
£ 100 £ 100 for test case A corresponding to verti-
o o cal array A3:(left) 2D calculation and
% % (right) 3D calculation
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FIG. 17. Snapshots of the propagating
pulse for test case A at=10.7 s: (up-
pen 2D calculation and(lower) 3D
calculation.
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Gray-scale images of the transmission léserizontal  canyon axis. Note that botNx2D and 3D solutions are
slices at a receiver depth of 30) rmrresponding tNxX2D Symmetric about the a|ong_canyon direction.
and 3D calculations are shown in Fig. 19. For both of them, ~ Figyre 20 shows transmission loss-versus-range curves
the modal sum was used as a starting field. A maximumy;,—3gm andé=90° (along the canyon axigorresponding

tl:(;gg)uta;ltion depth zf ?_00 rr;oatng'a reference soun?j.speed % 3D solutions obtained with various paraxial approxima-
mis were used. he Irection corresponding _t9 tions in azimuth. Also shown on the same plot is the 2D
the canyon axis is indicated by a dashed line. The positions .. . . .

. Solution. The comparison of the 3D solutions with the 2D
of the sourceS and the two vertical arrays B1, B2 are also

indicated on each subplot. Like test case A, due to the geos_olutlon confirms an enhancement of the acoustic level when

metrical symmetry of the problem about tixeaxis, both azimuthal coupling is handled, due to the focusing of the

solutions are displayed as a function of range and azimuth iACOUStic energy along the canyon axis. There are also some
a limited azimuthal sector. By comparing the two subplots ofdifferences between the two 3D PE solutions. The validity of
Fig. 19, noticeable differences in both fields can be observedhe narrow-angle approximation in azimuth is subject to dis-
The effects of azimuthal coupling are evident. Indeed, whergussion for the present test case since, as shown in Fig. 20,
azimuthal coupling is taken into account in the calculation,using a Padel paraxial approximation in azimuth changes
the acoustic energy is horizontally refracted by the sidewallshe solution. It is worth mentioning that no change in the
of the canyon and gets channeled in yhdirection along the ~ solution was observed for increasing valuesngf. How-

<
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T T . T . . . 1 pen 2D calculation and(lower) 3D
WATER . calculation.
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ACROSS CANYON (km)

FIG. 19. Transmission loggn dB re 1

m) at 25 Hz at a depth of 30 m for test
case B corresponding tNxX 2D (up-
per subplot and 3D (lower subplot
PE calculations. For each calculation,
the modal sum was used as a starting
field. The canyon axis is indicated by a
dashed white line.
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ALONG CANYON (km)

3-D HORIZONTAL SLICE - RECEIVER DEPTH = 30 m
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o] 2 4 6 8 10 12 14 16 18 20
ALONG CANYON (km)

ever, the error between the 3D PE solution and the exadhows the gray-scale TL plothorizontal slices at constant
solution can not be quantified since there is no referenceepthz=30m) obtained initializing the 3D PE model using

solution available for this test case. mode 1, mode 2, and mode 3. Vertical cross sections of the
3D PE solutions are shown in Fig. 22. Figure 23 shows the
B. Modal initialization results modal ray diagrams for each omnidirectional modal initial-

| der to ch terize the 3D effect Cin th ization. Characteristics of the modal rays that connect the
n order 1o characterize the etiects present In &, \rces with one of the two arrays B1 and B2, are listed in
canyon, the three propagating modes were excited deVIduTable I

ally at the source location, and propagated outward in range.

N By comparing the results shown in Figs. 21 and 23, the
For each modal initialization, the reference sound speed Wassolutions obtained using the PE approach and the adiabatic
selected equal to the phase speed ofntliemode. Figure 21 9 pp

modal ray theory are satisfactorily in good agreement. The
effects of the 3D varying bathymetry on the different modal

SOURCE DEPTH =40 m — RECEIVER DEPTH B . )
' ' : ' ‘ propagations are now evident. For each propagating mode,

= 30m - AZIMUTH = 90 deg
T T T

3-D PE - Wide angle in azimuth the focusing of the energy along the canyon axis is repetitive
—40 3-D PE - Narrow angle in azimuth in range and, as expected, is more pronounced for higher
______ Nx2-D modes than for lower modes. Indeed, three distinct focusing

zones are detected for mode 1, four distinct focusing zones
for mode 2, and five distinct focusing zones for mode 3. For
each propagating mode, the focusing-zone widtlong the
canyon axis increases with zone number. As a result, two
consecutive focusing zones may overlap at sufficiently large
N ranges(whose values depend on mode numbfeom the
R source along the canyon axis, and, thus, become indistin-
guishable. For example, for mode 1, the third focusing zone
overlaps with the second one near 19.5 km along the can-
yon axis, and, for mode 2, the fourth focusing zone overlaps
2 4 6 & 10 12 14 16 138 =2  with the third one near~17.5km along the canyon axis.
ALONG-CANYON RANGE (km) Unlike test case A, no shadow zone is observed along the
FIG. 20.NXx 2D and 3D transmission logg1 dB re 1 m) comparisons at 25 canyon axis. Besides, the 3D effects are more pronounced
Hz at a receiver depth of 30 m along a 200 m isobath along the canyon axif0r test case B than for test case A. For example, the onset of
for test case B. The thin dashed curve is a 2D PE calculation. The two solignode 1 interference pattern along the canyon axis appears

curves are 3D EE ca_tlculatlons W|th‘three Paglens in _depth and with a sooner in range for test case (Bt r~6.5km) than for test
narrow angle(thin solid curve or a wide-anglgbold solid curvem,=1)

approximation in azimuth. For each of the three calculations, the Greene’§8S€ A(atr~17.5 km)- )
source was used as a starting field. Modes 1, 2, and 3 are present at receiver arrays B1 and

|
(o
o
T

TRANSMISSION LOSS (dB re 1 m)
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FIG. 21. Transmission loggn dB re 1
m) at 25 Hz at a depth of 30 m for test
case B corresponding to 3D PE calcu-
lations and different omnidirectional
mode excitations. From top to bottom:
mode 1, mode 2, and mode 3.

ACROSS CANYON (km

“o 2 4 6 8 10 12 14 16 18 20
ALONG CANYON (km)

B2. This observation is coherent with the fact that there is nanode 2, the direct path and a pair of eigenrays with initial
shadow zone along the canyon axis. Both receiver arrays Blaunch anglegp,= =13.8°. On the other hand, there are five
and B2 lie in the multiple mode arrival area of each of themodal ray paths connecting and B1 for mode 3, the first
three propagating modes, the number of eigenrays dependimmge corresponding to the direct path, and the other ones to
on both the mode number and the receiver afsee Table two distinct pairs of eigenrays with initial launch anglégs

II). There are three modal ray paths connecting S and B1 for £9.5° and ¢o= *+16°. For receiver array B2, there are
mode 1, the first one corresponding #g=0° (the direct one direct path and two pairs of eigenrays for each of the
path, and the two other ones corresponding to a pair ofthree propagating modes. Anticipating the analysis presented
eigenrays with initial launch anglesy,= *=15.4°. Similarly, in the next section, multiple arrivalsiot necessarily distinct
there are three modal ray paths connectth@gnd B1 for in time) for each of the three propagating modes on both

FIG. 22. 3D transmission lossn dB

(b) 2 4 6 8 10 12 14 16 18 20 re 1 m at 25 Hz for test case Brer-

tical slices along the canyon axisor-
—— T _ T T — m —— responding to 3D PE calculations and

£ 50 ‘ - - S (@ mode 1,(b) mode 2,(c) mode 3,

= :gg - - - o o0 and (d) Greene’s source excitations.

= =

& 200 D — s

0 250 OD

(c) 2 4 6 8 10 12 14 16 18 20

2 4 6 8 10 12 14 16 18 20
(d) ALONG-CANYON RANGE (km)
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FIG. 23. Modal ray diagramgtop
view) for test case B, obtained solving
the differential equation given iB6)
for —90°< ¢y<90°. From top to bot-
tom: mode 1, mode 2, and mode 3.

ACROSS CANYON (km)

1
0 2 4 6 8 10 12 14 16 18 20
ALONG CANYON (km)

receiver arrays B1 and B2 can be predicted. More precisely=10.6 s and,,,=13 s for receiver arrays B1 and B2 respec-
two mode 1 arrivals, two mode 2 arrivals, and three mode 3Jively, and, as in test case A, a time window of length
arrivals are expected on B1. Three arrivals for each of the=7 s with 4096 points in the DFT algorithm. This required
propagating modes are expected on B2. On the contrary, ayinning the 3D PE model at 281 discrete frequencies within
azimuthally uncoupled model should predict only one singlehe frequency band 5-45 Hz. For each frequency-domain
arrival (the direct path for each of the three propagating calculation,Ar = \/6, Az=\/60. The numbeM of discrete

modes. points in the azimuthal direction was obtained by linearly
interpolating betweeM =576 atf=5 Hz andM =5184 at
C. Broadband results f=45Hz, which gaveM =2880 atf=25Hz. The 3D PE

Let us turn now to the analysis of the acoustic problemmarching algorithm was initialized at=0 using the
involving the broadband source signal given by EXf). The ~ Greene’s source. Three Pagems in depttii.e.,n,=3) and
signal arrivals on the two vertical arrays B1 and B2 wereone Padeerm in azimuth(i.e., m,=1) were used,
calculated. The calculations were carried out using, The signals received on vertical array Bl at a specific

depth of 20 m corresponding to 2D and 3D computations are
TABLE II. Characteristicsfor a 25 Hz cw point source, test casg@ the ~ shown in Fig. 24. Both solutions were multiplied by the
modal rays launched from the sourBend connected with one of the two same factorrg;=16000m to compensate for spherical
arrays B1 and B2. The ang'jlﬁO denotes th(_e initial launch anglepg=0° spreading. As expected, due to the focusing of the energy
points along the canyon aisf the modal eigenray, anky, ,, denotes the along the canyon axis, the amplitude of the 3D solution is
length of the modal eigenray pthn,%. N ; . .

significantly higher than the amplitude of the 2D solution.

Array Modem ¢ (deg) Lom, g, (M) The signal arrivals on vertical arrays B1 and B2 obtained
B1 1 0 16 000 using 3D calculation are displayed in Figs. 25 and 26, re-
B1 1 +15.4 16 360 spectively. For comparison, the signals obtained using 2D
B1 2 0 16 000 calculation are also displayed. The two signals marked with
Bl 2 +13.8 16258 arrows in Fig. 25 correspond to the ones shown in Fig. 24.
Bl 8 0 16 000 For both vertical arrays B1 and B2, the 2D resiise first

B1 3 +95 16112 .

B1 3 16 16 315 columns of Figs. 25 and 2&learly show that the propagat-

ing signal splits up in three distinct wave packets which cor-

B2 1 0 20 000 respond to the signals carried by the three propagating modes

B2 1 +9 20138 : o .

B2 1 403 21 050 of the waveguide. The 2D results are similar to that obtained

B2 2 0 20000 in test case A. On the other hand, the modal structure of the

B2 2 +2 20005 3D results is much more complicatézke second columns of

B2 2 *16.5 20476 Figs. 25 and 26 Indeed, though the first wave packet can

gg g . g 5 28 (1)28 clearly be attributed to the first arrival of mode 1, the rest of

B2 3 16 20394 the received signal; doles. not clearly sh'ow any modal struc-
ture. One way to discriminate the multiple arrivals of one
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FIG. 24. Comparison of broadband
pulse solutions for test case B and ar-
ray B1 at a depth of 20 n{uppe) 2D
calculation and(lower) 3D calcula-
tion.

mode from the multiple arrivals of the two other modes con-example, this is the case for the two distinct arrivals of mode
sists in initializing(in the Fourier domainthe PE model by 1 on B1(see first column of Fig. 27and for the two distinct
only one single modéif presen} at each single discrete fre- (though very close in time but still distinguishaplarrivals

guency, instead of initializing by the Greene’s souftar

of mode 2 on Bi(see second column of Fig. R his is also

which all the propagating modes are excited simultanegusly the case for the three distinct arrivals of mode 1 on(B&e

The results obtained by initializing separately by mode 1, byfirst column of Fig. 28 On the contrary, the multiple arrivals
mode 2, and by mode 3, are displayed, respectively, in thef mode 3 on B1 and B2see third columns of Figs. 27 and
first, second, and third columns of Figs. 27 and 28. They28) are very close in time. The wave packets observed cor-
confirm multiple arrivals for each of the three propagatingrespond to the merger of the three distinct arrivals of the
modes on receiver arrays B1 and B2. Note that multiple arsame mode. They thus appear more dispersed in time than
rivals of the same mode can be well separated in time. Fothe single mode 3 arrival obtained using a 2D model. Again,

2-D- 16 km

20 Wi

A

40—

e
60 il
i

80 —'\W’WWW

100 w

DEPTH (m)

120

140

160 i

180 iV

200 L 1 L
11 1.5 12

TIME (s)

12.5

13

20

40

140

160

18

(=]

200

3-D-16km

“h
Wil

v

=
s S

W

=
= =

I
M Mléd

I

FIG. 25. Stacked time series vs depth

corresponding to vertical array Bl

w

|

(placed along the canyon axis at a dis-
tance of 16 km obtained using 2D
computation (left column and 3D

" 'Al M

computation(right column).

b

b

il i ‘Emh

i H I
i M M;

11 11 5 12 12.5

TIME (s)

1076 J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 1, March 2005

13

Frédéric Sturm: Broadband sound pulse propagation

Downloaded 28 Feb 2013 to 128.197.27.9. Redistribution subject to ASA license or copyright; see http://asadl.org/terms



2-D-20km 3-D - 20 km
0 T T O T T

20 20 l“‘ \
\IUMU
40 40 !u‘”w
:ﬂ““‘ [\le
60 60 i W’”W“
MMU
T 80 3 80 lylr("w“"‘w FIG. 26. Stacked time series vs depth
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all these observations are consistent with the predictions dhe original SWAM'99 Gaussian canyon test case were in-

the previous section. vestigated. Both test cases were treated following the same
approach. First, the acoustic problem was simplified to an
VI. CONCLUSION harmonic point source emitting at 25 Hz. Results for both

In this paper, the propagation of a broadband acoustigomt source and modal initializations were obtained. Solu-

pulse with a central frequency of 25 Hz and a bandwidth Og!ons from the 3D '_DE mpdel were compared with the predic-
40 Hz in three-dimensional shallow water waveguides wadions from a 3D adiabatic modal theory. Good agreement was

studied. The 3D ASA benchmark problem, and a variant ofPtained between the two models for both test cases. For the
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=3 l corresponding to vertical array Bl
‘I-’ _‘““"VWVWVWW' W] (placed along the canyon axis at a dis-
= 100/ 100 MWWt 100 [ WA tance of 16 kr obtained using 3D
& l 'IMMMMMW computations. The signals have been
@) l obtained initializing the PE model by

1204 120 120 WA oe— mode 1(left), by mode 2middle), and

l WA~ b MM An—] by mode 3(right).
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3D ASA benchmark problem, comparisons of 3D PE solu-instance, it is important to keep in mind that any existing and
tions with a reference analytical solutifimased on the image available 3D PE based model is only an approximate model
method were made, hence validating the 3D PE model for(though generaland is limited in its ability to handle hori-
this test case. Unfortunately, no reference solution was avaikzontal refraction. Indeed, though the 3D PE model used in
able for the Gaussian canyon test case. The signals receivéiiis paper,3DWAPE, has a wide-angle capability along the
by vertical arrays located far from the source were calcuazimuthal directioncomparisons for the 3D wedge seem to
lated. For the 3D ASA wedge problem, multiple mode arrivalfavor the use of the azimuthal wide-angle approximatian
times(e.g., two distinct mode 1 arrivals on A2 and A3, and does not strictly speaking have a wide-angle capability since
only one single mode 1 arrival on Alor modal shadow the cross-derivative terms present@(X)) are not taken
zones(e.g., no mode 3 arrival on each of the vertical arraysinto account in the modeling. This point was discussed in
Al, A2, and A3 were observed. For the Gaussian canyondetail in this paper. The influence of handling cross-
test case, the analysis of the signals received by two verticalerivative terms is not known. Efforts to incorporate these
arrays B1 and B2 located along the canyon confirmed aterms in3DwWAPE as well as in a 3D version of the Monterey-
increase of the acoustic level due to energy focusing aloniliami Parabolic Equation model developed by Srigre
the canyon axis. Multiple mode arrivals on each of the vercurrently under way. Another issue that can be addressed
tical arrays for each of the three propagating modes werghen one is interested with pulse propagation in shallow
observed. No modal shadow zone was observed along theater environments is the following: if shear waves are
canyon axis. For both test cases, geometrical dispersion @resent in the bottom, do they modify the three-dimensional
the propagating modes was consistent with results obtaineeffects described in this paper, and if so, by how much? This
for a 25 Hz cw point source. question has not been addressed in this present work since
These phenomena are typical of shallow water oceanithe 3D model used could not handle shear waves. It is left for
environments in the presence of a sloping bottom. They haviuture works.
already been described numerically for a 3D wedge-shaped
waveguide using a code based on the image source m&thod.
Note that the latter code was limited to specific oceanic enycxNOWLEDGMENTS
vironments. The main advantage of using a 3D PE model is
that it can be applied quite generally and is thus not restricted The author wishes to thank Evan Westwo@kbplied
to a specific acoustic problerA.priori, the methodology that Research Laboratories, University of Austin, Texas, WSA
has been used to analyze the two acoustic problems, the 3Bho provided numerical data. Part of this work has been
wedge and the 3D Gaussian canyon, could be applied ipresented at the 6th International Conference on Theoretical
future for investigating any other shallow water acousticand Computational Acoustics held in August 2003 in Hawaii.
problem. Nevertheless, the modeler should be wary wheifhe author is very grateful to Michael TaroudakBepart-
performing numerical simulations with a 3D PE model. Forment of Mathematics, University of Crete, Gregder his
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