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In this paper, the propagation of a broadband sound pulse in three-dimensional~3D! shallow water
waveguides is investigated numerically. Two cases are examined:~i! the 3D ASA benchmark wedge,
and~ii ! the 3D Gaussian canyon. The numerical method used to solve the four-dimensional acoustic
problem is based on a Fourier synthesis technique. The frequency-domain calculations are carried
out using the fully 3D parabolic equation based model3DWAPE, recently modified to include a
wide-angle paraxial approximation for the azimuthal component. A broadband sound pulse with a
central frequency of 25 Hz and a bandwith of 40 Hz is considered. For both test cases, 3D results
corresponding to a 25 Hz cw point source are first presented and compared with predictions from a
3D adiabatic modal model. Then, the acoustic problem is solved considering the broadband source
pulse. The modal structure of the received signals is analyzed and exhibits multiple mode arrivals
of the propagating signal. ©2005 Acoustical Society of America.@DOI: 10.1121/1.1855791#

PACS numbers: 43.30.Bp, 43.30.Dr, 43.30.Gv@AIT # Pages: 1058–1079
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I. INTRODUCTION

It has been demonstrated both experimentally1–3 and
numerically4,5 that in some particular oceanic environmen
the horizontal refraction of propagating sound waves can
be neglected and leads, far from the source, to signific
three-dimensional~3D! effects. Fully three-dimensiona
models are needed to predict such 3D effects. Note tha
this work, a model is referred to as 3D if it allows horizont
refraction to be considered. Otherwise, the model is said
be two-dimensional~2D!, N32D, or pseudo-3D. Among ex
isting 3D codes available in the underwater acous
community,6–10 parabolic equation~PE! based models are
largely used since they are efficient for solving comp
sound propagation problems in various oceanic envir
ments. The reader is referred to Ref. 11 for an exhaus
review of the 3D codes based on modal theory, parab
equation, rays, and hybrid models, and in particular to R
12 for a specialized review of existing 3D PE models. T
main drawback of 3D models in cylindrical coordinat
~which is the case for most 3D PE models! is that they are
computationally expensive. Indeed, a 3D code is at least
orders of magnitude slower than anyN32D code since~i! a
very large number of points is required in the azimuthal
rection to maintain the necessary arclength between adja
bearing angles, and~ii ! a differential operator with respect t
the azimuthal coordinate must be incorporated into the s
tion. However, rising computer performance as well as
development of efficient numerical techniques9,13 allows 3D
PE models to be treated at a reasonable computational
A calculation in four-dimensional~4D! ~i.e., three spatial di-
mensions and time! using Fourier synthesis methods is th
now possible~at least at low frequencies!, allowing the im-
portant question of broadband signal dispersion in gen
3D waveguides to be addressed.

a!Electronic mail: frederic.sturm@ec-lyon.fr
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The aim of this work is to study the propagation
broadband sound pulses in three-dimensional shallow w
waveguides. The numerical method used to solve the
evant 4D acoustic problems is based on Fourier synthes
frequency-domain solutions. The calculations in 3D are do
using the3DWAPE code based on a fully three-dimension
parabolic equation.13 Two 3D acoustic problems are treate
in this paper. They both consist of an isovelocity water lay
overlying a lossy, homogeneous, half-space sedimental la
They only differ in the description of the bottom geometr
The first acoustic problem considered is a 3D benchm
wedge based on a three-dimensional extension of the orig
two-dimensional ASA wedge configuration.14 Preliminary re-
sults of broadband sound pulse propagation obtained u
3DWAPE for this specific 3D wedge problem can be found
Ref. 15. They showed that the modal structures of the pro
gating pulses calculated using a 3D PE model were qua
tively consistent with previous results obtained
Westwood16 for a similar case using an analytical metho
Though these results were satisfying and encouraging
quantitative comparison with any exact solution was ma
Note that in its original configuration, the3DWAPEcode had a
very-wide-angle capability along the vertical direction b
only a narrow-angle capability along the azimuthal directio
It has recently been modified to handle higher-order para
approximations along the azimuthal direction. The results
Ref. 15 were obtained using the azimuthal narrow-angle v
sion of the code. In the present paper, the issue of us
wide-angle approximation in azimuth is addressed. In p
ticular, numerical solutions obtained using various parax
approximations in azimuth are compared with a refere
analytical solution based on the image method. Broadb
calculations are now carried out using the azimuthal wi
angle version of the code. The second problem considere
the 3D Gaussian canyon test case. It corresponds to a va
of the original 3D Gaussian canyon test case created for
17(3)/1058/22/$22.50 © 2005 Acoustical Society of America
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SWAM’99 Shallow Water Acoustic Modeling Workshop.17

Results for the original SWAM’99 test case were obtain
for a 25 Hz cw point source.7,18 Modifications have been
made such that only three propagating modes exist at
source position~as in the 3D benchmark wedge! which
makes the modal structure analysis of the received sig
easier. Note that in its original form, eleven propagat
modes were present. The problem involving a broadb
sound pulse is analyzed with the same methodology as
the 3D wedge problem.

The organization of this paper is as follows: In Sec.
the Fourier synthesis technique is briefly summarized,
the 3DWAPE model is presented. Its wide-angle azimuthal c
pability is discussed; a review of the existing 3D PE code
also given. In Sec. III, the two acoustic shallow water pro
lems are described. For both test cases, a broadband s
pulse with a central frequency of 25 Hz and a bandwidth
40 Hz is considered. The 3D ASA benchmark problem
studied in Sec. IV. First, the 3D results corresponding to a
Hz cw point source are presented, analyzed, and comp
with other solutions. Then, the acoustic problem is solved
4D considering the broadband source pulse. The signals
ceived by a set of vertical arrays placed in the cross-sl
direction are analyzed. Section V deals with the 3D Gauss
canyon test case. Again, results corresponding to both
calculations and time series are presented and discusse
reference solution is available for this test case. The rece
signals on two distinct vertical arrays placed along the c
yon axis are then analyzed. In Sec. VI, a summary of
results of this work is provided and future improvements
suggested.

II. MATHEMATICAL MODELING

A. Fourier synthesis method

A multilayered waveguide composed of one water la
overlying one~or several! fluid sedimental layer~s! is consid-
ered. The model for each layer is three-dimensional. Cy
drical coordinates are used, wherez is the depth~increasing
downwards! below the ocean surface,u is the azimuthal
~bearing! angle, andr is the horizontal range, related to th
Cartesian coordinates byx5r cosu and y5r sinu. An iso-
tropic, broadband point source,S, is located atr 50 andz
5zS . The acoustic wave equation,

r¹•S 1

r
¹PD2

1

c2

]2P

]t2
52S~ t !

2d~z2zS!d~r !

r
, ~1!

is solved, whereP5P(r ,u,z;t) is the acoustic pressure as
function of the three spatial variablesr, u, z, and timet, and
S(t) is the time-dependence of point sourceS. In Eq. ~1! c
and r represent, respectively, the varying~in space! sound
speed and the density~constant within each layer!. Let P̂
denote the Fourier transform of the time-domain acou
pressureP, defined by

P̂~r ,u,z;v!5E
2`

1`

P~r ,u,z;t !eivtdt, ~2!
J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 1, March 2005
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wherev52p f is the angular frequency~expressed in rad/s!
andf is the frequency~expressed in Hz!. Then, Fourier trans-
form of Eq. ~1! leads to the frequency-domain~or Helm-
holtz! equation

r¹•S 1

r
¹ P̂D1ka

2 P̂52Ŝ~v!
2d~z2zS!d~r !

r
, ~3!

whereka5k(11 iha) is the complex~to account for lossy
layers! wave number, withk5v/c, a is the attenuation ex-
pressed in decibels per wavelength,h51/(40p log10e)
~with ha!1!, andŜ~v! is the source spectrum defined by

Ŝ~v!5E
2`

1`

S~ t !eivtdt. ~4!

The angular frequencyv is treated as a parameter in Eq.~3!.
The complex-valued fieldP̂5 P̂(r ,u,z;v) is sought as a
function of the spatial variablesr, u, andz, for selected~non-
negative! discrete frequencies within the frequency band
interest. The acoustic pressureP̂ is assumed to satisfy a
pressure-release condition on the ocean surface, an outg
radiation condition at infinity~in both range and depth!, a
2p-periodicity condition in the azimuthal direction, and a
propriate transmission conditions at each sedimental in
face. The frequency-domain solution,P̂, is then transformed
to the time-domain using the following inverse Fourier tran
form:

P~r ,u,z;t !5
1

2p E
2`

1`

P̂~r ,u,z;v!e2 ivtdv, ~5!

where P̂(r ,u,z;2v)5 P̂(r ,u,z;v) so that the real-valued
time-domain acoustic pressureP satisfies the initial time-
dependent wave equation~1!. In summary, solving a pulse
propagation problem with the Fourier synthesis approach19,20

requires one to~i! decompose the source pulse using a F
rier transform,~ii ! select a frequency spacing and solve t
3D propagation problem for each discrete frequency withi
frequency-band of interest, and~iii ! perform inverse Fourier
transforms of the frequency-domain solutions to obtain
time signal at any given receiver. As in Ref. 21, step~ii ! is
achieved by using a three-dimensional parabolic equa
based model. Note that an alternative to the Fourier synth
approach would be to solve the pulse propagation prob
directly in the time-domain.19,22–26 In particular, time-
domain methods related to various PE formulations can
found in Refs. 23–26.

B. Three-dimensional parabolic equation

The acoustic problem is solved in the frequency-dom
using a parabolic equation~PE! approach. Dropping the
source spectrum from Eq.~3! yields

r¹•S 1

r
¹ P̂normD1ka

2 P̂norm52
2d~z2zS!d~r !

r
, ~6!

where the unknown is now the normalized acoustic press
P̂norm(r ,u,z;v). Cylindrical spreading is handled by ex
pressingP̂norm(r ,u,z;v) as
1059Frédéric Sturm: Broadband sound pulse propagation
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P̂norm~r ,u,z;v!5H0
~1!~k0r !c~r ,u,z;v!,

whereH0
(1) denotes the zeroth-order Hankel function of t

first kind andk05v/cref with cref a reference sound spee
Assuming thatr 22 approximately commutes with]/]r for
r @0, the left-hand side of Eq.~6! can be factorized, and
assuming only outward propagation in range, the 3D pr
lem based on~elliptic-type! Eq. ~6! is reduced to an initial-
and boundary-value problem. For any given value ofv, a
complex functionc5c(r ,u,z;v) is sought, which repre-
sents the acoustic field forr 0<r<r max, 0<u<2p and 0<z
<zmax, and which satisfies

]c

]r
5 ik0~AI1X1Y2I!c ~7!

and c(r 5r 0 ,u,z;v)5c (0)(u,z;v). Here,c (0) denotes the
initial outgoing field atr 5r 0 , I is the identity operator,X is
the 2D depth operator in therz plane, andY is the azimuthal
operator, defined as

X5~na
2~r ,u,z!21!I1

r

k0
2

]

]z S 1

r

]

]zD ,

Y5
1

~k0r !2

]2

]u2
,

wherena(r ,u,z)5(cref /c(r ,u,z))(11 iha) is the complex
index of refraction. In order to prevent spurious reflectio
from a pressure-release imposed boundary condition atzmax,
an increasing attenuation coefficient is introduced in
lower part of the domain. The operatorY handles the azi-
muthal diffraction term. NeglectingY in Eq. ~7! but retaining
azimuthal dependence inna(r ,u,z) would lead to anN
32D or pseudo-3D~i.e., azimuthally uncoupled! PE model
which could not predict horizontal refraction. The squa
root operator present in Eq.~7! is then approximated using
higher-order Pade´ approximation alongz and a linear ap-
proximation alongu:

AI1X1Y5I1 (
k51

np ak,np
X

I1bk,np
X 1

1

2
Y

1O~X 2np11,Y 2,XY!, ~8!

where np is the number of terms, andak,np
, bk,np

, 1<k

<np , are real coefficients given by27

ak,np
5

2

2np11
sin2S kp

2np11D , 1<k<np ,

~9!

bk,np
5cos2S kp

2np11D , 1<k<np .

Complex coefficients can be used to attenuate Gib
oscillations.28 The Pade´ series expansion is very convenie
since it allows for a very-wide-angle propagation alongz, the
angular limitation depending on parameternp . It is thus able
to model energy at vertical angles approaching690° with
respect to the horizontal. The linear approximation allo
only for narrow-angle propagation alongu. Substitution of
1060 J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 1, March 2005

Downloaded 28 Feb 2013 to 128.197.27.9. Redistribution sub
-

s

e

-

’s

s

Eq. ~8! into Eq. ~7!, and neglection of the term in
O(X 2np11,Y 2,XY) leads to

]c

]r
5 ik0S (

k51

np ak,np
X

I1bk,np
X 1

1

2
YD c. ~10!

This equation accounts for refraction effects which a
greater alongz than alongu. It has been implemented in th
research code3DWAPE.13 This model has a very-wide-angl
capability in depth, and a narrow-angle capability in a
muth. The original 3D PE proposed by Tappert29 can be ob-
tained by expanding the square-root in a Taylor series
retaining only the linear terms inX andY,

AI1X1Y5I1 1
2~X1Y!1O~X 2,Y 2,XY!. ~11!

The resulting parabolic equation~known as the standard 3-D
PE! thus has a narrow-angle capability in both depth a
azimuth:

]c

]r
5

ik0

2
~X1Y!c. ~12!

Note that whennp51 ~which leads to the Claerbout’s coe
ficients a1,151/2 and b1,151/4), Eq. ~10! reduces to the
three-dimensional parabolic equation used by Collinset al.10

and by Fawcett,8

]c

]r
5 ik0S 1

2
X

I1
1

4
X

1
1

2
YD c. ~13!

Since the higher-order terms neglected are
O(X 3,Y 2,XY), this 3D PE has a~Claerbout! wide-angle
capability in depth and a narrow-angle capability in azimu
Instead of using a higher-order Pade´ approximation alongz,
Lee–Saad–Schultz use a Taylor series expansion alongz and
a linear approximation alongu:

AI1X1Y5I1 1
2X2 1

8X 21 1
2Y1O~X 3,Y 2,XY!. ~14!

Neglecting the higher-order terms inO(X 3,Y 2,XY), the re-
sulting equation~referred to in the literature as the LSS-3
wide angle wave equation! is

]c

]r
5 ik0S 1

2
X2

1

8
X 21

1

2
YDc. ~15!

This 3D PE has been implemented by Botseaset al. in the
research computer codeFOR3D30 and applied to realistic
three-dimensional environments with bottom topograp
variations and sound-speed profiles.6

Parabolic equations can be solved numerically us
various techniques. For example, Smith9 uses a marching
algorithm based on the split-step Fourier technique in b
depth and azimuth. In3DWAPE, instead of the SSF algorithm
an alternating direction method is used. This technique
used in many 3D PE codes.6–8,10,18The alternating direction
method consists in splitting Eq.~10! into the following sys-
tem of equations:

~I1bk,np
X!

]c

]r
~r ,u,z;v!5 ik0ak,np

Xc~r ,u,z;v!,

~16!
1<k<np ,
Frédéric Sturm: Broadband sound pulse propagation
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]c

]r
~r ,u,z;v!5

ik0

2
Yc~r ,u,z;v!, ~17!

and then thesenp11 equations are solved sequentially
any discrete range using an implicit Crank-Nicolson sche
Let Dr be the increment in range. Given the 3D fieldc at
discrete range valuer n , c is obtained at the next discret
range valuer n1Dr in two steps. Following the notation
used in Ref. 7, the first step consists in computingnp inter-
mediate fields denotedu(1)(u,z), u(2)(u,z),...,u(np)(u,z)
solving

S I1S bk,np
2

ik0Dr

2
ak,npDXDu~k!~u,z!

5S I1S bk,np
1

ik0Dr

2
ak,npDXDu~k21!~u,z!, ~18!

for 1<k<np , where u(0)(u,z) denotes the 3D fieldc at
ranger n : u(0)(u,z)5c(r n ,u,z;v). The second step consis
in computingc(r n1Dr ,u,z;v) from the last intermediate
field u(np)(u,z) obtained in step 1, by solving

S I2
ik0Dr

4
YDc~r n1Dr ,u,z;v!

5S I1
ik0Dr

4
YDu~np!~u,z!. ~19!

The discretization of Eq.~18! for any 1<k<np is achieved
using a piecewise-linear finite-element/Galerkin scheme.
N andM denote the numbers of mesh points alongz andu,
respectively. Solving Eq.~18! for theN3M points of theuz
grid requires the inversion ofnp large algebraic linear sys
tems of orderM3N. The matrix for each of thenp systems
has a block-diagonal structure. Each inversion is he
equivalent to the inversion ofM ~auxiliary! linear systems of
order N. Since each block is a square tridiagonal matrix
orderN, these inversions are performed using a fast and
bust Gaussian~direct! algorithm optimized for tridiagona
matrices. The discretization of Eq.~19! is achieved using an
efficient higher-order accurate finite difference~FD! scheme.
The solution of Eq.~19! involves in this case the inversion o
N linear systems of orderM with entries in the upper righ
and lower left corners of the banded matrices to account
the 2p-periodicity condition alongu. The bandwidth of each
block depends on the order of the centered FD formula u
Again, a fast and robust Gaussian algorithm optimized
banded matrices is used. Using a higher-order accurate
scheme alongu allows a significant reduction of the az
muthal sampling, and faster computations~see the discussion
in Ref. 13!. Alternatively, Eq.~19! can also be solved usin
any Fourier-based transformation techniques~e.g., FFTs!.
The 3DWAPE code offers the possibility to use both FD- an
FFT-based techniques for solving Eq.~19!.

Note that all three-dimensional parabolic equations
viewed in this section make use of the following approxim
tion:

AI1X1Y5AI1X1 1
2Y1O~Y 2,XY!, ~20!
J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 1, March 2005
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and thus assume that 3D effects are sufficiently gradual~this
will be discussed in the next section!. They only differ in the
way they approximate the termAI1X. In Eq. ~20!, the op-
eratorX and the operatorY are separated. Any PE mode
based on this formulation is thus amenable to the alterna
direction method. It is worth mentioning that this approach
very advantageous for 3D modeling. Assume, for instan
that an implicit Crank–Nicolson scheme is used instead
the alternating direction method, and is applied directly
Eq. ~12!. Given the 3D fieldc at the discrete ranger n , c is
obtained at the next discrete ranger n1Dr by solving

S I2
ik0Dr

4
~X1Y! Dc~r n1Dr ,u,z;v!

5S I1
ik0Dr

4
~X1Y! Dc~r n ,u,z;v!. ~21!

Then, applying a FD discretization inz andu, Eq. ~21! leads
to a large block-tridiagonal linear system of orderM3N.
Unfortunately, because of its block-tridiagonal structure, t
large linear system cannot be decomposed into smaller
iliary linear systems. Furthermore, since realistic acou
wave propagation problems generally require a large num
of points in both thez andu direction, it is not possible to use
any direct algorithm~like Gaussian elimination! due to
memory storage limitations. Instead, a preconditioned ite
tive algorithm must be used, the efficiency of the solv
highly depending on the preconditioning procedure. InTRI-

PARADIM, the standard narrow-angle 3D PE model was
written in a new coordinate system in an effort to hand
properly the varying bottom topography of the thre
dimensional waveguide. The resulting mathematical form
lation did not allow the coordinate decomposition of the o
erator as for other 3D PEs. The use of the alternat
direction method was thus not possible and a numerical te
nique similar to Eq.~21! was chosen. The reader is referre
to Ref. 31 for more details on theTRIPARADIM model.
Though the resulting linear systems were sparse and coul
solved using an efficient preconditioning technique at e
range step, it has been shown that using such an itera
algorithm could lead to prohibitive computation times
comparison with other 3D PE models that are amenable
alternating direction methods, when solving practical pro
lems in three-dimensional environments.32,33 Computation
time considerations are of major importance in 3D modeli
especially when broadband pulse propagation problems
addressed. In this latter case, any numerical technique u
an alternating direction method should definitely be prefer
to basic implicit Crank–Nicolson schemes.

C. Azimuthal wide-angle capability

The azimuthal narrow-angle capability of the 3D P
model 3DWAPE is now discussed. It is clear that the line
approximation with respect to the azimuth operatorY used in
Eq. ~8!, or more generally in Eq.~20!, is only valid when
uYcu!uXcu. This means that any horizontal deviation shou
be small compared to the vertical in-plane deviation of
propagating energy. This assumption is valid for slowly va
ing properties. The azimuthal narrow-angle approximat
1061Frédéric Sturm: Broadband sound pulse propagation
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may be inappropriate for problems with large out-of-pla
deviations of the outward propagating field. For such pr
lems, one should utilize a three-dimensional parabolic eq
tion that handles wide-angle propagation in both thez and
the u directions. Siegmann–Kriegsmann–Lee34,35 developed
a three-dimensional parabolic equation with a wide-angle
pability applying the Claerbout’s coefficients to the opera
X1Y:

AI1X1Y5I1

1

2
~X1Y!

I1
1

4
~X1Y!

1O~~X1Y!3!. ~22!

Neglecting the higher-order terms inO((X1Y)3) then yields

]c

]r
5 ik0S 1

2
~X1Y!

I1
1

4
~X1Y!

D c. ~23!

The wide-angle capability of this 3D parabolic equation h
been demonstrated using an asymptotic multiscale analys35

However, it is not amenable to the use of an alternating
rection method. Instead, the following numerical scheme
obtained by applying an implicit Crank–Nicolson rang
stepping procedure directly on Eq.~23!:

S I1S 1

4
2

ik0Dr

4 D ~X1Y! Dc~r n1Dr ,u,z;v!

5S I1S 1

4
1

ik0Dr

4 D ~X1Y! Dc~r n ,u,z;v!. ~24!

A FD technique inz andu has been proposed and validat
on several test examples.36 Following our previous discus
sion, solving Eq.~24! may be costly. In order to take advan
tage of the alternating direction technique, higher-or
terms may be incorporated while keeping the two opera
X and Y separated. For instance, inPECAN,7 the following
@1/1# Padéazimuthal expansion is used:

AI1X1Y5AI1X1

1

2
Y

I1
1

4
Y

1O~Y 3,XY!. ~25!

By neglecting higher-order terms,O(Y 3,XY), in ~25!, Eq.
~7! then yields

]c

]r
5 ik0S AI1X1

1

2
Y

I1
1

4
YD c, ~26!

where the square-root operator present on the right-hand
is approximated using the split-step Pade´ algorithm.37 Chen
et al. use a quadratic Taylor series azimuthal expansion,38

AI1X1Y5I1 1
2X2 1

8X 21 1
2Y2 1

8Y 21O~X 3,XY,Y 3!.
~27!
1062 J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 1, March 2005
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Neglecting terms inO(X 3,XY,Y 3) in Eq. ~27! leads to the
following parabolic equation:

]c

]r
5 ik0S 1

2
X2

1

8
X 21

1

2
Y2

1

8
Y 2Dc. ~28!

Equation~28! can be seen as an azimuthal quadratic corr
tion of theLSS-3-D Wide Angle Wave Equationgiven in Eq.
~15!. It has been implemented in theFOR3Dcode. Notice that
the azimuthal rational-function approximation used in E
~25! and the azimuthal polynomial-function approximatio
used in Eq.~27! are correct to quadratic terms in azimut
but both neglect the term inO(XY). Retaining this term
would not allow the use of an alternating direction metho

In its original configuration, the3DWAPE code had a
narrow-angle capability in azimuth@see Eq.~10!#. It has been
modified to handle higher-order approximations alongu
while keeping the two operatorsX andY separated. Instead
of the azimuthal linear approximation in Eq.~8!, a Pade´ se-
ries azimuthal expansion is used:

AI1X1Y5I1 (
k51

np ak,np
X

I1bk,np
X 1 (

k51

mp ak,mp
Y

I1bk,mp
Y

1O~X 2np11,Y 2mp11,XY!, ~29!

wheremp is the number of Pade´ terms andak,mp
, bk,mp

, 1
<k<mp , are real coefficients given analytically by Eq.~9!
whereinnp is to be replaced bymp . Then, by neglecting the
last term in Eq.~29!, Eq. ~7! yields

]c

]r
5 ik0S (

k51

np ak,np
X

I1bk,np
X 1 (

k51

mp ak,mp
Y

I1bk,mp
YD c. ~30!

The 3D PE has now a very-wide-angle capability in dep
and a very-wide-angle capability in azimuth, but, due to
term in O(XY), the 3DWAPE model does not, strictly speak
ing, have a wide-angle capability. Since the depth operatoX
and the azimuthal operatorY are well separated in Eq.~30!,
an alternating direction method is used. Given the 3D fi
c at the discrete ranger n , c is obtained at the nex
discrete ranger n1Dr in two steps. The first step consis
in computing np intermediate fields denotedu(1)(u,z),
u(2)(u,z),...,u(np)(u,z) solving Eq.~18! for 1<k<np . The
second step consists in computingmp intermediate fields
v (1)(u,z), v (2)(u,z),...,v (mp)(u,z) solving

S I1S bk,mp
2

ik0Dr

2
ak,mpDYD v ~k!~u,z!

5S I1S bk,mp
1

ik0Dr

2
ak,mpDYD v ~k21!~u,z!, ~31!

for 1<k<mp , wherev (0)(u,z) denotes the last intermediat
field u(np)(u,z) computed in the first step, andv (mp)(u,z)
corresponds to the 3D fieldc at the discrete ranger n1Dr :
c(r n1Dr ,u,z;v)5v (mp)(u,z). Note that for the particular
value mp51 ~for which we havea1,151/2 andb1,151/4),
Eq. ~31! reduces to
Frédéric Sturm: Broadband sound pulse propagation

ject to ASA license or copyright; see http://asadl.org/terms



r
on
na
s

t
is

s

xi
h
b

ea
e

ee
t

r
o
c
ed
t

y

s.
e

o

. 2.

d at
a

-

test
S I1S 1

4
2

ik0Dr

4 DYDc~r n1Dr ,u,z;v!

5S I1S 1

4
1

ik0Dr

4 DYDu~np!~u,z!, ~32!

which corresponds exactly to the equation used inPECAN to
account for 3D coupling@see Eq.~2.38! of Ref. 7#.

III. DESCRIPTION OF THE THREE-DIMENSIONAL
TEST CASES

Two three-dimensional test cases are investigated,
ferred to as test cases A and B. Test case A is based
three-dimensional extension of the original two-dimensio
ASA wedge configuration and is similar to the 3D test ca
considered by other modelers in more recent papers.7–9 Test
case A has been proposed as a 3D benchmark problem a
141st ASA meeting held in Chicago in June 2001. It cons
of an isovelocity water layer of sound speedcw51500 m/s
and densityrw51 g/cm3, overlying a lossy homogeneou
half-space sedimental layer of sound speedcsed51700 m/s,
density rsed51.5 g/cm3 and attenuationased50.5 dB/l,
which leads to a critical grazing angle value of appro
mately 28°. There is no attenuation in the water layer. T
parametrization of the water-sediment interface is given
zsed(r ,u)5hsed(x) wherex5r cosu and

hsed~x!5H 200~12x/4000! if uxu<3600

20 if x>3600

380 if x<23600.

~33!

The water depth decreases linearly from 200 m atr 50 to 20
m at r 53.6 km, and is range-independent forr>3.6 km
along theu50° azimuth~up-slope direction!. It increases lin-
early from 200 m atr 50 to 380 m atr 53.6 km, and is
range-independent forr>3.6 km along theu5180° azimuth
~down-slope direction!. It is invariant along theu590° and
u5270° azimuths~cross-slope directions!. It thus makes an
angle with a constant value of 2.86° with respect to the oc
surface at bothu50° andu5180°, and leads to a zero-slop
at bothu590° andu5270° ~see Fig. 1!.

Test case B is based on a modification of the thr
dimensional gaussian canyon test case devised for
SWAM’99 Workshop17 held in Monterey CA in Septembe
1999, and only differs from test case A in the description
the bottom topography. Test case B consists of an isovelo
water layer overlying a lossy homogeneous half-space s
mental layer~the geoacoustic parameters corresponding
each layer are identical to the ones used in test case A! with
a parametrization of the water-sediment interface given b

hsed~x!5h01h1 exp~2x2/s2!, ~34!

where the parametersh0 , h1 , ands are expressed in meter
Like test case A, the water depth only depends on thx
direction. Assumings54h1 , the maximum slope of the
bathymetry in thex direction ~which we will refer to as the
cross-canyon direction! is approximately 12.1° atx5s/A2.
The valuesh05200 m, h15500 m, ands543h152000 m
correspond to the ones used during the SWAM’99 worksh
J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 1, March 2005
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In this paper,h0520 m, h15180 m, ands54h15720 m.
The configuration used in test case B is depicted in Fig
The water depth decreases from 200 m atr 50 to 20 m at
r→` along theu50° andu5180° azimuths~cross-canyon
directions!. It is invariant along theu590° andu5270° azi-
muths ~along-canyon directions!. It makes a varying angle
with respect to the ocean surface~with a maximum value of
approximately 12.1° atr 5509.12 m) atu50° andu5180°,
and leads to a zero-slope atu590° andu5270°.

For both test cases, an isotropic point source is locate
point S5(xS50,yS50,zS540 m). Its time dependence is
Hanning-weighted four-period sine wave~see Fig. 3! given
by

S~ t !5H 1

2
~12cos~vct/4!!sin~vct ! if 0<t<4/f c

0 if t.4/f c,
~35!

FIG. 1. Geometry of the 3D~truncated! wedge shaped waveguide consid
ered in test case A.

FIG. 2. Geometry of the 3D Gaussian canyon waveguide considered in
case B.
1063Frédéric Sturm: Broadband sound pulse propagation
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where vc52p f c and f c525 Hz. The source pulse is cen
tered at frequencyf c525 Hz with a 40 Hz bandwidth cover
ing the band 5–45 Hz. The amplitudes of both the real a
imaginary parts of the source spectrum are very small
frequencies below 5 Hz and above 45 H~see Fig. 4!. The
pulse length is 0.16 s. For both test cases, the geometr
the waveguide atu590° ~which corresponds to the cros
slope direction for test case A and to the canyon axis for
case B! is characterized by a zero-slope~the water depth is
constant and equal to 200 m!. Due to the geometry of the two
waveguides, large 3D effects are expected in this direct
along which several vertical arrays are placed. In test cas
three vertical arrays labeled A1, A2, and A3 are placed ac
slope at rangesr A1516 km, r A2522 km, andr A3525 km
from the sourceS. In test case B, two vertical arrays labele
B1 and B2 are placed along the canyon axis at rangesr B1
1064 J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 1, March 2005
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516 km and r B2520 km from the sourceS. Each of the
vertical arrays is composed of 19 elements evenly space
depth between 10 and 190 m. Note that, for both test ca
the vertical arrays and the source lie in the same 200
isobath vertical plane. All the numerical simulations show
in the next sections were performed on a 2.2 GHz mo
processor Dell-workstation. Neither vectorization nor par
lel computing was used. Unless specified otherwise, all
following numerical results were obtained using the 3D
model3DWAPE.

IV. RESULTS FOR THE 3D ASA WEDGE

A. cw point source results

Since the source pulse is centered atf c525 Hz, the
acoustic problem at that specific frequency is treated fi
s A
FIG. 4. Spectrum of the source pulse, for test case
and B.
Frédéric Sturm: Broadband sound pulse propagation
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FIG. 5. Transmission loss~in dB re 1 m! at 25 Hz at a
depth of 30 m for test case A corresponding toN
32D ~upper subplot! and 3D~lower subplot! PE calcu-
lations. For both calculations, a modal sum was used
a starting field. The 200 m isobath is indicated by
dashed white line.
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The N32D and 3D computations were carried out usi
Dr 510 m, Dz51 m ~i.e., Dr 5l/6 andDz5l/60 wherel
denotes the acoustic wavelength! andnp52. The maximum
computation range isr max525 km and the reference soun
speed iscref51500 m/s. TheN32D and 3D PE algorithms
were initialized atr 50 using a modal source. Since lon
range propagation is considered, the modal sum was lim
to the discrete modal spectrum. Only three propaga
modes are present at a frequency of 25 Hz at the so
location. The maximum depth of the computational grid
zmax5600 m. An increasing attenuation coefficientaabs(z)
was introduced in the lower part of the domain~correspond-
ing to depths betweenzabs5450 m andzmax5600 m) to pre-
vent spurious reflections from the pressure-release impo
boundary condition atzmax. For the 3D calculations, a Pade´ 1
approximation in azimuth~i.e., mp51) and an eighth-orde
FD azimuthal scheme withM53240 points~i.e., an azi-
muthal step size of 1/9th of a degree! were used. This azi-
muthal increment corresponds to an arclength incrementDS
of the order of 3l/4 at the maximum computation rang
r max. As shown in Ref. 32, using a second-order FD a
muthal scheme would require in this caseM523 040 dis-
crete points in azimuth, i.e., an azimuthal step size of 1/6
of a degree~this azimuthal increment corresponding to
arclength incrementDS of the order ofl/10 at the maximum
computation ranger max).

Gray-scale images of the transmission loss (
5220 log10(uc(r ,u,z;vc)u/Ar with vc52p f c) at a re-
ceiver depth of 30 m corresponding toN32D and 3D cal-
culations are displayed in Fig. 5. Theu590° direction corre-
sponding to the 200 m isobath is indicated by a dashed l
The positions of the sourceS and the three vertical array
A1, A2, A3 are also indicated on each subplot. Due to
geometrical symmetry of the problem about the up-slope
rection, bothN32D and 3D solutions are displayed as
function of range and azimuth in a limited azimuthal sect
J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 1, March 2005

Downloaded 28 Feb 2013 to 128.197.27.9. Redistribution sub
d
g
ce

ed

-

th

e.

e
i-

r.

Figure 6 shows transmission loss-vs-range curves az
530 m andu590° ~across-slope!. The thin dashed curve is
N32D PE calculation and the bold solid curve is a 3D P
calculation. Comparing the two subplots of Fig. 5, the effe
of azimuthal coupling are evident, mainly in the vicinity o
the cross-slope direction and at long ranges. These effect
well known and have been explained in detail by seve
authors. They correspond to intramodal interference effe
Recall that three propagating modes are excited at the sou
Since the vertical geometry in the cross-slope direct
~characterized by a zero-slope! is a classical 200-m-deep Pe
keris waveguide, any 2D orN32D model can predict the
presence of the three initial modes atu590° for 0<r

FIG. 6. N32D and 3D transmission loss~in dB re 1 m! comparisons at 25
Hz at a receiver depth of 30 m along a 200 m isobath in the cross-s
direction for test case A. The thin dashed curve is anN32D PE calculation
and the bold solid curve is a 3D PE calculation. For both calculations
Greene’s source was used as a starting field.
1065Frédéric Sturm: Broadband sound pulse propagation
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<25 km. The use of a full 3-D PE~i.e., azimuthally coupled
model! causes these three propagating modes to be hori
tally refracted down the slope, which leads to a successio
three distinct zones in the cross-slope direction~see Fig. 6!.
For ranges less than approximately 11 km, the three in
propagating modes are present. Only two modes are pre
for r>11 km up tor'16 km, due to the 3D shadowing e
fect of mode 3. Afterr'16 km where the mode shadowin
effet of mode 2 occurs, only mode 1 is present. The inter
ence pattern in the 3D solution starting atr'17.5 km corre-
sponds to the 3D mode self-interference effect of mode

To show that no significant 3D effects are omitted in t
3D PE calculations, the results were compared with a re
ence solution based on the image source method and o
nally provided by Westwood.39 This analytical solution is
expressed as a sum of ray fields, each of which take the f
of a double integral over plane waves. Details of the meth
are given in Ref. 16. Note that the source depth was 100 m
match the original ASA benchmark problem. The 3D PE a
the image solutions are plotted in Fig. 7. The bold so
curve is the 3D PE solution obtained using two Pade´ terms in
depth (np52) and one Pade´ term in azimuth (mp51). Also
plotted on the same figure as a thin dashed curve is the
PE solution obtained using two Pade´ terms in depth and a
narrow-angle azimuthal approximation. The 3D PE calcu
tions were initialized using the Greene’s source.40 We ob-
serve an overall good agreement between the two 3D
solutions and the image solution in the cross-slope direct
showing that both models predict the same 3D effects. H
ever, there are some differences, notably a shift in the p
ing at long ranges mainly where mode 1 interferences oc
Note that the 3D PE solution obtained using a Pade´ 1 ap-
proximation in azimuth is closer to the reference solut
than the azimuthal narrow-angle 3D PE solution, althoug
phase shift is still present. The use of higher-order appro

FIG. 7. 3D transmission loss~in dB re 1 m! comparisons at 25 Hz at a
receiver depth of 30 m along a 200 m isobath in the cross-slope directio
test case A. The thin solid curve corresponds to the image solution. The
other curves are 3D PE calculations using a wide-angle~bold solid curve! or
a narrow-angle~thin dashed curve! approximation in azimuth. The sourc
depth is 100 m. Both 3D PE calculations were initialized using the Gree
source.
1066 J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 1, March 2005
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mations in azimuth~i.e., increasing the numbermp of Padé
terms! does not improve phase predictions. Recall that
PE solutions depend on the value of the reference so
speed cref . For the solutions shown in Fig. 7,cref

51500 m/s. Figure 8 shows 3D PE solutions obtained us
two distinct values ofcref . The bold solid curve correspond
to cref51500 m/s~the value of the sound speed in the hom
geneous water layer! and the thin dashed curve tocref

51512.94 m/s~the value of the horizontal phase speed
mode 1 at the source location!. As already pointed out by
Smith,9 changing the reference sound speed value induc
shift in the PE solutions. This shift is yet less pronounc
than that between PE solutions shown in Fig. 7. This s
gests that the disagreement between the image and th
results is mainly due to the fact that the 3D PE model d
not have a wide-angle capability since the term inO(XY) is
not handled~see the discussion in Sec. II C!. However, de-
spite the mismatch in the mode 1 interference pattern, all
physical 3D effects are reproduced by the 3D PE model.

B. Modal initialization results

Azimuthal coupling effects may be easily observed
exciting individual modes at the source location and pro
gating them outward in range. The 3D PE marching alg
rithm was initialized by each of the three propagating mod
separately. Figure 9 shows TL plots~horizontal slices at con-
stant depthz530 m) obtained by initializing the 3D PE
model using mode 1, mode 2, and mode 3. In order to red
the phase error in PE calculations, the horizontal mo
phase speed was used for the reference sound speed
cref51512.94 m/s for mode 1,cref51554.44 m/s for mode 2
andcref51632.42 m/s for mode 3. For each mode, the sou
field was assumed to be omnidirectional. Vertical cross s
tions of the 3D PE solutions for mode 1, mode 2, mode

or
o

’s

FIG. 8. 3D transmission loss~in dB re 1 m! comparisons at 25 Hz at a
receiver depth of 30 m along a 200 m isobath in the cross-slope direc
~u590°, 14 km<r<25 km) for test case A. The bold solid curve is a 3D P
calculation withcref51500 m/s~same solution as shown in Fig. 7! and thin
dashed curve is a 3D PE calculation withcref51512.94 m/s. The source
depth is 100 m. The Greene’s source was used as a starting field.
Frédéric Sturm: Broadband sound pulse propagation
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FIG. 9. Transmission loss~in dB re 1 m! at 25 Hz at a
depth of 30 m for test case A corresponding to 3D P
calculations and different omnidirectional mode excit
tions. From top to bottom: mode 1, mode 2, and mo
3. On each subplot, the 200 m isobath is indicated b
dashed line.
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along theu590° direction are shown in Fig. 10. Also show
in Fig. 10 is the 3D PE solution obtained initializing by th
Greene’s source.

The 3D PE results were compared with the predictio
from adiabatic modal theory.41 Figure 11 shows the moda
ray diagrams in the~horizontal! yx plane for each omnidi-
rectional modal initialization. The modal ray paths were c
culated using the method given in Ref. 8. Hereafter, a mo
ray path that corresponds to themth mode and makes
initially an angle f0 with the y axis ~i.e., f050° points
across slope! is denotedGm,f0

~see Fig. 12!. According to the
Cartesian coordinate system chosen, for any value om
J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 1, March 2005
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P$1,2,3% and any value off0P] 290°,90°@ , the modal-ray
pathGm,f0

is a representative functiony°xm,f0
(y) satisfy-

ing the following Cauchy problem

dx

dy
5

A12~cm~x!3cos~f0!/cr ,m!2

cm~x!3cos~f0!/cr ,m
, y>0,

~36!
x~y50!50.

Here,f0590° (f05290°) corresponds to an initial launc
in the up-slope direction~in the down-slope direction! and
cm is thex-dependent phase velocity of themth mode satis-
fying cw,cm(x),csed and cm(x50)5cr ,m , wherecr ,m is
s

.

FIG. 10. 3D transmission loss~in dB
re 1 m! at 25 Hz for test case A~ver-
tical slices in the cross-slope direction!
corresponding to 3D PE calculation
and ~a! mode 1,~b! mode 2,~c! mode
3, and~d! Greene’s source excitations
1067Frédéric Sturm: Broadband sound pulse propagation
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,

FIG. 11. Modal ray diagrams~top view! for test case A,
obtained solving the differential equation given in~36!
for 290°,f0,90°. From top to bottom: mode 1
mode 2, and mode 3.
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the horizontal phase speed of themth mode at the source
location. The value ofcm(x) for any givenx is numerically
evaluated by solving

tan~A~vc /cw!22~vc /cm~x!!23hsed~x!!

52
rsed

rw
3

A~vc /cw!22~vc /cm~x!!2

A~vc /cm~x!!22~vc /csed!
2

,

where vc52p f c . Note that a modal ray is stopped if
reaches anx coordinate such thatcm(x) does not belong to
]cw ,csed@ ~i.e., when modem becomes leaky!. Characteris-
tics of the modal rays that connect the sourceS with one of
the three arrays A1, A2, and A3, are listed in Table I.

Comparison of the results displayed in Figs. 9 and
shows that the 3D PE solutions are in good agreement
the predictions from adiabatic modal theory. A modal r
which has an initial launch directionf0 toward the wedge
apex turns around, as long as its grazing angle does no
ceed the critical angle. A region of multiple arrivals is cr
ated in the vicinity of the cross-slope direction for suf
ciently large ranges from the source, followed by a shad
region. Due to the increasing grazing angle with respec
the mode number, 3D effects are stronger for higher mo

FIG. 12. Schematic of a modal-ray pathGm,f0
in the ~horizontal! yx plane

corresponding to modem, with initial launch anglef0 . The y axis ~the x
axis! corresponds to the cross-slope~up-slope! direction in the wedge
shaped waveguide considered in test case A. The source is placed atx5y
50.
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than for lower modes. No shadow zone is observed for m
1 for r<25 km in the cross-slope direction. Computations
ranges greater than 25 km for mode 1 would also show
shadow zone in the cross-slope direction. Following Gle
et al.,2 three regions exist in the wedge-shaped wavegu
for each modal initialization:~1! an inner region~corre-
sponding tof0 greater than a critical launch anglefcrit)
where the modal rays propagating upslope exceed the cri
grazing angle and are not turned around;~2! an outer region
~corresponding tof0 less thanfcrit) where the modal-ray-
turn-around occurs; and~3! a shadow region where there
no propagation. The value of the critical launch anglefcrit

depends on the mode number:fcrit'27° for mode 1,fcrit

'23.7° for mode 2, andfcrit'16° for mode 3.
Results obtained with both models~PE and adiabatic

mode! confirm the presence of mode 1 at the three verti
arrays A1, A2, and A3. Note that arrays A2 and A3~unlike
array A1! both lie in the multiple mode arrival area of mod
1, which means that multiple modal ray path arrivals ex
for mode 1 on array A2 and array A3~see Table I!. Indeed,
there are two modal ray path arrivals for mode 1 on array
~on array A3!, the first one with a shallow anglef0

TABLE I. Characteristics~for a 25 Hz cw point source, test case A! of the
modal rays launched from the sourceSand connected with one of the thre
arrays A1, A2, A3. The anglef0 denotes the initial launch angle (f050°
points across-slope! of the modal eigenray, andLm,f0

denotes the length of
the modal eigenray pathGm,f0

.

Array Modem f0 (deg) Lm,f0
(m)

A1 1 11.8 16 002
A1 2 113.5 16 186
A1 2 116.5 16 300

A2 1 12.7 22 008
A2 1 119.7 22 845

A3 1 13.2 25 013
A3 1 116.7 25 640
Frédéric Sturm: Broadband sound pulse propagation
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512.7° (f0513.2°) with respect to the cross-slope dire
tion, and the second one with a steeper anglef0

5119.7° (f05116.7°). Two distinct time arrivals of the
signal carried by mode 1 on both arrays A2 and A3 are t
expected, but only one single time arrival of the signal c
ried by mode 1 on array A1. The array A1 lies in the limit
the insonified region of mode 2. The signal carried by mo
2 should be present at array A1 only. In addition, the ar
A1 lies in the multiple mode arrival area of mode 2. Tw
distinct modal ray path arrivals for mode 2 with initia
launch anglesf05113.5° andf05116.5° are detected on
array A1. Hence, two distinct arrival times of the signal c
ried by mode 2 on A1 are expected. Obviously, the th
arrays A1, A2, and A3 lie in the shadow zone region of mo
3. No arrival of the signal carried by mode 3 is thus detec
by any of the three arrays.

C. Broadband results

The case of the broadband source signal given in
~35! is now discussed. The pulse response at a specific
ceiverR of ranger R , azimuthuR , and depthzR , is obtained
via a Fourier transform of the frequency-domain soluti
using

P~r R ,uR ,zR ;t !

5
1

2p E
2`

1`

Ŝ~v!P̂norm~r R ,uR ,zR ;v!e2 ivtdv, ~37!

where Ŝ~v! is the source spectrum given by Eq.~4!, and
P̂norm is the solution of the normalized frequency-doma
wave equation~6!. In Eq. ~37!, P̂norm is set to zero for any
~non-negative! frequencyf outside the band 5–45 Hz. Th
frequency integral in Eq.~37! is evaluated numerically usin
a discrete Fourier transform~DFT!. A time window of length
T57 s, with 4096 points, is used in the DFT algorithm. Th
yields values of the received signal atR in the time window
@ tmin ,tmin1T# with a very fine time resolutionDt of 0.0017 s
(Dt5T/4096). The length of the time window correspon
to a frequency samplingD f of 0.1429 Hz (D f 51/T), which
leads to 281 discrete values within the frequency-band 5
Hz. Producing a pulse response at receiverR requires first
computing values ofP̂norm at 281 discrete frequencies. Th
is achieved through repeated solution of the 3D PE mode
uniformly distributed discrete frequencies ranging from 5
45 Hz and for 0<r<r R , 0<u<2p, 0<z<zmax.

For each solution at a single frequencyf, several param-
eters need to be changed, their values depending on the v
of the frequencyf, or equivalently, of the acoustic wave
length l. Suitable selections of the range, azimuthal, a
depth incrementsDr , Du, Dz are crucial. For instance, un
dersampling~oversampling! the azimuthal direction may ap
pear inappropriate to accurately compute the 3D effects~may
lead to untimely computations!. It is well established that the
range and depth incrementsDr andDz should be sufficiently
small in comparison to the acoustic wavelengthl. Our cal-
culations were carried out usingDr 5l/6 and Dz5l/60.
Since an eighth-order FD scheme was used in azimuth
lection of the azimuthal incrementDu52p/M was achieved
J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 1, March 2005
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using a less restricting criterion with respect to the acou
wavelength:Du ~or equivalentlyM! was selected such tha
DS'3l/4, whereDS denotes the arclength increment at t
maximum computation ranger max. Note that using a second
order FD scheme in azimuth would require thatDS'l/10.
Our calculations were carried out usingM5648 at f 55 Hz
and M55832 at f 545 Hz. For intermediate values of th
frequency within the band 5–45 Hz, the number of discr
points in azimuth is obtained by linearly interpolating b
tween 648 and 5832. For each frequency-domain calculat
the 3D PE marching algorithm was initialized atr 50 using
the Greene’s source. Two Pade´ terms in depth~i.e., np52)
and one Pade´ terms in azimuth~i.e., mp51) were used. The
maximum depthzmax of the computation grid was place
several wave-lengths below the maximum depth of the s
floor and a layer of increasing absorption was placed in
lower part of the domain~just abovezmax) to attenuate the
reflected energy, its width also depending on the acou
wavelength.

The signal arrivals on the three vertical arrays A1, A
and A3 were calculated. Comparisons of the signals rece
on vertical array A1 at a depth of 20 m corresponding to
and 3D computations are shown in Fig. 13. Both 2D and
solutions were multiplied by a factorr A1516 000 m to com-
pensate for spherical spreading. The pulse responses on
tical arrays A1, A2, and A3 were calculated usingtmin

510.6 s, tmin514.6 s, tmin516.6 s, respectively. They ar
displayed in Figs. 14, 15, and 16. The received signals
plotted intentionally as stacked time series versus de
which is helpful when analyzing the modal structure of t
signal arrivals. Snapshots of the propagating pulse in
cross-slope direction at two distinct times,t510.7 s andt
516.7 s, are shown in Figs. 17 and 18, respectively.
comparison, the signals obtained using 2D calculations
also shown.

Let us analyze first the signal arrivals on receiver arra
A1, A2, and A3, computed using a 2D PE model. The geo
etry of the waveguide in the cross-slope direction~character-
ized by a zero-slope! is seen by the 2D PE model as a cla
sical 200-m-deep waveguide, which leads to the existenc
three propagating modes when a 25 Hz cw source signa
considered. As expected, considering a broadband so
pulse with a central frequency of 25 Hz, the propagat
signal splits up in three distinct wave packets, which cor
spond to the signal carried by the three propagating mode
the waveguide. Now, using a 3D PE model, the signal ar
als exhibit only two distinct mode arrivals~instead of three
as predicted by 2D calculations! at each of the three vertica
arrays A1, A2, and A3. For each of them, it is clear that t
first wave packet corresponds to the signal carried by m
1. Indeed, its amplitude is low near the ocean surface,
creases with depth toward mid-depth, then decreases tow
z5200 m. This is obviously the depth dependence of mo
1. Following the same analysis, the second wave packe
ceived on A1~respectively, on A2 and A3! corresponds to the
signal carried by mode 2~respectively, by mode 1!. These
observations are coherent with the predictions of the pre
ous section. Indeed, as expected, the signal carried by m
1 is present for each of the three vertical arrays A1, A2, a
1069Frédéric Sturm: Broadband sound pulse propagation
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FIG. 13. Comparison of broadban
pulse solutions for test case A and a
ray A1 at a depth of 20 m:~upper! 2D
calculation and~lower! 3D calcula-
tion.
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A3. Since only A2 and A3 lie in the multiple mode arriva
area of mode 1, two distinct mode 1 arrivals are observed
A2 and A3 ~and only one single mode 1 arrival on A1!, the
first one corresponding to a modal ray path with a shall
angle with respect to the cross-slope direction, and the
ond one~weaker! to a modal ray path with a steeper ang
The time delay between the first and second time arriva
mode 1 is shorter at A3 than at A2. As expected, the sig
carried by mode 2 is only present at A1~recall that A1 lies in
the limit of the insonified region of mode 2!. Note that the
second wave packet received on A1 corresponds to
1070 J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 1, March 2005
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merger of the two distinct~but close! time arrivals of mode
2. It thus appears more dispersed in time than the sin
mode 2 arrival predicted by a 2D calculation. Since the th
arrays A1, A2, and A3 all lie in the shadow zone region
mode 3, no mode 3 signal arrival is observed at A1, A2, a
A3. Note that all the modal eigenrays have been consta
refracted in the horizontal direction during their upslope a
downslope propagation. Thus, the corresponding wave p
ets are different from the wave packets predicted using a
model.
th
i-
FIG. 14. Stacked time series vs dep
for test case A corresponding to vert
cal array A1:~left! 2D calculation and
~right! 3D calculation.
Frédéric Sturm: Broadband sound pulse propagation
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FIG. 15. Stacked time series vs dep
for test case A corresponding to vert
cal array A2:~left! 2D calculation and
~right! 3D calculation.
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V. RESULTS FOR THE 3D GAUSSIAN CANYON

A. cw point source results

The acoustic problem involving a 25 Hz cw point sour
is analyzed first. TheN32D and 3D results presented her
after were obtained using the same range and depth in
ments as in test case A (Dr 510 m, Dz51 m). Both N
32D and 3D calculations were generated using a fifth-or
Padé3 approximation in depth~i.e., np53). For the 3D cal-
J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 1, March 2005
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culations, a third-order Pade´ 1 approximation in azimuth
~i.e.,mp51) andM52880 points were used. The number
discrete points used in azimuth is less than in test cas
simply because the value of the maximum computat
ranger max has been reduced from 25 to 20 km. As in te
case A, the azimuthal incrementDu52p/2880 corresponds
to an arclength incrementDS of the order of 3l/4 at the
maximum computation ranger max520 km.
th
i-
FIG. 16. Stacked time series vs dep
for test case A corresponding to vert
cal array A3:~left! 2D calculation and
~right! 3D calculation.
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FIG. 17. Snapshots of the propagatin
pulse for test case A att510.7 s:~up-
per! 2D calculation and~lower! 3D
calculation.
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Gray-scale images of the transmission loss~horizontal
slices at a receiver depth of 30 m! corresponding toN32D
and 3D calculations are shown in Fig. 19. For both of the
the modal sum was used as a starting field. A maxim
computation depth of 600 m and a reference sound spee
1500 m/s were used. Theu590° direction corresponding to
the canyon axis is indicated by a dashed line. The positi
of the sourceS and the two vertical arrays B1, B2 are als
indicated on each subplot. Like test case A, due to the g
metrical symmetry of the problem about thex axis, both
solutions are displayed as a function of range and azimut
a limited azimuthal sector. By comparing the two subplots
Fig. 19, noticeable differences in both fields can be observ
The effects of azimuthal coupling are evident. Indeed, wh
azimuthal coupling is taken into account in the calculatio
the acoustic energy is horizontally refracted by the sidew
of the canyon and gets channeled in they direction along the
1072 J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 1, March 2005
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canyon axis. Note that bothN32D and 3D solutions are
symmetric about the along-canyon direction.

Figure 20 shows transmission loss-versus-range cu
at z530 m andu590° ~along the canyon axis! corresponding
to 3D solutions obtained with various paraxial approxim
tions in azimuth. Also shown on the same plot is the 2
solution. The comparison of the 3D solutions with the 2
solution confirms an enhancement of the acoustic level w
azimuthal coupling is handled, due to the focusing of t
acoustic energy along the canyon axis. There are also s
differences between the two 3D PE solutions. The validity
the narrow-angle approximation in azimuth is subject to d
cussion for the present test case since, as shown in Fig
using a Pade´ 1 paraxial approximation in azimuth chang
the solution. It is worth mentioning that no change in t
solution was observed for increasing values ofmp . How-
g
FIG. 18. Snapshots of the propagatin
pulse for test case A att516.7 s:~up-
per! 2D calculation and~lower! 3D
calculation.
Frédéric Sturm: Broadband sound pulse propagation
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FIG. 19. Transmission loss~in dB re 1
m! at 25 Hz at a depth of 30 m for tes
case B corresponding toN32D ~up-
per subplot! and 3D ~lower subplot!
PE calculations. For each calculation
the modal sum was used as a startin
field. The canyon axis is indicated by
dashed white line.
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ever, the error between the 3D PE solution and the ex
solution can not be quantified since there is no refere
solution available for this test case.

B. Modal initialization results

In order to characterize the 3D effects present in
canyon, the three propagating modes were excited indiv
ally at the source location, and propagated outward in ran
For each modal initialization, the reference sound speed
selected equal to the phase speed of themth mode. Figure 21

FIG. 20. N32D and 3D transmission loss~in dB re 1 m! comparisons at 25
Hz at a receiver depth of 30 m along a 200 m isobath along the canyon
for test case B. The thin dashed curve is a 2D PE calculation. The two
curves are 3D PE calculations with three Pade´ terms in depth and with a
narrow angle~thin solid curve! or a wide-angle~bold solid curve,mp51)
approximation in azimuth. For each of the three calculations, the Gree
source was used as a starting field.
J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 1, March 2005
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shows the gray-scale TL plots~horizontal slices at constan
depthz530 m) obtained initializing the 3D PE model usin
mode 1, mode 2, and mode 3. Vertical cross sections of
3D PE solutions are shown in Fig. 22. Figure 23 shows
modal ray diagrams for each omnidirectional modal initi
ization. Characteristics of the modal rays that connect
sourceS with one of the two arrays B1 and B2, are listed
Table II.

By comparing the results shown in Figs. 21 and 23,
solutions obtained using the PE approach and the adiab
modal ray theory are satisfactorily in good agreement. T
effects of the 3D varying bathymetry on the different mod
propagations are now evident. For each propagating m
the focusing of the energy along the canyon axis is repeti
in range and, as expected, is more pronounced for hig
modes than for lower modes. Indeed, three distinct focus
zones are detected for mode 1, four distinct focusing zo
for mode 2, and five distinct focusing zones for mode 3. F
each propagating mode, the focusing-zone width~along the
canyon axis! increases with zone number. As a result, tw
consecutive focusing zones may overlap at sufficiently la
ranges~whose values depend on mode number! from the
source along the canyon axis, and, thus, become indis
guishable. For example, for mode 1, the third focusing zo
overlaps with the second one nearr'19.5 km along the can-
yon axis, and, for mode 2, the fourth focusing zone overla
with the third one nearr'17.5 km along the canyon axis
Unlike test case A, no shadow zone is observed along
canyon axis. Besides, the 3D effects are more pronoun
for test case B than for test case A. For example, the onse
mode 1 interference pattern along the canyon axis app
sooner in range for test case B~at r'6.5 km) than for test
case A~at r'17.5 km).

Modes 1, 2, and 3 are present at receiver arrays B1

xis
lid

’s
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FIG. 21. Transmission loss~in dB re 1
m! at 25 Hz at a depth of 30 m for tes
case B corresponding to 3D PE calcu
lations and different omnidirectiona
mode excitations. From top to bottom
mode 1, mode 2, and mode 3.
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B2. This observation is coherent with the fact that there is
shadow zone along the canyon axis. Both receiver arrays
and B2 lie in the multiple mode arrival area of each of t
three propagating modes, the number of eigenrays depen
on both the mode number and the receiver array~see Table
II !. There are three modal ray paths connecting S and B1
mode 1, the first one corresponding tof050° ~the direct
path!, and the two other ones corresponding to a pair
eigenrays with initial launch anglesf05615.4°. Similarly,
there are three modal ray paths connectingS and B1 for
1074 J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 1, March 2005
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mode 2, the direct path and a pair of eigenrays with init
launch anglesf05613.8°. On the other hand, there are fiv
modal ray paths connectingS and B1 for mode 3, the firs
one corresponding to the direct path, and the other one
two distinct pairs of eigenrays with initial launch anglesf0

569.5° andf05616°. For receiver array B2, there ar
one direct path and two pairs of eigenrays for each of
three propagating modes. Anticipating the analysis prese
in the next section, multiple arrivals~not necessarily distinc
in time! for each of the three propagating modes on b
d

FIG. 22. 3D transmission loss~in dB
re 1 m! at 25 Hz for test case B~ver-
tical slices along the canyon axis! cor-
responding to 3D PE calculations an
~a! mode 1,~b! mode 2,~c! mode 3,
and ~d! Greene’s source excitations.
Frédéric Sturm: Broadband sound pulse propagation
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FIG. 23. Modal ray diagrams~top
view! for test case B, obtained solving
the differential equation given in~36!
for 290°,f0,90°. From top to bot-
tom: mode 1, mode 2, and mode 3.
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receiver arrays B1 and B2 can be predicted. More precis
two mode 1 arrivals, two mode 2 arrivals, and three mod
arrivals are expected on B1. Three arrivals for each of
propagating modes are expected on B2. On the contrary,
azimuthally uncoupled model should predict only one sin
arrival ~the direct path! for each of the three propagatin
modes.

C. Broadband results

Let us turn now to the analysis of the acoustic probl
involving the broadband source signal given by Eq.~35!. The
signal arrivals on the two vertical arrays B1 and B2 we
calculated. The calculations were carried out usingtmin

TABLE II. Characteristics~for a 25 Hz cw point source, test case B! of the
modal rays launched from the sourceS and connected with one of the tw
arrays B1 and B2. The anglef0 denotes the initial launch angle (f050°
points along the canyon axis! of the modal eigenray, andLm,f0

denotes the
length of the modal eigenray pathGm,f0

.

Array Modem f0 (deg) Lm,f0
(m)

B1 1 0 16 000
B1 1 615.4 16 360
B1 2 0 16 000
B1 2 613.8 16 258
B1 3 0 16 000
B1 3 69.5 16 112
B1 3 616 16 315

B2 1 0 20 000
B2 1 69 20 138
B2 1 623 21 050
B2 2 0 20 000
B2 2 62 20 005
B2 2 616.5 20 476
B2 3 0 20 000
B2 3 69.5 20 140
B2 3 616 20 394
J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 1, March 2005
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510.6 s andtmin513 s for receiver arrays B1 and B2 respe
tively, and, as in test case A, a time window of lengthT
57 s with 4096 points in the DFT algorithm. This require
running the 3D PE model at 281 discrete frequencies wit
the frequency band 5–45 Hz. For each frequency-dom
calculation,Dr 5l/6, Dz5l/60. The numberM of discrete
points in the azimuthal direction was obtained by linea
interpolating betweenM5576 at f 55 Hz andM55184 at
f 545 Hz, which gaveM52880 at f 525 Hz. The 3D PE
marching algorithm was initialized atr 50 using the
Greene’s source. Three Pade´ terms in depth~i.e., np53) and
one Pade´ term in azimuth~i.e., mp51) were used.

The signals received on vertical array B1 at a spec
depth of 20 m corresponding to 2D and 3D computations
shown in Fig. 24. Both solutions were multiplied by th
same factor r B1516000 m to compensate for spheric
spreading. As expected, due to the focusing of the ene
along the canyon axis, the amplitude of the 3D solution
significantly higher than the amplitude of the 2D solutio
The signal arrivals on vertical arrays B1 and B2 obtain
using 3D calculation are displayed in Figs. 25 and 26,
spectively. For comparison, the signals obtained using
calculation are also displayed. The two signals marked w
arrows in Fig. 25 correspond to the ones shown in Fig.
For both vertical arrays B1 and B2, the 2D results~see first
columns of Figs. 25 and 26! clearly show that the propaga
ing signal splits up in three distinct wave packets which c
respond to the signals carried by the three propagating mo
of the waveguide. The 2D results are similar to that obtain
in test case A. On the other hand, the modal structure of
3D results is much more complicated~see second columns o
Figs. 25 and 26!. Indeed, though the first wave packet c
clearly be attributed to the first arrival of mode 1, the rest
the received signals does not clearly show any modal st
ture. One way to discriminate the multiple arrivals of o
1075Frédéric Sturm: Broadband sound pulse propagation
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FIG. 24. Comparison of broadban
pulse solutions for test case B and a
ray B1 at a depth of 20 m:~upper! 2D
calculation and~lower! 3D calcula-
tion.
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mode from the multiple arrivals of the two other modes co
sists in initializing~in the Fourier domain! the PE model by
only one single mode~if present! at each single discrete fre
quency, instead of initializing by the Greene’s source~for
which all the propagating modes are excited simultaneous!.
The results obtained by initializing separately by mode 1,
mode 2, and by mode 3, are displayed, respectively, in
first, second, and third columns of Figs. 27 and 28. Th
confirm multiple arrivals for each of the three propagati
modes on receiver arrays B1 and B2. Note that multiple
rivals of the same mode can be well separated in time.
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example, this is the case for the two distinct arrivals of mo
1 on B1~see first column of Fig. 27! and for the two distinct
~though very close in time but still distinguishable! arrivals
of mode 2 on B1~see second column of Fig. 27!. This is also
the case for the three distinct arrivals of mode 1 on B2~see
first column of Fig. 28!. On the contrary, the multiple arrival
of mode 3 on B1 and B2~see third columns of Figs. 27 an
28! are very close in time. The wave packets observed c
respond to the merger of the three distinct arrivals of
same mode. They thus appear more dispersed in time
the single mode 3 arrival obtained using a 2D model. Aga
th

s-
FIG. 25. Stacked time series vs dep
corresponding to vertical array B1
~placed along the canyon axis at a di
tance of 16 km! obtained using 2D
computation ~left column! and 3D
computation~right column!.
Frédéric Sturm: Broadband sound pulse propagation
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FIG. 26. Stacked time series vs dep
corresponding to vertical array B2
~placed along the canyon axis at a di
tance of 20 km! obtained using 2D
computation ~left column! and 3D
computation~right column!.
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all these observations are consistent with the prediction
the previous section.

VI. CONCLUSION

In this paper, the propagation of a broadband acou
pulse with a central frequency of 25 Hz and a bandwidth
40 Hz in three-dimensional shallow water waveguides w
studied. The 3D ASA benchmark problem, and a variant
J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 1, March 2005
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the original SWAM’99 Gaussian canyon test case were
vestigated. Both test cases were treated following the s
approach. First, the acoustic problem was simplified to
harmonic point source emitting at 25 Hz. Results for bo
point source and modal initializations were obtained. So
tions from the 3D PE model were compared with the pred
tions from a 3D adiabatic modal theory. Good agreement w
obtained between the two models for both test cases. Fo
th

s-

n

FIG. 27. Stacked time series vs dep
corresponding to vertical array B1
~placed along the canyon axis at a di
tance of 16 km! obtained using 3D
computations. The signals have bee
obtained initializing the PE model by
mode 1~left!, by mode 2~middle!, and
by mode 3~right!.
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FIG. 28. Stacked time series vs dep
corresponding to vertical array B2
~placed along the canyon axis at a di
tance of 20 km! obtained using 3D
computations. The signals have bee
obtained initializing the PE model by
mode 1~left!, by mode 2~middle!, and
by mode 3~right!.
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3D ASA benchmark problem, comparisons of 3D PE so
tions with a reference analytical solution~based on the image
method! were made, hence validating the 3D PE model
this test case. Unfortunately, no reference solution was av
able for the Gaussian canyon test case. The signals rece
by vertical arrays located far from the source were cal
lated. For the 3D ASA wedge problem, multiple mode arriv
times ~e.g., two distinct mode 1 arrivals on A2 and A3, a
only one single mode 1 arrival on A1! or modal shadow
zones~e.g., no mode 3 arrival on each of the vertical arra
A1, A2, and A3! were observed. For the Gaussian cany
test case, the analysis of the signals received by two ver
arrays B1 and B2 located along the canyon confirmed
increase of the acoustic level due to energy focusing al
the canyon axis. Multiple mode arrivals on each of the v
tical arrays for each of the three propagating modes w
observed. No modal shadow zone was observed along
canyon axis. For both test cases, geometrical dispersio
the propagating modes was consistent with results obta
for a 25 Hz cw point source.

These phenomena are typical of shallow water ocea
environments in the presence of a sloping bottom. They h
already been described numerically for a 3D wedge-sha
waveguide using a code based on the image source meth16

Note that the latter code was limited to specific oceanic
vironments. The main advantage of using a 3D PE mode
that it can be applied quite generally and is thus not restric
to a specific acoustic problem.A priori, the methodology tha
has been used to analyze the two acoustic problems, the
wedge and the 3D Gaussian canyon, could be applie
future for investigating any other shallow water acous
problem. Nevertheless, the modeler should be wary w
performing numerical simulations with a 3D PE model. F
1078 J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 1, March 2005

Downloaded 28 Feb 2013 to 128.197.27.9. Redistribution sub
-

r
il-
ed
-
l

s
n
al
n
g
-
re
he
of
ed

ic
ve
ed
.
-

is
d

3D
in

n
r

instance, it is important to keep in mind that any existing a
available 3D PE based model is only an approximate mo
~though general! and is limited in its ability to handle hori-
zontal refraction. Indeed, though the 3D PE model used
this paper,3DWAPE, has a wide-angle capability along th
azimuthal direction~comparisons for the 3D wedge seem
favor the use of the azimuthal wide-angle approximation!, it
does not strictly speaking have a wide-angle capability si
the cross-derivative terms present inO(XY) are not taken
into account in the modeling. This point was discussed
detail in this paper. The influence of handling cros
derivative terms is not known. Efforts to incorporate the
terms in3DWAPE as well as in a 3D version of the Monterey
Miami Parabolic Equation model developed by Smith9 are
currently under way. Another issue that can be addres
when one is interested with pulse propagation in shall
water environments is the following: if shear waves a
present in the bottom, do they modify the three-dimensio
effects described in this paper, and if so, by how much? T
question has not been addressed in this present work s
the 3D model used could not handle shear waves. It is left
future works.
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