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The issue of handling a leading-order cross-multiplied term in three-dimensional (3D) parabolic

equation (PE) based models is addressed. In particular, numerical results obtained incorporating a

leading-order cross-term correction in an existing 3D PE model, written in cylindrical coordi-

nates, based on higher-order Pad�e approximations in both depth and azimuth, and a splitting oper-

ator technique are reported. Note that the numerical algorithm proposed in this paper could be

used in the future to update any 3D PE codes that neglect cross terms and use a splitting numeri-

cal technique. The 3D penetrable wedge benchmark problem is chosen to illustrate the accuracy

of the now-fully wide-angle enhanced 3D PE model. The comparisons with a 3D reference solu-

tion based on the image source clearly show that handling the leading-order cross term in the 3D

PE computation is sufficient to remove the phase errors inherent to any 3D PE models that neglect

cross terms in their formulations. VC 2016 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4939735]

[TFD] Pages: 263–270

I. INTRODUCTION

Wide-angle parabolic equation (PE) based models are

efficient and accurate tools for solving sound wave propaga-

tion problems in three-dimensional (3D) oceanic wave-

guides.1–13 The reader is also referred to Refs. 8 and 14 for

detailed reviews of 3D PE-based models. For practical rea-

sons, most of them neglect cross-multiplied operator terms

that appear naturally in wide-angle square root operator

approximations of the 3D Helmholtz equation. It has been

shown recently, both numerically and theoretically, that the

use of a series of higher-order cross terms in a 3D PE model

allows a notable reduction of the phase errors inherent to any

PE computation, and can thus handle greater propagation

angles.10 Note that the cross terms were efficiently incorpo-

rated in a split-step Pad�e 3D PE algorithm that uses a

Cartesian coordinate system (x, y, z), with x, y the two horizon-

tal coordinates, and z the depth. In particular, it was shown

that 3D PE computations carried out ignoring cross terms led

to incorrect curvature of the horizontal (xy-plane) interference

pattern in the transmission loss field. Among the 3D PE codes

that are used by the underwater acoustic community, several

consider a cylindrical coordinate system (r, h, z) with r the hor-

izontal range, h the azimuthal angle, and z the depth below the

ocean surface. Although the 3D PE solutions obtained without

cross term corrections and written in cylindrical coordinates,

intrinsically contain a better curvature of the horizontal inter-

ferences, simply due to the nature of the coordinate system

used, some phase errors are still present (as shown in Ref. 8).

The objective of the present paper is to confirm the

necessity of cross terms in 3D PE-based formulations and to

show that a leading-order cross term correction can be

sufficient to remove phase errors in 3D solutions obtained by

3D PE computations in cylindrical coordinates. The leading-

order cross term is incorporated in an existing 3D PE model8

based on high-order Pad�e approximations in both depth and

azimuth, and a splitting operator technique. The paper is

organized as follows. The newly wide-angle 3D PE model

that includes the leading-order cross term is derived in Sec.

II and then discretized in Sec. III. In particular, various

aspects of the numerical technique used to handle the addi-

tional leading-order cross term are detailed. The improved

accuracy of the now-fully wide-angle 3D PE model is then

assessed on the classical 3D Acoustical Society of America

(ASA) wedge benchmark problem.3,8,10 Finally, advantages

and drawbacks of the proposed numerical model are summar-

ized and forthcoming improvements are discussed in Sec. V.

Preliminary results of the present work were presented during

the “2nd International Conference and Exhibition on

Underwater Acoustics” held in Rhodes, Greece, in 2014.

II. MODEL DESCRIPTION

We consider a multilayered waveguide composed of

one water layer and one or several fluid sediment layers. The

geometry of each layer is fully 3D. Cylindrical coordinates

are used where r, h, and z represent, respectively, the hori-

zontal range, the azimuthal angle, and the depth (increasing

downwards) below the ocean surface. Considering a har-

monic point source of frequency f, located at r¼ 0 and

z¼ zS> 0, and assuming only outward propagation in range,

the elliptic-type 3D Helmholtz equation can be replaced by

the following one-way equation:

@rw ¼ ik0ð
ffiffiffiffi
Q

p
� IÞw; (1)a)Electronic mail: frederic.sturm@ec-lyon.fr
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where w¼w(r, h, z) is the acoustic field related to the acous-

tic pressure by

Pðr; h; zÞ ¼ H
ð1Þ
0 ðk0rÞ � wðr; h; zÞ;

with H
ð1Þ
0 the zeroth-order Hankel function of the first kind,

and k0 ¼ 2pf=cref with cref a reference sound speed. In Eq.

(1), I denotes the identity operator and Q¼I þX þY with

X the two-dimensional (2D) depth operator in the rz-plane

and Y the azimuthal operator, defined as

X ¼ n2
a � 1

� �
I þ q

k2
0

@z q�1@z

� �
; Y ¼ 1

k0rð Þ2
@2

h :

Here, na(r, h, z)¼ðcref=cðr; h; zÞÞ (1þ iga) denotes the com-

plex (to account for lossy layers) index of refraction, with c
the sound speed, a the attenuation coefficient expressed in

decibels per wavelength, and g¼ 1/(40p log10e), and q
denotes the density, constant within each layer.

3D PEs are obtained considering various approxima-

tions of the square root operator
ffiffiffiffi
Q
p

(see Sec. 6.8 of Ref.

14). For instance, the original 3D PE derived by Tappert15

can be derived by expanding
ffiffiffiffi
Q
p

in a Taylor series and

retaining only the linear terms in X and Y,

ffiffiffiffi
Q

p
� I þ 1

2
X þ Yð Þ: (2)

The resulting PE (known as the standard 3D PE) has a

narrow-angle capability in both depth and azimuth. Though

3D PE formulations based on other approximations exist

(see, for instance, Refs. 16–19), most of the higher-order 3D

PE codes are based on the following approximation:ffiffiffiffi
Q

p
� �I þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
I þ X
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
I þ Y
p

: (3)

Any higher-order approximation based on Taylor or Pad�e se-

ries expansions of the two square root operators
ffiffiffiffiffiffiffiffiffiffiffiffiffi
I þ X
p

and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
I þ Y
p

can now be used. Clearly, such higher-order

approximations, when incorporated in Eq. (3), lead to 3D

PEs that advantageously separate the depth operator X from

the azimuth operator Y, thus allowing for the use of very-

efficient (in a practical point of view) numerical algorithms

similar to the alternating direction implicit (ADI) method.

Depending on the quality of the approximation made in

depth or in azimuth, one can obtain 3D PE models that have

narrow-angle capabilities in both depth and azimuth,15,20 a

wide-angle capability in depth and a narrow-angle capability

in azimuth,1–3,5,9 or wide-angle capabilities in both depth

and azimuth.6–8 However, as noticed in Ref. 8, all 3D PE

models that are based on the approximation given by Eq. (3)

do not, strictly speaking, have a wide-angle capability since

they neglect cross-derivative terms of the form of (or equiva-

lent to) XY, XY2, X2Y, etc., that are present naturally in

direct higher-order Taylor or Pad�e series expansions of the

square root operator
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I þ X þ Y
p

. As shown in Ref. 10, the

use of such higher-order cross terms allows a non-negligible

reduction of the phase errors inherent to any PE computation

and can thus handle greater propagation angles.

Let us derive now fully wide-angle 3D PEs. Following

Lin and Duda,12 we first write the second-order Taylor series

around
ffiffiffiffiffiffiffiffiffiffiffiffiffi
I þ X
p

¼ I and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
I þ Y
p

¼ I ,

ffiffiffiffi
Q

p
�� I þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
I þ X
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
I þ Y
p

� 1

2
�I þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
I þ X
p� �

�I þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
I þ Y
p� �

� 1

2
�I þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
I þ Y
p� �

�I þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
I þ X
p� �

; (4)

where the non-commutativity of operators X and Y has been

kept. The square-root operators
ffiffiffiffiffiffiffiffiffiffiffiffiffi
I þ X
p

and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
I þ Y
p

that

appear in the two last product terms can then be approxi-

mated using various Taylor and Pad�e series expansions. By

considering linear approximations,21–23
ffiffiffiffiffiffiffiffiffiffiffiffiffi
I þ X
p

� I þ 1
2
X

and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
I þ Y
p

� I þ 1
2
Y, it leads to

ffiffiffiffi
Q

p
��I þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
I þX
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
I þY
p

� 1

8
XYþYXð Þ; (5)

which is similar to the higher-order approximations used

by Yevick and Thomson (see Refs. 21 and 22) and can be

viewed as a leading-order correction of the basic approxima-

tion of Eq. (3). Neglecting azimuthal variations of the index

of refraction, i.e., assuming that operators X and Y com-

mute, leads to the following approximation:

ffiffiffiffi
Q

p
� �I þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
I þ X
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
I þ Y
p

� 1

4
XY: (6)

Finally, the two square-root operators that remain in Eq. (6)

can be approached using various wide-angle approximations.

For instance, by using Pad�e approximations in both depth

and azimuth, one obtains

ffiffiffiffi
Q

p
� I þ

Xnp

k¼1

ak;np
X

I þ bk;np
X þ

Xmp

k¼1

ak;mp
Y

I þ bk;mp
Y �

1

4
XY;

(7)

where np and mp are the number of Pad�e terms, respectively,

in depth and azimuth, and where ak,np, bk,np, 1� k� np, and

ak;mp;bk;mp
, 1� k�mp, are real or complex (to attenuate

Gibb’s oscillations) Pad�e coefficients.24,25 In a practical

point of view, the two Pad�e series expansions appearing in

the right-hand side of Eq. (7) are very convenient since they

allow for a very-wide angle propagation, respectively, in

depth and azimuth, the corresponding angular limitations

depending on the two parameters np and mp selected by

the user. Inserting now the paraxial approximation given in

Eq. (7) in the one-way 3D Eq. (1), we obtain the following

wide-angle 3D PE model:

@rw ¼ ik0

Xnp

k¼1

ak;np
X

I þ bk;np
X þ

Xmp

k¼1

ak;mp
Y

I þ bk;mp
Y �

1

4
XY

" #
w:

(8)

The now fully wide-angle capability of this 3D PE model is

attributed to the presence of the last (cross-multiplied) term
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in Eq. (8). The 3D PE model of Ref. 8, which uses separate

Pad�e approximations in depth and in azimuth as in Eq. (8),

has been modified to handle the leading-order cross-multi-

plied term. This is explained in Sec. III.

III. NUMERICAL SCHEME

The wide-angle 3D PE equation given in Eq. (8) is

solved numerically using the following splitting method:

Given the 3D field w at the discrete range rn, w is obtained at

the next discrete range rn þ 1 in three steps.

The first step consists in computing np intermediate

fields denoted u(1)(h, z), u(2)(h, z),…, uðnpÞ (h, z), by solving

½I þ lðkÞ� Xðnþ1=2Þ�uðkÞðh; zÞ
¼ ½I þ lðkÞþ Xðnþ1=2Þ�uðk�1Þðh; zÞ; 1 � k � np;

for 0� h� 2p and 0� z� zmax, where u(0) (h, z)¼w(rn, h, z)

and

l kð Þ
6 ¼ bk;np

6
ik0Dr

2
ak;np

; 1 � k � np;

with Dr denoting the increment in range. The discretization

in depth is achieved using a piecewise-linear finite-element

method. Denoting N and M, respectively, the number of

mesh points in depth and azimuth, this first step requires the

inversion for 1� k� np of M algebraic linear systems of

order N (with tridiagonal matrices), which corresponds to

the calculation of the intermediate fields at successively ad-

jacent azimuths h1, h2,…, hM. Each set of linear equations is

solved using a fast and robust direct (Gaussian) algorithm

optimized for tridiagonal matrices.

The second step consists in computing mp intermediate

fields denoted v(1)(h, z), v(2)(h, z),…, vðmpÞ (h, z), by solving

½I þ �ðkÞ� Yðnþ1=2Þ�vðkÞðh; zÞ
¼ ½I þ �ðkÞþ Yðnþ1=2�vðk�1Þðh; zÞ; 1 � k � mp;

for 0� h� 2p and 0� z� zmax, where vð0Þðh; zÞ ¼ uðnpÞðh; zÞ,
and

� kð Þ
6 ¼ bk;mp

6
ik0Dr

2
ak;mp

; 1 � k � mp:

The discretization in azimuth is achieved using a higher-

order centered finite difference (FD) scheme which allows a

significant reduction of the required number of points in azi-

muth while still obtaining accurate solutions.26 At each

range step, handling the azimuthal coupling terms requires

the inversion for 1� k�mp of N algebraic linear systems of

order M, with entries in the upper right and lower left corners

of the banded matrices to account for the continuity condi-

tion in azimuth. These inversions correspond to the calcula-

tion of the intermediate fields at fixed depths z1, z2,…, zN.

The bandwidth of the matrices depends on the order of

the numerical azimuthal scheme. As in step 1, a direct

(Gaussian) algorithm optimised for banded matrices is used.

The third step consists in computing w(1)(h, z), by

solving

I þ ik0Dr

2
� 1

4
XYð Þ nþ1=2ð Þ

� �
w 1ð Þ h; zð Þ

¼ I � ik0Dr

2
� 1

4
XYð Þ nþ1=2ð Þ

� �
w 0ð Þ h; zð Þ;

for 0� h� 2p and 0� z� zmax, where wð0Þðh; zÞ ¼ vðmpÞðh;
zÞ and w(rn þ 1, h, z)¼w(1)(h, z). The discretization in both

depth and azimuth is done using a second-order FD scheme,

which leads to solving a system of linear equations which

can be written in a compact matrix form as follows:

Ax ¼ b; (9)

with A a nonsingular large square matrix of order K¼M�N
with complex elements, and with x and b complex-valued

vectors of length K. Matrix A is a sparse 9-diagonal matrix

with a block-tridiagonal structure. All the blocks are tridiag-

onal matrices of order M, with entries in the upper right and

lower left corners due to the periodicity condition in

azimuth. Note that the bandwidth of A being a function of

M, the use of any direct algorithm as in steps 1 and 2, would

require an excessive amount of memory storage (since

storage must be allocated for the bandwidth in each row of

matrix A) and limit significantly the number of mesh points.

Therefore, in order to effectively utilize the sparseness of

matrix A, an iterative (indirect) algorithm is used. Note that

A being neither Hermitian, nor definite positive, it is difficult

to invert A with standard iterative methods (like, for

instance, the conjugate gradient method). Consequently, the

original linear system given in Eq. (9) is replaced by the fol-

lowing linear system:

ðQ�1AÞðQ�1AÞ�y ¼ Q�1b; (10)

where Q denotes a square matrix of order K, introduced here

to improve the conditioning of the original linear system (9)

and where (Q�1A)* denotes the complex conjugation and

transposition of matrix Q�1A. Note that Eq. (10) has been

obtained by first multiplying Eq. (9) by a preconditioning

matrix Q�1 and then by letting x¼ (Q�1A)* y. The conju-

gate gradient method can now be applied to solve Eq. (10)

and the convergence of the preconditioned iterative algo-

rithm (detailed in Ref. 18) is guaranteed due to the positive

definite Hermitian property of matrix (Q�1A)(Q�1A)*. Note

that each loop of the iterative algorithm requires solving two

auxiliary linear systems involving the preconditioning matrix

Q and its adjoint Q*. Hence, the efficiency of this iterative

algorithm highly depends on the preconditioning procedure.

The preconditioning matrix Q must be chosen with care. For

instance, adapting the preconditioning approach used by

Bayliss et al. (see Ref. 27), the preconditioning matrix Q can

be constructed using the tridiagonal matrices derived from

the discretization of the depth operator X or the azimuthal

operator Y. In both cases, Q has a block-diagonal structure

and, since each block of Q is a square tridiagonal matrix,
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each inversion of Q can be performed using a direct algo-

rithm optimized for tridiagonal matrices, as in steps 1 and 2.

The numerical simulations shown in Sec. IV were performed

with a preconditioner Q based on the discretization of the az-

imuthal operator Y.

For 2D and N� 2D computations, both steps 2 and 3 are

ignored and w(rn þ 1, h, z)¼ uðnpÞ (h, z). If step 3 is ignored,

then w(rn þ 1, h, z)¼ vðmpÞðh; zÞ. It is important to notice that

the convergence of the iterative algorithm used in step 3

deteriorates unreasonably when solving near r¼ 0. In order

to bypass this problem, the computations are performed

using a range-dependent number of points in azimuth:18 at

each step in range, the number of azimuthal points is

selected such that the corresponding arc length increment

Ds¼ rDh remains less than a given fraction (to be defined by

the user) of the acoustic wavelength k. In order not to deteri-

orate the quality of the discretization, the interpolation in

azimuth is achieved at only specific discrete ranges.

IV. NUMERICAL RESULTS

To assess the accuracy of the newly developed wide-

angle 3D PE model, we consider the now very-classical 3D

ASA wedge benchmark (3D extension of the original 2D

ASA wedge benchmark). An isotropic harmonic point

source, emitting at 25 Hz, is placed at a depth of 100 m in a

two-layer oceanic environment which consists of a lossless

homogeneous water layer (sound speed: 1500 m/s, density:

1 g/cm3) overlying a lossy half-space sediment bottom

(sound speed: 1700 m/s, density: 1.5 g/cm3, and absorption:

0.5 dB per wavelength), which leads to a critical grazing

angle uc of approximately 28�. No shear energy is assumed

in the bottom. The wedge-like tilted water/sediment inter-

face is described by the surface {z¼ h(r, h)} where

h r; hð Þ ¼ 200 1� r cos h
4000

� �
:

The water/sediment interface makes an angle of 2.86� with

respect to the ocean surface at both h¼ 0� (upslope direc-

tion) and h¼ 180� (downslope direction) and is invariant

along the h¼ 90� and h¼ 270� azimuthal directions. Note

that the water depth at the source is 200 m. The 3D effects

have been explained in detail by several authors and corre-

spond to intramodal interference effects, leading to the suc-

cession of three zones across-slope, with three propagating

modes present in zone I, two propagating modes in zone II,

and only one propagating mode interfering with itself in

zone III. Both 2D and 3D PE computations considered here-

after were carried out using Dr¼ 10 m and Dz¼ 1 m. The

maximum computation range is 25 km and, unless specified

otherwise, the reference sound speed cref is 1500 m/s and

both 2D and 3D PE marching algorithms were initialized at

r¼ 0 by a Greene’s source.28

The 2D PE solution obtained with a Pad�e-2 approxima-

tion in depth (i.e., obtained with np¼ 2) is plotted in Fig. 1

and compared with a 2D reference solution (plotted as a gray

curve) based on a normal mode expansion of the acoustic

field. Recall that a 2D PE solution is computed ignoring both

steps 2 and 3 in the PE marching algorithm (see the discus-

sion in Sec. III). The 2D solution is characterized by the in-

terference effects of the three (initially present) propagating

modes for all ranges. We observe that the 2D Pad�e-2 PE

solution is in perfect agreement with the 2D normal mode

solution, showing that no higher-order Pad�e approximation

is required here for a 2D PE computation. Note that 2D PE

solutions corresponding to lower-order parabolic approxima-

tions were also computed (solutions not shown here). Due to

its angular limitation which is well below the critical grazing

angle, the narrow-angle 2D PE solution poorly matched the

2D reference solution. The Pad�e-1 2D PE solution (np¼ 1)

was in a much better agreement with the reference solution,

though some discrepancies could still be observed at long

ranges.

Let us turn now to the comparisons of fully-3D PE solu-

tions with a 3D reference solution. Let us consider first 3D

PE solutions obtained considering only steps 1 and 2 (i.e.,

ignoring step 3) in the marching algorithm in range. Several

3D PE solutions corresponding to different parabolic approx-

imations in both depth and azimuth are plotted in Fig. 2. For

each 3D PE computation, an eighth-order finite-difference

azimuthal scheme with M¼ 3240 was used in step 2. The 3D

reference solution, plotted as gray curves on each subplot,

is based on the image source method (see, for instance, Ref.

29) and was originally provided by Westwood.30 It shows

that the transition distance between zones I and II, corre-

sponding to the cut-off range of mode 3, is approximately

equal to 11 km and the transition distance between zones II

and III, corresponding to the cut-off range of mode 2, is

around 16 km. Again, as expected, due to its angular

limitation in both depth and azimuth, the narrow-angle 3D

PE solution, plotted in Fig. 2(a), differs significantly in both

phase and amplitude from the 3D reference solution for all

ranges. Though the narrow-angle 3D PE solution exhibits

qualitatively the same 3D effects predicted by the 3D refer-

ence solution, we observe that the outsets of zones II and III

are shifted out in range by a few kilometers. The use of two

wider-angle parabolic approximations in both depth and azi-

muth, see Fig. 2(b) (np¼ 1¼mp) and Fig. 2(c) (np¼ 2¼mp),

allows a better agreement with the 3D reference solution,

though a non-negligible shift in phase and in amplitude is

FIG. 1. Transmission loss (in dB re 1 m) curves at a receiver depth of 30 m

in the across-slope direction h¼ 90�. The black curve corresponds to the 2D

PE solution obtained using a Pad�e 2 (np¼ 2) approximation. The gray curve

corresponds to a 2D reference (normal mode) solution.
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still present at some ranges, mainly in zone III where mode 1

interferes with itself, but also around the cut-off ranges of

mode 3 (at �11 km) and mode 2 (at �16 km). The use of

any higher-order approximation in depth and/or azimuth did

not permit to reduce those shifts in phase and in amplitude

(results not shown here).

Let us analyze now the effect on the 3D PE solutions of

computations that handle the leading-order cross-derivative

term. Two distinct wide-angle 3D PE solutions obtained

incorporating step 3 in the marching algorithm are displayed

in Fig. 3 and compared with the same 3D reference solution

based on image sources. The wide-angle 3D PE solution

corresponding to np¼ 1¼mp is displayed in Fig. 3(a).

The wider-angle 3D PE solution shown in Fig. 3(b) was

obtained considering np¼ 2¼mp. Both 3D PE solutions

were computed using Ds� k/6 in step 3. We observe that

both wide-angle 3D PE solutions displayed in Fig. 3 agree

very well with the 3D reference solution. Upon closer

inspection, we can observe that the 3D PE solution obtained

with np¼ 2¼mp is, however, in slightly better agreement

with the 3D reference solution. In particular, the large shift

in phase present in all the 3D PE solutions obtained ignoring

step 3 in the vicinity of the cut-off ranges of modes 2

(around 16 km) and mode 3 (around 11 km) or in the third

zone where mode 1 interferes with its own echo, has been

now reduced significantly. Comparisons of the 3D PE solu-

tions obtained with and without step 3 and corresponding to

different individual modal initializations are displayed in

Fig. 4 and are coherent with the previous analysis.

To conclude, we displayed in Fig. 5 gray-scale images

of the transmission loss (vertical slices in the across-slope

direction) corresponding to the wide-angle 2D PE solution

(np¼ 2) and the wide-angle 3D PE solutions (np¼ 2¼mp)

obtained with and without step 3. This allows us to better

visualize in the 3D solutions the succession of the three

zones across-slope. In particular, the vertical interference

fringes characterizing the third zone (i.e., for ranges greater

than �16 km) correspond to mode 1 interfering with itself.

On the contrary, as explain before, the 2D solution exhibits

for all ranges the interference pattern of the three propagat-

ing modes. Horizontal slices at a fixed depth of 30 m are

displayed in Fig. 6. The differences between the 2D and 3D

solutions are very weak in the vicinity of the source, but

become more and more pronounced as the propagation range

increases. Focusing now on the 3D PE solutions, we observe

an overall similarity between the two 3D PE fields displayed

FIG. 2. Transmission loss (in dB re 1 m) curves at a receiver depth of 30 m

in the across-slope direction h¼ 90�. The black curves correspond to 3D PE

solutions obtained using (a) narrow-angle, (b) Pad�e 1 - Pad�e 1 (np¼ 1¼mp),

and (c) Pad�e 2 - Pad�e 2 (np¼ 2¼mp) approximations, and computing with-

out step 3. The gray curves correspond to a 3D reference (image) solution.

FIG. 3. Transmission loss (in dB re 1 m) curves at a receiver depth of 30 m

in the across-slope direction h¼ 90�. The black curves correspond to 3D PE

solutions obtained using (a) Pad�e 1 -Pad�e 1 (np¼ 1¼mp) and (b) Pad�e 2 -

Pad�e 2 (np¼ 2¼mp) approximations, and computing with step 3. The gray

curves correspond to a 3D reference (image) solution.
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in Figs. 5(b) and 5(c). Though it is clear from the previous

TL-versus-range curve comparisons that differences exist

between these two 3D PE solutions [see also the error plots

shown in Figs. 5(d) and 6(d)], these differences do not mod-

ify significantly the interference structures of the field and

are even hardly visible when comparing the two 3D PE fields

at a fixed depth, see Figs. 6(b) and 6(c). This shows that the

3D PE solution obtained without step 3, though less accurate

than the 3D PE solution obtained with step 3, is still able to

reproduced the main 3D effects.

V. CONCLUSION

In this paper, a new 3D PE model, that includes a

leading-order cross-term correction in its formulation, has

been derived and benchmarked against a 3D reference solu-

tion based on an image source method. Of particular interest,

the discretized leading-order cross-term operator has been

incorporated in an existing numerical scheme by simply add-

ing a third step in the original 2-step based splitting method.

It has been shown that the quality of the comparisons with

the 3D reference solution deteriorates when 3D PE solutions

are computed ignoring step 3 (i.e., retaining only steps 1 and

2 in the calculations) and a very good agreement between

the 3D reference solution and the fully wide-angle 3D PE

solution that handles the leading-order cross term has been

observed, which confirms that the now-fully wide-angle 3D

PE model can handle larger propagation angles. Note that

the cross-multiplied terms, including the leading-order cross

term considered here, are neglected in most of the existing

3D PE models. The numerical technique proposed in this

paper could be used in the future to update in a straightfor-

ward manner any 3D PE algorithms1–3,5,6,9 that use a split-

ting numerical technique similar to the ADI method.

FIG. 4. Transmission loss (in dB re 1 m) curves at a receiver depth of 30 m

in the across-slope direction h¼ 90� corresponding to 3D PE solutions

obtained initializing by (a) mode 1, (b) mode 2, and (c) mode 3, and comput-

ing without step 3 (black curves) and with step 3 (gray curves). For each

modal initialization, both 3D PE solutions were computed using

np¼ 2¼mp.

FIG. 5. Transmission loss (vertical slices at constant azimuth, across-slope)

corresponding to a 2D PE computation [subplot (a)] and 3D PE computa-

tions without [subplot (b)] and with [subplot (c)] step 3. The 3D solutions

correspond to a Pad�e 2 expansion in both depth and azimuth (np¼ 2¼mp).

On each subplot, the sediment interface (at a constant depth of 200 m) is

indicated by a solid line. Subplot (d) shows the error (obtained subtracting

values in dB of transmission-loss fields) between the two 3D PE solutions

displayed in subplots (b) and (c).
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As explained in Sec. III, handling the leading-order

cross term considerably slows down the computations. The

workload of the algorithm to solve for step 3 is relatively

heavy (in comparison to other approaches that preserve the

advantages of ADI methods10,12) in terms of both memory

storage and central processing unit (CPU) time considera-

tions. The numerical algorithm proposed in this paper is

comparable to other 3D PE formulations16,18,19,23 that lead

to large sparse 9-diagonal matrices with block-tridiagonal

structures and thus require great computational resources

and specific iterative methods to inverse the resulting linear

systems at each step of the marching algorithm. Our objec-

tive in this paper was to analyze the importance of incorpo-

rating such a cross term, without focusing on CPU time

considerations nor memory storage limitations (though con-

vinced of their importance). Obviously, acceleration of the

iterative algorithm should be improved by testing other

inversion algorithms and by using other preconditioners. In

addition, following the approach used in step 2 to discretize

the second-order azimuthal operator, a higher-order centered

FD scheme should be used in step 3 to discretize the cross

term. This is currently underway.

Let us conclude this section with one last remark. For

the 3D wedge-shaped synthetic test case considered here, it

has been shown that higher-order 3D PE computations car-

ried out ignoring step 3, though less accurate, allow a reason-

ably good description of all the 3D effects present in the

waveguide. The comparisons presented in this paper (see

also in Ref. 10) show that incorporating cross-derivative

terms is something that is really needed for meticulous and

rigorous benchmark comparisons. However, in practical sit-

uations and/or when dealing with real problems that have

wedge-shaped geometries with moderate bottom slopes, 3D

PE computations carried out ignoring step 3 still offer a

sufficient description of most 3D effects and could be used

as a first approach. The user is then free to decide whether

he needs or can afford more accurate but longer 3D PE com-

putations handling cross-derivative terms or not.
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