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Parabolic equation models in 3D usually apply the “staircase” approximation to general range–
varying interfaces between adjacent layers. This is the simplest technique available: it consists in
neglecting range and azimuthal derivatives in the associated interface conditions. Our aim in this
paper is to analyze the influence of the stair-step approximation technique, common to most 3D PE
models, on a one-way sound wave propagation problem. We present a new finite-element 3D narrow-
angle PE model which accurately treats the variable interface conditions. This is accomplished by
using (i) an appropriate parabolized condition of the same aperture as the parabolic equation used,
and (ii) a new change-of-variable technique which does not require any homotheticity condition of
the layers as in previous works. Numerical simulations for the 3D wedge problem are presented.
The convergence of the numerical solutions with respect to the azimuth is investigated. Unlike
other 3D PE models working in cylindrical coordinates, the convergence tests have been carried
out using a range-dependent number of points in azimuth. Numerical solutions obtained with the
newly developed model are compared with a reference solution based on the image source and with
a solution obtained with a 3D PE model that uses a stair-step technique.

Keywords: Acoustic models; three-dimensional parabolic equation; change-of-variable technique.

1. Introduction

Parabolic equation (PE) based models are largely used by the underwater acoustics commu-
nity since they simulate efficiently sound propagation problems in complex oceanic environ-
ments.1 Parabolic equation models in two dimensions (2D PE) assume that the environment
is symmetric with respect to the azimuth. This assumption allows the azimuthal derivative
terms to be dropped wherever they appear, i.e. in the governing parabolic equation and in
the sloping bottom (or interface) conditions. The acoustic field in this case is computed in
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the range/depth (vertical) plane, using a marching scheme to advance in range, and a finite
element or finite difference approximation in depth. In oceanic environments where refrac-
tion due to sound speed and bathymetry changes with respect to the azimuth is indeed
weak, the 3D acoustic field may be computed by several independent calculations along
adjacent, vertical planes utilizing 2D PE models; the environmental parameters used in
each 2D calculation correspond to those of the 3D environment sampled at the correspond-
ing azimuth.2 The resulting model is referred to as an N×2D (or pseudo 3D) model and
the underlying assumption is that coupling of energy from one azimuth to another can be
disregarded. However, there are many examples of oceanic waveguides where the horizontal
refraction of energy is significant in some areas3–5 and the N×2D approximation does not
model propagation correctly. A full 3D model is therefore needed.

Among the existing three-dimensional models,6 3D PE codes have been developed in
order to model the azimuthal coupling of energy.7–15 They have been used to compute
propagation in a number of three-dimensional environments and to show acoustical effects
not predicted by any 2D model. However, the bottom slopes (both in range and azimuth)
are generally handled using a stair-step approximation, i.e. the 3D varying bathymetry
is replaced in each azimuth by a sequence of stair-steps. The bottom geometry is hence
assumed to be locally horizontal though it is allowed to vary in depth at each range step
in a marching algorithm. Sloping bottom conditions are often replaced accordingly by flat
bottom conditions, hence neglecting the range- and azimuthal-components in boundary (or
interface) conditions.a Neglecting the range component in the normal derivative condition
at the water-sediment interface can lead to non-energy-conserving 2D PE models. This well-
known problem has been extensively studied by many authors (see for instance in Ref. 16)
and efficient solutions have been proposed to overcome this problem in some two-dimensional
environments.17–24

For the 3D case, studies were conducted in the hope of showing that neglecting the
azimuthal component in transmission conditions may affect the horizontal refraction of
energy. In Ref. 25, the standard narrow-angle three-dimensional parabolic equation was
rewritten in a new coordinate system in order to handle properly the varying bottom topo-
graphy, eliminating the need for a stair-step approximation. However, using this change-
of-variable technique leads to numerical models that require a lot of memory and can lead
to very large CPU times in comparison with other 3D PE codes that use the staircase
approximation. Indeed, after the transformation of the coordinate system, the initial- and
boundary-value problem is slightly more complicated, with additional lower-order terms in
the partial differential equation and range- and azimuth-varying coefficients. As a conse-
quence, it is not possible to split the resulting operator into a depth and azimuthal operator
as in other approaches. Instead, a large system of linear equations in depth and azimuth is
obtained at each step in range. These linear systems are sparse and their inversion requires
the use of iterative algorithms. Due to memory storage limitations, the use of any direct

aNotice that the only term that accounts for azimuthal coupling in such 3D PE models is the partial
differential derivative with respect to the azimuth present in the underlying parabolic equation.
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algorithm (such as Gaussian elimination) becomes impossible. Besides the above-mentioned
transformation technique, an important feature of the numerical model of Ref. 25 was that
the classical boundary conditions had been previously parabolized tightly following the
paraxial approximation made on the Helmholtz equation, and incorporated into the finite
element discretization. This step revealed itself to be essential to obtain a mathematically
well-posed initial- and boundary-value problem and correct energy properties. The method
was implemented in a numerical code named TRIPARADIM and numerical solutions were
compared with other numerical solutions calculated by the three-dimensional PE code of
Ref. 9, which approximates the water-sediment interface as locally horizontal stair steps.26,27

The test case chosen was a 3D extension of the ASA 2D wedge benchmark.28 Satisfactorily,
the two different 3D PE methods predicted qualitatively the same three-dimensional effects.
However, some quantitative differences were noticed between the two 3D solutions: for each
modal initialization, a shift in the phasing was observed (this shift being more pronounced
for large ranges) and the amplitudes were in rather good agreement except for lower energies
(corresponding to shadow-zone regions).

It should be noted that in both codes, for numerical and computation purposes, the
physical propagation domain (which consisted of a water layer overlying a lossy homoge-
neous halfspace sedimental layer) had been truncated in depth and an artificial absorbing
layer with a depth-dependent attenuation coefficient had been added. In TRIPARADIM,
the transformation of the physical domain into a simpler one was performed using an affine
mapping so that each interface separating two adjacent layers became flat in the mapped
computation domain. The change-of-variable technique required each layer to be homothet-
ical, thus imposing to consider a non-horizontal artificial absorbing layer with a range- and
azimuth-varying width in the physical domain. This assumption was not required by the 3D
PE code of Ref. 9, for which the absorbing layer was horizontal and had a constant width.
Due to memory storage limitations, the artificial layer used in TRIPARADIM was not thick
enough to properly attenuate sound propagation inside the bottom, causing reflections on
the lower boundary, and leading to the presence of spurious energy in the shadow zone
region. Besides, recent numerical simulations using another more flexible code15,29 have
shown that the 3D computations performed with TRIPARADIM were carried out using
an undersampled depth grid (but with a correct number of points in the azimuthal direc-
tion). Indeed, though a meticulous convergence test was in the process of being performed
(which consisted in running the model several times using various range, azimuthal, and
depth increments with decreasing values until stabilization of the numerical solution), the
computations had to be stopped because the memory limitation of the computer had been
reached. Note that a uniform mesh length was used in depth; a correct description of the
acoustic field necessitated a large number of grid points, most of which were located in the
artificial absorbing layer. Undersampling by a factor of 2 in depth can change the numerical
solution by at least the same order of magnitude as the differences between the two 3D PE
solutions shown in Refs. 26 and 27. Therefore, the differences (in both phase and ampli-
tude) observed in Refs. 26 and 27 cannot be unambiguously attributed to the stair-step
approximation technique.
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In this paper, we re-examine the importance of carefully handling the azimuthal compo-
nent in the sloping bottom conditions when processing computations using 3D PE models.
For this purpose, we develop a new 3D narrow-angle PE model that treats the interface scat-
tering very accurately without assuming any homotheticity condition on each layer of the
varying waveguide. As in Ref. 25, we treat the exact normal derivative interface condition
using a parabolized approximation consistent with the narrow-angle paraxial approxima-
tion made on the Helmholtz equation. The energy-conserving, 3D narrow-angle PE model is
recalled in Sec. 2. The numerical treatment of irregular, variable bottoms topography is done
via an appropriate change of variable which maps the physical domain into a cylindrical
computational domain. The change-of-variable technique avoids the stair-step approxima-
tion of the bottom. It is given in Sec. 3. Its main advantage is that it does not require any
homotheticity condition of the layers. The transformed initial- and boundary-value prob-
lem in the mapped computation domain is presented in Sec. 3. An energy-conserving weak
formulation is derived and exact energy properties of the model are established. In Sec. 4,
the application of a finite-element discretization scheme is illustrated. In order to gain more
in flexibility, we consider a mesh not necessarily uniform in depth. This allows us to reduce
the number of points in both the sedimental and artificial absorbing layers. In the proposed
scheme, a large linear system with a block-tridiagonal structure is required to be solved at
each step in range, in contrast to several smaller diagonal systems required in any split-
ting technique based method.8–10,14,15 We solve these linear systems using a non-stationary
iterative algorithm equivalent to the preconditioned conjugate gradient iteration method
for the normal equation. The algorithm is given explicitly. In Sec. 5, numerical results for
the 3D wedge problem are discussed and it is shown that the use of the iterative algorithm
proves to be very satisfying except when propagating in the nearfield. Grid convergence of
the numerical solutions is investigated. Unlike other 3D PE models working in cylindrical
coordinates, the convergence tests have been carried out using a range-dependent number
of points in the azimuthal direction. At each step in range, the number of points used in
azimuth has been selected such that the corresponding arclength increment remain less than
a given fraction of the acoustical wavelength. Comparisons with a reference solution based
on the image source and with numerical solutions obtained running a 3D PE model that
uses stair-step technique are shown. In the concluding section the advantages and draw-
backs of the proposed numerical model are summarized and forthcoming improvements are
discussed.

2. The Energy-Conserving, 3D, Narrow-Angle PE Model

We consider a waveguide consisting in a fluid water layer of constant density ρw, attenuation
α

(λ)
w , and sound speed cw, and a fluid sediment layer of constant density ρs, attenuation
α

(λ)
s and sound speed cs, overlying an absorbing (artificial) bottom layer of finite depth to

simulate a fluid bottom halfspace of constant density ρa, increasing (with depth) attenuation
α

(λ)
a and constant sound speed ca. The topography of the waveguide and the artificial bottom

varies in 3D in general. Hence, the water-sediment interface Σsed is allowed to vary in 3D.
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We assume that the interface Σabs separating the sediment layer from the absorbing layer, is
horizontal. The problem is formulated in cylindrical coordinates, with z denoting the depth
(increasing downwards) below the sea surface, θ the azimuthal (bearing) angle, and r the
horizontal range from the source. Let 0 < s(r, θ) < zabs < zmax for r ≥ 0, 0 ≤ θ ≤ 2π,
where {z = s(r, θ)} is the water-sediment interface Σsed, {z = zabs} is the sediment-bottom
interface Σabs, and zmax is the maximum depth of the absorbing layer. We consider a time-
harmonic point source emitting at frequency f and placed at the origin at depth z = zS . In
the frequency domain, the acoustic pressure field P = P (r, θ, z) satisfy the 3D Helmholtz
equation:

ρ

[
1
r

∂

∂r

(
r

ρ

∂P

∂r

)
+

∂

∂z

(
1
ρ

∂P

∂z

)
+

1
r2

∂

∂θ

(
1
ρ

∂P

∂θ

)]
+ k2

αP = −2
r
δ(r)δ(z − zS), (1)

for r ≥ 0, θ ∈ [0, 2π], z ∈ (0, s(r, θ)) ∪ (s(r, θ), zabs) ∪ (zabs, zmax), where kα = k(1 +
iηα(λ)) is the complex-valued wavenumber, with k = 2πf/c and c the sound speed, α(λ)

the attenuation expressed in decibels per wavelength, η = 1/(40π log10 e) (with ηα(λ) ¿ 1),
and ρ the density. We assume that c, α(λ) and ρ are defined by their restrictions on each
fluid layer. For instance, ρ = ρw if z ∈ (0, s(r, θ)), ρ = ρs if z ∈ (s(r, θ), zabs), and ρ = ρa

if z ∈ (zabs, zmax). Besides, we assume that c, α(λ) and ρ are smooth functions for r ≥ 0,
0 ≤ θ ≤ 2π, z ∈ (0, s(r, θ)) ∪ (s(r, θ), zabs) ∪ (zabs, zmax), with possible jump discontinuities
across the interfaces {z = s(r, θ)} and {z = zabs}. The acoustic pressure P is assumed
to satisfy a pressure-release boundary condition P = 0 at {z = 0} and {z = zmax}, an
outgoing radiation condition in r, and a 2π-periodic condition in azimuth P |θ=0 = P |θ=2π.
The pressure P on {z = s(r, θ)} satisfies the following transmission conditions:

P (r, θ, s−(r, θ) = P (r, θ, s+(r, θ)), r ≥ 0, θ ∈ [0, 2π], (2)

1
ρw

∂P

∂η
(r, θ, s−(r, θ)) =

1
ρs

∂P

∂η
(r, θ, s+(r, θ)), r ≥ 0, θ ∈ [0, 2π]. (3)

Here, the superscript notations “+” and “−” signify above and below the Σsed interface
respectively, and the operator ∂/∂η is the normal derivative defined by:

∂

∂η
=

∂

∂z
− (∂rs)

∂

∂r
− 1
r2

(∂θs)
∂

∂θ
. (4)

The pressure P also satisfies the following transmission conditions at {z = zabs}:

P (r, θ, z−abs) = P (r, θ, z+
abs), r ≥ 0, θ ∈ [0, 2π],

1
ρs

∂P

∂z
(r, θ, z−abs) =

1
ρa

∂P

∂z
(r, θ, z+

abs), r ≥ 0, θ ∈ [0, 2π].

For the derivation of parabolic equations (PE), we introduce a reference sound speed c0 and
a reference real-valued wavenumber k0 = 2πf/c0. As we are mainly interested in outgoing
component of the propagating field, we factor the pressure as P (r, θ, z) = H1

0 (k0r)v(r, θ, z)
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where H1
0 denotes the zeroth-order Hankel function of the first kind. we use the asymptotic

development:

H1
0 (k0r) ≈

√
2

πk0r
ei(k0r−π/4), k0r → +∞. (5)

Let rmax > 0. We assume a weak dependence of the medium characteristics with respect
to the range and that the backscattering energy is neglectable. Moreover, assuming that
r−2 approximately commutes with ∂/∂r for r À 0, Eq. (1) is factored out and, under the
assumption of a slowly varying medium and for narrow angles of propagation with respect
to the horizontal radial direction, a Taylor series expansion of the resulting square-root
operator is used, yielding the following parabolic equation:

∂v

∂r
=

iρ
2k0

[
∂

∂z

(
1
ρ

∂v

∂z

)
+

1
r2

∂

∂θ

(
1
ρ

∂v

∂θ

)]
+

ik0

2
βv, (6)

for r ∈ [0, rmax], θ ∈ [0, 2π], and z ∈ (0, s(r, θ)) ∪ (s(r, θ), zabs) ∪ (zabs, zmax), where
β(r, θ, z) = (c0(1 + iηα(λ))/c(r, θ, z))2 − 1. By simplifying by ρ (since ρ is constant on each
layer), Eq. (6) is the standard PE of Tappert30 which was first used for 3D computations
by Baer.7 The 3D PE given by Eq. (6) has narrow-angle capabilities both in depth and in
azimuth. Other 3D PE models handle wide-angle capability in depth.8–15,29,31 The acoustic
field v is assumed to satisfy the following initial condition at r = 0:

v(0, θ, z) = v0(θ, z), θ ∈ [0, 2π], z ∈ [0, zmax], (7)

where v0 denotes an initial outgoing field simulating a point-source at r = 0 and z = zS ,
pressure-release boundary conditions at {z = 0} and {z = zmax}:

v(r, θ, 0) = v(r, θ, zmax) = 0, r ∈ [0, rmax], θ ∈ [0, 2π], (8)

and a 2π-periodic condition in azimuth:

v(r, 0, z) = v(r, 2π, z), r ∈ [0, rmax], z ∈ [0, zmax]. (9)

The transmission condition (2) for the pressure field P at {z = s(r, θ)} leads to the continuity
condition for v:

v(r, θ, s−(r, θ)) = v(r, θ, s+(r, θ)), r ∈ [0, rmax], θ ∈ [0, 2π]. (10)

The transmission condition for v obtained from the transmission condition (3) for the pres-
sure P at {z = s(r, θ)}, is replaced by the “parabolized” approximate transmission condition
given by:

1
ρw

∂v

∂T
(r, θ, s−(r, θ)) =

1
ρs

∂v

∂T
(r, θ, s+(r, θ)), r ∈ [0, rmax], θ ∈ [0, 2π], (11)
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where the operator ∂/∂T is defined by:

∂

∂T
=

∂

∂z
− ik0(∂rs)I − 1

r2
(∂θs)

∂

∂θ
. (12)

The parabolized operator given by Eq. (12) represents a generalization to 3D problems
of the 2D parabolized normal condition used by Abrahamsson and Kreiss32 to construct a
stable 2D PE-based marching algorithm for a range-dependent duct (composed of one single
layer). It has been derived considering on the range-component of the normal derivative (4)
the following horizontal plane wave impedance approximation:

∂P

∂r
≈ ik0P. (13)

It can be shown that this horizontal plane wave approximation has been implicitly used
as an underlying approximation in the derivation of Eq. (6), i.e. in the linear paraxial
approximation of the Helmholtz equation. The reader is referred to Ref. 33 for more details.
It should be noted that in any 3D PE model that uses a stair-step approximation and
accordingly assumes the bottom geometry as locally horizontal, the transmission condition
for v obtained from the transmission condition (3) for the pressure P at {z = s(r, θ)}, is
replaced by the following “flat bottom” transmission condition:

1
ρw

∂v

∂z
(r, θ, s−(r, θ)) =

1
ρs

∂v

∂z
(r, θ, s+(r, θ)), r ∈ [0, rmax], θ ∈ [0, 2π], (14)

where the range- and azimuthal-components in the “parabolized” interface condition (11)
have been neglected.

The acoustic field v satisfies at {z = zabs} the following transmission conditions:

v(r, θ, z−abs) = v(r, θ, z+
abs), r ∈ [0, rmax], θ ∈ [0, 2π], (15)

1
ρs

∂v

∂z
(r, θ, z−abs) =

1
ρa

∂v

∂z
(r, θ, z+

abs), r ∈ [0, rmax], θ ∈ [0, 2π]. (16)

Following the notations used by Dougalis et al. in Ref. 34, the parabolized condition given
by Eq. (11) leads to the ‖·‖ρ-stability condition:

d
dr

( ∫ 2π

0

∫ zmax

0
|v(r, θ, z)|2 dz dθ

ρ

)
≤ 0, (17)

for 0 < r ≤ rmax. Equation (17) holds as an equality (i.e., the model is ‖·‖ρ-conserving) if the
attenuation coefficient is null. The energy estimate (17) can be established by multiplying
(6) by ρ−1v̄ where v̄ denotes the complex conjugate of v, integrating by parts using (11),
and taking real parts. Equation (17) is a stability condition which ensures the existence and
uniqueness of a solution to the 3D PE (6) supplied with the transmission and boundary
conditions (7)–(11), (15), (16). It generalizes the stability condition derived by Dougalis
et al. in Ref. 34 for the analog 2D range-independent problem in a multilayered waveguide.
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Notice that the normal derivative condition for v obtained from (3) and using (5), can be
written:

1
ρw

[
∂v

∂z
− ∂rs

((
ik0 − 1

2r

)
v +

∂v

∂r

)
− ∂θs

r2
∂v

∂θ

]
(r, θ, s−(r, θ))

=
1
ρs

[
∂v

∂z
− ∂rs

((
ik0 − 1

2r

)
v +

∂v

∂r

)
− ∂θs

r2
∂v

∂θ

]
(r, θ, s+(r, θ)),

or equivalently, for r À 0,

1
ρw

[
∂v

∂z
− ∂rs

(
ik0v +

∂v

∂r

)
− ∂θs

r2
∂v

∂θ

]
(r, θ, s−(r, θ))

=
1
ρs

[
∂v

∂z
− ∂rs

(
ik0v +

∂v

∂r

)
− ∂θs

r2
∂v

∂θ

]
(r, θ, s+(r, θ)).

Neither of these two interface conditions is compatible with the parabolic equation (6) due
to the ∂/∂r-derivative terms. In other words, it means that using the boundary condition
derived directly from the normal derivative conditions given by Eq. (3), which is mathemat-
ically correct for the 3D Helmholtz equation, would lead with Eq. (6) to an ill-posed initial-
and boundary-valued problem due to the fact that the stability condition (17) would not
be satisfied.

3. The Transformed 3D Narrow-Angle PE Model

3.1. The transformed initial and boundary value problem

In this section the initial and boundary value problem (6)–(11), (15), (16) which holds in
a range varying physical domain, is transformed, using an appropriate change-of-variable
technique, to a new one on a cylindrical domain. For this purpose, the following azimuth-
and range-dependent change of the depth variable (analog to the range-dependent change
of variable used in Ref. 34) is introduced:

ξ =





s∗
s(r, θ)

z, 0 ≤ z ≤ s(r, θ),

zabs −
(

zabs − s∗
zabs − s(r, θ)

)
(zabs − z), s(r, θ) ≤ z ≤ zabs,

z, zabs ≤ z ≤ zmax,

(18)

where s∗ = s(0, 0), that sends the azimuth- and range-dependent interval [0, s(r, θ)] (respec-
tively [s(r, θ), zabs]) onto the interval [0, s∗] (resp. onto [s∗, zabs]). The transformed domain
is described by the variables r, θ, and ξ. The first two, r and θ, are kept unchanged: the
horizontal range r varies from 0 to rmax and the azimuthal angle θ varies from 0 to 2π. The
transformed “depth” ξ varies from 0 to zmax. The transformed waveguide is now bounded in
“depth” by two flat surfaces at {ξ = 0} and {ξ = zmax}, and two flat sediment interfaces at
{ξ = s∗} and {ξ = zabs}. One important feature of the change of variable used here, is that
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Fig. 1. Schematic (vertical slice at constant azimuth) of the real multilayered domain (left subplot) and of
the transformed multilayered domain (right subplot).

it can handle general interfaces. This extends the change of variable used in Ref. 25, where
it was required that the interfaces Σsed and Σabs be homothetical in the physical domain.
The inverse change of variable is given by:

z =




s(r, θ)
s∗

ξ, 0 ≤ ξ ≤ s∗,

zabs −
(
zabs − s(r, θ)
zabs − s∗

)
(zabs − ξ), s∗ ≤ ξ ≤ zabs,

ξ, zabs ≤ ξ ≤ zmax.

(19)

Let u = u(r, θ, ξ) denote the new unknown in the transformed domain defined by its restric-
tions on each of the three layers:

u(r, θ, ξ) =




uw(r, θ, ξ) = vw

(
r, θ,

s(r, θ)
s∗

ξ

)
, ξ ∈ (0, s∗),

us(r, θ, ξ) = vs

(
r, θ, zabs −

(
zabs − s(r, θ)
zabs − s∗

)
(zabs − ξ)

)
, ξ ∈ (s∗, zabs),

ua(r, θ, ξ) = va(r, θ, ξ), ξ ∈ (zabs, zmax).

The PDE given in Eq. (6) now becomes (in a compact form):

∂u

∂r
=

iρ
2k0

[
α
∂

∂ξ

(
1
ρ

∂u

∂ξ

)
+

1
r2

L
(

1
ρ
Lu
)]

+ µ∂rs
∂u

∂ξ
+

ik0

2
β̃u, (20)

for r ∈ [0, rmax], θ ∈ [0, 2π], ξ ∈ (0, s∗) ∪ (s∗, zabs) ∪ (zabs, zmax), where

α(r, θ, ξ) =



αw(r, θ) = (s∗/s(r, θ))2, ξ ∈ (0, s∗),
αs(r, θ) = ((zabs − s∗)/(zabs − s(r, θ)))2, ξ ∈ (s∗, zabs),

αa(r, θ) = 1, ξ ∈ (zabs, zmax),

where the operator L accounts for horizontal refraction and is defined by:

L =
∂

∂θ
− µ∂θs

∂

∂ξ
,
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Sediment

Absorbing layer

Water

x

y r

0
0

zmax

zabs

s
*

ξ

θ

Fig. 2. Cylindrical geometry of the mapped computation domain for 0 ≤ r ≤ rmax, 0 ≤ θ ≤ 2π, 0 ≤ ξ ≤ zmax.

with µ given by:

µ(r, θ, ξ) =





µw(r, θ, ξ) = ξ/s(r, θ), ξ ∈ (0, s∗)
µs(r, θ, ξ) = (zabs − ξ)/(zabs − s(r, θ)), ξ ∈ (s∗, zabs),

µa(r, θ, ξ) = 0, ξ ∈ (zabs, zmax),

and where

β̃(r, θ, ξ) =





β̃w(r, θ, ξ) = βw

(
r, θ,

s(r, θ)
s∗

ξ

)
, ξ ∈ (0, s∗),

β̃s(r, θ, ξ) = βs

(
r, θ, zabs −

(
zabs − s(r, θ)
zabs − s∗

)
(zabs − ξ)

)
, ξ ∈ (s∗, zabs),

β̃a(r, θ, ξ) = βa(r, θ, ξ), ξ ∈ (zabs, zmax).

Equation (20) contains new derivative terms and variable coefficients which account for the
variations of the bottom topography. The transformed field u satisfies the initial condition:

u(0, θ, ξ) = v0(θ, ξ), θ ∈ [0, 2π], ξ ∈ [0, zmax], (21)

the two pressure-release boundary conditions at {ξ = 0} and {ξ = zmax}:
u(r, θ, 0) = u(r, θ, zmax) = 0, r ∈ [0, rmax], θ ∈ [0, 2π], (22)

a 2π-periodic condition in azimuth:

u(r, 0, ξ) = u(r, 2π, ξ), r ∈ [0, rmax], ξ ∈ [0, zmax], (23)

and the following transmission conditions at {ξ = s∗}:
u(r, θ, s−∗ ) = u(r, θ, s+∗ ), r ∈ [0, rmax], θ ∈ [0, 2π], (24)

1
ρw

∂u

∂T̃
(r, θ, s−∗ ) =

1
ρs

∂u

∂T̃
(r, θ, s+∗ ), r ∈ [0, rmax], θ ∈ [0, 2π], (25)
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where, for all (r, θ) ∈ [0, rmax]× [0, 2π],

∂

∂T̃
=





s∗
s

∂

∂ξ
− ik0∂rsI − ∂θs

r2

(
∂

∂θ
− µw∂θs

∂

∂ξ

)
, ξ = s−∗ ,

(
zabs − s∗
zabs − s

)
∂

∂ξ
− ik0∂rsI − ∂θs

r2

(
∂

∂θ
− µs∂θs

∂

∂ξ

)
, ξ = s+∗ .

(26)

Along the artificial interface at {ξ = zabs} the transformed field u satisfies the two trans-
mission conditions:

u(r, θ, z−abs) = u(r, θ, z+
abs), r ∈ [0, rmax], θ ∈ [0, 2π], (27)

1
ρs

(
zabs − s∗
zabs − s

)
∂u

∂ξ
(r, θ, z−abs) =

1
ρa

∂u

∂ξ
(r, θ, z+

abs), r ∈ [0, rmax], θ ∈ [0, 2π]. (28)

3.2. An energy-conserving weak formulation

Let Ωw := (0, s∗) × (0, 2π), Ωs := (s∗, zabs) × (0, 2π), Ωa := (zabs, zmax) × (0, 2π), and
Ω = Ωw ∪ Ωs ∪ Ωa. Let Γ∗ := {s∗} × (0, 2π), Γabs := {zabs} × (0, 2π). We introduce a new
term ε = ε(r, θ, ξ) defined by:

ε(r, θ, ξ) =





εw(r, θ) = s(r, θ)/s∗, ξ ∈ (0, s∗),
εs(r, θ) = (zabs − s(r, θ))/(zabs − s∗), ξ ∈ (s∗, zabs),

εa(r, θ) = 1, ξ ∈ (zabs, zmax),

(29)

and for the sake of brevity, we use the following compact notation:

∫

Ω
φ ϕ̄

ε dΩ
ρ

:=
∫

Ωw

φw ϕ̄w
εw dΩ
ρw

+
∫

Ωs

φs ϕ̄s
εs dΩ
ρs

+
∫

Ωa

φa ϕ̄a
εa dΩ
ρa

for φ, ϕ ∈ L2(Ω), r ∈ (0, rmax), where an overbar denotes complex conjugation, and where
ρ = ρw if ξ ∈ (0, s∗), ρ = ρs if ξ ∈ (s∗, zabs), and ρ = ρa if ξ ∈ (zabs, zmax). Let u be the
solution of (20)–(28) and ψ denote an arbitrary smooth function on Ω̄ which satisfies a zero
Dirichlet condition at ξ = 0 and ξ = zmax, and a 2π-periodicity in azimuth. Multiplying
both sides of Eq. (20) by ψ̄ε/ρ, we obtain:

∫

Ω

∂u

∂r
ψ̄
ε dΩ
ρ

=
i

2k0

∫

Ω

(
α
∂

∂ξ

(
1
ρ

∂u

∂ξ

)
ψ̄ +

1
r2
L

(
1
ρ
Lu

)
ψ̄

)
εdΩ

+
∫

Ω
µ∂rs

∂u

∂ξ
ψ̄
εdΩ
ρ

+
ik0

2

∫

Ω
β̃uψ̄

εdΩ
ρ

. (30)
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Let us focus on the first integral term on the right hand side of Eq. (30). Integrating by
parts, we obtain:

∫

Ω
α
∂

∂ξ

(
1
ρ

∂u

∂ξ

)
ψ̄εdΩ = −

∫

Ω
α
∂u

∂ξ

∂ψ̄

∂ξ

εdΩ
ρ

+
∫

Γ∗

(
1
ρw

(s∗
s

) ∂uw

∂ξ
− 1
ρs

(
zabs − s∗
zabs − s

)
∂us

∂ξ

)
ψ̄ dΓ

+
∫

Γabs

(
1
ρs

(
zabs − s∗
zabs − s

)
∂us

∂ξ
− 1
ρa

∂ua

∂ξ

)
ψ̄ dΓ. (31)

In the same way, integrating by parts and using the 2π-periodicity of s and u, we get:

∫

Ω
L

(
1
ρ
Lu

)
ψ̄εdΩ = −

∫

Ω
(Lu)(Lψ̄)

εdΩ
ρ

+
∫

Γ∗

(
− ∂θs

ρw

(
∂uw

∂θ
− µw∂θs

∂uw

∂ξ

)

+
∂θs

ρs

(
∂us

∂θ
− µs∂θs

∂us

∂ξ

) )
ψ̄ dΓ. (32)

Multiplying (32) by r−2, summing with (31) and using transmission conditions (25) and
(28) at {ξ = s∗} and {ξ = zabs} respectively, we derive:

∫

Ω

(
α
∂

∂ξ

(
1
ρ

∂u

∂ξ

)
+

1
r2
L

(
1
ρ
Lu

))
ψ̄εdΩ = −

∫

Ω

(
α
∂u

∂ξ

∂ψ̄

∂ξ
+

1
r2

(Lu)(Lψ̄)
)
εdΩ
ρ

+
∫

Γ∗
ik0∂rs

(
uw

ρw
− us

ρs

)
ψ̄ dΓ. (33)

Using (33) in (30), we obtain:

∫

Ω

∂u

∂r
ψ̄
εdΩ
ρ

= − i
2k0

∫

Ω

(
α
∂u

∂ξ

∂ψ̄

∂ξ
+

1
r2

(Lu)(Lψ̄)
)
εdΩ
ρ

+
∫

Ω
µ∂rs

∂u

∂ξ
ψ̄
εdΩ
ρ

+
ik0

2

∫

Ω
β̃uψ̄

εdΩ
ρ

− 1
2

∫

Γ∗
∂rs

(
uw

ρw
− us

ρs

)
ψ̄ dΓ. (34)

Using integration by parts, one can easily check that:

∫

Ω
µ∂rs

∂u

∂ξ
ψ̄
εdΩ
ρ

=
1
2

∫

Ω
µ∂rs

(
∂u

∂ξ
ψ̄ − u

∂ψ̄

∂ξ

)
ε dΩ
ρ

− 1
2

∫

Ω
(∂ξµ)(∂rs)uψ̄

ε dΩ
ρ

+
1
2

∫

Γ∗
∂rs

(
uw

ρw
− us

ρs

)
ψ̄ dΓ. (35)

J.
 C

om
p.

 A
co

us
. 2

00
7.

15
:2

85
-3

18
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 C

E
N

T
R

A
L

E
 L

Y
O

N
 o

n 
03

/0
1/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



May 8, 2008 8:54 WSPC/130-JCA 00336

A General Sloping Interface in a Finite-Element 3D Narrow-Angle PE Model 297

Now, using (35) in (34), the integral on Γ∗ vanishes and we have:
∫

Ω

(
∂u

∂r
+

1
2
(∂ξµ)(∂rs)u

)
ψ̄
ε dΩ
ρ

= − i
2k0

∫

Ω

(
α
∂u

∂ξ

∂ψ̄

∂ξ
+

1
r2

(Lu)(Lψ̄)
)
εdΩ
ρ

+
1
2

∫

Ω
µ∂rs

(
∂u

∂ξ
ψ̄ − u

∂ψ̄

∂ξ

)
εdΩ
ρ

+
ik0

2

∫

Ω
β̃uψ̄

εdΩ
ρ

. (36)

Let us denote by 〈·, ·〉ρ,ε the (natural to the problem at hand) weighted r-dependent L2-inner
product defined for φ, ϕ ∈ L2(Ω), r ∈ (0, rmax), by:

〈φ, ϕ〉ρ,ε =
∫

Ω
φϕ̄

εdΩ
ρ

. (37)

In what follows, ‖·‖ρ,ε will denote the weighted norm on L2(Ω) induced by the inner product
〈·, ·〉ρ,ε. We have thus obtained a weak form of our problem which consists in finding u(r) ∈ V
satisfying for r ∈ (0, rmax),〈

∂u

∂r
+

1
2
(∂ξµ)(∂rs)u, ψ

〉

ρ,ε

+ ia(r;u, ψ) +
k0

2
〈Im(β̃(r))u, ψ〉ρ,ε = 0, ∀ψ ∈ V, (38)

and u(0) = u0, (θ, ξ) ∈ (0, 2π) × (0, zmax). In (38), V denotes the linear space of functions
which belong to H1(Ω) and which satisfy a zero Dirichlet condition on ξ = 0 and ξ = zmax,
and a 2π-periodicity in azimuth. Here, we suppress both θ− and ξ− dependencies in the
argument of various functions, writing, for example, u(r) = u(r, ·, ·), β̃(r) = β̃(r, ·, ·), etc.
The r-dependent sesquilinear form a(r; ·, ·) : V × V → C in (38) is defined by

a(r;φ, ϕ) =
1

2k0

(〈
α
∂φ

∂ξ
,
∂ϕ

∂ξ

〉

ρ,ε

+
1
r2
〈Lφ,Lϕ〉ρ,ε

)

+
i
2

[〈
µ∂rs

∂φ

∂ξ
, ϕ

〉

ρ,ε

−
〈
µ∂rsφ,

∂ϕ

∂ξ

〉

ρ,ε

]
− k0

2
〈Re(β̃(r))φ, ϕ〉ρ,ε, (39)

for φ, ϕ ∈ V , r ∈ (0, rmax). It is now straightforward to show that the transformed field u

satisfies the energy-conservation formula (17). Indeed, starting from

∂u

∂r
+

1
2
(∂ξµ)(∂rs)u =

1√
ε

∂(
√
εu)

∂r
,

taking ψ = u(r) in the variational equality given in (38), using the fact that:
〈

1√
ε

∂(
√
εu)

∂r
, u

〉

ρ,ε

=
1
2

d
dr
‖u‖2

ρ,ε + i× Im

(〈
1√
ε

∂(
√
εu)

∂r
, u

〉

ρ,ε

)
,

and taking real parts, we obtain that:

1
2

d
dr
‖u(r)‖2

ρ,ε = −k0

2
〈Im(β̃(r))u(r), u(r)〉ρ,ε.
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Since Im(β̃(r)) ≥ 0, this yields:

d
dr
‖u(r)‖ρ,ε ≤ 0, 0 ≤ r ≤ rmax. (40)

Therefore, if Im(β̃(r)) 6≡ 0, the following dissipation property holds for the solution of
(20)–(28):

‖u(r2)‖ρ,ε ≤ ‖u(r1)‖ρ,ε, 0 ≤ r1 ≤ r2 ≤ rmax.

If Im(β̃(r)) ≡ 0, the above dissipation property is replaced by the conservation of the ‖ ·‖ρ,ε

norm.

4. Numerical Scheme

In this section we shall discretize the transformed initial and boundary value problem (20)–
(28) using the standard Galerkin/Finite-Element method with piecewise linear continuous
functions in ξ and θ, coupled with the conservative Crank–Nicolson marching scheme to
discretize in range.

4.1. The fully discrete scheme

Let {θ0, θ1, . . . , θM} be a uniform partition of [0, 2π], where θm = m∆θ, 0 ≤ m ≤ M , with
∆θ = 2π/M , θ0 = 0, and θM = 2π. Let also {ξ0, ξ1, . . . , ξN+1} be a partition of [0, zmax],
such that ξn′ = s∗ and ξn′′ = zabs for some integers n′ and n′′ satisfying 1 < n′ < n′′ <
N + 1, ξ0 = 0 and ξN+1 = zmax. Moreover, we assume a partitioning of [0, s∗], [s∗, zabs]
and [zabs, zmax], with uniform mesh lengths ∆ξw, ∆ξs and ∆ξa respectively. We denote by
Pm,n = (θm, ξn) a node of the grid. For 0 ≤ m ≤ M , the nodes Pm,0 and Pm,N+1, lie on
{ξ = 0} and {ξ = zmax} respectively. The nodes Pm,n′ and Pm,n′′ , for 0 ≤ m ≤ M , lie on
{ξ = s∗} and {ξ = zabs}, respectively. For 1 ≤ m ≤M , 1 ≤ n ≤ N + 1, we let:

Km,n = ]θm−1, θm[× ]ξn−1, ξn[

so that Ω̄ = ∪1≤m≤M, 1≤n≤N+1 K̄m,n and Km,n ∩ Km̃,ñ = ∅ if (m,n) 6= (m̃, ñ). Let Q1 be
the space of complex-valued polynomials of degree at most 1 in ξ and θ. We define the
finite dimensional vector space Vh of complex-valued functions which are continuous on Ω̄,
piecewise Q1-polynomial relatively to each mesh Km,n, 1 ≤ m ≤M , 1 ≤ n ≤ N + 1, satisfy
the homogeneous Dirichlet conditions at both ξ = 0 and ξ = zmax, and are 2π-periodic in
azimuth, i.e.:

Vh = {ψ | ψ ∈ C0(Ω̄) complex-valued, ψ|Km,n ∈ Q1 for 1 ≤ m ≤M, 1 ≤ n ≤ N + 1,

ψ is 2π-periodic, ψ|ξ=0 = ψ|ξ=zmax = 0}.
The vector space Vh is a subspace of V such that dimVh = MN . Let K = MN . For ∆r > 0
so that rmax = L∆r, we let r` = `∆r, 0 ≤ ` ≤ L, and r`+ 1

2 = r` + ∆r/2, 0 ≤ n ≤ L − 1.
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We consider the following finite element (in depth and azimuth) and Crank–Nicolson (in
range) discrete scheme: Find U ` ∈ Vh, 1 ≤ ` ≤ L, such that for 0 ≤ ` ≤ L− 1,

〈
U `+1 − U `

∆r
+

1
2
((∂ξµ)(∂rs))

`+ 1
2
U `+1 + U `

2
, ψh

〉

ρ,ε`+1
2

+ ia
(
r`+ 1

2 ;
U `+1 + U `

2
, ψh

)
+
k0

2

〈
Im(β̃`+ 1

2 )
U `+1 + U `

2
, ψh

〉

ρ,ε`+1
2

= 0, (41)

for all ψh ∈ Vh, and U0 = u0. For 1 ≤ k ≤ K, we let Pk = Pm,n with k = m +M(n − 1),
1 ≤ m ≤M , 1 ≤ n ≤ N . This corresponds to numbering the grid nodes along θ at constant
ξ. Let {ψk}, 1 ≤ k ≤ K be the finite element basis defined by ψk(Pk′) = 0 if k 6= k′ and
ψk(Pk) = 1. Then,

U ` =
K∑

k=1

U `
kψk, 0 ≤ ` ≤ L,

and, for 0 ≤ ` ≤ L, U `(Pk) = U `
k, 1 ≤ k ≤ K. For 0 ≤ ` ≤ L, we construct the vector U`

of dimension K, whose kth component is the value of function U ` at grid point Pm,n such
that k = m+M(n−1). By letting U `

m,n = U `(Pm,n) for 1 ≤ m ≤M , 1 ≤ n ≤ N , the vector
U` is defined by:

U` = (U `
1,1, U

`
2,1, . . . , U

`
M,1︸ ︷︷ ︸

n=1

, U `
1,2, U

`
2,2, . . . , U

`
M,2︸ ︷︷ ︸

n=2

, . . . , U `
1,N , U

`
2,N , . . . , U

`
M,N︸ ︷︷ ︸

n=N

)T .

It is then straightforward to show that (41) can be written in a matrix-vector form as follows
(

G`+ 1
2 + i

∆r
2

(T`+ 1
2 + S`+ 1

2 )
)

U`+1 =
(

G`+ 1
2 − i

∆r
2

(T`+ 1
2 + S`+ 1

2 )
)

U`, (42)

for 0 ≤ ` ≤ L− 1, where G`+ 1
2 is the mass matrix of the finite element basis at range r`+ 1

2 ,

G
`+ 1

2
k,k′ =

∫

Ω
ψk′ψ̄k

ε`+
1
2 dΩ
ρ

, 1 ≤ k, k′ ≤ K,

and where T`+ 1
2 and S`+ 1

2 , 0 ≤ ` ≤ L− 1, are Kth order square matrices with components
defined by:

T
`+ 1

2
k,k′ =

1
2k0

∫

Ω
α`+ 1

2
∂ψk′

∂ξ

∂ψ̄k

∂ξ

ε`+
1
2 dΩ
ρ

+
i
2

∫

Ω
(µ∂rs)`+ 1

2

(
∂ψk′

∂ξ
ψ̄k − ψk′

∂ψ̄k

∂ξ

)
ε`+

1
2 dΩ
ρ

−
∫

Ω

(
k0

2
β̃`+ 1

2 +
i
2
((∂ξµ)(∂rs))

`+ 1
2

)
ψk′ψ̄k

ε`+
1
2 dΩ
ρ

, 1 ≤ k, k′ ≤ K,

S
`+ 1

2
k,k′ =

1

2k0(r`+ 1
2 )2

∫

Ω
(L`+ 1

2ψk′)(L`+ 1
2 ψ̄k)

ε`+
1
2 dΩ
ρ

, 1 ≤ k, k′ ≤ K.
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Instead of computing exactly the integrals defining the components of G`+ 1
2 , T`+ 1

2 , and
S`+ 1

2 , 0 ≤ ` ≤ L−1, we evaluate them approximately using in each mesh Km,n the following
trapezoidal quadrature rule:

∫

Km,n

ψ dΩ ≈ ∆θ∆ξ
4

(ψ(Pm−1,n−1) + ψ(Pm−1,n) + ψ(Pm,n−1) + ψ(Pm,n)).

Therefore, (42) now becomes:
(

I + i
∆r
2

(T̃`+ 1
2 + S̃`+ 1

2 )
)

U`+1 =
(

I− i
∆r
2

(T̃`+ 1
2 + S̃`+ 1

2 )
)

U`, (43)

for 0 ≤ ` ≤ L − 1, where I is the Kth order identity matrix, T̃`+ 1
2 , 0 ≤ ` ≤ L − 1, are

3-diagonal matrices of order K, and S̃`+ 1
2 , 0 ≤ ` ≤ L−1, are 9-diagonal matrices of order K.

For ` ∈ {0, . . . , L− 1}, matrices T̃`+ 1
2 and S̃`+ 1

2 both possess a block-tridiagonal structure
given by:

T̃`+ 1
2 =




T̃
`+ 1

2

(1,1) T̃
`+ 1

2

(1,2)

T̃
`+ 1

2

(2,1) T̃
`+ 1

2

(2,2) T̃
`+ 1

2

(2,3)

. . . . . . . . .

T̃
`+ 1

2

(N−1,N−2) T̃
`+ 1

2

(N−1,N−1) T̃
`+ 1

2

(N−1,N)

T̃
`+ 1

2

(N,N−1) T̃
`+ 1

2

(N,N)




, (44)

S̃`+ 1
2 =

1

2k0(r`+ 1
2 )2




S̃
`+ 1

2

(1,1) S̃
`+ 1

2

(1,2)

S̃
`+ 1

2

(2,1) S̃
`+ 1

2

(2,2) S̃
`+ 1

2

(2,3)

. . . . . . . . .

S̃
`+ 1

2

(N−1,N−2) S̃
`+ 1

2

(N−1,N−1) S̃
`+ 1

2

(N−1,N)

S̃
`+ 1

2

(N,N−1) S̃
`+ 1

2

(N,N)




. (45)

All the blocks of T̃`+ 1
2 are diagonal matrices of order M , while all the blocks of S̃`+ 1

2 are
tridiagonal matrices of orderM , with entries in the upper right and lower left corners (due to
the periodicity condition in azimuth). Components of these matrices are given in Appendix.
Both T̃`+ 1

2 and S̃`+ 1
2 are sparse matrices. Storing T̃`+ 1

2 (resp. S̃`+ 1
2 ) requires declaring only

3 (resp. 9) distinct arrays, each of dimension MN . On the other hand, the bandwith of each
of these matrices is function of M . Consequently, the use of any direct algorithm (like the
Gaussian elimination method) would require an excessive amount of memory storage since
storage must be allocated for the bandwidth in each row of the matrix, which would limit
significantly the number of mesh points (in depth and azimuth) that can be used. Note that
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instead of numbering the grid nodes along θ at constant ξ, we could have numbered the grid
nodes along ξ at constant θ, resulting in matrices T̃`+ 1

2 , 0 ≤ ` ≤ L − 1, with a bandwith
equal to 3, but also unfortunately in matrices S̃`+ 1

2 , 0 ≤ ` ≤ L−1, with a bandwith function
of N . Again, the use of any direct algorithm would not be possible due to memory storage
limitation. Instead, the inversion of the linear system present in Eq. (43) is performed using
an iterative (indirect) algorithm at each step in range. This algorithm is presented in detail
in the following section.

4.2. Use of a non-stationary iterative solver

As seen in the previous section, the discretization of the continuous problem leads to solving,
at each step in range, a system of equations of the form:

Ax̂ = b (46)

where A is a nonsingular, large, 9-diagonal matrix of orderK = MN with complex elements,

A = I + i
∆r
2

(T̃`+ 1
2 + S̃`+ 1

2 ),

and where x̂ and b are vectors of CK . In order to effectively utilize the sparseness of matrix A
present in the left hand side of (46), it is important to use an iterative (indirect) algorithm.
However, since A is neither hermitian, nor definite positive, it is difficult to invert A by
use of standard iterative methods (like for instance the conjugate gradient method). Thus,
instead of (46), one can consider:

A∗Ax̂ = A∗b, (47)

where A∗ denotes the adjoint of A (i.e. complex conjugation and transposition of matrix A).
This equation is known as the normal equation and can be derived by simply multiplying
(46) by A∗ . Equivalently, by letting x̂ = A∗ ŷ in (46), one can consider:

AA∗ ŷ = b. (48)

The conjugate gradient method can now be applied to any of these two linear systems,
leading to the CGNE (acronym for conjugate gradient for the normal equation) method
when applied to (47), and to the minimal error method35 when applied to (48). The latter
terminology comes from the fact that the underlying algorithm generates a sequence {x(k) =
A∗y(k)} which minimizes the scalar quantity:

〈r, (AA∗)−1r〉C = ‖x̂− x‖2
C,

where x = A∗y and r = b−AA∗y, where 〈·, ·〉C denotes the complex inner-product defined
on CK , and where ‖ · ‖C denotes the norm induced by 〈·, ·〉C. For both methods, the con-
vergence of {x(k)} towards the solution x̂ of (46) is guaranteed since AA∗ and A∗A are
hermitian positive definite matrices. The main drawback of these two methods is that,
by changing the original linear system (46) to one of the two equivalent systems, (47)
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or (48), the conditioning number has been deteriorated and iterations will converge very
slowly. The slowdown of the algorithm is all the more important as the grid mesh sizes,
∆θ and ∆ξ = max{∆ξw,∆ξs,∆ξa}, get smaller (or as M and N have increasing values).
Notwithstanding, a mesh convergence test in depth and in azimuth remains important.
Therefore, in order to improve the conditioning of the iteration matrix, we first multiply
(46) by a preconditioning matrix Q−1:

Q−1Ax̂ = Q−1b. (49)

Then, by letting x̂ = (Q−1A)∗ ŷ, we obtain:

(Q−1A)(Q−1A)∗ ŷ = Q−1b. (50)

Again, the conjugate gradient method can be applied to solve (50) and the convergence
of the algorithm is guaranteed due to the positive definite hermitian property of matrix
(Q−1A)(Q−1A)∗ . A loop of the iterative algorithm involves 7 steps:

ζ(k) = ‖g(k)‖2
C/‖p(k)‖2

C

x(k+1) = x(k) + ζ(k)p(k)

r(k+1) = r(k) − ζ(k)Ap(k)

Qg(k+1) = r(k+1)

κ(k) = ‖g(k+1)‖2
C/‖g(k)‖2

C

Q∗q(k+1) = g(k+1)

p(k+1) = A∗q(k+1) + κ(k)p(k)

where the initial vector x(0) is chosen arbitrarily, r(0) = b−Ax(0), and where vectors g(0),
q(0), p(0) satisfy Qg(0) = r(0), Q∗q(0) = g(0) and p(0) = A∗q(0). The loop is repeated until
the relative residual norm, ‖r(k)‖C/‖b‖C, is less than a given precision (tolerance) ε. Each
loop requires solving two auxiliary linear systems (Qg(k+1) = r(k+1) and Q∗q(k+1) = g(k+1))
involving the preconditioning matrix Q and its adjoint Q∗. The efficiency of the solver highly
depends on the preconditioning procedure. Adapting the preconditioning approach used by
Bayliss et al.36 we construct a preconditioner using the tridiagonal matrix derived from the
M× 2D associated model (M sections in the azimuthal direction):

Q = I + i
∆r
2

T̃`+ 1
2 .

A re-ordering of the unknowns corresponding to numbering along ξ at constant azimuth
leads to the following linear systems:

Q′g′(k+1) = r′(k+1) and Q′∗q′(k+1) = g′(k+1)

where Q′ = PT QP, with P the permutation matrix which gives the correspondance between
a numbering along θ at constant depth and a numbering along ξ at constant azimuth, and
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where g′(k+1) = PTg(k+1), r′(k+1) = PT r(k+1). Any system involving matrix Q′ or its adjoint
can now be easily inverted since Q′ has a block-diagonal structure:

Q′ =




Q′
(1,1)

Q′
(2,2)

. . .
Q′

(M,M)


 . (51)

Indeed, each inversion of Q′ is equivalent to the inversion of M (auxiliary) linear systems
of order N . Since each block is a square tridiagonal matrix of order N , these inversions can
be performed using a fast and robust Gaussian (direct) algorithm optimized for tridiagonal
matrices. The amount of storage required depends linearly on the number of grid points. In
addition, few vectors need to be stored. Hence the storage is much less than that required
by any version of the Gaussian elimination. As will be shown in the next section, prac-
tical numerical results demonstrate that the acceleration due to the preconditioning is so
large compared to the non-preconditioning iterative method that the additional operations
inherent to the preconditioning procedure are negligible.

5. Numerical Simulations

To assess the efficiency of the newly developed 3D narrow-angle PE model based on
the change-of-variable technique presented in the previous section, we consider a three-
dimensional extension of the original two-dimensional penetrable wedge-shaped problem
originally proposed as an ASA benchmark in 1987, and extensively used to analyze accu-
racy and efficiency of various two-dimensional ocean acoustics models and later extended
to a full 3D benchmark case by Fawcett.9 Except when specified explicitly otherwise, all
the 2D and 3D numerical results presented hereafter have been obtained running the new
change-of-variable technique based code. The numerical simulations have been performed
on a 2.8 GHz mono-processor workstation with a 2 GB memory. We consider an isovelocity
water layer of density ρw = 1 g/cm3 and sound speed cw = 1500 m/s, overlying a lossy homo-
geneous halfspace sedimental layer of density ρs = 1.5 g/cm3, sound speed cs = 1700 m/s
and attenuation αs = 0.5 dB/λ, which leads to a critical grazing angle value of approxi-
mately 28 deg. No shear energy is assumed in the sediment. The surface parametrization of
the water-sediment interface Σsed is given by:

s(r, θ) = 200(1− r cos θ/4000), (52)

leading to a 2.86 deg-upslope at θ = 0◦, a 2.86 deg-downslope at θ = 180◦, and a zero-
slope at both θ = 90◦ and θ = 270◦ which we will refer to as cross-slope directions. Note
that for directions perpendicular to the wedge apex (i.e. for both θ = 0◦ and θ = 180◦),
the cylindrical symmetry assumption is locally valid and no (or at least weak) horizontal
refraction of the propagating sound is expected for adjacent azimuthal angles. We thus focus
on the cross-slope direction, where larger 3D effects occur. A cw point source emitting at
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25 Hz is placed at a depth of 100 m. It leads to the existence of three propagating modes at
the source location. We consider propagation ranges greater than the present range handled
by Eq. (52), i.e. 4 km. Hence, for numerical purposes, the interface depth is truncated
at a minimum depth of 5m and at a maximum depth of 395 m. We display in Fig. 3

Fig. 3. Transmission loss (vertical slices at constant azimuth θ = 90◦, across-slope) corresponding to 2D
(upper subplot) and 3D (lower subplot) narrow-angle PE computations.
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Fig. 4. Transmission loss (in dB re 1 m) curves at a receiver depth of 30m in the cross-slope direction θ = 90◦
corresponding to 2D (dashed line) and 3D (bold solid line) narrow-angle PE computations.

gray-scale images of the transmission loss (vertical slices, θ = 90◦) corresponding to 2D
(upper subplot) and 3D (lower subplot) PE computations. We also display in Fig. 4 TL-
versus-range curves (in dB re 1 m) corresponding to the cross-slope direction (θ = 90◦)
and to a receiver depth of 30m. The 2D and 3D solutions are shown in dashed line and
bold solid line respectively. The maximum computation range is 24 km. The azimuth- and
range-dependent transformation of the depth coordinate has been performed using Eq. (18)
with s∗ = 200 m, which corresponds to the water depth at the source location. To simulate
a bottom halfspace, we have used an artificial absorbing bottom layer with a ξ-dependent
attenuation coefficient αa = αs +0.05× (ξ−zabs), this absorbing layer starting at ξ = 500 m
and ending at ξ = 600m, with density and sound speed values identical to the ones used
in the sediment. The 2D and 3D algorithms have been initialized at r = 0 using a modal
starter. The source field has been assumed to be omnidirectional and we have used c0 =
1500m/s. Since long range propagation is considered, the initial field includes only the three
propagating modes existing at the source location. As expected, the 2D field exhibits the
interference pattern of the three (initially present) propagating modes for all ranges. The
differences between the 2D and 3D solutions are very weak in the vicinity of the source, but
become more and more pronounced as the propagation range increases. The 3D effects have
been explained in detail by several authors and correspond to intramodal interference effects,
leading to the succession of three zones across-slope, with three propagating modes present
in zone I, two propagating modes in zone II, and only one propagating mode interfering
with itself in zone III.
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Fig. 5. Mesh grid used in the mapped-computation domain (lower subplot) and its corresponding range-
dependent mesh grid in the real physical domain in the upslope direction (upper subplot). For better clarity,
only 40 out of the 100 points are represented in depth for the water (first) layer. Likewise, 30 out of the 75
points in the sediment (second layer) are shown. All points belonging to the artificial absorbing (last) layer
are represented.

Both 2D and 3D computations have been carried out using ∆r = 10m, ∆ξw = 2 m,
∆ξs = 4m, and ∆ξa = 20 m in the mapped computation domain, which corresponds to
using N = 179 discrete points in depth. It should be noted that among these points, only
the 5 last ones lie in the artificial absorbing layer. A vertical slice (which is independent of
the azimuthal angle) of the mesh grid used in the mapped computation domain is plotted in
Fig. 5 (lower subplot). In particular, a vertical slice in the upslope-direction (θ = 0◦) of the
corresponding mesh grid in the physical domain is also plotted in Fig. 5 (upper subplot). To
show the performance of the nonstationary iterative algorithm presented in Sec. 4.2, we now
analyze the number of iterations required for convergence of the algorithm at the specific
discrete range r = 1000 m. By convergence, we mean that the relative residual normb be
less than a given precision ε supplied by the user. In practice, ε = 10−5 is sufficient to
get stable results. In Table 1 the number of iterations required for convergence is shown
for different values of ∆r and for fixed values of the depth and azimuthal increments.

bThis quantity being naturally produced by the implementation of the iterative algorithm.
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Table 1. Iteration results for ∆ξw = 2m, ∆ξs = 4m, ∆ξa = 20m (i.e., N = 179), M = 1440, r = 1000m.

ε = 10−5 ε = 10−7 ε = 10−9

Number of Iterations Number of Iterations Number of Iterations

∆r Precond. Unprecond. Precond. Unprecond. Precond. Unprecond.

20.0m 13 625 21 850 27 1074
10.0m 8 308 12 419 15 530
5.0m 5 148 7 203 8 258
1.0m 2 24 3 35 3 45
0.5m 2 10 2 15 3 21

Table 2. Iteration results for ∆r = 10 m, M = 1440, r = 1000 m.

ε = 10−5 ε = 10−7

Number of Iterations Number of Iterations

∆ξw ∆ξs ∆ξa N Precond. Unprecond. Precond. Unprecond.

4.0m 10m 50m 81 7 91 11 127
2.0m 4m 20m 179 8 308 12 419
1.0m 2m 10m 359 11 1148 14 1560
0.5m 1m 5m 719 14 4384 19 6008

In Table 2 the iteration results are given for different combinations of ∆ξw, ∆ξs, ∆ξa,
and for fixed values of the azimuthal and range increments. As expected, reducing the
size of the range increment, ∆r, permits an acceleration of both the preconditioned and
unpreconditioned algorithms. On the other hand, reducing the depth increments, ∆ξw, ∆ξs,
∆ξa (or equivalently increasing N) leads to a degradation of both algorithms. Note however
that the degradation of the unpreconditioned algorithm is more rapid than that of the
preconditioned one. Despite this degradation, the relative efficiency of the preconditioning
strategy is evident. Performances of both iterative algorithms highly also depend on the
size of the azimuthal increment ∆θ. For instance, the number of iterations required for
convergence is shown in Table 3 for different values of ∆θ and for fixed values of the
range and depth increments. In concordance with what has been observed with the depth

Table 3. Iteration results for ∆ξw = 2 m, ∆ξs = 4m, ∆ξa = 20m
(i.e. N = 179), ∆r = 10 m, r = 1000m.

ε = 10−5 ε = 10−7

Number of Iterations Number of Iterations

M Precond. Unprecond. Precond. Unprecond.

360 2 278 3 379
720 2 284 3 386

1440 8 308 12 419
2880 31 403 47 549
5760 486 816 693 1102
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increments, reducing ∆θ (or equivalently increasingM) deteriorates the convergence of both
the preconditioned and unpreconditioned algorithms. It is also apparent in Table 3 that the
preconditioning strategy offers a very poor advantage for large values of M . Numerous
simulations have shown that this deterioration is all the more important as the value of the
discrete range at which the matrix inversion is performed tends to zero (results not shown
here). In fact, both iterative algorithms are very sensitive to the value of the arclength
increment ∆s defined by:

∆s = r∆θ = 2πr/M,

where ∆θ is expressed in radians. Therefore, in order to bypass the problem of convergence
encountered when computing at small ranges with large values of M , we have chosen to
adapt the size of ∆θ during the propagation. UnlikeN , the number of points used in azimuth
is hence not constant in range. The number of azimuthal points has been selected such that
the corresponding arclength increment ∆s be less than a given fraction of λ, i.e. such that:

∆s ≤ λ/τ (53)

for a given (fixed) τ . Since ∆s is also function of the r-variable, this means that the integer
M should be increased at each step in range, leading to an interpolation procedure between
values of the numerical solution on two successive azimuthal grids. In order not to deteriorate
the quality of the discretization, the interpolation is achieved at only specific discrete ranges.
The strategy is the following: The 3D computation is launched at r ≈ 0 using M = 360
points in azimuth, this number of points being maintained in range until the criterion
given by Eq. (53) is no longer satisfied. The number of azimuthal points is then doubled
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Fig. 6. Iteration results as a function of range for the preconditioned iterative algorithm and τ = 8.
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(M = 720), an interpolation procedure being applied to construct the solution on a 720-
point azimuthal grid. The procedure of doubling M at any discrete range for which the
criteria given by Eq. (53) is in default is then repeated until the maximum propagation range
is reached. Usually, a convergence test with respect to the azimuth consists in running the
code with successively decreasing values of ∆θ (or equivalently increasing values of M) until
the solution starts to stabilize. Here, the convergence test with respect to the azimuth has
been handled by running the code with successively increasing values of τ . It has been found
that using τ = 8 (i.e. imposing ∆s ≤ λ/8) is necessary to reach convergence. To this value of
τ corresponds a number of azimuthal points equal to M = 360 for r ≤ 440 m, M = 720 for
440m ≤ r ≤ 870m, M = 1440 for 870 m ≤ r ≤ 1730m, M = 2880 for 1730 m ≤ r ≤ 3450m,
M = 5760 for 3450 m ≤ r ≤ 6890m, M = 11520 for 6890 m ≤ r ≤ 13760m, and M = 23040
for 13760m ≤ r ≤ rmax = 24000 m.

The number of iterations required for convergence of the preconditioned iterative algo-
rithm is represented as a function of r in Fig. 6 for τ = 8. We display in Fig. 7 TL-versus-
range curves corresponding to τ = 1/4, τ = 1/2, τ = 1, τ = 2, τ = 4, and τ = 6. For
comparison, we also display the curve corresponding to τ = 8. All the curves of Fig. 7
correspond to the cross-slope direction and to a receiver depth of 30m. When looking at
first sight, we observed that the main 3D effects are reasonably detected using an azimuthal
increment ∆θ corresponding to λ/2. This confirms the observation made in Refs. 26 and
27. However, a better description of the 3D effects is obtained with a larger τ , i.e. by using
a more stringent criterion. The solution obtained with τ = 6 is very close to the converged
solution. Using a criterion ∆s ≤ λ/τ with τ < 2 provides inaccurate 3D solutions.

The narrow-angle 3D PE solution has been compared with a reference numerical solu-
tion based on the image source method.37 The two solutions are plotted in Fig. 8. The
bold solid curve corresponds to the narrow-angle 3D PE solution and the dashed curve
to the image solution. The two numerical solutions exhibit qualitatively the same three-
dimensional effects. Both models lead to a succession of three clearly distinguishable zones
across-slope. However, the outsets of zones II and III are shifted by a few kilometers. The
two solutions are hence shifted in phase over the entire propagation range. We believe that
these differences can be attributed to the three-dimensional narrow-angle approximation
used in the 3D PE model since, as shown in Ref. 29, the use a wider-angle approximation
in both depth and azimuth permits a better agreement between the parabolic equation and
the image solutions.

Comparisons with an other 3D PE model that uses a stair-step technique have been
performed. The original three-dimensional parabolic equation based code developed by
Fawcett9 has been used. This 3D PE code uses FFTs to model its azimuthal operator.
In order to make some meaningful comparisons, its wide-angle capability (in depth) has
been intentionally reduced to narrow-angle. We have run the code using 512, 1024, 2048
and 4096 points in azimuth. Recall that in order to take advantage of the FFT algorithm,
the number of azimuthal FFT components must be an integer power of 2. Convergence has
been achieved with 4096 points in azimuth. No significant variation has been observed for a
smaller azimuthal increment. We plot in Fig. 9 TL-versus-range curves obtained with both
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Fig. 7. 3D transmission loss curves (dashed line) at a receiver depth of 30m and θ = 90◦ obtained with 3D
computations satisfying the criteria (a) ∆s ≤ 4λ, (b) ∆s ≤ 2λ, (c) ∆s ≤ λ, (d) ∆s ≤ λ/2, (e) ∆s ≤ λ/4,
(f) ∆s ≤ λ/6. For each subplot, the curve corresponding to ∆s ≤ λ/8 has been added (bold solid line) for
comparison.
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Fig. 8. 3D Transmission loss (in dB re 1 m) comparisons at 25 Hz at a receiver depth of 30 m and across-slope
(θ = 90◦). The bold solid curve corresponds to the narrow-angle 3D PE solution and the dashed curve to
the image solution.
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Fig. 9. 3D Transmission loss (in dB re 1 m) comparisons at 25 Hz at a receiver depth of 30 m and across-slope
(θ = 90◦). Both curves correspond to 3D narrow-angle PE solutions. The solution obtained with the change-
of-variable technique is represented in solid line. The solution obtained with the staircase approximation is
represented in dashed line.
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3D PE models. We observe a quite good agreement of the two solutions, though a shift in
phase and in amplitude is present at some ranges. Note that this shift is relatively small in
comparison with the shift observed in Refs. 26 and 27 while using the TRIPARADIM code.
The only difference between the two models used here is the manner in which they treat
the 3D varying bottoms. For the dashed curve, the water-sediment interface is assumed
to be locally horizontal at each step in range, the solution satisfying the “flat bottom”
condition given by Eq. (14) across the water-sediment interface. For the solid curve, the
change-of-variable technique allows an accurate description of the sloping bottom, the solu-
tion satisfying the “parabolized” sloping interface condition given by Eq. (11). All the other
parameters are identical. For instance, they both consider an horizontal artificial absorbing
layer starting at a depth of 500 m and a pressure-release bottom at a depth of 600 m, which
was not the case in Refs. 26 and 27.

6. Summary and Discussion

In this paper, a new 3D narrow-angle PE model that treats the interface scattering very
accurately has been presented. First, using the same approach as in other works,25,32 the
normal derivative transmission condition at the water-sediment sloping interface has been
replaced by a parabolized condition tightly following the paraxial approximation made on
the Helmholtz equation, the underlying mathematical model thus satisfying correct energy
properties. Second, in order to handle 3D varying geometries, a new change of variable
has been used. No stair-step approximation technique has been required. The main advan-
tage of the new change-of-variable technique is that it does not require any homotheticity
sedimental layer as in previous work. The parabolized interface conditions have then been
incorporated into a finite-element discretization. Numerical simulations have been done on
the well-known 3D wedge problem. The solutions exhibit typical 3D effects not predicted
by 2D and/or pseudo-3D codes. As expected, the three-dimensional effects are significant
across-slope and, in terms of modal energy, regions of modal shadow zones and modal
self-interferences are evident.

Comparisons with a 3D PE code that approximates the sloping interfaces by a sequence
of stair steps in each azimuth have been made. The comparisons exhibit good agreement
between the two approach though a shift in both phase and amplitude can be observed at
some ranges. It is now clear that the differences observed in Refs. 26 and 27 were overesti-
mated. Since the stair-step approximation technique allows for faster numerical marching
algorithms, we believe that this approach is preferable and more convenient for solving
practical problems in 3D environments. We thus highly recommend it when one wants to
localize and/or quantify 3D effects. Otherwise, when benchmarking between research codes,
a code which utilizes a change-of-variable technique should be used.

Comparisons with a reference solution based on the image source method have shown
that the 3D narrow-angle PE solutions obtained running the new code differ somewhat
from the solutions obtained with a 3D PE model using a wider-angle approximation. Obvi-
ously the narrow-angle capability is too restrictive and should be extended to a wider-angle
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one. When attempting to take sloping bottoms into account without assuming any stair-
step approximation, one should use appropriate parabolized boundary conditions consistent
with the wide-angle capability of the parabolic equation based model. Hence, the parab-
olized boundary conditions used in this paper being consistent only with a narrow-angle
paraxial approximation, they should also be extended to wider-angle parabolized boundary
conditions. This is currently under way.

The second main drawback is that the use of a transformation of the coordinate system
does not allow the splitting of the resulting operator into a depth and azimuthal operator
as in other approaches. Instead, a large system of equations in depth and azimuth must be
solved at each range step. Though the resulting linear systems are sparse and can be solved
using an efficient preconditioning technique, the CPU times are still prohibitive compared
to other 3D PE models that are amenable to alternating direction methods. Our aim in this
paper was to analyze the influence of the stair-step approximation technique, common to
most 3D PE models, on a one-way sound wave propagation problem. We intentionally did
not focus on CPU time considerations (although we are convinced of their importances).
Acceleration of the convergence of the iterative algorithm should be improved and other
iterative solvers like the QMR38 and GMRES39 methods should be implemented and tested.
It should be noted that the use of the preconditioner is especially attractive for massively
parallel computers since, during each iteration, a large number of tridiagonal systems must
be solved simultaneously. It could be implemented on a variety of parallel architectures in
a straightforward way.
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Appendix

Let 0 ≤ ` ≤ L− 1. For 1 ≤ n ≤ N , n 6= n′, n 6= n′′, the blocks T̃
`+ 1
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for 1 ≤ m ≤ M , where symbol “?” denotes “w” if 1 ≤ n < n′, “s” if n′ < n < n′′, and “a”
if n′′ < n ≤ N . For the particular value of n being equal to n′, the diagonal components of

T̃
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`+ 1

2
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for 1 ≤ m ≤M , where
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For 1 ≤ n ≤ N , the blocks S̃
`+ 1

2
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The scalars µ±m,n, µ′±m,n, κ±m,n, ϑ±m,n, ϑm,n, 1 ≤ m ≤ M are given, for all n ∈ {1, . . . , N},
n 6= n′, n 6= n′′, by:
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In particular for n = n′, the scalars µ±m,n′ , µ
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`+ 1
2

m±1 + (εw)
`+ 1

2
m

2


 1

∆θ2

±
(µw)

`+ 1
2

m±1,n′((∂θs)(εw))
`+ 1

2
m±1 − (µw)

`+ 1
2

m,n′((∂θs)(εw))`+ 1
2

m

4∆θ∆ξw
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+ γw


−1

2


(εs)

`+ 1
2

m±1 + (εs)
`+ 1

2
m

2


 1

∆θ2

±
(µs)

`+ 1
2

m,n′((∂θs)(εs))
`+ 1

2
m − (µs)

`+ 1
2

m±1,n′((∂θs)(εs))
`+ 1

2
m±1

4∆θ∆ξs


 ,

ϑ−m,n′ = γs


−


(µ2

w)
`+ 1

2
m,n′−1 + (µ2

w)
`+ 1

2
m,n′

2


 ((∂θs)2)(εw))`+ 1

2
m

(∆ξw)2


 ,

ϑ+
m,n′ = γw


−


(µ2

s )
`+ 1

2
m,n′+1 + (µ2

s )
`+ 1

2
m,n′

2


 ((∂θs)2)(εs))

`+ 1
2

m

(∆ξs)2


 ,

ϑm,n′ = γs


1

2


(εw)

`+ 1
2

m+1 + 2(εw)
`+ 1

2
m + (εw)

`+ 1
2

m−1

2


 1

∆θ2

+


(µ2

w)
`+ 1

2
m,n′−1 + (µ2

w)
`+ 1

2
m,n′

2


 ((∂θs)2 (εw))`+ 1

2
m

(∆ξw)2




× γw


1

2


(εs)

`+ 1
2

m+1 + 2(εs)
`+ 1

2
m + (εs)

`+ 1
2

m−1

2


 1

∆θ2

+


(µ2

s )
`+ 1

2
m,n′+1 + (µ2

s )
`+ 1

2
m,n′

2


 ((∂θs)2 (εs))

`+ 1
2

m

(∆ξs)2


 .
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