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a b s t r a c t

A new broadband impedance eduction method is introduced to identify the surface im-
pedance of acoustic liners from in situ measurements on a test rig. Multimodal acoustic
propagation is taken into account in order to reproduce realistic conditions. The present
approach is based on the resolution of the linearized 3D Euler equations in the time
domain. The broadband impedance time domain boundary condition is prescribed from a
multipole impedance model, and is formulated as a differential form well-suited for high-
order numerical methods. Numerical values of the model coefficients are determined by
minimizing the difference between measured and simulated acoustic quantities, namely
the insertion loss and wall pressure fluctuations at a few locations inside the duct. The
minimization is performed through a multi-objective optimization thanks to the Non-
dominated Sorting Genetic Algorithm-II (NSGA-II). The present eduction method is vali-
dated with benchmark data provided by NASA for plane wave propagation, and by syn-
thesized numerical data for multimodal propagation.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Nacelle manufacturers need to evaluate liner acoustic performance in realistic operating conditions, and inverse tech-
niques are naturally well-suited to identify the impedance properties in situ. Only measurements of the sound field
properties at selected locations outside the liner region are involved, and furthermore, the liner sample is not destroyed by
drilling holes for mounting transducers during these experiments. In order to perform this impedance identification, a
numerical model is required for sound propagation in the treated duct, taking account of the presence of a mean flow and of
a locally reacting liner. The liner impedance is then estimated by minimizing the error between the calculated and measured
sound fields along the duct. Various numerical models for indirect approaches have been proposed, but they have been
mostly validated for plane wave propagation. The aim of the present study is to develop an impedance eduction method
that can be used for a larger frequency band, in order to consider multimodal acoustic propagation.

The considerable work initiated by Watson et al. [1,2] must be first mentioned. They have developed an impedance
eduction method and validated it by comparison with well-documented experiments. A rectangular duct with a ceramic
tubular liner section and the presence of a mean flow is considered. The pressure is measured along the duct wall for
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Nomenclature

∞A B C Z, , ,k k k coefficient of the multipole model (8)
B half-width of the source (2)
c0 speed of sound (air)
d liner core depth
f frequency
H Heaviside function

= −i 1 unit imaginary number
I sound intensity
IL insertion loss

ω=k c/ 0 wavenumber
L1,L2 liner's coordinates on the x-axis
L L L, ,x y z length, width and height of the duct

=M V c/b 0 Mach number
n n,y z velocity profile parameters
p pressure
P number of real poles in Eq. (8)
Q source term in LEE (1)
S number of complex conjugate pole pairs in

Eq. (8)
t time

= ( )v v vv , ,x y z velocity
= ( )V V VV , ,x y z0 0 0 0 mean flow velocity

Vb bulk velocity
W transmitted sound power

= −W 10 Wref
12 reference sound power

= ( )x y zx , , spatial coordinates
xS spatial coordinates of the source
Y surface admittance
Z surface impedance

Greek characters

α β± ik k complex conjugate pole in Eq. (8)
δ Dirac delta function
Δ Δ Δ Δt x y z, , , temporal and spatial steps
λk real pole in Eq. (8)
ρ0 density (air)
ω π= f2 angular frequency

Subscripts

L lined duct
R rigid duct

Superscripts

^ Fourier transform, see Eq. (5)
∼ admittance model coefficient (11)
n complex conjugate
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different Mach numbers up to M¼0.4, frequencies from 500 to 3000 Hz and source levels at 120, 130 and 140 dB. A
benchmark database has been created and is still used in numerous studies for validation purposes. Their eduction method
is based on the resolution of the convected Helmholtz equation using a finite-element method for computing sound pro-
pagation, and pressure measurements on the rigid walls. An analytical mode matching approach has also been used to
develop identification methods. In the studies by Elnady et al. [3] and Sellen et al. [4], the duct is divided into three zones
(unlined–lined–unlined). The acoustic field in each zone is expanded in terms of the duct eigenmodes, taking into account
the associated boundary condition on the duct walls, and is solved by a mode matching method. The minimization process
relies on pressure measurements upstream and downstream of the lined section [3]. Mode matching methods offer the
advantage of taking high-order modes into account with a competitive computational time, but the convected Helmholtz
equation is solved for a simple uniform flow. Richter et al. [5] have developed a time-domain eduction method combining
the linearized Euler equations (LEE) and a five parameters extended Helmholtz resonator model for the impedance model.
Results have been found significantly improved by taking into account the measured velocity profile in the propagation step.
Eversman and Gallman [6] have included an effective mean flow Mach number and the exit impedance of the test channel
in the objective function of their eduction process. The inverse method is again performed with a finite-element model.
Such extended eduction process improves the impedance identification, in particular for high Mach number flows. Piot et al.
[7] and Primus et al. [8] have developed an impedance eduction method which relies on the minimization of the squared
error between the acoustic velocity provided by the numerical model and experiments. The linearized Euler equations are
solved with a discontinuous Galerkin algorithm, and the acoustic velocity field in a plane perpendicular to the liner surface
is measured by laser Doppler anemometry.

All these eduction methods provide good results for plane acoustic waves. However, the acoustic liners are designed for
applications involving multimodal propagation, and eduction methods must be generalized to test liners mounted in in-
dustrial rigs with more realistic conditions. This is of particular interest for non-locally reacting liners, that cannot be
characterized by plane wave at grazing incidence. In the recent work by Watson et al. [9] non-planar waves are considered
with multiple higher-order modes in the direction perpendicular to the liner and to the opposite rigid wall. Their eduction
process is based on a microphone array mounted on a wall adjacent to the liner. Using measured data in a duct for which
several higher-order vertical modes can be separated, the authors have shown that each of these modes is submitted to the
same local-reacting impedance at the liner surface. More recently, Buot de l'Epine et al. [10] have investigated a rectangular
duct where at least two modes can be cut-on. An eduction method formulated from a Bayesian approach is presented to
identify the liner impedance.

In this work, an eduction method suitable for multimodal acoustic propagation is proposed. The difference between
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measured and simulated insertion loss, together with the wall pressure at a few locations in the duct, is minimized to
identify the liner impedance. The linearized Euler equations are solved using a finite-difference time-domain algorithm. A
tricky problem in such numerical methods is the frequency impedance boundary condition which must be formulated in the
time domain. A comprehensive review of impedance modeling in the time domain can be found in Richter et al. [11]. Among
the various available methods, a time-domain implementation based on a recursive convolution algorithm and developed
by Reymen et al. [12,13] has been chosen. The three parameter impedance model introduced by Tam and Auriault [14] can
be implemented, as well as a broadband impedance model [13,15] defined from rational functions. This approach has been
found to be computationally efficient. The impedance boundary condition is formulated under a differential form in order to
improve the accuracy [12], and is used in the present eduction method for multimodal propagation.

The paper is organized as follows. Section 2 is devoted to the numerical modeling of the acoustic propagation under a
grazing flow in a rectangular lined duct, and to the presentation of the broadband impedance boundary condition. The
impedance eduction method itself is developed in Section 3 and validated in Section 4 first by comparison with experi-
mental data from Jones et al. [2] for the case of plane wave propagation and then by comparison with a high fidelity
numerical solution of the linearized Euler equations for the multimodal case. Concluding remarks are finally given in
Section 5.
2. Acoustic propagation in the lined duct

2.1. Measurement setup

A rectangular duct including a treated section and the presence of a mean flow is chosen as the test channel for the
impedance eduction. A sketch is shown in Fig. 1. The source and the exit planes of the computational domain are located at
x¼0 and =x Lx, respectively. The dimensions of the duct cross-section are ×L Ly z. The lower and two-side walls are rigid.
The upper wall is also rigid except of the lined region < <L x L1 2. To validate the impedance eduction method for plane wave
propagation, the benchmark data of Jones et al. [2] is considered. The frequency range is ≤ ≤f500 3000 Hz and the di-
mensions of the channel are Lx¼0.812 m, L1¼0.203 m, L2¼0.609 m and = =L L 0.051 my z . A similar geometry is used to
validate the multimodal test case, but with wider dimensions of the cross section, Ly¼0.15 m and Lz¼0.3 m, in order to
observe a multimodal propagation for >f 550 Hz.

2.2. Linearized Euler equations

Sound propagation in a lined duct can be simulated by solving the Euler equations, linearized around a given mean flow
of density ρ0 and velocity V0. The mean pressure is assumed to be constant, the longitudinal pressure gradient to be small
and the mean flow to be homentropic. The acoustic velocity v and the acoustic pressure p are obtained by solving the
resulting system of equations written for an ideal gas, that is

⎧
⎨
⎪⎪

⎩
⎪⎪

( )

( ) ( )

ρ ρ

ρ

∂
∂

+ ·∇ + ∇· =

∂
∂

+ ·∇ + ·∇ + ∇ =
( )

p
t

p c c Q

t
p

V v

v
V v v V

1
0

1

0

0 0

0 0
2

0 0
2

0

where c0 is the speed of sound in air and Q is a possible source term, defined to generate an impulsive acoustic signal. These
equations are discretized by low-dispersion and low-dissipation explicit numerical schemes, developed in computational
aeroacoustics [16,17]. For the interior points, separated by at least five points from the boundary, the centered fourth-order
finite-difference scheme of Bogey and Bailly [16] and the centered sixth order selective filter of Bogey et al. [18] are applied.
For the boundary points in each direction, the eleven-point non-centered finite-difference schemes and selective filters of
Berland et al. [17] are implemented. The optimized fourth-order six-stage Runge–Kutta algorithm proposed by Berland et al.
[19] is used for time integration. The time-domain impedance boundary condition is presented in the next subsection. The
inlet and outlet sections are assumed to be anechoic. Damping zones including the non-reflecting boundary conditions of
Bogey and Bailly [20] are implemented. In NASA experiments, the termination is not perfectly anechoic. Its impedance could
be included through an impedance condition at the outflow as proposed by Richter et al. [5] for instance. The deviation from
a perfectly non-reflecting boundary condition, however, is expected to remain small here, as shown by comparison with
Fig. 1. Grazing flow impedance tube.
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experimental data in Section 4.

2.3. Simulation parameters

The three-dimensional linearized Euler equations (1) are solved for the lined flow duct displayed in Fig. 1. The impulse
source term is defined by

⎡
⎣⎢

⎤
⎦⎥λ( ) = ( ) − ( ) ( − )

( )
Q t t

B
x

x x
, exp ln 2

2
S

2

2

where the source signal λ ( )t is given by

⎡
⎣
⎢⎢

⎤
⎦⎥λ ( ) = − − ( ) ( − ) ( )

( )
t

t t
t

t t
t

H texp ln 2
3

s

c

s

c

2

2

where H is the Heaviside function. The parameter ts is a time shift, chosen so that λ ( ) =t 0 for <t 0, and tc is a constant
governing the frequency content of the source signal. They are set to = × −t 8 10 ss

4 and = × −t 1.4 10 sc
4 . The Gaussian half-

width of the source is chosen to be = × −B 8.3 10 m3 and the source coordinates are = ( − )x 0.05, 0.01, 0.008 mS . Pressure
and velocity in the frequency domain are obtained by Fourier transform of the time-domain solution. The mean velocity

= ( )VV , 0, 0x0 0 is prescribed using the following profile:

⎛
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where = =n n 12y z to recover a realistic mean shear flow. The Mach number =M V c/b 0 is defined from the bulk velocity Vb.
Measured data is acquired with 31 flush-mounted microphones on the wall opposite to the liner [2]. Three microphones are
located upstream of the liner, three microphones are located downstream, and the other 25 microphones are situated in the
lined section.

2.4. Broadband time-domain impedance boundary condition

The broadband impedance eduction method is developed in the time domain to avoid the tedious identification of the
surface impedance for each frequency of interest. The surface impedance ω( )Z for a given angular frequency ω is primarily
defined in the frequency domain by ω ω ω^ ( ) = ( ) ^ ( )p Z vn , with ^ = ^·v v nn where ω^ ( )p and ω^ ( )v are the Fourier transforms of the
acoustic pressure and acoustic velocity on the liner, respectively, and n is the normal unit vector pointing into the liner
surface. Defining the time-domain surface impedance by

∫π
ω ω( ) = ( ) ( )

ω
−∞

+∞
−z t Z

1
2

e d 5
ti

the frequency-domain impedance boundary condition is translated into the time domain via the convolution integral

∫( ) = ( ′) ( − ′) ′ ( )−∞
p t v t z t t td 6

t

n

The analytical model must furthermore satisfy realizability conditions, in order to be physically admissible in the time
domain. Following Rienstra [21], the impedance model must be causal, which means ( ) =z t 0 for <t 0. Furthermore, z(t)
must be real, so ω( )Z has to satisfy the reality condition ω ω*( ) = ( − )Z Z . Finally, the condition ω[ ( )] >ZRe 0 has to be
fulfilled for all ω ∈ since the impedance wall is passive. These conditions are not always verified by usual models defined
in the Fourier space [21,22].

In the present study, the impedance model is chosen as a rational function of the form

ω ω
ω

( ) = + ⋯ + ( − )
+ ⋯ + ( − ) ( )

Z
a a

b
i

1 i 7
N

N

N
N

0

where ( ) ≤ ≤aj j N0 and ( ) ≤ ≤bj j N1 are real coefficients. This formulation brings three advantages. First, a broadband impedance
model is straightforwardly obtained. Second, the convolution integral can be evaluated at a small computational cost. Third,
the coefficients can be easily chosen to guarantee the impedance to be physically admissible. By using a partial fraction
decomposition, the rational function can be written as

⎛
⎝⎜

⎞
⎠⎟∑ ∑ω

λ ω α β ω α β ω
( ) = +

−
+ +

+ −
+ −

− − ( )
∞

= =

Z Z
A B C B C

i
i

i i
i

i i 8k

P
k

k k

S
k k

k k

k k

k k1 1

where λk and α β± ik k are, respectively, the real poles and complex conjugate pole pairs of ω( )Z , P and S denote their number
and ∞Z , Ak, Bk and Ck are numerical coefficients. Choosing [ ] ∈∞Z A B C, , ,k k k and λ α β[ ] ∈ +, ,k k k ensures that the
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impedance model is causal and real. However, the passivity condition has to be checked for each set of coefficients. This type
of impedance model is referred to as the multipole impedance model in the literature [23].

Other formulations of impedance models have been previously proposed for broadband eduction of liner impedance. In
particular, two impedance models have been investigated by Richter et al. [5]. The first one is the so-called effective im-
pedance (EFI) model

ω ω
ω

( ) = − +
− ( )

−Z R X
X

i
i 90 1

1

and the second is the extended Helmholtz resonator (EHR) model

⎡
⎣⎢

⎤
⎦⎥ω ω β ω( ) = − + ( − + ϵ)

( )
Z R m Ti coth

1
2

i
10

l0

where the coefficients of both models R0, X1, X�1, m, β, Tl and ϵ have to be positive. Results obtained with these two models
were compared to measurements performed for a ceramic tubular liner [2] and the EHR model was found to provide better
results. [5] These authors have performed the broadband eduction using the EHR model, and the educed impedance is very
close to that obtained in [2] with a single frequency eduction method. The EHR model was also used in [11,24] for broadband
eduction of SDOF and DDOF liners. It is shown in Section 2.6 that the multipole impedance model can accurately describe
the surface impedance of classical liners with only a few poles.
2.5. Implementation of a time-domain impedance boundary condition

The presence of a liner can also be described by a dual boundary condition expressed with the admittance ω ω( ) = ( )Y Z1/ .
This formulation is more suitable to implement the liner boundary condition into the time domain for solving the linearized
Euler equations (1) and is obtained by switching the velocity and the pressure in Eq. (6). The broadband admittance model is
also approximated by a rational function similar to the impedance formulation (8)

⎛
⎝⎜

⎞
⎠⎟∑ ∑ω

λ ω α β ω α β ω
( ) = +

˜
˜ −

+
˜ + ˜
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∞
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i i
i

i i 11k
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S
k k
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k k

k k1 1

The implementation of the boundary condition is nevertheless presented in terms of impedance below, to follow the
more classical approach.

The direct computation of the convolution integral in the time domain is known to be computationally expensive in
terms of memory space for typical applications [25]. Efforts have been thus undertaken to develop ad hoc numerical
methods to reduce the computational cost. Tam and Auriault [14] have first proposed a formulation in the time domain
applied to the EFI model (9). Related to previous works performed in electromagnetism, several methods have also been
concerned with the multipole impedance model (8). Özyörük and Long [25] have introduced the Z-transform method, while
Reymen et al. [12] have proposed the recursive convolution method, which has been extended by Li et al. [23] to include EFI
model-like terms. Although it involves the reflection coefficient rather than the surface impedance, the impedance
boundary condition proposed by Fung and Ju [26] can also be interpreted as a multipole impedance model formulation
combined with a numerical recursive convolution method. Recursive convolution and Z-transform methods are very close,
and permit to compute the convolution by simple algebraic recursive relations, which significantly reduces memory re-
quirements. Some approximations on the time evolution of the acoustic quantities on the liner surface, by enforcing that the
acoustic pressure or acoustic velocity is constant or varies linearly over each time step, are however made in these ap-
proaches. Dragna et al. [27] have shown that recursive convolution methods are at best second-order accurate in time. They
limit the numerical accuracy when using high-order time-integration schemes, as generally done in aeroacoustics.

To overcome this drawback, a differential form for the multipole impedance model (8) has been developed by Joseph
et al. [28], originally for applications in electromagnetism. The first step is to express the inverse Fourier transform of the
impedance model ω( )Z , which yields

⎡⎣ ⎤⎦∑ ∑δ β β( ) = ( ) + ( ) + ( ) + ( ) ( )
( )

λ α
∞

=

−

=

−z t Z t A H t B t C t H te 2 cos sin e
12k

P

k
t

k

S

k k k k
t

1 1

k k

where δ is the Dirac generalized function. By introducing this expression into the time-domain impedance boundary
condition (6), the pressure can be expressed as

⎡⎣ ⎤⎦∑ ∑ϕ ψ ψ( ) = ( ) + ( ) + ( ) + ( )
( )

∞
= =

( ) ( )p t Z v t A t B t C t2
13

n
k

P

k k
k

S

k k k k
1 1

1 2

where the new terms ϕk and ψk, called accumulators in Reymen et al. [12], are given by
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∫
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By differentiating with respect to time these relations, the first-order differential system governing the accumulators is
then obtained:
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This system is numerically integrated using the same time-marching scheme as for the LEE (1). Eqs. (14) along with Eq.
(13) constitute the time-domain impedance boundary condition. This approach is referred to as the auxiliary differential
equations (ADE) method. Contrary to recursive convolution or Z-transform methods, the accuracy of the numerical solution
is not degraded while keeping low memory requirements. Indeed, the ADE method together with a low-storage Runge–
Kutta algorithm for time-integration only demands two storages per accumulator.

A comparable approach has been developed by Bin et al. [29] to recast a broadband impedance to a differential formwith
application to the Ingard–Myers boundary condition. They used a multipole impedance model, written as a sum of stable
second-order transfer functions. In their implementation, the constant term ∞Z is not explicitly included and the accu-
mulators are determined by a second-order differential system, which are the two main differences with respect to the
present formulation. Finally, impedance boundary conditions for the multipole model have also been proposed in a dif-
ferential form by Zhong et al. [30] from a state-space representation.

2.6. Specific broadband impedance models

A short review of some classical impedance models is now presented in order to demonstrate the ability of the multipole
impedance model to interpolate accurately the function ω( )Z . The multipole impedance approximation can be obtained
from analytical models or measured impedance values using several algorithms. Among them, the vector fitting algorithm
[31] already employed in [13] can be particularly mentioned. Only the minimum set of coefficients for impedance and
corresponding admittance models is provided for each type of liner to cover the relevant frequency band with an error less
than 5%. The results are summed up in Table 1.

2.6.1. Single Degree of Freedom (SDOF) liner
The SDOF liner consists in a facing sheet mounted on a honeycomb core with hardwall backing. Two types of coverings

can be distinguished and provide a different response of the liner. The wire mesh panel gives a linear, insensitive to flow
behavior, with a wide bandwidth. A liner with perforated sheet is non-linear, sensitive to flow, with a low bandwidth. The
impedance can be modeled as follows:

ρ
= + ( − )

( )
Z
c

Z kdcoth i
15

fs
0 0

where Zfs is the face sheet impedance, d is the core depth and π=k f c2 / 0 is the acoustic wavenumber. The impedance of a
perforated SDOF liner using the set of parameters given in Table I of [24] is shown in Fig. 2. The face sheet impedance has
been computed using the Guess model [32] for M¼0. The impedance is approximated by Eq. (8) choosing five real poles,
that is P¼5 and S¼0, for ∈ [ ]f 200; 5000 Hz. The corresponding admittance (11) is modeled with =∼

P 3 and =
∼
S 1 for the

same frequency range.

2.6.2. Double Degree of Freedom (DDOF) liner
Double Degree of Freedom (DDOF) liners are composed of two layers of honeycomb cells divided by a porous septum,

with different face sheets, backed by a rigid plate. Such liners are efficient over a wider frequency band with respect to SDOF
liners. The liner impedance model is expressed as

ρ
= + ( − ) ( − ) + ( − )

( − ) ( − ) + ( − ) ( )
Z
c

Z
Z kd kd kd
Z kd kd kd

cosh i sinh i cosh i
sinh i sinh i sinh i 16

fs
s

s0 0

1 2

1 2

where Zs is the septum impedance, d2 is the septum backing cavity depth, d1 is the face sheet backing space depth, and



Table 1
(a) Analytical modelling of various acoustic liners and number of poles required for their broadband (b) impedance and (c) admittance approximation, see Eq. (8).

Liner Sketch (a) Impedance model (b) Broadband impedance model (c) Broadband admittance model

Single degree of freedom
ρ

= + ( − )Z
c

Z kdcoth ifs
0 0

∈ [ ]f 200; 5000 Hz
(SDOF) [38,24] P¼5; S¼0; =∼

P 3; =
∼
S 1;

Double Degree of Freedom
ρ

= + ( − ) ( − ) + ( − )
( − ) ( − ) + ( − )

Z
c

Z
Z kd kd kd
Z kd kd kd

cosh i sinh i cosh i
sinh i sinh i sinh ifs

s

s0 0

1 2

1 2

∈ [ ]f 200; 5000 Hz
(DDOF) [33,24] P¼4; S¼1; =∼

P 1; =
∼
S 2;

Bulk absorber liner [34]
ρ

= + ( − )Z
c

Z Z k dcoth ifs c c
0 0

∈ [ ]f 500; 5000 Hz
P¼1; S¼1; =∼

P 0; =
∼
S 2

Hybrid active–passive liner [35]
ρ

=Z
c

Zactive mode: fs
0 0

ρ
= + ( − )Z

c
Z kdpassive mode: coth ifs
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Fig. 2. Real (a) and imaginary (b) parts (circle symbols) of impedance for the SDOF liner (15), and comparison with their approximations by the multipole
impedance model (8) in solid line.

R. Troian et al. / Journal of Sound and Vibration 392 (2017) 200–216 207
= +d d d1 2. The impedance ω( )Z can be approximated using four real poles and one pair of complex conjugate poles, P¼4
and S¼1, and the admittance by =∼

P 1 and =
∼
S 2 for ∈ [ ]f 200; 5000 Hz. The impedance of a DDOF liner, with perforated

face sheet and septum parameters given by Burd in [33] for a conventional liner is presented in Fig. 3. The face sheet and
septum impedances have been computed with the Guess model [32] for M¼0.
2.6.3. Bulk absorber liner
In a bulk absorber liner the honeycomb structure is replaced by a porous bulk material. The surface impedance of the

liner is given by

ρ
= + ( − )

( )
Z
c

Z Z k dcoth i
17

fs c c
0 0

where Zc is the characteristic impedance and kc is the acoustic wavenumber inside the porous material. An example of
surface impedance of a bulk liner, with the parameters given in [34], is shown in Fig. 4. For the multipole impedance model
(8) one real pole and one pair of complex conjugate poles, P¼1 and S¼1, are needed for ∈ [ ]f 200; 5000 Hz. The
Fig. 3. Real (a) and imaginary (b) parts of impedance (circle symbols) for the DDOF liner (16) and comparison with their approximations by the multipole
impedance model (8) in solid line.



Fig. 4. Real (a) and imaginary (b) parts of a bulk liner impedance (circle symbols), see Eq. (17), and comparison with their approximations by the multipole
impedance model (8) in solid line. Characteristics of the liner can be found in [34].
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corresponding admittance is approximated with =∼
P 1 and =

∼
S 2.

2.6.4. Hybrid active–passive liner
Hybrid active–passive liner has been developed for broadband noise reduction in flow ducts. Passive absorbent prop-

erties of a porous layer are combined with active control cells behind the resistive screen, as described by Betgen et al. [35].
At high frequencies, active control sources are turned off and the hybrid liner acts as a classical SDOF resonator modeled by
Eq. (15). At lower frequencies, active noise control is switched on with the aim of adapting the surface impedance of the
liner. A good performance over a broad frequency range is then obtained. The resulting surface impedance can be expressed
as

⎧
⎨
⎪⎪

⎩
⎪⎪

ρ

ρ

=

= + ( − )
( )

Z
c

Z

Z
c

Z kd

in active mode

coth i in passive mode
18

fs

fs

0 0

0 0

where Zfs is the resistive screen impedance and d is the distance between the resistive screen and the cells. The impedance
ω( )Z can again be approximated using P¼1 and S¼1 and the corresponding admittance with =∼

P 0 and =
∼
S 1 for

∈ [ ]f 200; 3000 Hz.

2.6.5. Ceramic tubular liner
The last considered example is the ceramic tubular liner that is often used in academic studies, as its impedance is not

sensitive to the presence of a flow. It consists of a densely packed narrow ceramic tubes embedded in a ceramic matrix. The
tubes of depth d are rigidly terminated such that each is isolated from its neighbor to ensure a locally reacting structure. The
channel diameter is small enough to ensure that grazing flow effects are insignificant with respect to internal viscous losses
[2]. The impedance can be modeled as

ρ σ
= ( − )

( )
Z
c

k d
1

coth i
190 0

tube

where s is the porosity of the surface of the material, and ktube is the acoustic wavenumber inside the tubes [36,37]. The
resistance and the reactance are neither constant nor linearly behaving on the typical frequency range of interest. For both
cases, the impedance ω( )Z can be approximated using one real pole and one pair of complex conjugate poles, i.e. P¼1 and
S¼1 for ∈ [ ]f 500; 3000 Hz. The corresponding admittance formulation is obtained with =∼

P 0 and =
∼
S 2.
3. Impedance eduction method

The acoustic impedance is determined by minimizing an error function between the calculated and the measured sound
field inside the channel. Most of the existing eduction methods are usually applied in the frequency range below the duct



Fig. 5. Sound pressure level (dB) on the wall opposite to the liner at =z Lz , with f¼2000 Hz, M¼0 and = +Z i4.18 0.77 ; (a) small cross-section duct (scale
from 92 to 100 dB) and (b) large cross-section duct (scale range from 61 to 79 dB).
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cutoff frequency, allowing only plane waves to propagate. In this study a methodology is developed for multimodal acoustic
propagation. One of the main issues with multimodal propagation is that the spatial distribution of the sound field is no
longer well-structured by comparison with plane waves. As an example, the sound pressure level (SPL) at the wall opposite
the liner for a frequency f¼2000 Hz is shown in Fig. 5 for the two rectangular ducts described in Section 2.1. The LEE are
forced with the monopolar source described in Section 2.3. In the small duct, the only propagating mode is the plane wave
mode. As expected, the sound pressure level pattern is that of a plane wave propagating inside a lined duct. The SPL is
almost constant in the solid wall regions <x L/ 0.25x and >x L/ 0.75x , but decreases with the axial distance in the treated
region. For the large duct, the first seven modes are cut-on. The acoustic field is far more complex, and large variations of the
SPL can now be observed along the y-direction.

Multimodal propagation demands a larger number of microphones to describe the pressure and velocity fields, which
leads to a significant additional cost. To overcome this difficulty, the duct insertion loss is introduced as a global energetic
indicator

= ( ) ( )W WIL 10 log / 20R L10

where WR is the transmitted sound power computed at the exit plane of the hard-wall duct, see Fig. 1 and WL is the
transmitted sound power computed at the exit plane of the lined duct. The power W is obtained by integration of the sound
intensity I over the cross-section of the duct

∬( ) = ( ) ( )W x I x y z y z, , d d 21

where

⎡
⎣
⎢⎢

⎤
⎦⎥ρ

ρ( ) = ( + ) (^ ^*) + (^ ^*) + (^ ^*)
( )

I x y z M p v
M

c
p p M c v v, ,

1
2

1 Re Re Re
22

x x x
2

0 0
0 0

is a good approximation of the acoustic intensity in the presence of a flow [39]. Therefore, the corresponding objective
function f1 can be formulated as follows:

⎡⎣ ⎤⎦ )(∑( ) = −
( )=

f Z X IL IL
23i

N

1
1

measured FDTD
2

IL

where λ α β= [ ]∞Z A B CX , , , , , ,k k k k k k are the coefficients of the multipole impedance model, ILmeasured and ILFDTD are the
vectors of the insertion loss for the NIL considered frequencies, obtained from measurements and from simulations of the
linearized Euler equations.

The eduction method based on the sole objective function in Eq. (23) relies on a global energetic variable. An additional
local quantity can be introduced in order to improve the robustness of the method. The acoustic pressure along the duct wall
opposite to the liner for frequencies below the rig cutoff frequency is a good candidate. Indeed, it is an easily measurable
quantity and is directly related to the liner impedance. A second objective function f2 is therefore proposed:

⎡⎣ ⎤⎦ ∑ ∑( ) = ^ − ^
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where p̂l
i
measured and p̂l

i
FDTD are the complex pressure values obtained from the measurements and from the numerical

simulations, for the microphone positions ∈ [ ]l N1; M and for the i-th frequency. The number NP of considered frequencies
below the duct cutoff frequency depends on the measurement facility. As an illustration, for the large cross-section duct
used for the validation of multimodal sound propagation, the cutoff frequency is f¼550 Hz for M¼0. Finally, the optimi-
zation problem to solve can be written as the following statement:
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with = ‥j m1, , , and where m is number of the impedance model coefficients to be identified. The variables xj are usually
restricted by side constraints xj and xj , which are lower and upper limits that reflect the multipole model definition domain.

The set of the coefficients of the broadband impedance model that minimize the objective functions f1 and f2 must be
identified. In order to deal with this multiobjective optimization problem, two major categories are used in engineering,
namely with a priori articulation of preferences and with a posteriori articulation of preferences. A comprehensive review
can be found in Marler and Arora [40]. For a priori methods, the relative importance of the objective functions has to be
defined before running the optimization algorithm. These functions are weighted thanks to a relative preference factor
known in advance, which is not always possible. The so-called a posteriori methods provide multiple trade-off solutions
with a wide range of values for the objectives, and the retained solution has to be chosen using higher-level information.
Genetic algorithms are often preferred. They do not require gradient calculation, and can be effective regardless of the
nature of the objective functions and constraints. Here the evolutionary genetic algorithm Non-dominated Sorting Genetic
Algorithm-II (NSGA-II) presented in Deb et al. [41] is employed. A set of Pareto optimal solutions is then produced, and the
solution which optimizes all the objectives simultaneously is finally selected. When this solution [42] cannot be found,
preferences on the objective functions values are imposed. The minimization of the insertion loss IL through the objective
function f1 is here preferred. The convergence of the present impedance eduction method is obtained thanks to the three
following choices: first a global energetic variable, such as the insertion loss, second a local quantity, here the fluctuating
pressure provided by a few microphones for a frequency range where only plane waves propagate, and third the broadband
feature of the eduction process involving a prescribed shape of the impedance for the whole studied frequency range.
4. Validation of the method

All the results presented in this study have been obtained by considering a ceramic tubular liner modeled by the
multipole admittance model (11) with =∼

P 0 and =
∼
S 2. The eduction method is aimed at determining the 9 coefficients

α β[ ]∼∼ ∼∼ ͠∞Y B C, , , ,k k k k for k¼1, 2.
Fig. 6. Solutions provided by the NSGA-II algorithm: (a)M¼0, (b)M¼0.335. All solutions are marked with gray dots , non-dominated solutions with black
dots � and the chosen optimal solution is marked with a cross þ .



Fig. 7. Real (solid line) and imaginary (dashed line) parts of the educed impedance obtained using the LEEs solver, as a function of the frequency.
Corresponding real and imaginary parts of the NASA educed impedance [2] are marked by circles and triangles, respectively. (a) M¼0 and (b) M¼0.335.
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4.1. Validation for plane wave propagation

The proposed eduction method is first validated by the benchmark data provided by Jones et al. [2]. The pressure field
was measured at 31 locations on the wall opposite to the liner for frequencies below the cut-off frequency of the duct and
the liner admittance was educed. For plane waves, the insertion loss IL is given by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟=

∥ ^ ∥
∥ ^ ∥ ( )

p

p
IL 10 log

26
I

T
10

2

2

where p̂I and p̂T are the incident and transmitted pressure, respectively. The IL values can be directly computed from the
benchmark data [2]. The present method has been applied for four values of the Mach numberM¼0, 0.079, 0.255 and 0.335.
The case at M¼0.4 has also been investigated. In this case, a vortical instability wave for f¼1000 Hz develops from the point

=x L1. This instability wave is also observed in experiments [2], and in some numerical studies, e.g. Burak et al. [43]. It must
be recognized, however, that the separation between spurious and physical waves is quite tricky, as recently examined in
detail by Gabard and Brambley [44]. This discussion is however out of the scope of the present study. The insertion loss is
determined for =N 26IL frequencies from 500 Hz to 3000 Hz. For the second objective function, five frequencies are con-
sidered from 500 Hz to 900 Hz. NSGA optimization is carried out with 50 elements in 30 populations. These values have
been chosen according to Vrajitoru [45], who have shown that larger populations have more chances to improve the ef-
fectiveness with limited time resources. The computational area is discretized by × ×500 26 26 points with a uniform
spatial step Δ = Δ = Δ = × −x y z 4.17 10 m3 . The simulation is run up to =t 0.03 smax with the step of Δ = × −t 1 10 s5 . The
computational time is about 10 min on a desktop computer for a single simulation that gives around 10 days for the whole
optimization loop using a single core computer. Genetic algorithm is however well suited to parallel computing. As an
illustration, the time is reduced to two days using 6 cores.

The last population of the optimization process performed by the NSGA-II algorithm for M¼0 and M¼0.335 is shown in
Fig. 6. Among all these results, the important data are the non-dominated solutions representing a compromise between the
two objective functions. These solutions represented by black dots in Fig. 6 form the Pareto front. Both Pareto fronts are
almost vertical regarding the objective function f2, meaning that for a minimum of the objective function f1, the minimum of
f2 can be selected. The solution that optimizes both objectives simultaneously is chosen, and the corresponding identified
impedance is plotted in Fig. 7 for M¼0 and M¼0.335. The educed impedance is found in close agreement with that de-
termined by NASA over the whole frequency band of interest, with or without the presence of a flow. Similar results are
Table 2

Coefficients of the broadband admittance impedance model (11) normalized by ρ c0 0, educed for the case of plane waves propagation. Coefficients α∼i and β∼i
are in s�1.

Mach ∼
∞Y

∼
B1

∼
B2

∼
C1

∼
C2 α∼1 α∼2 β∼1 β∼2

M¼0 0.2576 2953 1993 �1634 �415.6 2348 1000 19,674 6004
M¼0.335 0.3915 2207 1767 �2243 �417.3 2169 1001 17,826 5942



Fig. 8. Insertion loss values computed for the educed impedance using the LEEs solver (solid line) and determined from NASA measurements (circles), as a
function of the frequency. (a) M¼0 and (b) M¼0.335.

Fig. 9. Solutions provided by the NSGA-II algorithm: (a) M¼0, (b) M¼0.4. All solutions are marked with gray dots , non-dominated solutions with black
dots � and optimal solution is marked with a cross þ .

R. Troian et al. / Journal of Sound and Vibration 392 (2017) 200–216212
obtained for the other cases with M¼0.079 and 0.255. The small discrepancies between the educed impedances for
M¼0.335 could be attributed to the difference in the termination boundary condition. In the NASA eduction procedure [2],
the exit impedance was taken into account, whereas in this study the termination is assumed to be anechoic. The coeffi-
cients of the admittance (11) are provided in Table 2. The comparison between the insertion loss IL determined from NASA
pressure measurements, and obtained by solving the LEE system for the educed liner impedance are plotted in Fig. 8. A close
agreement is obtained for M¼0. For the case M¼0.335, discrepancies are observed near resonances, for f¼1100 Hz and

>f 2800 Hz. The IL values computed from the educed impedance underestimate those determined from NASA data.

4.2. Validation for multimodal wave propagation

No measurement is currently available in the framework of this study. The data used to assess the eduction process have
thus been numerically synthesized by solving the LEE system (1). Two Mach numbers are considered M¼0 and M¼0.4. For
the latter case, the vortical instability wave exhibited for the small cross-section duct has not been observed. The values of
the ceramic tubular liner admittance presented in [2] are interpolated by the multipole admittance model (8). A set of
coefficients is computed for each considered Mach number, using the vector fitting algorithm [31]. For the case M¼0, the



Fig. 10. Real and imaginary parts of the impedance as a function of the frequency. The real and imaginary parts of the reference NASA educed impedance
[2] are marked by circles and triangles, respectively. Solid lines correspond to the NASA educed impedance fitted by the multipole model, the educed
impedance is plotted in dashlines. (a) M¼0 and (b) M¼0.4.

Table 3

Coefficients of the broadband admittance impedance model (11) normalized by ρ c0 0, educed for the case of multimodal propagation. Coefficients α∼i and β∼i
are in s�1.

Mach ∼
∞Y

∼
B1

∼
B2

∼
C1

∼
C2 α∼1 α∼2 β∼1 β∼2

M¼0 0.3679 1698 2075 �2283 �620.5 3014 1002 18,258 5940
M¼0.4 0.2816 24,865 3916 �15,222 705.8 9433 2259 28,387 5721
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large cross-section channel is discretized by a grid of × ×500 21 43 points. For the case M¼0.4, the grid contains
500�37�71 points to correctly take into account the presence of the mean flow (4). As in the NASA experimental study,
the fluctuating pressure is recorded at the 31 microphones located on the wall opposite to the liner. The simulation is
performed up to =t 0.03 smax with a step of Δ = × −t 1 10 s5 . The transmitted sound power WL is also calculated. The same
process is repeated for the hard-wall configuration with =t 0.1 smax in order to determine WR, and to finally compute the
insertion loss (20). More details regarding this tricky issue are provided in Appendix.

The impedance eduction is then performed using the previous synthesized data. The first objective function f1 is cal-
culated with =N 26IL frequencies from 500 Hz to 3000 Hz. Six frequencies below the no-flow cutoff frequency of the duct
are considered for the second objective function f2, from 500 Hz to 550 Hz. The parameters for NSGA optimization are the
same as for the case of plane waves. The computational time is about 20 min for a given configuration, and approximately
20 days for the whole optimization loop using a single core computer, and around 4 days using parallel computing on six
cores. The last population resulting from the genetic algorithm is displayed in Fig. 9. The objective functions that form the
Pareto fronts reach smaller values than those found in the previous case for plane wave propagation, see Fig. 6. No ex-
perimental spurious noise is indeed present in this second case, involving only data provided by numerical simulations. The
selected optimal solution is indicated by a cross, and the corresponding impedance is shown in Fig. 10 for both Mach
numbers. A good agreement is found with the initial data used in the high-fidelity simulation to generate the numerical
experiment. Similar results are obtained for both Mach numbers, and over the whole frequency band of interest. For
completeness, the coefficients of the educed admittance are provided in Table 3.
5. Conclusion

A new broadband impedance eduction method has been developed in this work. The method offers the possibility to
educe the impedance of liners under a grazing flow and for multimodal sound propagation. Since a broadband formulation
of the impedance boundary condition is implemented, the eduction process is conducted in the time domain for all the
considered frequency simultaneously.

The liner impedance is sought as a rational function of the frequency. The number of real poles and complex conjugate
pole pairs is chosen depending on the liner type and the frequency band of interest. The coefficients of the impedance



R. Troian et al. / Journal of Sound and Vibration 392 (2017) 200–216214
approximation are obtained through the resolution of a multi-objective problem. The two objectives are to minimize the
error between measured and simulated values of a global energetic variable, namely the insertion loss, and of a local
quantity, which is the fluctuating pressure at frequencies below the rig cut-off frequency. The genetic algorithm NSGA-II is
used to solve this multi-objective optimization problem, whatever the form of the broadband impedance model is. Various
liners can thus be studied with the same optimization code.

The present method is validated for plane wave propagation by using the benchmark data provided by Jones et al. [2].
The validation of the multimodal propagation is conducted using synthesized numerical data. The next step will be to
consider experimental data for the multimodal propagation and several types of conventional liners. The study of the
algorithm convergence as well as its stability toward the model parameters will be conducted. This can help the users to
reduce the number of design variables and to identify which model parameters affect the solution.
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Appendix: Insertion loss computation for multimodal acoustic propagation

This appendix aims to provide details about the choice of parameters for the numerical solutions and the computation of
the sound power. The time-series of the acoustic pressure at the center of the exit plane are represented in Fig. 11 using the
impulsive Gaussian source (2) and with M¼0. For a rigid duct in Fig. 11(a), the signal is composed of a direct arrival, which
propagates along a straight line from the source to the observer, and of a large number of arrivals, corresponding to reflected
waves on the duct walls. The acoustic energy remains trapped in the duct and the sound pressure slowly decays with time.
For instance, the amplitude of the pressure at t¼0.06 s, corresponding to a propagation distance of about 25 times the duct
length, is equal to the third of the direct arrival amplitude. An accurate evaluation of the sound intensity therefore requires a
sufficiently long simulation time, so that most of the energy of the impulsive acoustic signal is captured at the exit plane.
The corresponding time-series for a lined duct is shown in Fig. 11(b). The pressure decreases much more quickly with time,
and the signal energy can be neglected for >t 0.02 s.

For comparison, the time-series of the acoustic pressure are represented in Fig. 12 for an impulsive source forcing plane
waves only, defined by

⎛
⎝⎜

⎞
⎠⎟λ( ) = ( ) − ( )Q t t

x
B

x, exp ln 2
2

2

with the same numerical parameters than for the monopolar source (2). For the case of a rigid duct in Fig. 12(a), a single
arrival phase is observed. As expected, the plane wave generated by the source propagates in the duct without being
Fig. 11. Time series of the acoustic pressure p at the center of the exit plane: (a) for a rigid duct and (b) for a lined duct. The Mach number is M¼0.



Fig. 12. Time series of the acoustic pressure p at the center of the exit plane: (a) for a rigid duct and (b) for a lined duct. The Mach number is M¼0.
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attenuated or reflected at the duct wall. The simulation time for plane wave propagation can be dramatically reduced
compared to that for multimodal propagation. The signal obtained for a lined duct is shown in Fig. 12(b). The first con-
tribution is related to the plane wave generated by the source and is slightly attenuated compared to the rigid duct case due
to the liner. Small amplitude oscillations are observed at the tail of the signal. They are associated with acoustic diffraction at
the liner edges.

As indicated above, the evaluation of the transmitted sound power for multimodal propagation can be significantly
affected by an inappropriate simulation time. In order to carefully choose this parameter in the eduction process, a con-
vergence study has been carried out. The transmitted sound power has been computed for three simulation times

=t 0.08max , 0.09 and 0.1 s, and is shown as a function of the frequency in Fig. 13. As already noted by Gabard [46], large peaks
are observed for the transmitted sound power spectrum at the duct cutoff frequencies for the rigid duct, see Fig. 13(a).
Because the source (2) is located close to the center of the cross-section, the symmetrical modes with cutoff frequencies of
1140, 2280 and 2550 Hz are preferentially excited. Moreover, the sound power spectra for a simulation time of 0.09 s and
0.1 s are almost superimposed. A simulation time =t 0.1 smax appears to be long enough in the case of a rigid duct. Choosing
the smaller simulation time of 0.08 s leads to an error on the peak amplitudes whereas the broadband component of the
spectrum remains accurately predicted. Smaller peaks are also observed in Fig. 13(b) for the case of a lined duct, and no
significant difference is observed for the three simulation times. In this case, =t 0.03max s is a long enough simulation time to
estimate the transmitted sound power. Finally, acoustic levels are averaged over a 100 Hz frequency band in practice to
overcome this difficulty.
Fig. 13. Transmitted sound power W calculated for the large cross-section duct with the impulse multimodal source. (a) WR, rigid duct, dashed black line
for =t 0.08 smax , dashed gray line for =t 0.09 smax , solid black line for =t 0.1 smax . (b)WL, lined duct, dashed black line for =t 0.02 smax , dashed gray line for

=t 0.028 smax , and solid black line for =t 0.03 smax .
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