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A B S T R A C T

The complex differentiation method (CDM) is applied to the sensitivity analysis of the noise generated by
two-dimensional mixing layers, simulated by Direct Numerical Simulation (DNS), in order to investigate its
capabilities to highlight the effects of a key parameter on the aerodynamic noise. For this purpose, simulations
are carried out using the CDM for different flow Mach numbers, Reynolds numbers and mesh spacings. In each
case, the derivatives of the noise levels with respect to one of the three parameters are obtained using the
CDM, implemented by adding a small imaginary perturbation to the parameter under study. In most cases,
vortex pairings occur in the mixing layers and produce acoustic waves at a single frequency. The derivatives
of the acoustic intensity obtained using the CDM show that the sound radiation is stronger and less directed
downstream as the Mach number increases, in agreement with dimensional analyses. They also indicate that the
radiation is more intense and directive as the Reynolds number increases. The magnitude of the derivatives of
the acoustic intensity with respect to the mesh size decreases for finer meshes, showing that the grid sensitivity
of the radiated noise is reduced for the latter meshes, as expected. In all cases, the derivatives obtained using
the CDM are in good agreement with results from parametric studies. This suggests that the CDM can be used
to describe the effects of physical parameters and of the grid resolution on the sound produced by a high-speed
flow.
1. Introduction

Reducing the noise produced by flows is required in many industrial
applications. To develop suitable strategies for that, it is often necessary
to highlight the effects of flow parameters such as the Mach and
Reynolds numbers on the noise generation mechanisms. Parametric
studies are often conducted using high-fidelity simulations to bring
these effects to light. For instance, to examine the effects of the Mach
number on the noise produced by a jet, several simulations of the jet
at different Mach numbers should be analyzed. For a high-Reynolds
number flow, a huge number of mesh points are required to accurately
resolve the aerodynamic and acoustic fields, leading to parametric
studies of prohibitive cost.

A sensitivity analysis can be seen as an alternative. It enables
to estimate the derivatives of the flow solutions with respect to a
parameter, namely, the flow sensitivities. For example, the derivative
of a function 𝑓 (e.g., noise level) with respect to a parameter 𝛼, at a
point 𝛼 = 𝛼0, can be written as

d𝑓
d𝛼

(𝛼0) = lim
𝜖→0

𝑓 (𝛼0 + 𝜖) − 𝑓 (𝛼0)
𝜖

, (1)

∗ Corresponding author.
E-mail address: hugo.vincent@ec-lyon.fr (H. Vincent).

where 𝜖 is a real number. A high value of the derivative indicates a
strong sensitivity of the function 𝑓 to a variation of the parameter 𝛼
at 𝛼 = 𝛼0. Conversely, a low value of the derivative means that the
function is only slightly affected by the parameter variation.

Various sensitivity analysis methods are available in the literature,
as documented in the review by Martins & Hwang [1]. The most notable
ones are methods based on Taylor approximations [2], the sensitivity
equation method [2–6] and the complex differentiation method [2,7–
9], also called the complex-step method. With a method based on
Taylor approximations, values of the derivatives of the flow solutions
with respect to a parameter are estimated by carrying out several
simulations. For instance, a first-order approximation of the derivative
of a function 𝑓 can be written as

d𝑓
d𝛼

(𝛼0) ≃
𝑓 (𝛼0 + ℎ) − 𝑓 (𝛼0)

ℎ
, (2)

where ℎ is a real number denoting a perturbation magnitude. To
estimate the derivative using this approximation, it is necessary to
carry out a simulation for 𝛼 = 𝛼0 + ℎ and another one for 𝛼 = 𝛼0.
The truncation error of a Taylor approximation is reduced as the
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perturbation magnitude ℎ decreases. Therefore, it is recommended to
consider very small values for ℎ. However, when ℎ is excessively small,
𝑓 (𝛼0 + ℎ) and 𝑓 (𝛼0) are so close that their difference is lower than the
rounding errors and thus the derivative d𝑓∕d𝛼 increases as ℎ becomes
smaller, as shown by Anderson et al. [8] and Martins et al. [10], among
others. Finding a value of the perturbation magnitude ℎ to accurately
evaluate the derivatives of interest therefore may require several trials.

Flow sensitivities can also be estimated using the sensitivity equa-
tion method (SEM). This method consists in solving the sensitivity
equations obtained by differentiating the Navier–Stokes equations with
respect to a parameter. The solutions of these equations are the deriva-
tives of the flow variables with respect to the parameter and can thus be
used to determine the flow sensitivities. The flow variables are involved
in the sensitivity equations due to the non-linearity of the Navier–
Stokes equations. To apply the SEM, it is thus required to solve the
sensitivity equations in conjunction with the Navier–Stokes equations
to compute the flow variables and the flow sensitivities. SEM has been
used several times to study unsteady incompressible flows. For instance,
Hristova et al. [5] investigated the sensitivity of a two-dimensional
pulsed flow around a square cylinder with respect to the mean flow
velocity, the amplitude and the period of the pulsation using SEM. Their
results showed that the asymmetrical vortex shedding downstream of
the cylinder appears more clearly and earlier in the flow sensitivity
fields than in the flow solution fields. The SEM was first applied
to a three-dimensional turbulent flow by Kirkman & Metzger [11]
to describe the effects of the Reynolds number on a channel flow.
The variations of the mean flow fields with the Reynolds number,
predicted by the flow sensitivities obtained by the authors, were in
good agreement with the results of parametric studies. Zayernouri &
Metzger [6] studied the effects of the Reynolds and Prandtl numbers
on vortices in a non-isothermal two-dimensional mixing layer using the
SEM. The vorticity fields and their derivatives with respect to these
numbers estimated by the authors indicated that the vortices are more
isolated from each other as the Reynolds number increases and that the
temperature is less homogeneous within the vortices when the Prandtl
number is higher.

Finally, the complex differentiation method (CDM) can be used to
obtain the flow sensitivities. It is related to the Taylor approximations.
However, it allows to determine the derivatives of the flow solutions
with respect to a parameter by performing a single simulation, and
without round-off errors [12]. It consists in adding a small imaginary
perturbation to the parameter and solving the Navier–Stokes equations
using complex arithmetic. It can be implemented in a simple way in
a computational code dealing only with real variables [8,10,13]. The
complex differentiation method was introduced by Lyness & Moler [7],
and then been applied by Squire & Trapp [12] to evaluate the deriva-
tives of analytical real functions. It was later used by Anderson et al. [8]
and Vatsa [13] for turbulent flows by solving the time-dependent
Reynolds-averaged Navier–Stokes equations, and by Cerviño et al. [14]
and Lu & Sagaut [9] for two-dimensional compressible unsteady flows
using DNS. The method was then used by Vergnault & Sagaut [15] in
conjunction with the Lattice Boltzmann Method to analyze the sensitiv-
ity of a flow around a cylinder with respect to the Reynolds number.
Subsequently, the CDM was coupled with a time-reversal technique
to localize noise sources within a two-dimensional mixing layer [16].
Finally, Kirkman & Metzger [2] studied the sensitivity of a channel flow
to the channel height, the viscosity and the pressure gradient using
second-order Taylor approximations, the SEM and CDM. The results
obtained by these authors indicate that among these three approaches,
the CDM is the most accurate and the cheapest in terms of numerical
cost.

Given the preceding, CDM appears to be a straightforward and
accurate method for performing sensitivity analyses. However, it is still
unclear if it can be used to study the effects of physical parameters on
the noise produced by a flow. Another question is whether a sensitivity
2

analysis can help to characterize the accuracy of acoustic variables
computed by direct numerical simulations. A grid sensitivity study is
the standard method to assess this accuracy. It consists in carrying
out simulations using finer and finer meshes. The convergence of the
flow solutions with mesh refinement is then chosen as a criterion
for numerical accuracy [17]. The derivatives of the flow solutions
with respect to the mesh spacing may provide useful information to
study this convergence, since they indicate how the flow solutions
vary with a small change in the grid resolution. To the best of the
authors’ knowledge, the CDM has not been applied yet to conduct a
grid sensitivity analysis of the aerodynamic and acoustic fields of a
high-speed flow computed by direct numerical simulation.

To answer the above questions, CDM is applied in this work to study
the effects of the Mach number, the Reynolds number, and the mesh
spacing on the noise produced by a two-dimensional subsonic mixing
layer. The mixing layer is controlled with a harmonic excitation so that
vortex pairings occur and produce acoustic waves at a single frequency,
as in other studies in the literature [16,18–20]. Parametric studies are
conducted by carrying out direct numerical simulations of the mixing
layer for different Mach and Reynolds numbers, based on the velocity
difference between the fast and the slow flows of the mixing layer and
on the inlet vorticity thickness 𝛿𝜔, and using several meshes. The values
of the Mach number are between 0.2 and 0.4 and those of the Reynolds
number are between 400 and 12,800. Four non-uniform structured
grids, differing from each other by the mesh spacing at the center of
the mixing layer, denoted 𝛥𝑦0, which varies from 0.1𝛿𝜔 to 0.8𝛿𝜔, are
onsidered. In each simulation, the complex differentiation method is
sed to estimate the derivatives of acoustic variables with respect to
he Mach number, the Reynolds number or the mesh spacing parameter
𝑦0. In this way, comparisons between the flow sensitivities obtained
sing the CDM and the results of the parametric studies can be made.

The paper is organized as follows. The compressible Navier–Stokes
quations, the complex differentiation method, the complex Navier–
tokes equations and the sensitivity equations are presented in Sec-
ion 2. In Section 3, the parameters of the mixing layer and the
umerical parameters of the simulations are given. In Section 4, the
ccuracy of the complex differentiation method is compared with that
f a first-order approximation by estimating the derivative of the acous-
ic power of mixing layers at different Reynolds numbers with respect
o the latter parameter. The approach employed to estimate the flow
ensitivities with respect to the Reynolds and Mach numbers, and to the
esh spacing 𝛥𝑦0 using the complex differentiation method is described

n Section 5. The results are given in Section 6. The effects of the Mach
umber on the sound radiation of the mixing layer are first described
y analyzing the properties of acoustic fields, such as the root-mean-
quare values of pressure fluctuations. They are then compared to the
erivatives of the sound intensities with respect to the Mach number
stimated using the CDM. To investigate the efficiency of the CDM,
he derivatives of the noise levels provided by the flow sensitivities are
ompared with the noise levels values. The results obtained from the
imulations performed with different Reynolds number and grids are
nalyzed with the same approach.

. Governing equations and complex differentiation method

.1. Navier–Stokes equations

The compressible Navier–Stokes equations in their conservative
orm are considered. They describe the evolution of density 𝜌, mo-
entum 𝐦 = 𝜌𝐮, where 𝐮 is the velocity vector, and total energy
= 𝑝∕ (𝛾 − 1) + (𝐦 ⋅𝐦) ∕2𝜌, where 𝑝 is the pressure, 𝛾 is the adiabatic

ndex, and the interpunct denotes the scalar product. They can be
ritten as follows

𝜕𝜌
𝜕𝑡

+ ∇ ⋅𝐦 = 0 , (3)

𝜕𝐦 + ∇ ⋅
(

𝐦⊗𝐦
)

= −∇𝑝 + ∇ ⋅ 𝝉 , (4)

𝜕𝑡 𝜌
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𝝉
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𝜕𝐸
𝜕𝑡

+ ∇ ⋅
(

𝐸𝐦
𝜌

)

= −∇ ⋅
(

𝑝𝐦
𝜌

)

+ ∇ ⋅
(

𝐦 ⋅ 𝝉
𝜌

)

− ∇ ⋅ 𝐪 , (5)

here the symbol ⊗ denotes the outer product, 𝝉 is the viscous stress
nd 𝐪 is the heat flux, defined by

= −2𝜇
(

∇𝐮 + (∇𝐮)T
)

− 2
3
𝜇 (∇ ⋅ 𝐮) 𝐈 , (6)

𝐪 = −
𝜇𝑐𝑝
Pr

∇𝑇 , (7)

where 𝜇 is the dynamic viscosity, 𝑇 is the temperature, 𝑐𝑝 is the heat
capacity at constant pressure, Pr is the Prandtl number and 𝐈 is the
identity matrix.

2.2. Complex differentiation method

To explain the complex differentiation method, the Taylor series of
a function 𝑓 (𝛼) depending on a complex number 𝛼 = 𝛼0 + 𝑖ℎ, where ℎ
is a real number, is considered. It can be written as:

𝑓 (𝛼0 + 𝑖ℎ) = 𝑓 (𝛼0) + 𝑖ℎ
d𝑓
d𝛼

(𝛼0) −
ℎ2

2
d2𝑓
d𝛼2

(𝛼0) + 𝑂(ℎ3) . (8)

In this formula, it can be noticed that approximate values of the
function and its derivative at 𝛼 = 𝛼0 can be obtained, respectively by
the real part of 𝑓 (𝛼0 + 𝑖ℎ) and from the imaginary part of 𝑓 (𝛼0 + 𝑖ℎ) as

d𝑓
d𝛼

(𝛼0) =
Im

[

𝑓 (𝛼0 + 𝑖ℎ)
]

ℎ
+ 𝑂(ℎ2) . (9)

The flow solutions and their derivatives with respect to a parameter
can thus be estimated by carrying out a single simulation in which a
small imaginary part is introduced to the parameter of interest.

2.3. Complex Navier–Stokes equations and sensitivity equations

Since the parameter under study should contain an imaginary part
in the complex differentiation method, the other flow variables are
also complex numbers and the Navier–Stokes equations are solved in a
complex form. In the following, the flow variables are split into real and
imaginary parts using the subscripts 𝑟 and 𝑖. For example, the density
can be written as

𝜌 = 𝜌𝑟 + 𝑖𝜌𝑖 . (10)

where 𝜌𝑟 is the real part and 𝜌𝑖 is the imaginary part of the density.
By decomposing the Navier–Stokes equations into real and imaginary
parts, two systems of equations are obtained. The first one describes the
evolution of the real parts of flow variables and the second one their
imaginary parts. These systems can be written as
𝜕𝜌𝑟
𝜕𝑡

+ ∇ ⋅𝐦𝑟 = 0 , (11)

𝜕𝐦𝑟
𝜕𝑡

+ ∇ ⋅

[

𝜌𝑟
(

𝐦𝑟 ⊗𝐦𝑟 −𝐦𝑖 ⊗𝐦𝑖
)

+ 𝜌𝑖
(

𝐦𝑟 ⊗𝐦𝑖 +𝐦𝑟 ⊗𝐦𝑖
)

𝜌2𝑟 + 𝜌2𝑖

]

= −∇𝑝𝑟 + ∇ ⋅ 𝝉𝑟 , (12)

𝜕𝐸𝑟
𝜕𝑡

+ ∇ ⋅

[

𝜌𝑟
(

𝐸𝑟𝐦𝑟 − 𝐸𝑖𝐦𝑖
)

+ 𝜌𝑖
(

𝐸𝑟𝐦𝑖 + 𝐸𝑖𝐦𝑟
)

𝜌2𝑟 + 𝜌2𝑖

]

= − ∇ ⋅

[

𝜌𝑟
(

𝑝𝑟𝐦𝑟 − 𝑝𝑖𝐦𝑖
)

+ 𝜌𝑖
(

𝑝𝑟𝐦𝑖 + 𝑝𝑖𝐦𝑟
)

𝜌2𝑟 + 𝜌2𝑖

]

+ ∇ ⋅

[

𝜌𝑟
(

𝐦𝑟 ⋅ 𝝉𝑟 −𝐦𝑖 ⋅ 𝝉 𝑖
)

+ 𝜌𝑖
(

𝐦𝑟 ⋅ 𝝉 𝑖 +𝐦𝑖 ⋅ 𝝉𝑟
)

𝜌2𝑟 + 𝜌2𝑖

]

− ∇ ⋅ 𝐪𝑟 ,

(13)

nd
𝜕𝜌𝑖 + ∇ ⋅𝐦 = 0 , (14)
3

𝜕𝑡 𝑖
𝜕𝐦𝑖
𝜕𝑡

+ ∇ ⋅

[

𝜌𝑟
(

𝐦𝑟 ⊗𝐦𝑖 +𝐦𝑖 ⊗𝐦𝑟
)

+ 𝜌𝑖
(

𝐦𝑖 ⊗𝐦𝑖 −𝐦𝑟 ⊗𝐦𝑟
)

𝜌2𝑟 + 𝜌2𝑖

]

= −∇𝑝𝑖 + ∇ ⋅ 𝝉 𝑖 , (15)

𝜕𝐸𝑖
𝜕𝑡

+ ∇ ⋅

[

𝜌𝑟
(

𝐸𝑟𝐦𝑖 + 𝐸𝑖𝐦𝑟
)

+ 𝜌𝑖
(

𝐸𝑖𝐦𝑖 − 𝐸𝑟𝐦𝑟
)

𝜌2𝑟 + 𝜌2𝑖

]

= −∇ ⋅

[

𝜌𝑟
(

𝑝𝑟𝐦𝑖 + 𝑝𝑖𝐦𝑟
)

+ 𝜌𝑖
(

𝑝𝑖𝐦𝑖 − 𝑝𝑟𝐦𝑟
)

𝜌2𝑟 + 𝜌2𝑖

]

+ ∇ ⋅

[

𝜌𝑟
(

𝐦𝑟 ⋅ 𝝉 𝑖 +𝐦𝑖 ⋅ 𝝉𝑟
)

+ 𝜌𝑖
(

𝐦𝑖 ⋅ 𝝉 𝑖 −𝐦𝑟 ⋅ 𝝉𝑟
)

𝜌2𝑟 + 𝜌2𝑖

]

− ∇ ⋅ 𝐪𝑖.

(16)

Assuming that the order of magnitude of the real parts of the
variables is much larger than that of their imaginary parts, the products
of imaginary variables can be neglected. The real part of the complex
Navier–Stokes equations can then be rewritten as
𝜕𝜌𝑟
𝜕𝑡

+ ∇ ⋅𝐦𝑟 = 0 , (17)

𝜕𝐦𝑟
𝜕𝑡

+ ∇ ⋅
(𝐦𝑟 ⊗𝐦𝑟

𝜌𝑟

)

= −∇𝑝𝑟 + ∇ ⋅ 𝝉𝑟 , (18)

𝜕𝐸𝑟
𝜕𝑡

+ ∇ ⋅
(

𝐸𝑟𝐦𝑟
𝜌𝑟

)

= −∇ ⋅
(

𝑝𝑟𝐦𝑟
𝜌𝑟

)

+ ∇ ⋅
(𝐦𝑟 ⋅ 𝝉𝑟

𝜌𝑟

)

− ∇ ⋅ 𝐪𝑟 , (19)

giving equations identical to the real Navier–Stokes equations. In the
same way, the imaginary part of the complex Navier–Stokes equations
can be rewritten as
𝜕𝜌𝑖
𝜕𝑡

+ ∇ ⋅𝐦𝑖 = 0 , (20)

𝜕𝐦𝑖
𝜕𝑡

+ ∇ ⋅

[
(

𝐦𝑟 ⊗𝐦𝑖 +𝐦𝑖 ⊗𝐦𝑟
)

𝜌𝑟
−

𝜌𝑖𝐦𝑟 ⊗𝐦𝑟

𝜌2𝑟

]

= −∇𝑝𝑖 + ∇ ⋅ 𝝉 𝑖 , (21)

𝜕𝐸𝑖
𝜕𝑡

+ ∇ ⋅

[
(

𝐸𝑟𝐦𝑖 + 𝐸𝑖𝐦𝑟
)

𝜌𝑟
−

𝜌𝑖𝐸𝑟𝐦𝑟

𝜌2𝑟

]

= −∇ ⋅

[
(

𝑝𝑟𝐦𝑖 + 𝑝𝑖𝐦𝑟
)

𝜌𝑟
−

𝜌𝑖𝑝𝑟𝐦𝑟

𝜌2𝑟

]

+ ∇ ⋅

[
(

𝐦𝑟 ⋅ 𝝉 𝑖 +𝐦𝑖 ⋅ 𝝉𝑟
)

𝜌𝑟
−

𝜌𝑖𝐦𝑟 ⋅ 𝝉𝑟
𝜌2𝑟

]

− ∇ ⋅ 𝐪𝑖 .

(22)

The sensitivity equations are obtained by replacing the imaginary
variables by the derivatives of the flow variables in the imaginary part
of the complex Navier–Stokes equations. They describe the evolution of
the derivatives of the flow variables with respect to a parameter. They
can be written as
𝜕𝜌′

𝜕𝑡
+ ∇ ⋅𝐦′ = 0 , (23)

𝜕𝐦′

𝜕𝑡
+ ∇ ⋅

(

𝐦′ ⊗𝐦 +𝐦⊗𝐦′

𝜌
−

𝜌′𝐦⊗𝐦
𝜌2

)

= −∇𝑝′ + ∇ ⋅ 𝝉 ′ , (24)

𝜕𝐸′

𝜕𝑡
+ ∇ ⋅

(

𝐸′𝐦 + 𝐸𝐦′

𝜌
−

𝜌′𝐸𝐦
𝜌2

)

= −∇ ⋅
(

𝑝′𝐦 + 𝑝𝐦′

𝜌
−

𝜌′𝑝𝐦
𝜌2

)

+ ∇ ⋅
(

𝐦′ ⋅ 𝝉 +𝐦 ⋅ 𝝉 ′
𝜌

−
𝜌′𝐦 ⋅ 𝝉
𝜌2

)

− ∇ ⋅ 𝐪′ ,

(25)

where the prime notation denotes derivatives. If the order of magnitude
of the imaginary parts is much smaller than that of the real parts,
the imaginary parts of the flow variables therefore follow the same
spatio-temporal evolution as the derivatives of the flow variables. In
order to estimate the flow solutions and sensitivities at the same time,
it is thus only necessary to define as complex numbers the variables
in a computational code dealing only with real numbers and to use
complex arithmetic. Because of this, the implementation of the complex
differentiation method in an in-house solver is straightforward.
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Fig. 1. Schematic view of the mixing layer. Instantaneous vorticity and fluctuating pressure fields are represented at the center and on the periphery of the shear zone. The mean
velocity profile is plotted on the left not to scale. The upstream boundary is represented by a green line. The sponge zone is in gray. Only a part of the computational domain is
shown.
3. Mixing layer parameters

The mixing layer configuration is similar to that considered in
the simulations of Colonius et al. [18], Bogey et al. [19] and Moser
et al. [21]. For illustration purpose, the mean streamwise velocity pro-
file and snapshots of vorticity and pressure are presented in Fig. 1. The
streamwise component of the velocity imposed at the inlet boundary at
𝑥 = 0 is given by the hyperbolic tangent profile

𝑢0(𝑦) = 𝑈𝑐 −
𝛥𝑈
2

tanh
(

2𝑦
𝛿𝜔

)

, (26)

where 𝑈𝑐 = (𝑈1+𝑈2)∕2 is the velocity at the center of the mixing layer,
𝛥𝑈 = 𝑈2 − 𝑈1 is the velocity difference and 𝛿𝜔 = 𝛥𝑈∕max

(

|

|

d𝑢0∕d𝑦||
)

is
the vorticity thickness, at the inlet. The velocities of the slow and fast
flows are given by 𝑈1 = 𝑈𝑐 − 𝛥𝑈∕2 and 𝑈2 = 𝑈𝑐 + 𝛥𝑈∕2. At the inlet,
temperature is fixed at 𝑇0 = 293K, pressure at 𝑝0 = 105 Pa and density is
evaluated from the ideal gas law. Molecular viscosity is expressed as a
function of temperature using Sutherland’s law. The thermal conductiv-
ity 𝜆 is determined from the Prandtl number Pr = 𝜇𝑐𝑝∕𝜆 = 0.75, where
𝜇 = 𝜈𝜌 and 𝜈 is the kinematic viscosity. The value of 1.4 is considered
for the adiabatic index 𝛾. The Reynolds number based on the velocity
difference is given by Re𝜔 = 𝛿𝜔𝛥𝑈∕𝜈. The Mach number is defined by
M = 𝛥𝑈∕𝑐0, where 𝑐0 =

√

𝛾𝑝0∕𝜌0 is the speed of sound in the ambient
medium.

The aerodynamic development of the mixing layer is controlled by
an excitation to focus on the acoustic radiation produced by the first
stage of vortex pairings. The mixing layer is excited at a frequency 𝑓0
and at the first subharmonic 𝑓0∕2 by introducing vortical disturbances
at the center of the shear zone near the upstream boundary at 𝑥 = 10𝛿𝜔.
The frequency 𝑓0, given by the Strouhal number St𝜔 = 𝑓0𝑈𝑐∕𝛿𝜔 = 0.132,
is close to the frequency of the most amplified instability waves de-
veloping in the velocity profile (26) [22]. More information on the
excitation procedure can be found in Bogey et al. [19]. The flow
development and the acoustic radiation of the mixing layer obtained
by the excitation procedure detailed above are illustrated in Fig. 1.
Vortices form in the center of the shear zone due to the amplification
and saturation of the amplitude of instability waves downstream of
the upstream boundary. Subsequently, vortex pairings occur at the
frequency 𝑓0∕2 and at a fixed location. These pairings produce acoustic
waves which can be observed in Fig. 1 on each side of the shear zone.

3.1. Simulation parameters

Three sets of simulations were carried out considering different
Mach and Reynolds numbers, and several meshes. They are referred
to as set-Mach, set-Reynolds and set-Mesh. The values of the Mach
and Reynolds numbers, of the transverse mesh spacing at the center
of the mixing layer, and the numbers of points in the streamwise and
4

transverse directions 𝑛𝑥 and 𝑛𝑦 are given in Table 1. In set-Mach, mixing
layers at Mach numbers M = 0.2, 0.25, 0.3, 0.35 and 0.4 with 𝑈𝑐 = 0.5𝑐0
were considered. If the excitation frequency 𝑓0 varies with the Mach
number, the derivatives of the flow variables with respect to the Mach
number, estimated using the complex differentiation method, are likely
to increase with time because the derivative of a sine wave with respect
to its frequency increases with time. This increase makes it difficult
to accurately estimate the derivatives of time-averaged variables. To
compute the derivatives of acoustic variables with respect to the Mach
number, the excitation frequency 𝑓0 is thus set to 𝑓0 = St𝜔𝑈𝑐∕𝛿𝜔,
where 𝛿𝜔 = Re𝜔𝜈∕𝛥𝑈 , assuming a Reynolds number of 2000 and a
velocity difference of 0.2𝑐0, in the simulations of set-Mach. Therefore,
the Reynolds number increases with the Mach number in set-Mach. As a
result of this, the derivatives obtained with the complex differentiation
method can be compared in a relevant way with the results of the
parametric study.

In the simulations of set-Reynolds, mixing layers at Reynolds num-
bers Re𝜔 = 400, 800, 1600, 3200, 6400 and 12,800, with M = 0.3
and 𝑈𝑐 = 0.5𝑐0, were considered. A simulation of a mixing layer at
a Reynolds number of 1012 which can be assumed as non-viscous was
also performed. In these cases, the inlet vorticity thickness is provided
by the Reynolds number.

In all cases mentioned above, the mesh spacing in the transverse
direction at the center of the shear layer is 𝛥𝑦0 = 0.1𝛿𝜔. To investigate
the grid sensitivity of the flow solutions, four simulations of mixing
layers at a Reynolds number of 3000, with M = 0.3 and 𝑈𝑐 = 0.5𝑐0,
were carried out on grids with mesh spacings 𝛥𝑦0 = 0.1𝛿𝜔, 0.2𝛿𝜔, 0.4𝛿𝜔,
and 0.8𝛿𝜔. They constitute the simulations set-Mesh.

The unsteady pressure have been recorded in the entire computa-
tional domain at a sampling frequency of 20𝑓0 for set-Mach, 10𝑓0 for
set-Reynolds, and 20𝑓0 for set-Mesh, after a transient period of more
than 300𝑇𝑝, where 𝑇𝑝 = 2∕𝑓0 is the vortex pairing period. In all cases,
the recording time is equal to 10𝑇𝑝.

3.2. Numerical methods

The direct numerical simulations are carried out with an in-house
code [19] which solves the unsteady compressible Navier–Stokes equa-
tions in Cartesian coordinates (𝑥, 𝑦) using low-dissipation and low-
dispersion explicit schemes. Fourth-order eleven-point centered finite
differences are used for spatial discretization. A second-order six-stage
Runge–Kutta algorithm is implemented for time integration [23]. To
remove grid-to-grid oscillations without affecting the wavenumbers
accurately resolved, a sixth-order eleven-point centered filter [24] is
applied explicitly to the flow variables at the end of each time step.
Non-centered finite differences and filters are used near the grid bound-
aries [25]. The radiation conditions of Tam & Dong [26] are applied at
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Table 1
Mixing layer parameters for the three sets of simulations referred to as set-Mach, set-Reynolds and set-Mesh: Mach number
M = 𝛥𝑈∕𝑐0, Reynolds number Re𝜔 = 𝛿𝜔𝛥𝑈∕𝜈, transverse mesh spacing at the center of the mixing layer 𝛥𝑦0, numbers of points
in the streamwise and transverse directions 𝑛𝑥 and 𝑛𝑦.

Set M Re𝜔 𝛥𝑦0∕𝛿𝜔 𝑛𝑥 𝑛𝑦

set-Mach

0.2 2000

0.1

1731

235
0.25 2500 1435
0.3 3000 1286
0.35 3500 1237
0.4 4000 1138

set-Reynolds 0.3

400

0.1 1286 235

800
1600
3200
6400
12800
1012

set-Mesh 0.3 3000

0.1

1286

491
0.2 419
0.4 349
0.8 283
a
s
t
o
e
i
t

p
a
p

the boundaries to avoid significant spurious reflections. A sponge zone
combining mesh stretching, Laplacian filtering and a procedure to keep
the mean values of density and pressure around their ambient values
is implemented at the downstream boundary.

3.3. Computational parameters

Domains of length 𝐿𝑥 = 1200𝛿𝜔 and width 𝐿𝑦 varying from 400𝛿𝜔
to 1200𝛿𝜔 are used. In set-Mach and set-Reynolds, the mesh spacing in
the transverse direction at the center of the mixing layer is equal to
𝛥𝑦0 = 0.1𝛿𝜔. From 𝑦 = 0, it is stretched on both sides of the mixing
layer at a rate of 4% until it reaches a length of 𝛥𝑦 ≃ 5𝛿𝜔 at 𝑦 = ±124𝛿𝜔
and then is constant until 𝑦 = ±𝐿𝑦∕2, where 𝐿𝑦 = 400𝛿𝜔. In set-Mesh,
the transverse mesh spacing at the center of the mixing layer is equal to
0.1𝛿𝜔, 0.2𝛿𝜔, 0.4𝛿𝜔 or 0.8𝛿𝜔. It is stretched on both sides of the mixing
layer at a rate of 2% until 𝑦 = ±𝐿𝑦∕2, where 𝐿𝑦 = 1200𝛿𝜔.

At the inlet, the mesh spacing in the streamwise direction is equal to
𝛥𝑥0 = 0.2𝛿𝜔. It is constant down to 𝑥 = 𝑥sz, where 𝑥sz is the position of
the beginning of the sponge zone, then increases at a rate of 2% down
to 𝑥 = 𝐿𝑥. In the sponge zone, a Laplacian filter is applied to density,
velocity, and pressure fluctuations. Its intensity 𝜎sz is given by

𝜎sz(𝑥, 𝑦) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎max

(

𝑥 − 𝑥sz
𝑥𝜎

)

exp

(

− ln (2)
𝑦2

𝑏2sz

)

for 𝑥sz < 𝑥 ≤ 𝑥sz + 𝑥𝜎 ,

𝜎max exp

(

− ln (2)
𝑦2

𝑏2sz

)

for 𝑥 > 𝑥sz + 𝑥𝜎 ,

(27)

here 𝜎max = 0.2 and 𝑥𝜎 is a length varying between 100𝛿𝜔 and 200𝛿𝜔.
Gaussian function of half thickness 𝑏sz = 3𝛿𝜔 centered at 𝑦 = 0 is

introduced to avoid that the Laplacian filter affects the acoustic waves
produced by the vortex pairings outside the shear-flow.

The velocity difference 𝛥𝑈 = 𝑈2 − 𝑈1 increases with the Mach
number, hence the velocity ratio 𝑅 = 𝛥𝑈∕(2𝑈𝑐 ) also increases. Monke-
witz and Huerre [22] have shown using linear stability analyses that
the growth rates of the instability waves developing near the inlet
are proportional to the velocity ratio. Therefore, vortex pairings are
expected to be located further upstream as the Mach number increases.
To isolate the acoustic radiation produced by the pairings, the position
of the beginning of the sponge zone 𝑥sz thus varies in the simulations.
The length 𝑥𝜎 along which the intensity of the Laplacian filter increases
is also adjusted. The values considered for 𝑥sz and 𝑥𝜎 are given in
Table 2, depending on the Mach number. The position of the beginning
of the sponge zone decreases from 𝑥sz = 300𝛿𝜔 for M = 0.2 down to
𝑥 = 180𝛿 for M = 0.4 and the length 𝑥 decreases from 𝑥 = 200𝛿
5

sz 𝜔 𝜎 𝜎 𝜔
Table 2
Sponge zone parameters: Mach number M, position of the beginning of the sponge
zone 𝑥sz, and length 𝑥𝜎 along which the intensity of the Laplacian filter increases.
M 0.2 0.25 0.3 0.35 0.4
𝑥sz∕𝛿𝜔 300 240 210 200 180
𝑥𝜎∕𝛿𝜔 200 200 150 150 100

for M = 0.2 down to 𝑥𝜎 = 100𝛿𝜔 for M = 0.4. To ensure the stability
of the simulations in all cases, the time step is set to 𝛥𝑡 = 0.9𝛥𝑦CFL∕𝑐0,
where 𝛥𝑦CFL = 0.1𝛿𝜔.

4. Comparison between a first-order approximation and the com-
plex differentiation method

In this section, the accuracies of a first-order approximation and the
complex differentiation method are studied by estimating the derivative
of the acoustic power of mixing layers at different Reynolds number
with respect to the latter parameter. Mixing layers at Re𝜔 = 400, 3000
nd 12,800 that are expected to be strongly, weakly and very weakly
ensitive to viscous effects have been considered to vary the value of
he derivative of interest and thus to be able to investigate the influence
f the magnitude of this derivative on the accuracy of each method. In
ach case, the Mach number is equal to 0.3, 𝑈𝑐 is equal to 0.5𝑐0, the
nlet vorticity thickness is determined from the Reynolds number, and
he grid is the same as in the simulations of set-Mach and set-Reynolds.

Using the first-order approximation, the derivative is computed by
erforming two DNS, one for a value of the viscosity 𝜈0 = 𝛿𝜔𝛥𝑈∕Re𝜔
nd another one for 𝜈 = 𝜈0(1 + ℎ), where ℎ is a real number denoting a
erturbation magnitude, and by applying the formula

d𝑊
dRe𝜔

= d𝑊
d𝜈

d𝜈
dRe𝜔

≃ −
𝑊

(

𝜈0 (1 + ℎ)
)

−𝑊
(

𝜈0
)

ℎRe𝜔
, (28)

where 𝑊 is the acoustic power estimated by integrating the sound
intensity over circles of radius 𝑟 = 200𝛿𝜔 centered on the vortex
pairings. Using the complex differentiation method, the derivative is
estimated by performing a DNS with a viscosity 𝜈 = 𝜈0 (1 + 𝑖ℎ) and from
the imaginary part of the acoustic power by

d𝑊
dRe𝜔

≃ −
Im

[

𝑊
(

𝜈0 (1 + 𝑖ℎ)
)]

ℎRe𝜔
. (29)

To investigate the influence of the perturbation magnitude ℎ on the
accuracy of the first-order approximation and the complex differentia-

tion method, simulations have been carrying out for values of ℎ ranging
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from 10−10 to 1. In each case, the relative error, defined as

Err (ℎ) =

|

|

|

|

|

d𝑊
dRe𝜔

(ℎ) − d𝑊
dRe𝜔

ref |
|

|

|

|

d𝑊
dRe𝜔

ref
, (30)

here d𝑊 ∕dRe𝜔
ref is a reference value estimated by applying the

omplex differentiation method with ℎ = 10−100, has been evaluated.
he reference values computed for Re𝜔 = 400, 3000 and 12,800 are
ot given for brevity but their variations with the Reynolds number are
escribed in the following. They decrease with the Reynolds number,
ndicating that the acoustic power of the mixing layer is less sensitive
o viscous effects as the Reynolds number increases, as expected. For
nstance, for Re𝜔 = 400, the reference value is almost 20 times higher
han the one determined for Re𝜔 = 12800. For ℎ = 10−1 and ℎ = 1,
he simulations performed with the complex differentiation method
ave diverged due to numerical instabilities increasing with time. These
nstabilities develop earlier as the value of ℎ increases, which suggests
hat they are related to the effects of the imaginary parts of the flow
ariables on their real parts. Indeed, if the order of magnitude of the
maginary part of the flow variables is close to or greater than that
f the real part of the latter, the products of imaginary variables can
o longer be neglected in the real parts of the complex Navier–Stokes
quations and the latter equations are therefore no longer an accurate
pproximation of the Navier–Stokes equations.

The relative errors obtained for Re𝜔 = 400, 3000 and 12,800 are
lotted in Fig. 2(a), Fig. 2(b) and Fig. 2(c) as a function of the per-
urbation magnitude ℎ using a logarithmic scale. The values calculated
or the first-order approximation and for the complex differentiation
ethod are displayed. Lines corresponding to the leading terms of

he truncation error of the two approaches, varying according to ℎ
nd ℎ2, are also plotted. In all cases, the error obtained using the
omplex differentiation method is smaller than that of the first-order
pproximation, showing that the first method is more accurate than
he second one. For Re𝜔 = 400 in Fig. 2(a), the error determined by
he two methods is reduced as the perturbation magnitude ℎ decreases
rom ℎ = 1 to ℎ = 10−5. For this range of ℎ, the error varies as the
runcation errors of the two methods. As ℎ decreases from 10−5 to
0−10, the error obtained using the first-order approximation increases
s the inverse of ℎ. This result indicates that the values of 𝑊 (𝜈(1 + ℎ))
ith ℎ ≤ 10−5 and 𝑊 (𝜈) are so close that their difference is of the order
f the round-off errors, in agreement with results obtained by Anderson
t al. [8]. The error evaluated using the complex differentiation method
oes not vary significantly between ℎ = 10−5 and ℎ = 10−10. For
e𝜔 = 3000 and Re𝜔 = 12800 in Figs. 2(b, c), the variations of the errors
ith ℎ estimated using the first-order approximation and the complex
ifferentiation method are similar to those obtained for Re𝜔 = 400.
his indicates that the accuracy of the complex differentiation method
oes not depend on the perturbation magnitude ℎ for ℎ < 10−5

or the three values of the Reynolds number considered. Since the
eference value of the derivative of the acoustic power decreases with
he Reynolds number, the results also suggest that the accuracy of the
omplex differentiation method is not affected by the magnitude of the
erivative of interest. Similar results, not shown her for brevity, were
btained for mixing layers at Mach numbers equal to 0.2 and 0.4, and
onsidering grids with mesh spacings 𝛥𝑦0 = 0.2𝛿𝜔 and 0.4𝛿𝜔. Therefore,
he perturbation magnitude ℎ is set to 10−5 in the following sections.

To compare the numerical cost of the complex differentiation
ethod with that of the first-order approximation, the CPU time to
erform one temporal iteration and the memory required for simula-
ions carried out with and without the complex differentiation method
re reported in Table 3. The CPU time is doubled and the memory
ncreases by 85% when the complex differentiation method is used.
hese results can be expected to vary with the computer and the
ode used. For comparison, Martins et al. [27] reported factors of
6

.2 to 4.8 between the time of simulations with and without the
Table 3
CPU time to perform one temporal iteration and memory
needed for a simulation with and without the complex
differentiation method.

CPU time [s] Memory [Mb]
Without CDM 0.200 89.8
With CDM 0.406 167

complex differentiation method using various computing platforms,
and Anderson et al. [8] indicated a doubling of the memory required
when the complex differentiation method is implemented.

5. Sensitivity analysis using the complex differentiation method

5.1. Mach number sensitivity

In each of the simulations of set-Mach, the complex differentiation
method is implemented to estimate the derivatives of acoustic variables
with respect to the Mach number. For this purpose, a small imaginary
perturbation 𝑖ℎ is introduced in the formula (26) of the inlet velocity
profile

𝑢0(𝑦) = 𝑈𝑐 −
𝛥𝑈
2

(1 + 𝑖ℎ) tanh
(

2𝑦
𝛿𝜔

)

. (31)

An approximate value of the derivative of a function 𝑓 with respect to
the Mach number can then be determined from the imaginary part of 𝑓
by
d𝑓
dM

≃
Im [𝑓 ]
ℎM

. (32)

Therefore, the imaginary part of 𝑓 provides information on the
sensitivity of the function 𝑓 to the Mach number. A small perturbation
is added to the velocity difference 𝛥𝑈 in Eq. (31), but since the inlet
vorticity thickness 𝛿𝜔 is fixed, the Reynolds number Re𝜔 = 𝛿𝜔𝛥𝑈∕𝜈 is
also influenced by the perturbation. The imaginary part of 𝑓 is thus
also linked to the effects of the Reynolds number on 𝑓 . However, the
influence of the viscosity on the flow variables is weak for a high
Reynolds number flow, which is the case for the mixing layers of set-
Mach with Re𝜔 ≥ 2000. Therefore, the imaginary part of 𝑓 is mainly
associated with the Mach number sensitivity.

5.2. Reynolds number sensitivity

In the simulations of set-Reynolds, the viscosity is set to 𝜈(1 + 𝑖ℎ).
In this way, the derivative of a function 𝑓 with respect to the Reynolds
number is linked to the imaginary part of 𝑓 by
d𝑓
dRe𝜔

=
d𝑓
d𝜈

d𝜈
dRe𝜔

≃ −
Im [𝑓 ]
ℎRe𝜔

. (33)

Thus, the imaginary part of 𝑓 provides information on the sensitiv-
ity of 𝑓 to the Reynolds number.

5.3. Grid sensitivity

To study the influence of the grid resolution on the flow solutions,
the transverse mesh spacing at the center of the mixing layer is set to
𝛥𝑦0(1+ 𝑖ℎ) in each simulation of set-Mesh. An approximate value of the
derivative of a function 𝑓 with respect to 𝛥𝑦0 can then be estimated at
nodes 𝑦𝑖. This derivative can be written as

d𝑓
d𝛥𝑦0

(𝑦𝑖) = lim
𝜖→0

𝑓 (𝛥𝑦0 + 𝜖, 𝑦𝑖(𝛥𝑦0 + 𝜖)) − 𝑓 (𝛥𝑦0, 𝑦𝑖(𝛥𝑦0))
𝜖

, (34)

where 𝜖 is a real number. This derivative can be obtained from the
imaginary part of 𝑓 by
d𝑓

(𝑦𝑖) ≃
Im [𝑓 ]

(𝑦𝑖) . (35)
d𝛥𝑦0 ℎ𝛥𝑦0
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Fig. 2. Variations of the relative error on the derivative of the acoustic power with respect to the Reynolds number with the perturbation magnitude ℎ obtained with a
irst-order approximation and the complex differentiation method for (a) Re𝜔 = 400, (b) Re𝜔 = 3000 and (c) Re𝜔 = 12800, and variations of the order of magnitude of the

truncation error of the first-order approximation and the complex differentiation method.
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n the right hand side of the definition (34), the function 𝑓 evaluated
at a given node 𝑦𝑖 but at two different positions 𝑦 = 𝑦𝑖(𝛥𝑦0 + 𝜖) and
𝑦 = 𝑦𝑖(𝛥𝑦0) is involved. The derivative obtained from the difference
between 𝑓 (𝛥𝑦0+𝜖, 𝑦𝑖(𝛥𝑦0+𝜖)) and 𝑓 (𝛥𝑦0, 𝑦𝑖(𝛥𝑦0)) thus does not indicate
the effects of a small modification of the mesh spacing 𝛥𝑦0 on the values
of the function 𝑓 computed at a given location 𝑦. Indeed, these effects
are provided by the partial derivative
𝜕𝑓
𝜕𝛥𝑦0

(𝑦𝑖) = lim
𝜖→0

𝑓 (𝛥𝑦0 + 𝜖, 𝑦𝑖) − 𝑓 (𝛥𝑦0, 𝑦𝑖)
𝜖

, (36)

which is defined from the difference between 𝑓 (𝛥𝑦0 + 𝜖) and 𝑓 (𝛥𝑦0)
obtained at the same location 𝑦 = 𝑦𝑖(𝛥𝑦0). This derivative can be
estimated using the chain rule as follows
𝜕𝑓
𝜕𝛥𝑦0

(𝑦𝑖) =
d𝑓

d𝛥𝑦0
(𝑦𝑖) −

𝜕𝑓
𝜕𝑦

(𝑦𝑖)
d𝑦

d𝛥𝑦0
(𝑦𝑖) , (37)

where d𝑓∕d𝛥𝑦0 is obtained from the imaginary part of 𝑓 using the com-
plex differentiation method and the formula (35), 𝜕𝑓∕𝜕𝑦 is evaluated
by differentiating the real part of 𝑓 with respect to the coordinate 𝑦,
and d𝑦∕d𝛥𝑦0 is given by

d𝑦
d𝛥𝑦0

(𝑦𝑖) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑖
∑

𝑗=0
𝑟𝑗𝑦 for 𝑖 = 0,… , (𝑛𝑦 − 1)∕2,

−
−𝑖−1
∑

𝑗=0
𝑟𝑗𝑦 for 𝑖 = −(𝑛𝑦 − 1)∕2,… ,−1 ,

(38)

here 𝑟𝑦 = 1.02 is the stretching rate in the transverse direction.

. Results

.1. Mach number sensitivity

To illustrate the effects of the Mach number on the aerodynamic
evelopment and acoustic radiation of the mixing layers, snapshots of
orticity and fluctuating pressure are provided in Figs. 3(a-c) for the
ixing layers at M = 0.2, 0.3 and 0.4 of set-Mach. In all cases and
ownstream of the inlet forcing, the amplitude of the perturbations
n the shear zone increases with the streamwise direction and then
aturates, leading to the formation of vortices at the frequency 𝑓0.
ubsequently, vortex pairings occur at the frequency 𝑓0∕2 as in the
imulations carried out by Bogey et al. [19] and Moser et al. [21].
ortex rolling-ups and pairings take place at fixed axial positions. They
ove upstream as the Mach number increases, because the shear layer

s more unstable as the velocity ratio 𝑅 = 𝛥𝑈∕(2𝑈𝑐 ) increases [22]. For
xample, the vorticity sheet starts to roll up near 𝑥 = 100𝛿𝜔 for M = 0.2
nd near 𝑥 = 60𝛿𝜔 for M = 0.4, and vortex pairings occur near 𝑥 = 225𝛿𝜔
or M = 0.2 and near 𝑥 = 125𝛿𝜔 for M = 0.4.

The pairings produce acoustic waves propagating on both sides of
he mixing layers, as expected. The amplitude of the sound waves
7

ncreases strongly with the Mach number. This result is consistent
ith dimensional analyses [28,29] which have shown that the noise
roduced by a two-dimensional free flow is proportional to the seventh
ower of the Mach number. For 𝜃 = 90◦, where 𝜃 is the polar angle
efined with the respect to the streamwise direction and by polar
oordinates (𝑟, 𝜃) where 𝑟 = 0 is the location of the vortex pairing, the
avelength of the sound waves is equal to 𝜆 = 𝑐0∕(𝑓0∕2) ≃ 30𝛿𝜔 in
ll cases. It is smaller upstream of the vortex pairings for 𝜃 > 90◦ and
arger downstream for 𝜃 < 90◦ due to the effects of the mean flow on
he acoustic wave propagation [30].

ound directivities
To quantify the effects of Mach number on the noise radiation of

he mixing layers, the acoustic intensity

=
𝑝′RMS

2

𝜌20𝑐
4
0

, (39)

where 𝑝′RMS is the root-mean-square (RMS) value of the pressure fluc-
tuations, has been evaluated on circles of radius 𝑟 = 200𝛿𝜔 centered on
the vortex pairings. It is plotted for all Mach numbers as a function of
the polar angle 𝜃 for −120◦ ≤ 𝜃 ≤ 120◦ in Fig. 4 using a logarithmic
scale. For all angles, except for 𝜃 = 0, the levels increase with the Mach
number. In addition, the noise radiation is less oriented downstream
as the Mach number increases from 0.25 to 0.4. For example, the peak
intensity in the slow flow region (𝑦 > 0) is reached at 𝜃 ≃ 15◦ for
M = 0.25, 𝜃 ≃ 30◦ for M = 0.3 and 𝜃 ≃ 60◦ for M = 0.4. In order to
explain this result, the fluctuating part of the Lighthill stress tensor [30]
is considered without the viscous and entropy terms. It can be written
as

𝐓′ = 𝜌⟨𝐮⟩⊗ 𝐮′ + 𝜌𝐮′ ⊗ ⟨𝐮⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐓shear-noise

+ 𝜌𝐮′ ⊗ 𝐮′
⏟⏞⏟⏞⏟
𝐓self-noise

, (40)

where 𝐓shear-noise and 𝐓self-noise are linear and non-linear with respect
to the velocity fluctuations 𝐮′. The order of magnitude of the mean
velocity vector corresponds to the inlet velocity at the center of the
mixing layers, which is 𝑈𝑐 = (𝑈1 + 𝑈2)∕2 = 0.5𝑐0 and the order
of magnitude of the vector of velocity fluctuations is the velocity
difference 𝛥𝑈 = 𝑈2 − 𝑈1. Therefore, the orders of magnitude of the
tensors 𝐓shear-noise and 𝐓self-noise are given by

𝐓shear-noise ∼ 𝜌0𝑈𝑐𝛥𝑈 , (41)

𝐓self-noise ∼ 𝜌0𝛥𝑈
2 . (42)

As the Mach number M = 𝛥𝑈∕𝑐0 increases, the magnitude of the
non-linear tensor 𝐓self-noise thus increases more than the magnitude
of the tensor 𝐓shear-noise. Ribner [31] by analytical developments and
Freund [32] by analyzing a direct numerical simulation of a jet at
M = 0.9 have shown that the acoustic radiation linked to the tensor
𝐓shear-noise is more oriented downstream than the acoustic radiation
linked to the tensor 𝐓self-noise. Therefore, the noise radiation produced
by the mixing layers is less oriented downstream as the Mach number
increases.
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Fig. 3. Instantaneous vorticity and fluctuating pressure fields for (a) M = 0.2, (b) M = 0.3 and (c) M = 0.4. The color scale ranges from 0 to 𝛥𝑈∕𝛿𝜔 for vorticity, from white to
black.
Fig. 4. Variations of acoustic intensity on circle of radius 𝑟 = 200𝛿𝜔 centered on the
vortex pairings, as a function of the polar angle 𝜃 for M = 0.2, M = 0.25,

M = 0.3, M = 0.35 and M = 0.4.

Sound intensities and their derivatives with respect to the mach number
The RMS values of pressure fluctuations and their derivatives with

respect to the Mach number, obtained using the complex differentiation
method for M = 0.2, 0.3 and 0.4, are displayed in Figs. 5(a, b, c)
and Figs. 5(d, e, f). In all cases, the pressure fluctuations are strongest
near the center of the mixing layers due to aerodynamic instability
waves developing in the shear zone. In the acoustic fields, the sound
levels are highest in two lobes pointing downstream and originat-
ing from the vortex-pairing location, as expected. In these lobes, the
8

acoustic levels increase strongly with the Mach number. The lobes are
oriented less downstream as the Mach number increases, in agreement
with the dimensional analysis. Bands of low sound levels are observed
downstream of the vortex pairings for M = 0.4 in Fig. 5(c). Simulations
of mixing layers at M = 0.4 carried out with sponge zones starting at
different streamwise positions, not shown here for brevity, revealed
that these bands are not related to sponge zone effects. Therefore,
the bands may be due to interactions between the acoustic radiation
produced by the vortex pairings and that of weaker noise sources
located between the pairings and near the beginning of the sponge
zone.

The derivatives of the pressure fluctuation levels with respect to the
Mach number in Figs. 5(d, e, f) are mostly positive in the acoustic field
since the noise levels increase with this parameter. They are stronger
as the Mach number increases. Therefore, they indicate that the noise
levels increase more with the Mach number at high Mach numbers
than at low Mach numbers, which is consistent with the seventh power
law. In all cases, the derivatives are negative in narrow bands located
downstream of the vortex pairings. Negative derivative values indicate
that a small increase in the Mach number value leads to a reduction
of the noise levels. The results thus suggest that the sound levels
decrease with the Mach number in the narrow bands mentioned above.
In these bands, the derivatives are higher, in absolute value, as the
Mach number increases. This indicates that the noise levels in the bands
are more sensitive to the Mach number effects as the latter parameter
increases.

Dimensional law and acoustic power
The maximum values of the sound intensity at 𝑟 = 200𝛿𝜔 of

the vortex-pairings location in the fast and slow flows of the mixing
layers are compared with those found by Moser et al. [21] for two-
dimensional mixing layers at Mach numbers between 0.2 and 0.4
computed by DNS. The mixing layers considered by Moser et al. [21]
are at lower Reynolds number (Re𝜔 = 400) and are excited at lower
frequencies than those in the present study. In addition, the velocity
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Fig. 5. Fields of (a, b, c) RMS values of pressure fluctuations and (d, e, f) their derivatives with respect to the Mach number for (a, d) M = 0.2, (b, e) M = 0.3 and (c, f) M = 0.4.
𝑈𝑐 = (𝑈1 + 𝑈2)∕2 is not the same in the two studies. The results
from Moser et al. [21] and the present study are therefore expected
to differ. In addition, in Moser et al. [21], the intensity was evaluated
at 𝑟 = 300𝛿𝜔, whereas the calculation domain extends only to 𝑦 = 200𝛿𝜔
in the present study. Therefore, the intensity given by Moser et al. [21]
has been approximated at 𝑟 = 200𝛿𝜔 by assuming the classical decay of
the intensity in 1∕𝑟 for a two-dimensional flow. The maximum values
thus obtained are plotted as a function of the Mach number in Fig. 6(a)
using a logarithmic scale. In both studies, the levels increase strongly
with the Mach number. For all Mach numbers, the values obtained
by Moser et al. [21] are higher than those in the present study. The
agreement is better as the Mach number increases.

The effects of the Mach number on the sound power levels are now
investigated. These levels are estimated from the acoustic power 𝑊
evaluated over circles of radius 𝑟 = 200𝛿𝜔 centered on the vortex
pairings, from 𝜃 = 5◦ to 𝜃 = 150◦ in the upper flow, and from 𝜃 = −150◦

to 𝜃 = −5◦ in the lower flow. They are defined by

𝐿𝑊 = 10 log
(

𝑊
𝑊ref

)

, (43)

where 𝑊ref = 10−12 kg m2 s−3. They are plotted in Fig. 6 as a function
of the Mach number using a logarithmic scale. A line indicating the
seventh power law is also represented for comparison. The sound
power levels increase strongly with the Mach number for M < 0.3
and more weakly thereafter. For M ≥ 0.3, the increase is consistent
with the seventh power of the Mach number, in good agreement with
results obtained by Ffowcs-Williams [28] and Guo [29] using analytical
developments and by Moser et al. [21] using DNS of two-dimensional
mixing layers at Mach numbers between 0.2 and 0.4.

The derivatives of the power levels with respect to the Mach number
were obtained using the complex differentiation method. They are
represented in Fig. 6 by red segments of arbitrarily chosen lengths.
Their values increase with the Mach number for M ≤ 0.25, decrease
from M = 0.25 to M = 0.3 and does not seem to vary thereafter. The
red segments follow the variations of the power levels. The derivatives
of these levels with respect to the Mach number thus provide a good
estimation of the sensitivity of the noise levels to the Mach number.
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6.2. Reynolds number sensitivity

Vorticity and pressure fields
Snapshots of vorticity and fluctuating pressure obtained from the

simulations of set-Reynolds for Re𝜔 = 400, 800, 1600, 3200, 6400 and
12,800 are provided in Figs. 7(a–f). In all cases, vortex rolling-ups and
pairings occur. The pairings produce acoustic waves which propagate
on both sides of the shear zone. The amplitudes of the sound waves
increase with the Reynolds number. They increase strongly between
Re𝜔 = 400 and Re𝜔 = 800, then more weakly between Re𝜔 = 800 and
Re𝜔 = 1600, and not seem to vary significantly with the Reynolds num-
ber for Re𝜔 ≥ 1600. The acoustic radiation of the mixing layers is thus
weakly dependent on viscous effects for Re𝜔 ≥ 1600. The wavelength of
the sound waves does not vary with the Reynolds number and is equal
to 𝜆 = 𝑐0∕(𝑓0∕2) ≃ 30𝛿𝜔 for a polar angle of 90◦.

Sound directivities
The sound pressure levels obtained at 𝑟 = 200𝛿𝜔 from the vortex

pairings for Re𝜔 = 400, 800, 1600, 3200 and 1012 are presented in
Fig. 8 for polar angles 𝜃 between −120◦ and 120◦. For Re𝜔 ≤ 3200, the
levels increase with the Reynolds number downstream of the pairings,
for −90◦ < 𝜃 < 90◦. The increase is less pronounced as the Reynolds
number increases. It is strong between Re𝜔 = 400 and Re𝜔 = 800,
moderate between Re𝜔 = 800 and Re𝜔 = 1600, and weak between
Re𝜔 = 1600 and Re𝜔 = 3200. The values obtained for Re𝜔 = 3200 and
Re𝜔 = 1012 are very close, showing that viscosity has a weak influence
on the noise intensity for Re𝜔 > 3200.

Sound intensities and their derivatives with respect to the Reynolds number
The RMS values of the pressure fluctuations and their derivatives

with respect to the Reynolds number obtained using the complex
differentiation method for Re𝜔 = 400, 800, 1600 and 3200 are shown in
Figs. 9(a, b, c, d) and Figs. 9(e, f, g, h). In all cases, the RMS levels are
highest near the middle of the mixing layer, where aerodynamic fluctu-
ations predominate. In the acoustic field for Re𝜔 = 400 in Fig. 9(a), they
are very low, making difficult to visualize the radiation pattern. For
Re𝜔 ≥ 800 in Figs. 9(b, c, d), the acoustic intensity is significant within
two lobes oriented downstream originating from the position of the
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Fig. 6. Variations of (a) maximum intensity computed in the present study in the fast (𝑦 < 0) and slow (𝑦 > 0) flows of the mixing layers, and by Moser et al. [21] in the
fast and slow flows, and (b) acoustic power levels and their derivatives with respect to the Mach number; M7 law.
Fig. 7. Instantaneous vorticity and fluctuating pressure fields for (a) Re𝜔 = 400, (b) Re𝜔 = 800, (c) Re𝜔 = 1600, (d) Re𝜔 = 3200, (e) Re𝜔 = 6400 and (f) Re𝜔 = 12800. The color scale
ranges from 0 to 𝛥𝑈∕𝛿𝜔 for vorticity, from white to black.
vortex pairings. The sound levels increase with the Reynolds number
downstream of the pairings, especially in the direction of the lobes for
polar angles of ±35◦. As a result, the acoustic radiation becomes more
directive as the Reynolds number increases.

For all Reynolds numbers, the derivatives of the RMS values of pres-
sure fluctuations are mostly positive on both sides of the mixing layer,
since the noise levels increase with the Reynolds number. For Re𝜔 = 400
and Re𝜔 = 800 in Figs. 9(e, f), the derivatives are positive downstream
of the vortex pairings, showing that the sound levels increase with
the Reynolds number downstream of the pairings in these cases, in
agreement with the sound intensity fields provided for Re𝜔 ≤ 1600 in
Figs. 9(a, b, c). For Re𝜔 = 800, 1600 and 3200 in Figs. 9(f,g,h), the
values of the derivatives are highest in two lobes originating from the
vortex pairing location and oriented in the main radiation direction,
for polar angles of ±35◦, indicating that the acoustic radiation is more
directional as the Reynolds number increases. In the shear zone and
10
in the acoustic field, the magnitude of the derivatives decreases with
the Reynolds number. This result shows that the effects of the viscosity
on the sound radiation are reduced as the Reynolds number increases.
For Re𝜔 = 3200, the derivatives are negative in two narrow bands
oriented downstream and originating slightly further downstream from
the position of the vortex pairings, near 𝑥 = 200𝛿𝜔. This indicates that a
small increase of the Reynolds number leads to a decrease of the sound
levels in these two bands for this case.

Acoustic power levels
To quantify the effects of the Reynolds number on the noise levels,

the acoustic power levels obtained by integrating the sound intensity
determined for the cases with Re𝜔 ≤ 12800 are plotted in Fig. 10 as a
function of the Reynolds number. The value estimated for the assumed
inviscid case (Re𝜔 = 1012) is also provided for comparison. The levels
increase strongly from Re = 400 to Re = 1600, then weakly from
𝜔 𝜔
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Fig. 8. Variations of acoustic intensity at 𝑟 = 200𝛿𝜔 from the vortex pairings as a func-
tion of the polar angle 𝜃 for Re𝜔 = 400, Re𝜔 = 800, Re𝜔 = 1600,

Re𝜔 = 3200 and Re𝜔 = 1012.

Re𝜔 = 1600 to Re𝜔 = 12800. The value obtained for Re𝜔 = 12800 is very
close to the one determined with the assumed inviscid simulation, as
expected.

Red segments of arbitrarily chosen lengths with slopes equal to the
derivatives of the power levels with respect to the Reynolds number
are also represented in Fig. 10. The slopes are positive since the sound
levels increase with the Reynolds number. The values of the derivatives
decrease with the Reynolds number, which shows that the sensitivity of
the power levels to viscous effects decreases with that flow parameter.
The red segments in Fig. 10 appear to follow the variations of the sound
levels with the Reynolds number. The values of the derivatives of the
power levels obtained with the complex differentiation method are thus
consistent with the variations of the noise levels values.

6.3. Grid sensitivity

To highlight the effects of the grid resolution on the development
of the mixing layer, snapshots of vorticity and of their derivatives
with respect to 𝛥𝑦0, obtained from the simulations of set-Mesh for
𝛥𝑦0 = 0.1𝛿𝜔, 0.2𝛿𝜔, 0.4𝛿𝜔 and 0.8𝛿𝜔, are displayed in Figs. 11(a, c, e, g)
and Figs. 11(b, d, f, h). For 𝛥𝑦0 = 0.8𝛿𝜔 in Fig. 11(a), the vorticity layer
is uniform in the streamwise direction, and do not show any vortices.
For 𝛥𝑦0 = 0.4𝛿𝜔 in Figure Fig. 11(c), vortices roll-up near 𝑥 = 100𝛿𝜔
and merge near 𝑥 = 160𝛿𝜔. In this case, numerical oscillations are
seen around the vortices between 𝑥 ≃ 100𝛿𝜔 and 𝑥 ≃ 200𝛿𝜔. As the
mesh spacing decreases from 𝛥𝑦0 = 0.4𝛿𝜔 to 𝛥𝑦0 = 0.2𝛿𝜔, the vortex
rolling-ups and pairings occur earlier near 𝑥 = 75𝛿𝜔 and 𝑥 = 150𝛿𝜔,
respectively. For 𝛥𝑦0 = 0.2𝛿𝜔 in Fig. 11(e), no numerical oscillations are
visible, which suggests that those observed for 𝛥𝑦0 = 0.4𝛿𝜔 are due to
discretization errors. The vorticity fields provided for 𝛥𝑦0 = 0.2𝛿𝜔 and
𝛥𝑦0 = 0.1𝛿𝜔 are similar, supporting that the aerodynamic development
of the mixing layer is well resolved for 𝛥𝑦0 ≤ 0.2𝛿𝜔.

For 𝛥𝑦0 = 0.8𝛿𝜔, the derivative of the vorticity in Fig. 11(b) is
negative at the center of the mixing layer and positive on both sides of
the shear zone. This suggests that the vorticity sheet becomes thinner
as the mesh spacing 𝛥𝑦0 decreases in this case, in agreement with the
vorticity in Figs. 11(a, c) obtained for 𝛥𝑦0 = 0.4𝛿𝜔 and 𝛥𝑦0 = 0.8𝛿𝜔.
For 𝛥𝑦 = 0.8𝛿 , the footprint of the instability waves growing in the
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0 𝜔
shear zone can be seen in the field of the derivatives of the vorticity
for 𝑥 ≥ 175𝛿𝜔. For 𝛥𝑦0 ≤ 0.4𝛿𝜔 in Figs. 11(d, f, h), the derivatives have
significant values near the vortices. The magnitude of the derivatives
become weaker as the mesh spacing 𝛥𝑦0 decreases. This indicates that
the sensitivity of the vortices to the mesh spacing 𝛥𝑦0 is reduced when
the latter decreases, as expected. For 𝛥𝑦0 = 0.4𝛿𝜔, numerical oscillations
similar to the ones observed in the vorticity field obtained for this case
are visible. They are more apparent in the derivative field than in the
vorticity field. Therefore, the vortices and the numerical oscillations
depend on the mesh spacing 𝛥𝑦0. For 𝛥𝑦0 = 0.2𝛿𝜔 and 𝛥𝑦0 = 0.1𝛿𝜔 in
Figs. 11(f, h), the highest values of the derivatives are found near the
vortex rolling-ups and pairings.

Intensity of velocity fluctuations and instability growth rate
The RMS values of the transverse velocity fluctuations obtained at

𝑦 = 0 are plotted in Fig. 12(a) using a logarithmic scale. For 𝛥𝑦0 ≤ 0.4𝛿𝜔,
the levels first increase strongly, reach a local maximum near the vortex
rolling-ups, then decrease slightly, increase thereafter until a maximum
is reached in the vicinity of the vortex pairings, and finally do not vary
appreciably with the streamwise direction. The RMS values obtained
upstream of the vortex rolling-ups decrease with the mesh spacing 𝛥𝑦0.
The levels for 𝛥𝑦0 = 0.1𝛿𝜔 are however close to those for 𝛥𝑦0 = 0.2𝛿𝜔.
For 𝛥𝑦0 = 0.8𝛿𝜔, they increase in the streamwise direction while no
vortex is observed in this case.

The curves in Fig. 12(a) correspond approximately to straight lines
between 𝑥 = 20𝛿𝜔 and the position of the vortex rolling-ups, indicating
that the amplitude of the velocity fluctuations grow exponentially in the
streamwise direction. This exponential growth can be characterized by
a growth rate –𝑘𝑖, yielding for velocity fluctuations

𝑣′(𝑥, 𝑦, 𝑡) = �̂�(𝑦) cos(𝑘𝑟𝑥 + 𝜔𝑡) exp
(

–𝑘𝑖𝑥
)

, (44)

where �̂�(𝑦) is the amplitude, 𝑘𝑟 is the wavenumber and 𝜔 is the
pulsation. The growth rate –𝑘𝑖 is given by the slopes of the straight lines
observed in Fig. 12(a). It is obtained using a linear fit applied between
𝑥 = 20𝛿𝜔 and the position where the RMS levels are equal to one third
of their values at the first maximum. The growth rates thus estimated
are plotted in Fig. 12(b) as a function of the mesh spacing 𝛥𝑦0. They
decrease by 3% from 𝛥𝑦0 = 0.1𝛿𝜔 to 𝛥𝑦0 = 0.2𝛿𝜔, then by 24% from
𝛥𝑦0 = 0.2𝛿𝜔 to 𝛥𝑦0 = 0.4𝛿𝜔 and finally by 81% from 𝛥𝑦0 = 0.4𝛿𝜔 to
𝛥𝑦0 = 0.8𝛿𝜔.

The derivatives of the growth rates with respect to 𝛥𝑦0 deter-
mined using the complex differentiation method are also represented
in Fig. 12(b). In all cases, the derivatives are negative since the growth
rate of the instability waves decreases with the mesh spacing 𝛥𝑦0. The
magnitude of the derivative increases weakly from 𝛥𝑦0 = 0.1𝛿𝜔 to
𝛥𝑦0 = 0.2𝛿𝜔, more strongly from 𝛥𝑦0 = 0.2𝛿𝜔 to 𝛥𝑦0 = 0.4𝛿𝜔, and
weakly from 𝛥𝑦0 = 0.4𝛿𝜔 to 𝛥𝑦0 = 0.8𝛿𝜔. They are consistent with the
computed growth rates. The value of the derivative of the growth rate
for 𝛥𝑦0 = 0.1𝛿𝜔 is small. This suggests that the growth rate determined
for this case is weakly affected by the mesh spacing 𝛥𝑦0, and thus that
it is accurately estimated.

Pressure fields
Fields of vorticity and fluctuating pressure obtained in the three

cases with 𝛥𝑦0 ≤ 0.4𝛿𝜔 for which vortex pairings occur are displayed
in Fig. 13(a-c). The acoustic pattern is similar to that observed in the
case with M = 0.3 and Re𝜔 = 3200 provided in Fig. 7(d). It does not
vary significantly with the mesh spacing 𝛥𝑦0. For 𝛥𝑦0 = 0.4𝛿𝜔 and
𝛥𝑦0 = 0.2𝛿𝜔 in Fig. 13(a, b), the amplitude of the pressure fluctuations
increases slightly as 𝛥𝑦0 decreases. The increase in levels is more
pronounced in the main radiation direction, for polar angles 𝜃 ≃ ±30◦.
The pressure fields for 𝛥𝑦0 = 0.2𝛿𝜔 and 𝛥𝑦0 = 0.1𝛿𝜔 are similar, which
indicates that the transverse mesh spacing weakly affects the acoustic

radiation of the mixing layers for 𝛥𝑦0 ≤ 0.2𝛿𝜔.
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Fig. 9. Fields of (a, b, c, d) RMS values of pressure fluctuations and (d, e, f, g, h) their derivatives with respect to the Reynolds number for (a, e) Re𝜔 = 400, (b, f) Re𝜔 = 800,
(c, g) Re𝜔 = 1600 and (d, h) Re𝜔 = 3200.
Fig. 10. Variations of acoustic power levels and their derivatives with the
Reynolds number; power levels for an assumed inviscid flow (Re𝜔 = 1012).

Sound directivities
The variations of the sound intensity at 𝑟 = 200𝛿𝜔 from the vortex

pairings with the polar angle for 𝛥𝑦0 = 0.1𝛿𝜔, 0.2𝛿𝜔 and 0.4𝛿𝜔 are
presented in Fig. 14. The noise levels increase as the mesh spacing
decreases from 𝛥𝑦0 = 0.4𝛿𝜔 down to 𝛥𝑦0 = 0.2𝛿𝜔 and do not vary
significantly between 𝛥𝑦0 = 0.2𝛿𝜔 and 𝛥𝑦0 = 0.1𝛿𝜔. In the slow flow
for 𝜃 > 0◦, the intensity is maximum for 𝜃 ≃ 15◦ for 𝛥𝑦0 = 0.4𝛿𝜔 and for
𝜃 ≃ 30◦ for 𝛥𝑦0 ≤ 0.2𝛿𝜔. In the fast flow for 𝜃 < 0◦, it is maximum for
𝜃 ≃ 30◦ for 𝛥𝑦0 = 0.4𝛿𝜔 and for 𝜃 ≃ 37.5◦ for 𝛥𝑦0 ≤ 0.2𝛿𝜔. The acoustic
radiation is thus more oriented upstream as the mesh spacing decreases
from 𝛥𝑦0 = 0.4𝛿𝜔 to 𝛥𝑦0 = 0.2𝛿𝜔.

Sound intensities and their derivatives with respect to the mesh spacing
The RMS values of the pressure fluctuations and their derivatives

with respect to 𝛥𝑦0 obtained with the complex differentiation method
for 𝛥𝑦0 ≤ 0.4𝛿𝜔 are represented in Figs. 15(a, b, c) and Figs. 15(d,
e, f), respectively. As the mesh spacing decreases, the sound levels
increase from 𝛥𝑦0 = 0.4𝛿𝜔 to 𝛥𝑦0 = 0.2𝛿𝜔 and do not seem to vary
from 𝛥𝑦0 = 0.2𝛿𝜔 to 𝛥𝑦0 = 0.1𝛿𝜔.

For 𝛥𝑦0 = 0.4𝛿𝜔 in Fig. 15(d), the derivatives of the sound in-
tensity are mostly negative in the acoustic field. This indicates that
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the noise levels decrease with the mesh spacing 𝛥𝑦0 in this case, in
agreement with the acoustic intensities in Figs. 15(a, b). In addition,
for 𝛥𝑦0 = 0.4𝛿𝜔, the magnitude of the derivative is higher in the slow
flow region for 𝑦 > 0 than in the fast flow region for 𝑦 < 0, suggesting
that the sound levels increase more in the first region than is the second
one as the mesh spacing 𝛥𝑦0 decreases in this case. As the mesh spacing
decreases from 𝛥𝑦0 = 0.4𝛿𝜔 to 𝛥𝑦0 = 0.2𝛿𝜔, the magnitudes of the
derivatives become lower, indicating that the sensitivity of the sound
levels to 𝛥𝑦0 is reduced as the grids become finer. For 𝛥𝑦0 = 0.2𝛿𝜔 and
𝛥𝑦0 = 0.1𝛿𝜔 in Figs. 15(e, f), the derivatives are significant in lobes
originating from the vortices between 𝑥 ≃ 100𝛿𝜔 and 𝑥 ≃ 250𝛿𝜔. In
these lobes, they are positive or negative, which suggests that the noise
levels increase or decrease at specific positions in the acoustic field as
the mesh spacing 𝛥𝑦0 varies.

Acoustic power and its sensitivity to the mesh spacing
The acoustic power levels and their derivatives with respect to 𝛥𝑦0

are represented in Fig. 16 as a function of the mesh spacing 𝛥𝑦0. The
sound levels increase by 0.1 dB from 𝛥𝑦0 = 0.1𝛿𝜔 to 𝛥𝑦0 = 0.2𝛿𝜔 and
decrease by 2.8 dB from 𝛥𝑦0 = 0.2𝛿𝜔 to 𝛥𝑦0 = 0.4𝛿𝜔. For 𝛥𝑦0 = 0.1𝛿𝜔,
the derivative is positive, suggesting that the noise levels increase with
the mesh spacing in this case. For 𝛥𝑦0 = 0.2𝛿𝜔 and 𝛥𝑦0 = 0.4𝛿𝜔, the
derivatives are negative, showing that the levels decrease as the mesh
spacing increases in these cases. Moreover, the absolute values of the
derivatives increase with 𝛥𝑦0 for 𝛥𝑦0 ≥ 0.2𝛿𝜔. This shows that the sound
levels are more affected by the mesh spacing as 𝛥𝑦0 increases from
𝛥𝑦0 = 0.2𝛿𝜔 to 𝛥𝑦0 = 0.4𝛿𝜔 and, therefore, that the sensitivity of the
noise levels to the grid resolution is higher when the mesh is coarser.
For 𝛥𝑦0 = 0.1𝛿𝜔 and 𝛥𝑦0 = 0.2𝛿𝜔, the magnitudes of the derivative are
very low compared to the case with 𝛥𝑦0 = 0.4𝛿𝜔. This indicates that the
noise levels are well estimated for 𝛥𝑦0 ≤ 0.2𝛿𝜔.

Quantification of the grid sensitivity
To quantify the sensitivity of the noise levels to the mesh spacing,

a grid sensitivity coefficient defined by

ℎ = 𝐿
(

𝛥𝑦 1 + ℎ
)

− 𝐿
(

𝛥𝑦
)

, (45)
𝑆𝑊 ( ) 𝑊 0 ( ) 𝑊 0
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Fig. 11. Fields of (a, c, e, g) vorticity 𝛺𝑧 and (b, d, f, h) their derivatives with respect to 𝛥𝑦0 for (a, b) 𝛥𝑦0 = 0.8𝛿𝜔, (c, d) 𝛥𝑦0 = 0.4𝛿𝜔, (e, f) 𝛥𝑦0 = 0.2𝛿𝜔 and (g, h) 𝛥𝑦0 = 0.1𝛿𝜔.
Fig. 12. Variations of (a) RMS values of the transverse velocity fluctuations at the center of the mixing layer for 𝛥𝑦0 = 0.1𝛿𝜔, 𝛥𝑦0 = 0.2𝛿𝜔, 𝛥𝑦0 = 0.4𝛿𝜔 and
𝛥𝑦0 = 0.8𝛿𝜔 and (b) growth rate of the instability waves developing initially in the mixing layer and the derivatives d(−𝑘𝑖𝛿𝜔)∕d𝛥𝑦0 as a function of 𝛥𝑦0. The

values of the derivatives are indicated by the red curves.
where ℎ ≪ 1 is a small real number, is considered. In the formula (45),

𝐿𝑊
(

𝛥𝑦0 (1 + ℎ)
)

is the sound power level in dB estimated using a

first-order approximation by

𝐿𝑊
(

𝛥𝑦0 (1 + ℎ)
)

≃ 10 log

⎛

⎜

⎜

⎜

⎜

𝑊0 + ℎ𝛥𝑦0
𝜕𝑊0
𝜕𝛥𝑦0

𝑊ref

⎞

⎟

⎟

⎟

⎟

, (46)
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⎝ ⎠
where 𝑊0 is the acoustic power and 𝜕𝑊0∕𝜕𝛥𝑦0 is the derivative of the
acoustic power with respect to 𝛥𝑦0 obtained for a given mesh spacing
𝛥𝑦0. For instance, for ℎ = 0.1, the grid sensitivity coefficient 𝑆𝑊
provides a first-order approximation of the gain or loss in dB of the
sound power level as the mesh spacing increases by 10%. Therefore,
it allows us to quantify the sensitivity of the noise levels to the grid
using only the results of a simulation carried out for a given mesh
spacing. For example, in the present study, values of 𝑆𝑊 have been
computed for 𝛥𝑦 = 0.1𝛿 , 0.2𝛿 and 0.4𝛿 for ℎ = 0.1. They are reported
0 𝜔 𝜔 𝜔
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Fig. 13. Instantaneous vorticity and fluctuating pressure fields for (a) 𝛥𝑦0 = 0.4𝛿𝜔, (b) 𝛥𝑦0 = 0.2𝛿𝜔 and (c) 𝛥𝑦0 = 0.1𝛿𝜔. The color scales range from 0 to 𝛥𝑈∕𝛿𝜔 for vorticity, from
white to black.
Fig. 14. Variations of acoustic intensity at 𝑟 = 200𝛿𝜔 from the vortex pairings as
a function of the polar angle 𝜃 for 𝛥𝑦0 = 0.4𝛿𝜔, 𝛥𝑦0 = 0.2𝛿𝜔 and

𝛥𝑦0 = 0.1𝛿𝜔.

Table 4
Grid sensitivity coefficient of the sound power levels 𝑆𝑊 for ℎ = 0.1.
𝛥𝑦0∕𝛿𝜔 0.1 0.2 0.4
𝑆𝑊 0.012 dB −0.012 dB −0.73 dB

in Table 4. For 𝛥𝑦0 = 0.1𝛿𝜔 and 𝛥𝑦0 = 0.2𝛿𝜔, 𝑆𝑊 is approximately
only of 0.1 dB in absolute value. This indicates that the noise levels are
almost insensitive to the mesh spacing for 𝛥𝑦0 ≤ 0.2𝛿𝜔. In contrast, for
𝛥𝑦0 = 0.4𝛿𝜔, the sensitivity coefficient is higher and close to 1 dB in
absolute value, showing that the sensitivity of the noise levels to the
grid is much stronger in this case.

7. Conclusion

In this paper, the complex differentiation method has been applied
to the sensitivity analysis of the noise produced by two-dimensional
mixing layers to assess its capabilities to describe the effects of key
parameters on the aerodynamic noise. For this purpose, simulations of
mixing layers were carried out for Mach numbers between 0.2 and 0.4
and Reynolds numbers between 400 and 12,800 on different grids, and
the complex differentiation method was applied in each simulation to
estimate the derivatives of the sound levels with respect to the parame-
ters under study. Comparisons between derivatives computed using the
complex differentiation method and using a first-order approximation
have shown that the first method is more accurate than the second one.
The derivatives of the noise levels with respect to the Mach number
14
have highlighted that the acoustic radiation produced by the mixing
layer is more intense and less directed downstream as Mach number
increases, in good agreement with results obtained using DNS and
dimensional analysis. The derivatives of the noise levels with respect
to the Reynolds number have indicated that the acoustic radiation is
stronger and more pronounced in its main direction as the Reynolds
number increases. The complex differentiation method has also been
applied to investigate the effects of the transverse mesh spacing at the
center of the mixing layer, 𝛥𝑦0, on the aerodynamic and acoustic fields
of a mixing layer by considering grids with 𝛥𝑦0 = 0.1𝛿𝜔, 0.2𝛿𝜔, 0.4𝛿𝜔
and 0.8𝛿𝜔. The derivatives of the sound levels with respect to the mesh
parameter have shown that the noise levels decrease with the mesh
spacing 𝛥𝑦0, in agreement with results from parametric studies. The
results provided in this paper thus suggest that the complex differenti-
ation method can be applied using DNS to investigate the sensitivity of
the noise produced by a flow to physical parameters, and to perform
grid sensitivity analyses of this noise. In future studies, it may be
interesting to use the complex differentiation method to study the
grid sensitivity of three-dimensional turbulent flows computed using
large-eddy simulations.
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Fig. 15. Fields of (a, b, c) the RMS values of pressure fluctuations and (d, e, f) their derivatives with respect to 𝛥𝑦0 for (a, d) 𝛥𝑦0 = 0.4𝛿𝜔, (b, e) 𝛥𝑦0 = 0.2𝛿𝜔 and (c, f) 𝛥𝑦0 = 0.1𝛿𝜔.
Fig. 16. Variations of sound power levels and their derivatives with the
mesh spacing 𝛥𝑦0.

References

[1] Martins JRRA, Hwang JT. Review and unification of methods for
computing derivatives of multidisciplinary computational models. AIAA J
2013;51(11):2582–99. http://dx.doi.org/10.2514/1.J052184.

[2] Kirkman RD, Metzger M. Sensitivity analysis of low Reynolds number chan-
nel flow using the finite volume method. Internat J Numer Methods Fluids
2008;57(8):1023–45. http://dx.doi.org/10.1002/fld.1669.

[3] Fiorini C, Després B, Puscas MA. Sensitivity equation method for the Navier-
Stokes equations applied to uncertainty propagation. Internat J Numer Methods
Fluids 2021;93(1):71–92. http://dx.doi.org/10.1002/fld.4875.

[4] Borggaard J, Burns J. A PDE sensitivity equation method for optimal aerody-
namic design. J Comput Phys 1997;136(2):366–84. http://dx.doi.org/10.1006/
jcph.1997.5743.

[5] Hristova H, Étienne S, Pelletier D, Borggaard J. A continuous sensitivity equation
method for time-dependent incompressible laminar flows. Internat J Numer
Methods Fluids 2006;50(7):817–44. http://dx.doi.org/10.1002/fld.1079.
15
[6] Zayernouri M, Metzger M. Coherent features in the sensitivity field of a
planar mixing layer. Phys Fluids 2011;23(2):025105. http://dx.doi.org/10.1063/
1.3546174.

[7] Lyness JN, Moler CB. Numerical differentiation of analytic functions. SIAM J
Numer Anal 1967;4(2):202–10. http://dx.doi.org/10.1137/0704019.

[8] Anderson WK, Newman JC, Whitfield DL, Nielsen EJ. Sensitivity analysis for
Navier-Stokes equations on unstructured meshes using complex variables. AIAA
J 2001;39(1):56–63. http://dx.doi.org/10.2514/2.1270.

[9] Lu S-Y, Sagaut P. Direct sensitivity analysis for smooth unsteady compress-
ible flows using complex differentiation. Internat J Numer Methods Fluids
2007;53(12):1863–86. http://dx.doi.org/10.1002/fld.1386.

[10] Martins JRRA, Sturdza P, Alonso JJ. The complex-step derivative approxima-
tion. ACM Trans Math Software 2003;29(3):245–62. http://dx.doi.org/10.1145/
838250.838251.

[11] Kirkman RD, Metzger M. Direct numerical simulation of sensitivity coefficients
in low Reynolds number turbulent channel flow. J Turbul 2009;10:N23. http:
//dx.doi.org/10.1080/14685240902960173.

[12] Squire W, Trapp G. Using complex variables to estimate derivatives
of real functions. SIAM Rev 1998;40(1):110–2. http://dx.doi.org/10.1137/
S003614459631241X.

[13] Vatsa V. Computation of sensitivity derivatives of Navier–Stokes equations using
complex variables. Adv Eng Softw 2000;31(8):655–9. http://dx.doi.org/10.1016/
S0965-9978(00)00025-9.

[14] Cerviño L, Bewley T, Freund J, Lele S. Perturbation and adjoint analyses
of flow-acoustic interactions in an unsteady 2D jet. CTR Proc Summ Prog
2002;27–39.

[15] Vergnault E, Sagaut P. Application of lattice Boltzmann method to sensitivity
analysis via complex differentiation. J Comput Phys 2011;230(13):5417–29.
http://dx.doi.org/10.1016/j.jcp.2011.03.044.

[16] Deneuve A, Druault P, Marchiano R, Sagaut P. A coupled time-reversal/complex
differentiation method for aeroacoustic sensitivity analysis: towards a source
detection procedure. J Fluid Mech 2010;642:181–212. http://dx.doi.org/10.
1017/S0022112009991704.

[17] Roache PJ. Verification and Validation in Computational Science and
Engineering, Vol. 895. Hermosa Albuquerque, NM; 1998.

[18] Colonius T, Lele S, Moin P. Sound generation in a mixing layer. J Fluid Mech
1997;330. http://dx.doi.org/10.1017/S0022112096003928.

[19] Bogey C, Bailly C, Juve D. Numerical simulation of sound generated by vortex
pairing in a mixing layer. AIAA J 2000;38(12):2210–8. http://dx.doi.org/10.
2514/2.906.

http://dx.doi.org/10.2514/1.J052184
http://dx.doi.org/10.1002/fld.1669
http://dx.doi.org/10.1002/fld.4875
http://dx.doi.org/10.1006/jcph.1997.5743
http://dx.doi.org/10.1006/jcph.1997.5743
http://dx.doi.org/10.1006/jcph.1997.5743
http://dx.doi.org/10.1002/fld.1079
http://dx.doi.org/10.1063/1.3546174
http://dx.doi.org/10.1063/1.3546174
http://dx.doi.org/10.1063/1.3546174
http://dx.doi.org/10.1137/0704019
http://dx.doi.org/10.2514/2.1270
http://dx.doi.org/10.1002/fld.1386
http://dx.doi.org/10.1145/838250.838251
http://dx.doi.org/10.1145/838250.838251
http://dx.doi.org/10.1145/838250.838251
http://dx.doi.org/10.1080/14685240902960173
http://dx.doi.org/10.1080/14685240902960173
http://dx.doi.org/10.1080/14685240902960173
http://dx.doi.org/10.1137/S003614459631241X
http://dx.doi.org/10.1137/S003614459631241X
http://dx.doi.org/10.1137/S003614459631241X
http://dx.doi.org/10.1016/S0965-9978(00)00025-9
http://dx.doi.org/10.1016/S0965-9978(00)00025-9
http://dx.doi.org/10.1016/S0965-9978(00)00025-9
http://refhub.elsevier.com/S0045-7930(23)00190-1/sb14
http://refhub.elsevier.com/S0045-7930(23)00190-1/sb14
http://refhub.elsevier.com/S0045-7930(23)00190-1/sb14
http://refhub.elsevier.com/S0045-7930(23)00190-1/sb14
http://refhub.elsevier.com/S0045-7930(23)00190-1/sb14
http://dx.doi.org/10.1016/j.jcp.2011.03.044
http://dx.doi.org/10.1017/S0022112009991704
http://dx.doi.org/10.1017/S0022112009991704
http://dx.doi.org/10.1017/S0022112009991704
http://refhub.elsevier.com/S0045-7930(23)00190-1/sb17
http://refhub.elsevier.com/S0045-7930(23)00190-1/sb17
http://refhub.elsevier.com/S0045-7930(23)00190-1/sb17
http://dx.doi.org/10.1017/S0022112096003928
http://dx.doi.org/10.2514/2.906
http://dx.doi.org/10.2514/2.906
http://dx.doi.org/10.2514/2.906


Computers and Fluids 264 (2023) 105965H. Vincent and C. Bogey
[20] Schoder S, Spieser E, Vincent H, Bogey C, Bailly C. Acoustic modeling using
the aeroacoustic wave equation based on Pierce’s operator. AIAA Journal 2023.
http://dx.doi.org/10.2514/1.J062558, Advance online publication.

[21] Moser C, Lamballais E, Margnat F, Fortuné V, Gervais Y. Numerical study of
Mach number and thermal effects on sound radiation by a mixing layer. Int
J Aeroacoust 2012;11(5–6):555–79. http://dx.doi.org/10.1260/1475-472X.11.5-
6.555.

[22] Monkewitz PA, Huerre P. Influence of the velocity ratio on the spatial instability
of mixing layers. Phys Fluids 1982;25(7):1137–43. http://dx.doi.org/10.1063/1.
863880.

[23] Bogey C, Bailly C. A family of low dispersive and low dissipative explicit
schemes for flow and noise computations. J Comput Phys 2004;194(1):194–214.
http://dx.doi.org/10.1016/j.jcp.2003.09.003.

[24] Bogey C, de Cacqueray N, Bailly C. A shock-capturing methodology based on
adaptative spatial filtering for high-order non-linear computations. J Comput
Phys 2009;228(5):1447–65. http://dx.doi.org/10.1016/j.jcp.2008.10.042.

[25] Berland J, Bogey C, Marsden O, Bailly C. High-order, low dispersive and low
dissipative explicit schemes for multiple-scale and boundary problems. J Comput
Phys 2007;224(2):637–62. http://dx.doi.org/10.1016/j.jcp.2006.10.017.
16
[26] Tam CKW, Dong Z. Radiation and outflow boundary conditions for direct com-
putation of acoustic and flow disturbances in a nonuniform mean flow. J Comput
Acoust 1996;04(02):175–201. http://dx.doi.org/10.1142/S0218396X96000040.

[27] Martins J, Sturdza P, Alonso J. The connection between the complex-step
derivative approximation and algorithmic differentiation. In: AIAA Paper. 2001,
p. 921. http://dx.doi.org/10.2514/6.2001-921.

[28] Ffowcs Williams JE. Hydrodynamic noise. Annu Rev Fluid Mech 1969;1(1):197–
222. http://dx.doi.org/10.1146/annurev.fl.01.010169.001213.

[29] Guo YP. Application of the Ffowcs Williams/Hawkings equation to two-
dimensional problems. J Fluid Mech 2000;403:201–21. http://dx.doi.org/10.
1017/S0022112099006989.

[30] Lighthill MJ. On sound generated aerodynamically I. General theory. Proc. R.
Soc. Lond. Ser. A 1952;211(1107):564–87. http://dx.doi.org/10.1098/rspa.1952.
0060.

[31] Ribner HS. Quadrupole correlations governing the pattern of jet noise. J Fluid
Mech 1969;38(1):1–24. http://dx.doi.org/10.1017/S0022112069000012.

[32] Freund JB. Noise-source turbulence statistics and the noise from a Mach 0.9 jet.
Phys Fluids 2003;15(6):1788–99. http://dx.doi.org/10.1063/1.1569919.

http://dx.doi.org/10.2514/1.J062558
http://dx.doi.org/10.1260/1475-472X.11.5-6.555
http://dx.doi.org/10.1260/1475-472X.11.5-6.555
http://dx.doi.org/10.1260/1475-472X.11.5-6.555
http://dx.doi.org/10.1063/1.863880
http://dx.doi.org/10.1063/1.863880
http://dx.doi.org/10.1063/1.863880
http://dx.doi.org/10.1016/j.jcp.2003.09.003
http://dx.doi.org/10.1016/j.jcp.2008.10.042
http://dx.doi.org/10.1016/j.jcp.2006.10.017
http://dx.doi.org/10.1142/S0218396X96000040
http://dx.doi.org/10.2514/6.2001-921
http://dx.doi.org/10.1146/annurev.fl.01.010169.001213
http://dx.doi.org/10.1017/S0022112099006989
http://dx.doi.org/10.1017/S0022112099006989
http://dx.doi.org/10.1017/S0022112099006989
http://dx.doi.org/10.1098/rspa.1952.0060
http://dx.doi.org/10.1098/rspa.1952.0060
http://dx.doi.org/10.1098/rspa.1952.0060
http://dx.doi.org/10.1017/S0022112069000012
http://dx.doi.org/10.1063/1.1569919

	Application of the complex differentiation method to the sensitivity analysis of aerodynamic noise
	Introduction
	Governing equations and complex differentiation method
	Navier–Stokes equations
	Complex differentiation method
	Complex Navier–Stokes equations and sensitivity equations

	Mixing layer parameters
	Simulation parameters
	Numerical methods
	Computational parameters

	Comparison between a first-order approximation and the complex differentiation method
	Sensitivity analysis using the complex differentiation method
	Mach number sensitivity
	Reynolds number sensitivity
	Grid sensitivity

	Results
	Mach number sensitivity
	Sound directivities
	Sound intensities and their derivatives with respect to the Mach number
	Dimensional law and acoustic power

	Reynolds number sensitivity
	Vorticity and pressure fields
	Sound directivities
	Sound intensities and their derivatives with respect to the Reynolds number
	Acoustic power levels

	Grid sensitivity
	Intensity of velocity fluctuations and instability growth rate
	Pressure fields
	Sound directivities
	Sound intensities and their derivatives with respect to the mesh spacing
	Acoustic power and its sensitivity to the mesh spacing
	Quantification of the grid sensitivity


	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References


