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a b s t r a c t

This paper investigates the sound fields generated by a source moving horizontally at a
constant speed above a non-locally reacting flat ground. The present study offers an
extension of an earlier study that focused on sound fields owing to a moving source above
a locally reacting ground. However, a locally reacting ground model may not be sufficient
for many acoustic “soft” grounds such as snow-covered ground or a layer of sound-
absorbing materials. An integral representation for the sound fields is obtained by
means of a Lorentz transform. Further analysis using the steepest descent method is then
applied and leads to a uniform asymptotic approximation for the total sound fields. The
explicit connection between the Lorentz frame and the physical space is explored. This
allows for a closed-form analytical expression written in the emission time frame for
arbitrary spatial locations of a moving source and stationary receiver. The asymptotic
solution is validated by comparing it with a direct numerical solution of the time-domain
linearized Euler equations. The analytical solution, which is referred to as the Dopplerized
Weyl-van der Pol (D-WVDP) formula, generalizes the earlier theoretical results to allow for
the source motion and non-locally reacting ground surfaces. An approximation scheme can
further be identified, and its range of validity is discussed.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

The study of noise emanating from a moving source has become more imperative in the last several decades owing to the
increasing speed of modern air-based and land-based transportation vehicles. Owing to the growth of computing power,
time-domain numerical approaches such as the finite-difference time-domain (FDTD) method [1,2] have gained popularity
for applications in outdoor sound propagation. These approaches are particularly well-suited for use with moving sources, as
they naturally account for the Doppler effect and can handle any source trajectory. Recent studies [1,3] showed interest in
such approaches. It is, therefore, expedient to develop an accurate and fast computational model in order to validate the
ground effect predicted by the time-domain approaches [1]. In a recent study [4], an asymptotic formula was derived for
predicting the sound fields from a source moving above a locally reacting ground. However, many outdoor ground surfaces
are non-locally reacting in nature. For example, snow covered grounds [5,6], forest floors [7], and railway ballast [8] are best
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modeled as non-locally reacting surfaces. Therefore, there is a need for generalizing the asymptotic formula to predict the
sound fields from a source moving above a non-locally reacting ground.

Earlier research into moving source problems date back as early as the 1980s. Oie and Takeuchi [9] derived a much-
simplified expression in which the ground wave term was ignored. This approximate solution can be inaccurate under
near-grazing conditions. The current study aims to extend the prior studies [4,10e13] to offer a generalized expression that is
simple yet accurate enough for the prediction of the sound fields above locally and non-locally reacting grounds.

It is notable that the general solution for the sound fields owing to a moving monopole in a free space is well recognized
[14]. The Doppler effect is identified in the direct wave term. However, it is not properly included in the reflectedwave term in
which the ground's acoustical properties are calculated at a constant Dopplerized frequency [11,12]. An improved treatment
of the Doppler effect on the spherical wave reflection coefficient was developed for a locally reacting ground [4,9]. Here, the
development of a generalized asymptotic formula for predicting sound fields from a source traversing horizontally at a
constant speed above a non-locally reacting ground is presented.

An asymptotic analysis that centers on the use of contour integration where the steepest descent path is identified is
proposed for obtaining an approximation solution in the present study. Indeed, Chien and Soroka [15] derived an asymptotic
formula for the sound field owing to a stationary sound source above a locally reacting ground. Their approximate solution
was expressed in terms of the direct wave term and the ground-reflected wave term. Subsequent studies (e.g. Refs. [16e22])
extended the steepest descent method for different ground types and various source characteristics.

This paper has four sections. Section 2 shows a formulation of the problem. Using the standard transform for the physical
space [15], the two-dimensional space-timewave equation can be adapted to yield a simpler analytical solution in the Lorentz
space. Bymeans of a convolution integral, the boundary condition can be simplified for the calculation of the ground-reflected
wave. The steepest descent method is used and leads to an asymptotic solution for the boundary wave term in the Lorentz
frame. It is further shown that the solution can be transformed back to the physical space, giving a closed-form solution.
Section 3 discusses the ground model used in the validation process and explains how the surface wave pole can be deter-
mined. Section 4 validates the asymptotic formula by comparing the numerical results with those computed by the FDTD
method. An approximation scheme for the asymptotic formula is discussed, and the condition for its validity is examined.
Finally, concluding remarks are offered in Section 5.
2. Formulation of problem

2.1. Governing wave equations

In a two-dimensional rectangular coordinate system (x, z), a harmonic line source traverses horizontally in the x-direction.
The airborne source has a subsonic constant speed of c0Mtraveling at a constant height of zs above an extended reaction
ground that is situated at the z¼ 0 line. Here, M is the source Mach number, and c0 is the sound speed in the upper medium
(z> 0), with the subscript 0 representing their corresponding parameters in air. Since the sound fields are different for an
approaching or receding source, a careful specification of the region for the receiver is needed to facilitate the modeling
process, as follows. See Fig. 1 for the geometry of the problem with the approaching source located in the x> 0 region.

The upper and lower media are homogeneous with the sound speeds and densities of cj and rj (j¼ 0, 1), respectively,
where the subscript 1 denotes the corresponding parameters in the lower medium (z< 0). Since air is modeled as a non-
dissipative medium independent of frequency, c0 and r0 are real parameters. It is also important to note that the extended
reaction ground is modeled as a dissipative medium. Hence, c1 and r1 are complex parameters that vary with frequency. The
time-domain equations governing sound propagation within the ground would therefore involve convolutions. For the sake
Fig. 1. Geometry of problem.
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of simplicity, a frequency-domain approach is used inwhich the process of convolutions in the space-time domain is avoided
initially.

For a sound source of unit strength, the wave equation above the ground is given in terms of the acoustic potential
40ðx; z; tÞ in the physical space-time domain by

V240 �
1
c20

v240

vt2
¼ e�iustdðx� c0MtÞdðz� zsÞ; (1)

where t is the time variable, us is the angular frequency of the source in the stationary frame, the differential operator V2 ¼
2 2
v

vx2 þ v
vz2, and dð$Þ is the Dirac delta function. Since no source is placed below the ground, the corresponding wave equation in

the lower medium is simply written as

V241 �
1
c21

v241

vt2
¼ 0: (2)

where c1 ≡ c1ðuÞ varies with frequency of the sound waves transmitted through the lower medium. Given the acoustic

potentials 4jðx; z; tÞ (where j¼ 0, 1), the corresponding sound pressures and vertical particle velocities in the upper and lower
media are determined by

pjðx; z; tÞ¼ � rjðuÞvt4jðx; z; tÞ (3a)

and
vjðx; z; tÞ¼ vz4jðx; z; tÞ; (3b)

where vt ≡ v=vt and vz ≡ v=vz. The boundary conditions for the problem are specified by requiring the continuity of pressure

and normal particle velocity across the interface at z¼ 0, i.e.,

r0vt40ðx;0; tÞ¼ r1vt41ðx;0; tÞ (4a)

and
vz40ðx;0; tÞ¼ vz41ðx;0; tÞ: (4b)
To solve for the sound fields in the upper medium, the Lorentz transformation can be used where the right side of Eq. (1)
can be converted to a stationary line source problem by introducing a set of Lorentz variables ðxL; zL; tLÞ such that8<: xL ¼ g2ðx� c0MtÞ;

zL ¼ gz;
tL ¼ g2ðt �Mx=c0Þ

; (5a)

where

g¼
�
1�M2

��1
2
; (5b)

and the subscript L symbolizes the corresponding variables in the Lorentz frame for the upper medium. Applying the Lorentz
transformation, Eq. (1) can be converted to

V2
L4L �

1
c20

v24L

vt2L
¼ ge�iusðtLþMxL=c0ÞdðxLÞdðzL � zLsÞ (6)

where 4L ≡40ðxL; zL; tLÞ is the acoustic potential in the Lorentz frame.
The above step is analogous to the classic method for solving amoving source problem in the absence of boundary surfaces

[14]. However, the imposition of the boundary conditions poses a challenge for determining the sound field owing to the
extended reaction ground. This is because thewave equation in the uppermedium is now transformed into the Lorentz frame,
but that in the lowermedium is still kept in the original physical frame. There is a need tomatch these two coordinate systems
at the interface in order to ensure correct application of the boundary conditions as stipulated in Eqs. (4a) and (4b).

2.2. Integral representations of acoustic potentials

To correctly impose the boundary conditions, it is convenient to express the acoustic potentials 40 and 41 in their
respective integral forms. This process can be facilitated by using the space-time transformation where their Fourier trans-
form pairs for the respective acoustic potentials are defined as
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b4jðkx; z;uÞ¼
Z∞
�∞

Z∞
�∞

4jðx; z; tÞe�iðkxx�utÞdxdt (7a)

and

4jðx; z; tÞ¼
1

4p2

Z∞
�∞

Z∞
�∞

b4jðkx; z;uÞeiðkxx�utÞdkxdu; (7b)

where j¼ 0, 1. The variables kx and u, are the horizontal component of the wave vector and the varying angular frequency,
respectively.

For the Lorentz space in the upper medium, the Fourier transform pair (4L and b4L) is specified by

b4LðLx; zL;uLÞ¼
Z∞
�∞

Z∞
�∞

4LðxL; zL; tLÞe�iðLxxL�uLtLÞdxLdtL (8a)
and

4LðxL; zL; tLÞ¼
1

4p2

Z∞
�∞

Z∞
�∞

b4LðLx; zL;uLÞeiðLxxL�uLtLÞdLxduL: (8b)
Note in Eqs. (8a) and (8b) that Lx is the horizontal component of the wave vector, and uL is the varying angular frequency
for the Lorentz space.

Application of the Fourier transform pair in the Lorentz space leads to a simplification of Eq. (6) to give a second-order
differential equation for b4LðLx; zL;uLÞ in terms of zL as

v2b4L

vz2L
þ L2z b4L ¼ 2pgdðzL � zLsÞdðuL �usÞ; (9a)

where Lz is the vertical component of the wave vector given by

Lz ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2L � L2x

q
; (9b)

and kL ¼ us=c0 is the wave number in the Lorentz space. Strictly speaking, uL should be used instead of us in defining kL.
However, the delta function dðuL �usÞ ensures that uL ¼ us when the outer integral of Eq. (8b) is evaluated with respect to uL.
Hence, usis used for defining kL, which facilitates the subsequent presentation of the theoretical results. The solution for Eq.
(9a) has the form

b4LðLx; zL;uLÞ¼
gp

iLz

h
eiLzDz� þVeiLzDzþ

i
dðuL �usÞ; (10)

where DzH are the respective height differences between the source and its image with the receiver, i.e., DzH ¼ jzLs HzLr j, and
V is the reflection factor to be determined from the boundary conditions given in Eqs. (4a) and (4b). By substituting Eq. (10)
into Eq. (8b), an integral expression for the acoustic potential in the upper medium in the Lorentz space can then be obtained.

For the lowermedium, the acoustic potential in the physical space is used. By substituting Eq. (9b) into Eq. (5), it is possible
to obtain the following equation:

v2b41

vz2
þ k2z b41 ¼ 0; (11a)

where kz is the vertical component of the wave vector given by

kz ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � k2x

q
; (11b)

and k1 ¼ u=c1 is the wave number in the physical space. For a semi-infinite lower medium (z< 0), the transformed acoustic
potential is the solution of Eq. (11a) that can be expressed as
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b41ðkx; z;uÞ¼ Te�ikzz; (12)

where T is the transmission factor dependent on the boundary conditions.

2.3. Boundary condition for an extended reaction ground

Using Eq. (7a), the boundary conditions given in Eq. (4) can be modified to

r0b40ðkx;0;uÞ¼ r1ðuÞb41ðkx;0;uÞ (13a)

and
vzb40ðkx; 0;uÞ¼ vzb41ðkx; 0;uÞ; (13b)

where vz is the differentiation with respect to z. It follows from Eqs. (12) and (13b) that
vzb40ðkx; 0;uÞ¼ � ikzb41ðkx; 0;uÞ: (14)
Application of Eq. (14) to Eq. (13a) leads to the following boundary condition:

c0vzb40ðkx;0;uÞþ iub b40ðkx;0;uÞ ¼ 0; (15a)

where b½≡bðkx;uÞ�, which is the apparent surface admittance of the extended reaction ground, is given by
b¼ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � ðkx=k0Þ2

q
; (15b)

k0ð≡u =c0Þ is the wave number in air, z is the complex density ratio:
z≡ zðuÞ ¼ r0=r1ðuÞ; (15c)

and n is the index of refraction:
n≡nðuÞ ¼ c0=c1ðuÞ: (15d)
Defining an impulse response in space-time for the apparent surface admittance:

bðkx;uÞ¼
Z∞
�∞

Z∞
�∞

bbðx; tÞeiðut�kxxÞdxdt; (16)

the boundary condition [Eq. (15a)] can be converted to a twofold convolution integral in terms of the surface potential 4gðx;

tÞ≡40ðx;0; tÞ:

c0vz4gðx; tÞ�
Z∞
�∞

Z∞
�∞

bbðx0; t0Þvt4gðx� x0; t� t0Þdt0dx0 ¼ 0: (17)

b
The space-time impulse response bðx; tÞ is introduced for the clarity of presentation. Its exact expression is not explicitly
required in the present study. Nevertheless, more details for bbðx; tÞ are discussed in Ref. [22].

The next step is to derive the corresponding boundary condition in the Lorentz space from Eq. (17). According to Eq. (5a),
the differentiations with respect to t, x, and z in the physical space can be written in the Lorentz space as

v = vt¼g2ðv = vtL � c0Mv = vxLÞ¼ � iuLU; (18a)

v = vx¼g2½ð �M = c0Þv = vtL þ v = vxL� ¼ ikLG; (18b)
and
v=vz¼gv=vzL: (18c)
In Eqs. (18a) and (18b), the differential operators are applied to the acoustic potential 4LðxL; zL; tLÞ in the Lorentz space.
Given the integral representation of 4L, viz. Eq. (8b),U andG can, therefore, be treated as algebraic functions in terms of uL and
Lx as follows:
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UðLx;uLÞ¼g2ð1þMLx = kLÞ (19a)

and
GðLx;uLÞ¼g2ðMþ Lx = kLÞ: (19b)
These two algebraic functions, U and G, are referred as the temporal and spatial Doppler terms, respectively. The reason for
choosing these specific forms for the Doppler terms becomes apparent when the asymptotic solutions for the sound pressure
are derived.

In the Lorentz space, the two surface potentials in Eq. (17) can be expressed as

4gðx; tÞ¼
1

4p2

Z∞
�∞

Z∞
�∞

b4LðLx;0;uLÞeiðLxxL�uLtLÞdLxduL (20a)

and

4gðx� x0; t� t0Þ ¼ 1
4p2

Z∞
�∞

Z∞
�∞

b4LðLx;0;uLÞeiðLxxL�uLtLÞ�iðGkLx0�UuLt0ÞdLxduL: (20b)

where Eq. (20b) is obtained by using the Lorentz transform [Eq. (5a)] with the temporal and spatial Doppler terms defined in
Eqs. (19a) and (19b), respectively.

Substituting Eqs. 18e20 into Eq. (17), applying the convolution identity of Eq. (16), and manipulating the resulting
expression, the boundary condition for an extended reaction ground in the Lorentz frame is then given by

vb4LðLx;0;uLÞ=vzL þ ikLðU =gÞbðGkL;UuLÞb4LðLx;0;uLÞ¼0; (21a)

where
bðGkL;UuLÞ¼ zL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2L � ðG=UÞ2

q
; (21b)

zL ≡ zðUuLÞ; and nL≡nðUuLÞ:
The above equation reveals that the boundary condition in the Lorentz frame has an analogous form comparable to the

well-known impedance boundary condition. It is remarkable that Dragna et al. [4] used an impulse response in a onefold
convolution integral for a locally reacting ground. For a source moving above an extended reaction ground, the apparent
surface admittance varies both temporally and spatially; see Eqs. (19a) and (19b) for the temporal and spatial Doppler terms.
Hence, Eq. (21a) offers a generalization of Dragna's result by extending their analysis to a twofold convolution integral for an
extended reaction ground. Indeed, Eq. (21a) is one of the main results of the current study. To the best of our knowledge, this
general form of the impedance boundary condition was not presented in any earlier studies.

2.4. Asymptotic solution for sound pressure in Lorentz frame

Substitution of Eq. (10) into (21a) with zL ¼ 0 yields a solution for the reflection factor V as follows:

V ¼ Lz � kLUbðGkL;UuLÞ=g
Lz þ kLUbðGkL;UuLÞ=g

: (22)

Using Eq. (10) in Eq. (8b) with the reflection factor calculated by Eq. (22) and evaluating the outer integral with respect to

uL, the acoustic potential can be simplified to

4LðxL; zL; tLÞ¼
Z∞
�∞

S�dLx þ
Z∞
�∞

SþdLx �
Z∞
�∞

2ksUsbL;sSþ
�
g

Lz þ ksUsbL;s
�
g
dLx; (23a)

where SH½≡ SðDHzÞ� is given by
SH ¼ SðDHzÞ¼ge�iustL

4p
ei½LxxLþLzDHz �

iLz
; (23b)

and the vertical component of thewave vector is now evaluatedwith kL ¼ uL=c0juL¼us
¼ ks. Hence, Lz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2s � L2x

q
. In Eq. (23a),
the subscript s represents the evaluation of the corresponding parameters at uL ¼ us. For example,
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8>>>>>>>>>><>>>>>>>>>>:

Us ¼ g2ð1þMLx=ksÞ
Gs ¼ g2ðM þ Lx=ksÞ
bL;s ¼ zL;s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2L;s � ðGs=UsÞ2

q
zL;s≡zðusUsÞ
nL;s≡nðusUsÞ

:

By using the identities in Eqs. (3a), (18a) and (19a), the acoustic potential in the upper medium can be transformed from
Eq. (23) to yield the sound pressure as

p0ðxL; zL; tLÞ¼p� þ pþ þ Ib; (24a)

where the first two integrals can be identified as the sound fields owing to the source and its image:
pHðxL; zL; tLÞ¼ ir0us

Z∞
�∞

UsSHdLx; (24b)

and the third term is the wave contribution from the boundary surface:
IbðxL; zL; tLÞ¼ � gr0use�iustL

2p

Z∞
�∞

ksU
2
s bL;s

�
g

Lz þ ksUsbL;s
�
g

ei½LxxLþLzDzþ �

Lz
dLx: (24c)
Note that the first and second integrals of Eq. (24a) are identical except for the difference in the height levels at Dz� and
Dzþ, respectively. Consequently, their asymptotic solutions can be represented in a common form. Using the polar coordinate
system ðks;mLÞ to replace the wave vector ðLx;LzÞ, Eq. (24b) can be recast as

pHðdH;QH; tLÞ¼ ir0us
ge�iustL

4p

Z
C

UsðmLÞeiksdH cosðmL�QHÞdmL; (25a)

where UsðmLÞ can now be interpreted as the temporal Doppler factor given by

UsðmLÞ¼g2�1þM sinmL
�
; (25b)

M¼ sgnðx� c0MtÞM; (25c)

and dH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2L þ Dz2H

q
are the respective radial distances centered from the source (with the negative radical in the subscript)

and its image (with the positive radical) to the receiver. ThemodifiedMach numberM is used in favor ofM because it can lead
to a more compact expression in Eq. (25b) and in the subsequent expressions. A positive value of M, x> c0Mt, indicates an
approaching source whereas a negative value represents a receding source.

The respective polar angles QH in the Lorentz space are measured from the positive zL-axis. The integration path C in Eq.
(25a) starts from�p=2þ i∞ in the complex mL- plane, moves vertically downward to the point � p=2þ 0i, horizontally to p=

2þ 0i, and vertically arrives at p=2� i∞.
By means of the steepest descent method [24], the integral of Eq. (25a) can be evaluated asymptotically to offer

approximate solutions for pHðdH;QH; tLÞ in the Lorentz space as

pHðdH;QH; tLÞzr0us
g

4
UHe�iusðtL�dH=c0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ipksdH

q
; (26a)

where U� and Uþ are the respective Doppler factors for the source and image source:
UH ≡UsðQHÞ¼g2
�
1þM sinQH

�
: (26b)
An exact solution (expressed in terms of the Hankel function) can be identified for Eq. (25a), see Eq. (29) of [4], but it is
more convenient to use Eq. (26a) in the following analysis.

Using the same polar coordinate system in the Lorentz frame, the boundary wave term can also be written analogously in
an integral form as



Y. Wang et al. / Journal of Sound and Vibration 464 (2020) 1149758
Ibðdþ;Qþ; tLÞ¼ � r0us
ge�iustL

2p

Z
C

�
U2
s bL;s

�
g
�
eiksdþ cosðmL�QþÞ

cosmL þ UsbL;s
�
g

dmL; (27a)

where Us is given by Eq. (25b). The apparent admittance bL;s is derived from Eq. (21b) to give

bL;sðmLÞ¼ zL;s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2L;s �

�
M þ sinmL

�2.�
1þMsinmL

�2r
; (27b)

where zL;s ≡ zðusUsÞ and nL;s ≡nðusUsÞ.
In the Lorentz space, the reflection factor VðmLÞ [see Eq. (22)] can be transformed into the planewave reflection coefficient:

VðmLÞ¼
cosmL � ðUs=gÞzL;s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2L;s �

�
M þ sinmL

�2.�
1þMsinmL

�2r
cosmL þ ðUs=gÞzL;s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2L;s �

�
M þ sinmL

�2.�
1þMsinmL

�2r : (28)
The kernel function of the boundary wave term, viz. Eq. (27a), can then be rearranged in a recognizable form as

ðUs =2Þ½1�VðmLÞ�¼
�
U2
s bL;s

�
g
�

cosmL þ UsbL;s
�
g
: (29)
To evaluate the integral of Eq. (27a), it is necessary to find the pole mL;p, say, in the Lorentz frame. This can be done readily
by setting the denominator on the right side of Eq. (29) to zero, leading to a transcendental equation in terms of mL;p as

cosmL;p þUpbL;p
�
g ¼ 0; (30)

where the subscript p represents the corresponding parameters to be evaluated at the pole location, e.g., Up ≡ UsðmL;pÞ and
bL;p ≡bL;sðmL;pÞ.

With the knowledge of the pole in the integrand, Li and Tao [22] used the steepest descent method in conjunctionwith the
pole subtraction method to evaluate this type of diffraction integral. The details of this analysis will not be repeated here, but
the asymptotic solution can be summarized as follows. In the Lorentz frame, the accurate asymptotic solution for Eq. (27a)
when ksdþ[1 can be derived to yield

Ibðdþ;Qþ; tLÞ¼ ðVþ �1Þ�1�ALF
�
wL;p

�	
pþðdþ;Qþ; tLÞ; (31)
where Vþ ¼ VðQÞ is the plane wave reflection coefficient (in the Lorentz frame) evaluated by Eq. (28) with mL ¼ Qþ, AL is
referred to as the augmented diffraction factor [22], and F( ) is the boundary loss factor defined by

F
�
wL;p

�¼1þ i
ffiffiffi
p

p
wL;pe

�w2
L;perfc

��iwL;p
�
: (32a)

�Z2

e erfcð�iZÞ is the scaled complementary function with a complex argument Z [25], and wL;p is the apparent numerical
distance determined by the following equation:

w2
L;p

.
iksdþ ¼1� cos

�
mL;p �Qþ

�
: (32b)
The augmentation factor AL is calculated by

AL ¼


UpbL;p
UþbL;þ

�

wL;þ
wL;p

�

1
DL

�
Up

Uþ
; (33a)

where

DL ¼ � d
dmL;p

�
cosmL;p þUpbL;p

�
g
�
; (33b)

andwL;þ is known as the approximate numerical distance:
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wL;þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iksdþ=2

q �
cosQþ þUþbL;þ

�
g
�
: (33c)

DL is the derivative of term cosmL þ UbL=g at the pole location owing to L’Hôpital's rule. The Doppler terms and the admittance
terms [see Eq. (27b) for bL;s] were defined earlier, but they are presented here again for convenience:8>>>>>>>><>>>>>>>>:

Up≡Us
�
mL;p

� ¼ g2
�
1þMsinmL;p

�
Uþ≡UsðQþÞ ¼ g2

�
1þMsinQþ

�
bL;p ¼ zL;p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2L;p �

�
M þ sinmL;p

�2.�
1þMsinmL;p

�2r
bL;þ ¼ bL;sðQþÞ

; (34)

where the arguments for zL;p and nL;p are evaluated at a frequency of uL;p ≡usUp. The frequency term uL;p and admittance
term bL;p are referred to respectively as the Dopplerized pole frequency and the apparent admittance in the Lorentz frame.

Replacing the diffraction term Ibðdþ;Qþ; tLÞ in Eq. (24a) with that given by the right side of Eq. (31), the sound field in the
upper medium can be determined by

p0
�
xL;zL; tL

�¼p�ðd�;Q�; tLÞ þ
�
Vþ þAL½1�Vþ�F

�
wL;p

�	
pþðdþ;Qþ; tLÞ; (35)

where pHðdH;QH; tLÞ are the direct and ground-reflected wave terms given by Eq. (26). All terms in Eq. (35) can be computed
readily except for the factor involving DL for the augmented diffraction factor AL [see Eq. (33a)]. Using the appropriate
identities of Eq. (34) in Eq. (33b), it is tedious but straightforward to derive an explicit expression for DL leading to its nu-
merical computations. For brevity, the lengthy algebraic expression for DL is not presented here. Alternatively, the numerical
values for DL can be accurately obtained bymeans of the numerical differentiation of Eq. (33b). In the limiting case of a locally
reacting ground, bL;p ¼ zL;pnL;p in Eq. (34) because nðuÞ becomes large for all frequencies. Hence, a relatively simple form for
DL can be derived from Eq. (33b) to give

DL ¼ � sinmL;p þ gMcosmL;pbL;p þ
Up

g
b

0
L;p (36)

where the prime in bL;p is the derivative with respect to mL.
Finally, all relevant functions can be assembled in Eq. (35) to arrive at the prediction of the sound fields owing to a line

source moving at a constant height above a non-locally reacting ground. This is equivalent to the corresponding expression,
which is Eq. (92) in Ref. [4], for the special case of a locally reacting ground.

2.5. Asymptotic formula in emission time geometry

Although Eq. (35) provides an accurate expression for computing the sound fields, it does not yield an appropriate
interpretation in the physical frame for each term in the equation. It is more illuminating to present the results in a retarded
time frame (i.e., the emission time geometry) instead of the Lorentz frame used in the derivation of Eq. (35). Starting from the
standard two-dimensional Lorentz transformation [14], the following identities between the Lorentz space and the physical
space can be established:8>>>>>>>><>>>>>>>>:

xL ¼ g2�sinqH �M
�
RH

DzH ¼ gjzsHzrj
dH ¼ g2RH

.
DH

cosQH ¼ DH cosqH=g
UH ¼ DH≡DðqHÞ

DðqHÞ ¼ 1
��

1�MsinqH
�

tL � dH=c0 ¼ t � RH=c0

; (37)

where ðRH; qHÞ are the corresponding polar coordinates in the emission time geometry centered at the source and its image,
and DH ≡DðqHÞ are the corresponding Doppler factors.

Using these identities, the sound fields owing to a moving source (p�) and its image (pþ) can be rewritten from Eq. (26a) to
give

pHðRH; qH; tÞ¼ r0us

4
D3=2
H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ipksRH

q
e�iusðt�RH=c0Þ (38)
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in the retarded time frame.
The kernel function of the boundary wave term, viz. Eq. (27a), can then be rearranged in the physical frame as�

U2
s bL;s

�
g
�

cosmL þ UsbL;s
�
g
¼ Usbs
cos mþ bs

; (39a)

where the polar angle m in the physical frame is introduced to replace mL by means of the following identities:

bsðmÞ¼ zs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2s � sin2 m

q
(39b)

cos m¼g cosmL =UsðmLÞ; (39c)

sin m¼ M þ sinmL
1þMsinmL

; (39d)

and

DðmÞ¼1
� �

1�Msin m
�¼UsðmLÞ; (39e)

with zs ≡ zðusDÞ and ns ≡nðusDÞ. Eq. (39aee) can be derived based on Eq. (37) with basic algebra.
Using Eq. (39aee), it is possible to correlate the pole location in the Lorentz frame with that of the physical frame as

follows:

cosmL;p ¼
�
Dp

�
g
�
cosmp (40a)

and

sinmL;p ¼Dp
�
sinmp �M

�
; (40b)

where mp is the pole location in the physical frame, and Dp ≡DðmpÞ is the Doppler term. The parameter mp will be referred to as
the Dopplerized surface wave pole (or simply the Dopplerized pole), which indicates the effect of the source motion on the
location of the pole.

To determine the Dopplerized pole, it is convenient to set the denominator on the right side of Eq. (39a) to zero. Explicit
expressions for cosmp and sinmp, which can be obtained by noting Eq. (39b), are given as follows:

cosmp ¼ � zp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
n2p � 1

�.�
1� z2p

�r
(41a)

and

sinmp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1� z2pn2p

�.�
1� z2p

�r
; (41b)

where zp ≡ zðupÞ, np ≡nðupÞ, up ≡usDp, and the subscript p represents the parametric values evaluated at the Dopplerized
pole.

The asymptotic solution for the boundarywave term can now be simplified considerably in the emission time geometry by
applying the following identities for the apparent numerical distance wp and effective numerical distance wþ:

w2
L;p ≡w2

p ¼ iRþ
�
up

�
c0
��
1� cos

�
mp � qþ

�
(42a)

and

w2
L;þ ≡w2

þ ¼ ðiRþ =2Þðuþ = c0Þ½cosqþ þ bþ�2; (42b)

where the effective admittance bþ½≡bsðqþÞ� and apparent admittance bp½≡bsðmpÞ� in the emission time geometry are given
respectively by

bL;þ ¼bþ and (43a)
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bL;p ¼bp; (43b)

and bsðÞ is defined in Eq. (39b).
Using the identities given in Eqs. (37), (42) a,b), and (43 a,b), the boundary wave term can be transformed from Eq. (31)

into

IbðRþ; qþ; tÞ¼ � ð1�QÞpþðRþ; qþ; tÞ; (44a)

where Q is the spherical wave reflection coefficient:

Q ¼Vþ þ A½1�Vþ�F
�
wp

�
; (44b)

and Vþ is the plane wave reflection coefficient in the emission frame:

Vþ ¼ cosqþ � bþ
cosqþ þ bþ

; (44c)

Vþ is equal to the plane wave reflection coefficient VðQÞ in the Lorentz frame in Eq. (31).
Starting from Eq. (33a), the augmented diffraction factor A becomes

A¼ rb=rw
dmD

(45a)

in the physical frame where rb is the admittance ratio:
rb ¼
Dpbp
Dþbþ

¼
Dpzp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2p � sin2mp

q
Dþzþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2þ � sin2qþ

q ; (45b)

and rw is the ratio of numerical distances:
rw ¼wp

we
¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dp

�
Dþ

q 

sin

1
2
�
mp � qþ

�� ðcosqþ þbþÞ
�
; (45c)

where zþ½≡zðuþÞ� and nþ½≡nðuþÞ� in Eq. (45a) are, respectively, the density ratio and the index of refraction calculated at the

Doppler frequency uþ½≡Dþus� with the Doppler factor for the image source as Dþ½≡1 =ð1 � MsinqþÞ�. It is also possible to
show that the factor D in Eq. (45a) can be expressed as

D≡ � v
�
cosmp þ bp

� �
vmp ¼ sinmp � b

0
p (46a)

where the prime in bp represents its derivative with respect to mp, and dmis defined as
dm ≡ ðDþ=gÞvm=vmLjm¼mp
¼Dþ

Dp
: (46b)
It is important to note that D is different from DL in Eq. (33a) and their ratio is

DL

�
D ¼ Dp

Dþ
dm (46c)

0

The rather lengthy algebraic expression for bp will not be presented here as it can be obtained readily with the help of the

symbolic toolboxes available in MATLAB, Maple, or Mathematica.
Summing Eqs. (38) and (44a) and rearranging the resulting terms, the total sound pressure in the physical space (retarded

time) can now be recast in a familiar Weyl-van der Pol (WVDP) form as

p0
�
xL;zL; tL

�¼p�ðR�; q�; tÞ þ Q pþðRþ; qþ; tÞ; (47)

where p� and pþ are given by Eq. (38). The above equation, which is one of the main results of the present study, generalizes
WVDP for the sound field from a source moving horizontally at a constant speed above an extended reaction ground. This
formula is referred to as the Dopplerized Weyl-Van der Pol (D-WVDP) formula in the following section. The first term in Eq.
(47) is identified as the direct wave term, the second term is referred to as the ground reflected wave term, and Q is the
spherical wave reflection coefficient.
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It is worth pointing out that Eq. (47) is expressed in an asymptotic form with all terms written in the emission time
geometry. In fact, the asymptotic solution for the boundary wave term, Ib, was only expressed in the Lorentz frame in most, if
not all, previous studies [4,11e13]. Subsequent transformations are therefore needed to convert these numerical solutions
from the Lorentz frame to the physical time frame.
3. Impedance model and dopplerized surface wave pole

Based on the D-WVDP formula [see Eq. (47)], several analyses are discussed in the following sections. Although most
impedance models for a non-locally reacting ground [26] can be used in our analyses, a phenomenological model (referred to
as the Hamet and B�erengier model [27]) is chosen in the present study. Three adjustable parameters, known as the airflow
resistivity s0, tortuosity q2, and porosity of the air-filled connected pores f, are used tomodel a rigid porousmedium inwhich
the density ratio zðuÞ and the index of refraction nðuÞ are calculated by

zðuÞ¼ r0 = r1 ¼f
.�

q2Gm

�
(48a)

and

nðuÞ¼ k1 = k0 ¼ qG1=2
m ½y� ðy� 1Þ=Gq�1=2; (48b)

where y is the ratio of specific heat for air. The functions Gm and Gq are respectively used to model the viscous and thermal
effects on the interaction of sound with the ground surface. They are determined by

GmðuÞ¼1þ ifs0
.�

ur0q
2
�

(49a)

and

GqðuÞ¼1þ is0 = ður0PrÞ; (49b)

where Pr is the Prandtl number of air. The respective numerical values of 1.22 kgm�3, 1.4, and 0.72 for r0, y, and Pr are used in
all computations described below.

When the Dopplerized pole mp is determined, both z and n [calculated respectively by Eqs. (48a) and (48b)] are dependent
on the complex frequency up instead of the constant source frequency us. These ground characteristic functions z and n vary
with the Dopplerized frequency uþ when the effective admittance [see Eq. (43a)] is determined. Consequently, the Doppler
effect causes an apparent change in the acoustical properties of the ground surface as a result of the source motion. These
subtle changes have significant impacts on the calculation of the ground reflected wave term.

The excess attenuation (EA), which is introduced to facilitate the presentation of numerical results, is defined as

EA¼20 log10ðp0 = p�Þ (50a)

where p0 is the total sound field calculated by Eq. (35), and p� is the direct wave term given in Eq. (38). The sound pressure
level (SPL), which is used in some of the plots of the current study, is defined as

SPL¼20 log10
�
p0

.
pref

�
(50b)

where the reference pressure, pref , is set at 20 mPa.
Since zp and np are functions of the Dopplerized pole, the solution to Eq. (41a) can be found straightforwardly by a simple

iterative scheme for a given value ofM. Note here that a positive value of M gives the condition of an approaching source,
while a negative M represents the condition of a receding source.

A close examination of Eq. (41a) reveals that the Dopplerized pole does not change with the source/receiver geometry but
is only dependent on the acoustical property of the ground and the convection speed of the source. The NewtoneRaphson
method is used to find the pole location. If mðjÞp is the jth iterative solution, then the sequence mð0Þp , mð1Þp , mð2Þp , … converges
to the required pole. The recursive formula becomes

m
ðjþ1Þ
p ¼m

ðjÞ
p �

�
cos mðjÞp þ bðjÞp

�.
DðjÞ; (51)

where the superscript j indicates the corresponding function values at the jth iteration. The iteration starts with an initial
guess where up ¼ us and Dp ¼ 1 are used for calculating zð0Þp , nð0Þp , and Dð0Þ. Their use provides the first iterative solution for
the Dopplerized pole in Eq. (41a). The first estimated mð1Þp is then used to calculate a revised zð1Þp , nð1Þp , and Dð1Þ, where the
respective variables are set to u

ð1Þ
p ¼ usD

ð1Þ
p and Dð1Þ

p ¼ 1 =ð1 � Msin mð1Þp Þ. The “new” Dopplerized pole, mð2Þp , is then
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determined from Eq. (51). This iterative process repeats until this surface wave pole converges to the required accuracy.
Typically, fewer than 10 iterations are needed to arrive at a converged solution accurate to within 10�16 for

��mp��.
Using the above numerical scheme, Fig. 2a demonstrates a tracing of the pole locations with M varying between

0 and± 0.8 for an approaching and receding source. An airflow resistivity of 5 kPam s�2, tortuosity of 0.6, porosity of 0.6, and
source frequency of 100 Hz are used in the plot. Fig. 2bed shows the respective numerical results for a fixed M ¼±0.5.
However, two of the three ground parameters are held constant at the same nominal values used in Fig. 2a, but the third
parameter is allowed to vary over a useful parametric range. These three additional figures, which are self-explanatory, serve
to highlight the effect of each ground parameter s0, q

2, and f on mp.
For comparison, the respective locations of the surface wave pole for the locally reacting (LR), extended reaction (ER), and

hardback (HB) ground with a layer thickness of 0.12m are also traced in the figures. Details for modeling the HB ground are
provided in the appendix for information. In addition to the pole locations, the original integration path and steepest descent
path are shown in all subplots. These two paths are referred to, respectively, as OP and SDP, and aremarked explicitly in Fig. 2d
for information. It is well-known that surface waves are triggered if and only if the pole location is sandwiched between OP
and SDP [11]. Since the SDP differs as the source traverses horizontally, only themost critical one (i.e., the grazing propagation
with the saddle point located at p/2) is shown in these figures for reference.

The primary aim of the present study is to provide a generalization of the asymptotic formula for predicting the sound
fields due to a monopole source moving close to an outdoor ground surface. In the numerical simulations shown in Section 4,
the source speeds and the ground parameters are chosen to ensure a non-negligible presence of a surface wave component in
Fig. 2. Variation in pole locations with changes in Mach number and ground properties. Source frequency is set at 100 Hz and source/receiver heights at 0.3 and
0.6m, respectively. Other symbols are as follows. SDP: steepest descent path, OP: original path of integration, LR: locally reacting ground, ER: extended reaction
ground, and HB: hardback layered ground. SDP and OP are shown in all graphs and are only marked explicitly in 2(d). (a)M varies from �0.8 to 0 (solid lines with
triangles) and from 0 to 0.8 (dashed lines with squares) at a step of 0.2. Ground property is kept unchanged at s0 . q2 and f of 5 kPam s�2 are 1.22 and 0.6,
respectively. (b) s0 varies from 10 to 500 kPam s�2. Other ground properties q2 and f are set at 1.22 and 0.6, respectively. Dashed lines with squares (approaching
source): M¼ 0.5, and solid lines with triangles (receding source): M ¼�0.5. Arrows indicate direction of increasing s0. (c) f varies from 0.1 to 0.9. Other ground
properties s0 and q2 are set at 5 kPam s�2 and 1.22, respectively. dashed lines with squares (approaching source):M ¼ 0.5, and solid lines with triangles (receding
source): M ¼�0.5. Arrows indicate directions of increasing f. (d)q2 Varies from 1.0 to 4.0. Other ground properties s0 and f are set at 5 kPam s�2 and 0.6,
respectively. dashed lines with squares (approaching source): M¼ 0.5, and solid lines with triangles (receding source): M¼�0.5. Arrows indicate directions of
increasing q2.
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the predicted sound fields. Furthermore, a realistic geometrical configuration of the source and receiver positions are selected
for presenting the numerical results. These results allow thorough examinations of the relative importance of the direct wave
term and various components of the ground reflected wave term. The impact on the prediction of sound fields due to the
change in ground parameters, which is a subject of future studies, will not be pursued here for succinctness.
4. Validity of asymptotic formula and its approximations

4.1. Numerical validation

As described in Section 3, the Dopplerized pole can be determined numerically and can subsequently be used in Eq. (47)
for calculating the sound field above a non-locally reacting ground. In order to confirm the validity of the D-WWDP formula
[cf. Eq. (47)], comparisons are carried out with a direct numerical solution of Eqs. (1) and (2) using a FDTD approach. For this,
an FDTD solver [4,29] is used. The computational domain in the FDTD solver is split into two subdomains. The linearized Euler
equations are solved for the acoustic pressure in air for the upper domain. The lower computation domain corresponds to the
ground in which time-domain equations associated with the Hamet and B�erengier model are solved. A brief derivation of
these equations is given in Appendix B. As in Ref. [4], a Gaussian source is employed to model the theoretical Dirac delta
function source. The width of the Gaussian B should be as small as possible in order to avoid non-compacity effects [3] and
consider that the Gaussian source behaves as a point source. In all simulations, the parameter ksB =ð1�MÞ is kept below 0.3.
Hence, the validity of the D-WWDP formula [cf. Eq. (47)] can be confirmed by comparing its numerical solutions with those
obtained by the FDTD methods.

Comparisons were conducted for a range of different values of M, s0, q
2, andf. Typical time histories for the predicted

sound pressure levels (SPL) are summarized for a source moving above an ER ground and an HB groundwith a layer thickness
of 0.15m in Fig. 3a and b, respectively. In Fig. 3a, M¼ 0.5, s0 ¼1.0 kPa sm�2, q2¼1.82, and f ¼ 0.5 are used in the numerical
simulations. On the other hand,M¼ 0.3, s0 ¼10.0 kPa sm�2, q2¼1.252, and f ¼ 0.5 are selected for the HB ground in Fig. 3b.
A source frequency of 300 Hz is used in both plots, where the solid lines indicate the numerical results according to the FDTD
method, and the circles (�) are those obtained by the asymptotic formula. The source moves at respective heights of 2m and
0.5m above the ER and HB grounds. The receiver is placed at different heights of 0, 2, and 5m above the ground in both cases.
The predicted sound fields emitted by a source moving above an LR ground (using the identical ground parameters and the
same source/receiver geometry) are also presented. They are shown as crosses (✕) in these two figures for the purpose of
illustration. It is worth noting that the ground wave term plays a more important role in predicting the total sound fields for
the near-grazing propagation. Use of an LR ground model for the ER and HB grounds therefore becomes increasingly inad-
equate when the receiver is located in the vicinity of the ground surface.

In the predicted sound fields above the non-locally reacting ground, outstanding agreements between the D-WVDP
formula and those obtained by the FDTD method are evinced in Fig. 3 and b. The levels of agreement between these two
Fig. 3. Comparisons between asymptotic solutions of locally reacting model (✕) and non-locally reacting model (�) with time-domain finite difference solutions
(solid lines). Reference sound pressure is 20 mPa for SPL calculation. Receiver is located at 0, 2, and 5m above the ground. x coordinates of source and receiver are
both 0 when reception time is 0. Harmonic source has frequency of 300 Hz. (a) Semi-infinite extended reaction ground: source moves at constant height of 2m
above the ground with Mach number of 0.5. Ground has s0 , q2, and f of 1 kPam s�2, 1.82, and 0.5, respectively. (b) Hardback ground with layer thickness of
0.15m: source moves at constant height of 0.5m above the ground with Mach number of 0.3. Ground has s0 , q2, and f of 10 kPam s�2, 1.252, and 0.5, respectively.
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numerical schemes are excellent for all other source/receiver geometries and ground surfaces. These comparisons mutually
validate the adequacy of either method as a tool to predict the sound fields from a sourcemoving above a non-locally reacting
ground.

4.2. Validity of different approximate schemes

In Section 3.5, the D-WVDP formula was derived for predicting sound fields owing to a source moving horizontally at a
constant speed above a non-locally reacting ground. The accuracy of the D-WVDP formula was confirmed in Section 4.1, and
the validity of various approximate schemes will be examined in this section. By using Eqs. (44b) and (47), the D-WVDP
formula can be re-arranged as follows:

p0 ¼ ½p� þVþpþ� þ A½1�Vþ�F
�
wp

�
pþ; (52)

for facilitating discussion. The first two terms in Eq. (52) are grouped together in square brackets. They are known as a sum of
the contributions from the direct and specularly reflected waves. The third component, which is known as the ground wave
(GW) term, is needed for accurate prediction of near-grazing situations [28].

For non-near-grazing propagation (i.e., jqþj is less than around 85�), the steepest descent path lies away from the surface
wave pole. In this case, the pole has minimal effects on the evaluation of the integral of Eq. (27b). The Dopplerized boundary
loss factor term FðwpÞ becomes negligibly small. This implies that the GW term has an insignificant contribution to the D-
WVDP formula. If a further approximation is made such that M sinqþ/0, then uþzus because Dþ/1. The acoustical
characteristics of the ground can therefore be evaluated at the source frequency. The D-WVDP formula can then be
approximated by

p0 ¼ p� þ cosqþ � bs
cosqþ þ bs

pþ; (53)

and bs ¼ zs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2s � sin2qþ

q
for an ER ground. This approximate solution is analogous to the expression given in Ref. [9]. It is clear

in Eq. (53) that bs ¼ zsns for an LR ground, and bs ¼ �izs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2s � sin2qþ

q
tanðksd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2s � sin2qþ

q
Þ for an HB ground.

Equation (53) has a limited range of applicability owing to the assumption of a small Msinqþ. An improvement was
highlighted by Ochmann [13], who argued that the Dopplerized frequency uþ should be used instead of the source frequency
us. A heuristic modification can simply be obtained by using the “Dopplerized” plane wave reflection coefficient [cf. Eq. (44c)
for the emission time frame and Eq. (28) for the Lorentz frame] in Eq. (53). The resulting formula is essentially the sum of the
direct and specular wave terms, i.e., the first square-bracketed term in Eq. (52).

A further improvement can be identified by using a pseudo-stationary source approach as follows. First, the source fre-
quency is kept constant at uþ instead of us. Second, a retarded-time algorithm [12] is used at each time step for determining
the relative positions of the receiver and the moving source. The source is then “frozen” at the spatial position corresponding
to each time step where uþ is different in each position. Finally, a saddle path integral is set up using this information for the
source/receiver locations to arrive at an approximate solution as [22].

p0 ¼ pA þ ½1�Vþ�FðwþÞpþ; (54a)

where A is approximated as 1 in the GW term for a stationary source. The sum of contributions from the direct and specularly

reflected waves is given by

pA ¼ p� þ cosqþ � bþ
cosqþ þ bþ

pþ: (54b)
For a near-grazing sound propagation, Eq. (54a) is identical to the approximate solution presented by Dragna and Blanc-
Benon [their Eq. (100)] [4]. They demonstrated the adequacy and necessity of using Eq. (54a) for computing the sound fields
owing to a moving source placed above an LR ground. Nevertheless, it is reassuring to show that the same approximate
scheme, as shown in Eq. (54a), can be modified straightforwardly to compute the sound fields above a non-locally reacting
ground.

Generally speaking, Eq. (54a) gives sufficiently accurate solutions for the cases of LR and ER grounds. The difference in the
computational results using Eqs. (52) and (54a) is typically less than 0.5 dB for all time steps with a traversing source and a
host of different ground parameters. For brevity, these comparisons are not shown here. However, this is not precisely the
case when the numerical results for an HB ground are considered.

Fig. 4 shows two sets of comparisons for an ER ground and an HB layered ground. The time histories of the excess
attenuation (EA) are plotted to illustrate the accuracy of the approximate formula [Eq. (54a)] compared with the D-WVDP
formula [Eq. (52)]. To have a clear presentation of these sets of results, the time scale is shown in the lower abscissa for Fig. 4a.
The upper abscissa, which is shifted to the left by 0.2 s, is used for Fig. 4b. The following parameters are used in Fig. 4a. The HB
ground has a layer thickness of 0.5m, source frequency of 400Hz, and source and receiver heights of 0.5 and of 0.2m,
respectively. The respective parameters of 0.12m, 100Hz, 0.6m, and 0.3m are used in Fig. 4b. For all plots in Fig. 4, the same



Fig. 4. Comparisons between time histories of excess attenuation (EA) function of asymptotic solution (dashed lines), approximated solution (dash-dotted lines)
and accurate numerical integration solution (solid lines). ER: extended reaction, and HB: hardback layered ground. The x-coordinates of source and receiver are
both 0 when reception time is 0. (a) M¼ 0.3 and source frequency is 400Hz. The source and receiver heights are set at 0.2 and 0.5m above the ground. The
ground has s0 , q2, and f of 5 kPam s�2, 1.44, and 0.9, respectively. The HB ground has a layer thickness of 0.05m. (b) Same Mach number as (a) but the source
frequency is 100Hz. The source and receiver heights are set differently at 0.3 and 0.6m above the ground. The HB ground has a layer thickness of 0.12m. The
ground parameters are the same as (a) above. Reception time of (b) is shifted left by 0.2 s and uses top abscissa as the scale for reception time.
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source speed (M¼ 0.3) and identical ground parameters (s0 ¼ 5.0 kPa sm�2, q2¼1.252, and f ¼ 0.9) are used in the nu-
merical simulations.

As demonstrated in Ref. [4], the error of using Eq. (54a) is negligibly small for predicting the sound fields above an LR
ground. However, it can be observed from Fig. 4 and b that there are noticeable discrepancies when Eq. (54a) is used to predict
the acoustic pressures above an ER ground, but the error is generally less than 0.5 dB for all time steps. The level of dis-
crepancies becomes more acute at some time steps for an HB layered ground. The maximum discrepancy reaches an order of
about 3 dB at some time steps, although the approximate solution [Eq. (54a)] agrees quite well with the general trend in the
EA predicted by Eq. (52).

It is beneficial to isolate the possible bases of errors in Eq. (54a) when it is used in lieu of Eq. (52). Comparisons of Eqs.
(52) and (54a) make it clear that both equations have identical pA. The source of errors comes solely from the computation of
the GW, the third term in both equations. In fact, the first error is caused by the substitution of the augmented diffraction term
Awith 1 in Eq. (54a). The second error is introduced in FðwpÞ because the effective numerical distance wþ is used to replace
the apparent numerical distance wp in the approximation. By defining these two errors as

E1 ¼20 log10jAj (55a)

and

E2 ¼20 log10
��F�wp

� �
FðwþÞ

��; (55b)

respectively, it is instructive to plot the time histories of E1 (dotted lines) and E2 (dash-dotted lines) in Fig. 5. The corre-
sponding incident angle in the physical frame, qþ, is marked at the top abscissa for ease of reference. Three sets of graphs are
displayed for (a) an HB ground with a layered thickness of 0.05m, (b) an ER ground, and (c) an LR ground. In these graphs, the
same M, zs, z, and ground parameters are chosen for illustration (see the captions for their details). The EA predictions of pA
(dashed lines) and the GW term (solid) are presented in Fig. 6.

To have an obvious error in the approximation calculated with Eq. (54a), two conditions must be met at the same time.
First, the pole must be badly predicted with the approximation, which means E1 or E2 must be at least 1 dB. Second, the
magnitude of the GW component must be comparable to that of pA. These two conditions can be easily met for the HB layered
ground at frequencies between 100 Hz and 500 Hz. However, for the ER and LR grounds, the contribution of the surface wave
component is often too small to influence the total sound fields, although the GW term and A are often poorly approximated.

Validation of the above statements can be found in Figs. 5 and 6. The GW contributions, which are considerably smaller in
magnitude than pA in the region of jqþj<80�, can be ignored when the sound fields are calculated. This is illustrated in their
respective EA time histories shown in Fig. 6. This means that the impacts of E1 and E2 on the calculations of the total fields are
not important, although their absolute values can exceed 3 dB in this near-overhead region. The term A can usually be
approximated as 1 in the region of jqþj>80� for a locally reacting ground and an extended reacting ground. However,



Fig. 5. Predicted time histories of E1 (dashed lines) and E2 (solid lines) for (a) hard-backed ground, (b) extended reaction ground, and (c) locally reacting ground.
Source frequency is 400Hz. M¼ 0.3. Source and receiver heights are set, respectively, at 0.2 and 0.5m above the ground. The x-coordinates of the source and
receiver are both 0 when reception time is 0. The layer thickness of hardback ground is 0.05m. Ground has s0 , q2, and f of 5 kPam s�2, 1.44, and 0.9, respectively.

Fig. 6. Predicted time histories of pA (dashed lines) and the ground wave term (solid lines) for (a) hard-backed ground, (b) extended reaction ground, and (c)
locally reacting ground. The geometry, source speed, Mach number and ground properties are the same as those given in Fig. 5.
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numerous simulations have suggested that a better agreement can be achieved if A is used instead of 1, especially for a
hardback layered ground.

The error E2 deservesmore explanation as it involves calculation of the groundwave contributions. The range of variations
in E2 is greater when it is compared with that of E1. As noted in Ref. [28], the surface wave is a separate component in the GW
term, and it travels parallel and close to the porous ground. Its presence (as long as the surface wave pole is sandwiched
between OP and SDP, see Fig. 2d) can impact the overall sound fields. As shown in Fig. 2aed, the surface waves are not
expected for a source moving above an LR and an ER ground if Eqs. (48a) and (48b) are used to model their acoustical
characteristics. In the absence of the surface wave, the errors caused by the evaluation of GW components are limited. On the
other hand, when the surface wave is present, the error E2 can play a significant role in the prediction of the total fields; see
Fig. 4a and b. As shown in Fig. 5a, a peak is observed in E2 at qþz� 88� for the HB layered ground, but there are no obvious
peaks for the ER and LR grounds (see Fig. 5b and c) because there are no surface wave components in these two types of
ground surfaces.

The magnitude of the GW component is another important factor that influences the total error of the approximation. An
example is shown in Fig. 6 as follows. The contribution of the GW component is in excess of 10 dB higher for the HB layered
ground than those for the ER and LR grounds when the reception time t> 0, i.e., the sound field for a receding source. As a
result, E2 causes a noticeable error in the total sound field when the approximation scheme is used. This is particularly the
case when the reception time is between 0.3 s and 0.4 s; see Fig. 4a for the prediction of HB layered ground. As shown in
Fig. 5b and c, E1 and E2 have large errors for the ER and LR grounds. However, these errors are not important since the
contributions of the GW component are much smaller than pA. Hence, the overall errors in predicting the sound fields for the
ER and LR grounds are usually less than 0.5 dB.

It is also noteworthy that the errors in the total sound fields are dependent on the relative locations of the Dopplerized
poles and SDP paths. There are cases when the errors in approximating the GW components are higher in the approaching
region (i.e., t< 0) than the receding region (t> 0); see Fig. 4b. In general, it is found necessary to use Eq. (52) instead of Eq.
(54a) in calculating the sound fields, especially for the case when the surface wave is present. Indeed, it was demonstrated by
Albert et al. [31,32] for the significance of the surfacewave component when they studied the propagation of sound generated
by a piston shot over a thin layer of snow. Hence, it becomes evident that the use of the D-WVDP equation is particularly
important for the case when the source translates above a snow-covered ground, forest floors and railway ballast.
5. Conclusion

An asymptotic formula, which is referred to as the Dopplerized Weyl-Van der Pol (D-WVDP) formula, was derived for
predicting sound fields from a line sourcemoving at a constant height above non-locally reacting grounds. Although a Lorentz
frame formulation was used in the derivation, the final asymptotic solution was transformed back in the physical frame with
no further approximations. The solutionwas written in emission time geometry where the ground effect was incorporated in
the formulation. The Doppler effect not only affects the source frequency but also impacts the acoustical properties of the
non-locally reacting ground.

In the current study, the Doppler effect on the groundwave termwas elucidated, and the surface wave pole was examined
for an approaching and receding source. The numerical solutions obtained by the D-WVDP formula were compared with the
corresponding numerical solutions calculated by a heuristic approach that assumes a pseudo-stationary source. It was
demonstrated that this heuristic approach yields sufficiently accurate numerical solutions for all time steps in the case of a
locally reacting or an extended reaction ground. The heuristic approach can predict the general trend of the pressure time
histories reasonably well in the case of a hardback layered ground. However, there are regions of disagreement in the pre-
dictions of sound fields between the D-WVDP formula and the heuristic formula. The errors in approximating the Dopp-
lerized surface wave pole are the main “culprit” causing these disagreements (up to 3 dB) in the prediction of the total sound
fields owing to a source moving at a constant speed.
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Appendix A. Modification for a hardback layered ground

The admittance of a hardback layered ground is given by Ref. [21].
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bsðmÞ¼ � izsNs tanðksNsdÞ; (A.1)

where d is the layered thickness, and
Ns ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2s � sin2 m

q
: (A.2)
The corresponding surface wave pole, mp, can be determined by solving the following transcendental function:

cosmp � izpNp tan
�
ksNpd

�¼0 (A.3)

where Np ≡NsðmpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2p � sin2mp

q
. The second term of Eq. (A.3) can be treated as the apparent admittance of the non-locally

reacting surface, bp½≡bsðmpÞ�. A similar iterative scheme, which is described in Sec. 3, can be used to solve for mp and leads to
the computation of bp. The effective admittance of a hardback layered ground is determined explicitly by setting

be ≡ bsðqþÞ¼ � izþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2þ � sin2qþ

q
tan

�
ks

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2þ � sin2qþ

q
d
�
; (A.4)

where zþ and nþ are the respective parameters evaluated at the Doppler frequency uþ.

Appendix B. Time domain equations in rigid-frame porous media for the Hamet and B�erengier model

The time-domain Hamet and B�erengier equations, which are used in section 4, are provided in this section as follows. In
the frequency domain, for an equivalent fluid (or a rigid porous medium) with density r1ðuÞ and bulk modulus K1ðuÞ, the
governing equations are given by

�iuv1 þ Vp1=r1 ¼ 0 (B1a)

and
�iup1 þ K1V,v1 ¼ 0; (B1b)

where v1 ≡ ðu1; v1Þ is the particle velocity vector in the rigid porousmedium, i.e., the extended reaction ground. Using Eq. (48)

and the relation K1 ¼ r0c

2
0 =ðzn2Þ, the complex density and the bulk modulus can be written as

r1 ¼
r0q

2

f

"
1þs0f

��
r0q

2�
�iu

#
(B2a)

and
K1 ¼
r0c

2
0

f



s0=ðr0PrÞ � iu
ns0=ðr0PrÞ � iu

�
: (B2b)
The insertion of Eq. (B2) into Eq. (B1) yields the Hamet and B�erengier equations in the frequency domain:

�iuv1 þ
s0f

r0q2
v1 þ

f

r0q2
Vp1 ¼ 0 ; (B3a)

r c2


s =ðr PrÞ � iu

�

�iup1 þ 0 0

f

0 0
vs0=ðr0PrÞ � iu

V $ v1 ¼0 ; (B3b)
Introducing the auxiliary variable j defined by

j¼ � 1
vs0=ðr0PrÞ � iu

V,v1; (B4)

the Hamet and B�erengier equations in the time domain can then be written as a set of three first-order partial differential

equations:

vv1
vt

þ s0f

r0q2
v1 þ

f

r0q2
Vp1 ¼ 0 ; (B5a)
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vp1
vt

þðv� 1Þs0c20
fPr

jþ r0c
2
0

f
V$v1 ¼ 0 ; (B5b)

and
vj

vt
þ vs0
r0Pr

jþ V,v1 ¼ 0 : (B5c)

�
The time-domain Hamet and Berengier equations are therefore simple to solve in a FDTD approach because they do not
involve convolutions. Contrary to theWilson equations [23,30], a specific numerical method [29] is not required to solve these
equations efficiently in a time-domain approach. Furthermore, the Hamet and B�erengier equations are more general than
those obtained from the Zwikker and Kosten model [2]. Indeed, the present model has the correct low- and high-frequency
limits (isothermal bulk modulus at low frequencies and isentropic bulk modulus at high frequencies), while the Zwikker and
Kostenmodel assumes a constant bulkmodulus. The use of Eq. (B5a)e(B5c) is therefore an interesting compromise to account
for a non-locally reacting ground in the time-domain approach.
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