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A numerical study of sound radiation by isotropic turbulence is carried out by combining turbu-
lence simulation with Lighthill’s acoustic analogy. In the first study we analyze sound generation
by decaying isotropic turbulence obtained both with 64° Direct Numericai Simulation (DNS) and
16% Large Eddy Simulation (LES). Both simulations lead to similar results for acoustic power, in
agreement with the numerical results of Sarkar and Hussaini, but slightly different from theoretical
predictions of Proudman and Lilley. In the second study we analyze sound generation by forced
stationary turbulence, simulated with 128° DNS using a forcing scheme which preserves turbulence
structure. The acoustic power computed from the stationary turbulence is in good agreement with
results obtained for decaying isotropic turbulence. The acoustic spectrum shows that the charac-
teristic frequency of the generated sound is approximately four times the inverse eddy turnover
time. The contributions of different turbulence scales to the generated noise are computed sepa-
rately from filtered velocity fields. For the low Reynolds number turbulence analyzed, the scales
which most contribute to noise generation are 2-3 times smaller than the energy-containing scales
and lie between the energy and dissipation-rate spectral peaks.

1. Introduction

In 1952 Lighthill' published his “acoustic analogy” as a first attempt to predict the noise
generated by turbulence and the theory became the starting point for modern aeroacoustics.
His most fundamental contribution was to show that the nonlinear velocity fluctuations in a
turbulent flow may be considered as quadrupolar sources of noise. The acoustic pressure in
the far field can then be explicitly written as a spatial integral over instantaneous velocity
derivative fuctuations.

Until recently, it was not possible to either measure or simulate the instantaneous velocity
field. Consequently, Lighthill’s theory was applied primarily to predict the mean features
of the generated noise from the mean features of the turbulent field by modeling the source
term. In 1952 Proudman? proposed a model for noise generation by isotropic turbulence,
which has recently been revisited by Lilley.
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Advances in numerical methods and computer technology now make the full simulation
of turbulent flows possible. Currently, one might consider three approaches to numerically
compute the noise generated by turbulence:

e The “direct” method in which full compressible Navier—Stokes equations are solved both
for the turbulence and the surrounding medium at rest. The acoustic pressure is thus
obtained directly, without the use of any analogy. However, the computational effort
is large and simulations are limited, at present, to only the largest scale motions in
relatively simple geometries. Examples include the two-dimensional shear layer,* and the
axisymmetric jet.?

@ The “stochastic” method in which only mean turbulence variables are calculated using
turbulence models. The mean characteristics of the generated sound are then obtained
using Lighthill’s analogy with models for the source term. This method can be applied
to relatively complex Hows and has been used, for example, to predict noise generation
from subsonic and supersonic jets.®” However, the models for source terms require strong
hypotheses limiting the validity of the method.

e In the “hybrid” method the three-dimensional, time-dependent incompressible Navier—
Stokes equations are solved and the instantaneous acoustic pressure is computed from
the instantaneous velocity field using Lighthill’'s analogy. This method can be applied
to more complex flows than the “direct” method while still providing the instantaneous
acoustic pressure in far field. It has been applied to decaying three-dimensional isotropic

turbulence by Béchara® and Sarkar and Hussaini.®

In the present work the hybrid approach is used to study noise generation by a three-
dimensional isotropic turbulence. We apply both Direct Numerical Simulation and Large
Fddy Simulation to compute the decaying isotropic turbulence. More importantly, we de-
velop forced DNS to obtain stationary tsotropic turbulence with realistic structure both in
the dissipation scales and in the integral scales. With stationary turbulence we perform a
proper frequency analysis of the acoustic pressure and study the relative contributions of
different turbulence scales to turbulence generated sound.

We begin in Sec. 2 by summarizing Lighthill’s theory and discussing some important
issues surrounding the proper form of the analogy for applications to an excised box of tur-
bulence. In the third section we analyze sound generation by decaying isotropic turbulence,
computed using Direct Numerical Simulation and Large Eddy Simulation. We compare the
predicted acoustic power with the theories of Proudman and Lilley. However, rapid decay
of the turbulence does not allow for proper frequency analysis. Consequently, in Sec. 4,
we analyze sound generation by stationary isotropic turbulence, computed with forced high
resolution Direct Numerical Simulation. Instantaneous acoustic pressure, acoustic power
and acoustic spectrum are presented and compared with the stochastic models. We end by
analyzing the relative contributions of different turbulence scales to the noise by computing
the acoustic power from spectrally filtered velocity.
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2. Application of Lighthill’s Acoustic Analogy to an Excised Volume of
Turbulence

Lighthill! posed the problem of estimating the sound radiated by a finite region of turbulence
surrounded by a fluid at rest. His fundamental idea was to restructure the Navier—Stokes
equations into a non-homogeneous wave equation:
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where p is the density of the fluid, ¢y the speed of sound in the external medium (assumed
uniform) and Tj; = puju; + (p — c§p)di; -+ 7i; is Lighthill’s stress tensor. THere p is the
pressure and 7;; is the viscous stress tensor, negligible when the Reynolds number of the
flow is sufficiently high and generally ignored in acoustics computations.

If the turbulent Mach number is small (so p ~ constant = gg) and the pressure perturba-
tions are isentropic (so p = cip) Lighthill’s tensor reduces to pousu;.? The right-hand side of
Eq. (2.1) is the acoustic source, indicating that sound is generated by gradients of products
of turbulent velocity fluctuations. The homogeneous wave operator on the left-hand side of
(2.1} describes the propagation of sound from the turbulence sources through the external
fluid.

The acoustic pressure predicted by Lighthill’s equation for a fluid at rest external to the
noise sources confined to a volume V is

Py | 1
pa(x? t) :p(x, t) —Po = % /‘; l:ay?aZj} Edv(y)a (2'2)

where pg is the mean pressure in the fluid at rest, § = x — y and expressions inside the
square brackets are evaluated at the retarded time ¢ — £/co.

If the point x is chosen sufficiently far from the volume of turbulence that both z > D
and z > A (where D ~ V3 and X is the wavelength of the generated sound), Eq. (2.2)

reduces to: ) 3
£0 1[ J Uy
T) = ey dV, 2.3

Pa(X, 1) dncd x Jv [ o2 ] (2.3)

where u; is the velocity component in the direction of x. If, in addition, the turbulence
domain is compact (A < D), the retarded time difference can be ignored.

It is important to recognize that these solutions were established by Lighthill assuming
a finite volume of turbulence surrounded by quiescent fluid. We have shown!® that between
forms (2.2) and (2.3) above, only expression (2.3) is appropriate to compute the noise
generated by a subdomain of turbulence excised from a larger region of turbulent fow.
In fact, if the entire disturbances region is not included, expression (2.2) is dominated by
the flux of mass and momentum across the integration boundaries, where the volume V
cuts through turbulence. These flux terms arise from the presence of spatial derivatives in
(2.2) which transform to non-physical surface integrals by Gauss’s theorem, leading to large
overestimations of acoustic power (by as much as 50 dB).
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For similar reasons, expressions of the acoustic pressure containing vorticity established
by Powell,!! Hardin'? and Mohring!? cannot be applied to an excised volume of turbu-
lence. As a spatial derivative of velocity, vorticity introduces additional non-physical terms
due to the flux across boundaries which produce overestimations of the generated noise
(approximately 20 dB with Powell’s formulation).

In conclusion, although Lighthill’s analogy provides a powerful tool for computing the
noise generated by turbulence, care must be taken when Lighthill’s analogy is applied to
excised volumes of turbulence with boundaries which cut through turbulence fluctuations.

3. Sound Generation by Decaying Isotropic Turbulence

In the absence of production both the turbulence and the acoustic pressure decays with time,
making it difficult to analyze the frequency of the generated sound. Hence, the primary
aim in this section is to compare computed acoustic power using DNS and LES with the
theories of Proudman® and Lilley.?

3.1. Turbulence simulations

To simulate decaying isotropic turbulence we applied both Direct Numerical Simulation and
Large Eddy Simulation, using standard pseudo-spectral algorithms for the incompressible
Navier-Stokes equations in a cube with periodic boundary conditions. The solenoidal ve-
locity components were initialized with Gaussian random numbers conforming to a chosen
energy spectrum, with some rough physical characteristics.

Because DNS resolves all turbulence scales between the box-size (D) and the size of
the mesh (A), the Reynolds number is necessarily low. For the simulation we used a 643
mesh with a Reynolds number based on longitudinal Taylor microscale Ry of 25 at the
beginning of the simulation. The initial turbulent energy spectrum is shown in Fig. 1.
The turbulence loses memory of its initial conditions and approaches experimental grid
turbulence in roughly one initial eddy turnover time 7z, (the longitudinal integral length
scale L divided by a component rms velocity u').

In LES the influence of subgrid scales {scales smaller than A) is modeled. We applied the
model by Chollet and Lesieur,'* where a scale-dependent turbulent viscosity vy (k) is added
t0 the molecular viscosity v in the resolved-scale equations. Because only larger scales are
simulated, LES can produce higher effective Reynolds numbers with lower spatial resolution
than DNS. We used a 16° mesh with the initial Reynolds number i) equal to 360. The
initial energy spectrum and the wavenumber k., separating the resolved scales from subgrid
scales are shown in Fig. 2.

The principal variables for the two simulations are given in Table 1. Details concerning
the simulations can be found in Witkowska.!®

3.2. Acoustics computations

As pointed out in Sec. 2, because the simulated turbulence is within a periodic subvolume of
a theoretically unbounded flow, only expression (2.3) is appropriate to compute the acoustic
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Fig. 1. Initial energy spectrum for decaying DNS (k" = k/2, E* (k") = E(k*)/fooo E{k™)dE").
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Fig. 2, Initial energy spectrum for decaying LES.
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pressure. In the computations presented in this paper we took into account time delay in

the Eq. (2.3), although it turns out that in this case the effect of time delay is minimal.

The acoustic pressure is computed at a point x situated on a line passing through the
center of the cube and perpendicular to one of its sides. The point x is chosen sufficiently
far from the turbulence volume to insure the far field condition (z = 2012 in the DNS and
200D in the LES). With the chosen time step {(cf. Table 1) the time delay difference between




322 A, Witkowske, D. Juvé & J. G. Brasseur

Table 1. The principal variables for the simulations. The first two columns
give initial conditions, At is the time step used in the simulation, n is the
Kolmogorov length scale, kmax is the highest resolved wavenumber after
dealiazing, M = v’ /cp is the turbulence Mach number.

Variable Decaying LES Decaying DINS Stationary DINS

N 163 647 1287
Ry = w2 360 25 20
M 0.014 0.009 0.010
At Aeo 2A /co 4A fep
D/L 7.1 23.2 14.3
komax 6.3 30.5 60.3
Kemas) — 0.6 1.6
Afn — 10 2
1.2E-6 —

1.0E-6
B.0E-7

=
Py 6.0E-7
4 0E-T

20E-7

0.0E+D

Fig. 3. Acoustic pressure calculated from a typical decaying LES (p = pa/{pon'), ¥ == tup/ Lo).

those planes perpendicular to the direction of x is taken into account (every plane for the
LES, every other plane for the decaying DNS, and every fourth plane for the stationary
DNS). The computations were carried out over 50 independent realizations of the initial
velocity field for the LES and 10 independent realizations for the DNS.

In Figs. 3 and 4 we showed typical realizations of acoustic pressure variations with time
from the LES and DNS computations. In all plots acoustic pressure is nondimensionalized
by poui and time by the initial large eddy time scale 7z,. Note that acoustic pressure
decreases rapidly with time due to the decaying nature of the turbulence.
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Fig. 4. Acoustic pressure calculated from a typical decaying DNS (p} = pa/(por'd), £ = tul/Lg).
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Fig. 5. Fluctuating acoustic pressure calculated from the decaying LES of Fig. 3 (p's = P/ {pau’d)).

In Figs. 5 and 6 we plot fluctuating acoustic pressure p,, for the same realizations as
Figs. 3 and 4, where
'
Py = Pa — (pa> (3-4)

and (p,) is the ensemble average acoustic pressure evaluated over the different realizations.
Figures 5 and 6 show that the fluctuating acoustic pressure is strongly nonstationary, making
it difficult to analyze the frequency of the generated sound. To the extent that a frequency
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Fig. 6. Fluctuating acoustic pressure calculated from the decaying DNS of Fig. 4 (s =ph/(por'd)).

analysis of nonstationary signals, such as Figs. 5 and 6, is meaningful, we found that the
peak frequency of the sound is roughly 2-4 times larger than the initial inverse eddy turnover
time TEDI. A more complete analysis of frequency characteristics of the sound is given in
Sec. 4.

The intensity of acoustic pressure is defined as

7 \2
1= W(%(zo> : (3.5)

where (- - ) implies ensemble average. In isotropic turbulence I depends only on the distance
from the volume of turbulence x, and the acoustic power per unit mass is given by:

drrz?

P
poV

I. (3.6)

Proudman? showed from dimensional analysis that P is proportional to M3%w'®/L and he
predicted theoretically the coefficient of proportionality a = P/(M Su/3/L). In Fig. 7 we plot
the ensemble average of @ as a function of time for the LES and DNS calculations. In these
decaying simulations (o) varied between 1.5 and 4, with average and standard deviation
over t* € [1, 6] of 2.5 £ 0.62 for the LES and 2.2 - 0.99 for the DNS. In logarithmic scale
the variations of & during time correspond to maximum =+2 dB, which is reasonably low.
Hence, we can conclude that the dimensional law predicted by Proudman is well satisfied.

The Proudman coefficients obtained with the two simulations are in good agreement and
are also consistent with numerical results obtained by Sarkar and Hussaini,® who calculated
o = 2.6 with a decaying 64° DNS with initial B = 29. The acoustic power generated by



Numerical Study of Noise from Isotropic Turbulence 325

6 — —  OMNS
--------- LEZ
4 —
] u r/ \‘-.‘
o I i i | 1 I ] I H |
1 2 3 4 5 =1
t*

Fig. 7. Ensemble average of the Proudman coefflicient « for the decaying turbulenee simutations (LES and
DNS).

the turbulence does not seem to depend critically on the Reynolds number of the isotropic
turbulence or the type of simulation.

3.3. Comparison with stochastic models

There is no experimental data of noise generation by isotropic turbulence. However, the nu-
merical results can be compared with two related theories for noise generation by isotropic
turbulence developed by Proudman? and Lilley.? Both theories are based on Lighthill’s equa-
tion (2.3) for far-field acoustic pressure. Proudman shows that, because acoustic pressure is
given by the integral of second time derivatives of square velocity, acoustic intensity is given
by the integral of a fourth-order correlation of velocity time derivatives within the turbu-
lence at two points in space and in time. For homogeneous and isotropic turbulence (but
not necessarily stationary) the correlation is a function only of space separation r =y’ —y
xXr,

and time separation T = e

2 2
Ulr, 7, 1) = <[§T(” - <u3>)L [jt( - <u?.;>)] HW) (37)

where (. --) implies ensemble average. Quantities in the first square bracket are evaluated
at the point y at time ¢ and quantities in the second square bracket are evaluated at the
point y -+ r at time ¢ + 7. The critical issue in both theories is to express the fourth-order
correlation U as a function of simpler quantities which can be computed.

In developing his theory Proudman neglects time delay in the correlation U and assumes
that the velocity and its first two time derivatives at two points in space have a normal joint
probability distribution, so that fourth-order moments can be written as products of second-
order moments. Using these two hypotheses, the fluid-motion equations and the properties
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of homogeneous and isotropic turbulence, Proudman writes the coefficient « as a function
of the longitudinal correlation function f(x = 7/L} and its derivatives. From the initial
energy spectra of our LES and DNS decaying turbulence, we calculated the longitudinal
correlation functions f(x) at t* = 0. Proudman’s theory then gives & = 10 for the LES and
o = 13 for the DNS. We checked that the value of o based on Proudman’s model does not
change significantly with time.

Lilley first assumes the turbulence to be quasi-stationary, reducing the correlation
U(r, 7, t) to

& 2 2,2
Ulr, 7) = W([Um]y,t[uw}y+r,t+T — (ug)) - (3.8)

e then assumes a normal joint probability distribution for velocity and, after several trans-
formations, derives a relationship between o and the two-point two-time correlation f{x, 7).
Finally, Lilley assumes independence of time and space variations of f:

flx, 7) = [i0) fo{827), (3.9)

where §) is the characteristic frequency of velocity fluctuations. The independence is some-
what artificial given that length and time scales are correlated in equilibrium turbulence. To
predict o Lilley chooses fi(x) to be Gaussian and f2(§27) to be consistent with the acous-
tic spectrum measured numerically in the isotropic decay DNS of Sarkar and Hussaini.®
By separating f(x, 7), as in (3.9), Lilley shows that « depends on the turbulent Strouhal

number Sp = QL/u' and on the flatness of velocity fluctuations T through the equation
a=18(T—-1)5%. {3.10)

The typical value of T in isotropic turbulence is 3, but we do not know precisely the value of
the Strouhal number for the decaying isotropic turbulence. If we suppose, after Lilley, that
St =1, we get o = 3.6, which appears to be an improvement over Proudman’s prediction
of our numerically measured c. However, o predicted by (3.10) is very sensitive to 5 and if
S is chosen to fit the form of Lilley’s analytical acoustic spectrum to Sarkar and Hussaini’s
numerical spectrum, then Sy = 1.24 and (3.10) yields o = 8.5

3.4. Summary

In summary, existing LES and low-Reynolds number DNS simulations predict the Proud-
man’s constant in the range = 2.2-2.6, whereas Proudman’s theory gives a =~ 10-13. The
difference between the numerical calculation and Proudman’s prediction may be due to the
hypothesis of quasi-normality employed by Proudman for velocity and its first two fime
derivatives. Lilley theory yields o = 3.6 assuming St = 1, but o = 8.5 with Sp = 1.24,
based on numerical results obtained by Sarkar and Hussaini. A difficulty with the Lilley
theory is that it yields a prediction for o very sensitive to the Strouhal number, which is
not known with precision. The sound spectra indicate that the characteristic frequency
of the generated noise is greater than the characteristic frequency of the large eddies
Wi — u" / L.
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4. Sound Generation by Stationary Isotropic Turbulence

Because the absence of turbulence production leads to rapid changes in turbulence char-
acteristics, in this section we study the noise generated by stationary isotropic turbulence
using 128% forced DNS. Using this higher resolution DNS, we also analyze relative contri-
butions of different turbulent scales to noise generation, an important issue which cannot
be studied with decaying isotropic turbulence. '

4.1. Turbulence simulation

Stationary isotropic turbulence was obtained using the pseudo-spectral algorithm designed
for the massively parallel connection machine by Chen and Shan.!® To have the widest pos-
sible range of turbulence length scales (within practical limits) with all scales well resolved,
we developed stationary turbulence at low Reynolds number (R) = 20) on a 128% grid. The
characteristics of the stationary state are given in the last column of Table 1.

To create stationary turbulence, energy must be added to the flow at the rate lost by
dissipation. This is done by forcing the Navier-Stokes equations such that, at each time
step, the rate of energy added by forcing balances the rate of energy lost through friction.
Whereas a number of different forcing schemes may be found in the literature, none is useful
to our study where it is important that the turbulence contain realistic integral as well as
dissipation-scale eddies. Consequently, we developed our own forcing algorithm.

The first requirement of our forcing scheme is to maintain fixed energy and dissipation-
rate spectra close to spectra of fully-developed decaying isotropic turbulence, in a manner
which does the least damage to the turbulence structure so that the relative contributions
to the generation of noise may be studied. Secondly, the forcing scheme must ensure the
continuity of second time derivatives of velocity, which is fundamental to acoustic compu-
tations using Eq. (2.3), To this end we add proportionally the energy lost by dissipation
during each time step to a wide range of large-scale modes, as illustrated in Fig. 8, without
altering the rhases of the forced Fourier modes.

More specifically, after advancing in time by one time step At each Fourier coefficient
ti(k, t + At} of modes in the range [kmin, kmax| is multiplied by a scalar 4, which depends
on the ratio of energy lost by dissipation during the time step (AFE;y) to the total energy
contained in the band {kyin, kmax):

ik, t+ At) = galk, At) for k € [kmin, Fmex) s (4.11)
where
AFEi,
= |14 (4.12)
f E(k)dk
After some numerical experimentation we chose [kmin, kmaz] = [3, 20].

Stationarity was achieved after forcing for about 37;. The nearly stationary energy
and dissipation spectra at time 157z after initiating forcing are shown in Fig. 9 (the to-
tal simulation time is 3077). These are close to the spectra obtained for fully-developed
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Fig. 8. Initial energy spectrum and the range [kmin, kmax] of Fourier modes over which the forcing is applied.

The spectrum is shown normalized by total energy.
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Fig. 9. Energy and Dissipation spectra at ¢ = 157s. (normalized by total energy and dissipation-rate,

respectively).

decaying isotropic turbulence with a similar simulation.!” Similarly, the integral length
scale, Taylor microscale, dissipation rate, velocity derivative skewness and flatness are close
to those obtained from decaying isotropic turbulence simulation. Also, visualizations of 3D
isosurfaces of energy and enstrophy show qualitatively the same structure as that in Yeung

and Brasseur’s simulation.
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We conclude that the forced simulations provide instantaneous velocity fields of isotropic
stationary turbulence with realistic energy-scale and dissipation-scale structure. Eight re-
alizations of stationary isotropic turbulence were simulated for about 30+,

From the time-varying velocity field the instantaneous acoustic pressure far from
the turbulence volume is computed using the form of Lighthill’s analogy given by Eq. (2.3).

4.2. Acoustics computations
4.2.1. Acoustic pressure

The acoustic pressure was computed with expression (2.3) at a distance z = 20D from the
center of the turbulence box for the 8 realizations. The acoustic pressure obtained for a
typical realization is shown in Fig. 10, indicating approximate stationarity.

3E-6 —
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1E-68 —
p; OE+0 —

-1E-6 —

-2E-6 —

"3 E's H I T

Fig. 10. Acoustic pressure (" = t/7r, pi = pa/{pocs)).

4.2.2. Acoustic power

The intensity of a stationary acoustic signal is given by

;_ a—p)’
£9€q

(4.13)

)

where the overbar implies time average. The acoustic power per unit mass of isotropic
turbulence is given by Eq. (3.6). Acoustic intensity, acoustic power and the Proudman
constant a were calculated for each realization and averaged.

We find that the mean value of & computed over 8 independent realizations is 2.1,
consistent with numerical results obtained previously for decaying isotropic turbulence,
both by ourselves (o = 2.1 with a decaying DNS and o — 2.6 with a decaying LES)} and
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Fig. 11. Longitudinal correlation function f{r) computed from DNS.

Sarkar and Hussaini (o = 2.6 with a decaying DNS).# Hence, forcing does not seem to alter
the global acoustic power generated by turbulence. '

To compare our results with Proudman’s model, we computed the correlation function
f(x) for the forced DNS (Fig. 11). Using the numerical form of f(x) and Proudman’s
expression for o, we obtain o = 14. Hence, the difference between the computed value of &
and the value given by Proudman’s model is close to that obtained with decaying isotropic
turbulence.

In order to compare our results to Lilley’s model we attempted to use the numerical
forms of f1(x) and f2(7) [Eq. (3.9)]. However, the prediction of « is very sensitive to fa(7),
making it difficult to obtain o with precision from the numerically computed form of fo(7).
To estimate « from Lilley’s theory, we therefore used the analytical expression proposed by
Lilley for fa(7) and the numerical result of Fig. 11 for f|(x) to obtain:

a=14(T ~ 1)57. (4.14)

If we take 59 = 1, « equals 2.8. ¥ we fit the peak of Lilley’s analytical acoustic spectrum
to the peak of our DNS numerical acoustic spectrum, we obtain S7 = 1.4 and o = 10.8.

4.2.3. Acoustic pressure spectrum

Because the acoustic pressure is stationary, it is appropriate to compute the acoustic fre-
quency spectrum of the far-field sound as the Fourier transform of the acoustic pressure.
The spectrum shown in Fig. 12 is the average over 8 realizations.

We find that the spectrum peaks at an angular frequency four times the inverse
eddy turnover time. To compare the peak frequency of pressure fluctuations with the
peak frequency of velocity fluctuations, we computed the ensemble averaged spectrum of
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Fig. 12. Acoustic pressure spectrum averaged over 8 realizations and normalized by the total acoustic power
(w" = wlLju).

Fig. 13. Velocity fluctuations spectrum averaged over 8 realizations and normalized by the total energy
(W* =wkL/u).

temporal velocity Huctuations for 30 points in the turbulence volume and for & realiza-
tions. We find that the acoustic pressure spectrum peaks at a frequency approximately
12 times higher than the turbulent velocity spectrum (Fig. 13}, suggesting that turbulence
scales below the integral scale contribute significantly to noise generation from isotropic
turbulence.
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4.3. Relative contributions of turbulence scales to noise generation

It is typically assumed that integral-scale motions are primarily responsible for the radiated
noise for fully developed turbulence. Figures 12 and 13, however, suggest a potentially sig-
nificant role for scales below the integral scale. However, the relationship between frequency
and wavenumber spectra in turbulence is not clear.

In this section we attempt to quantify contributions from different turbulence scales
to the noise by filtering the velocity field in Fourier space and computing separately the
acoustic power generated by the filtered fields. For this purpose we used low-pass and
high-pass filters with variable filter cut-off k.. From the filtered velocity fields we computed
separately the fluctuating acoustic pressure pﬁl(x, t) generated by “larger” scales (k < k)
and the fluctuating acoustic pressure p(x, t) generated by “smaller” scales (k > k.). The
vt generated by the entire velocity fleld is given by

total acoustic pressure pi

Pt = pf + ol + 205, (4.15)

where the cross-correlation contribution is

s po 1 [ |PPusul
o (x, t):w%—_]v[ o5 | dV (4.16)

Because Fourier modes across a hard filter cut-off are statistically uncorrelated, and (4.16) is
equivalent to a spatial mean (the effect of time delay is minimal) p¢! is negligible commpared
to p? and p! and

Pt = pl 41, (4.17)
We have numerically verified this conclusion. From the acoustic pressure we deduce the

intensity I' due to the “larger” scales, the intensity I° due to the “smaller” scales and the
cross intensity I*! due to the correlation between smaller and larger scales

CI)
f=2r (4.18)
Poco
where
It — o b yoort (4.19)

This time the correlation 7% is a time mean. Although “smaller” and "larger” scales are
separated in Fourier space by a hard filter cut-off, they are not necessarily well separated
in frequency space, which means that two different scales can generate sound of the same
frequency. Consequently, the correlation 7* is not necessarily small. As illustrated in
Fig. 14 we chose different cut-off wavenumbers k. focusing on the region between energy
and dissipation spectra peaks. In Fig. 15 we compare energy carried by “larger” scales
(k < k) with dissipation carried by “smaller” scales (k < k) as a function of k,. Note
that there are equal amounts of energy and dissipation (about 70%) on either side of the
cut-off when k. = 9. Because the dissipation-rate and enstrophy spectra are the same in
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Fig. 14. The cut-off wavenumber compared with energy and dissipation spectra (t =157¢).
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Fig. 15. Energy carried by “larger” scales fok E{k)dk (in solid line) and dissipation carried by “smaller”
scales ‘]:oD(k)dk (in dashed line) compared with the cut-off k.

homogeneous turbulence, the same statement can be made about the relative content of
energy and entrophy when k, = 9.

For every value of k_ 3 to 5 realizations were calculated for 3077, and the acoustic intensity
was computed as an ensemble average over the realizations. The relative acoustic intensities
generated by “smaller” eddies (I°), by “larger” eddies (I') and the cross intensity (7%} are
shown in Fig. 16 as functions of the filter cut-off wavenumber.
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Fig. 16. Relative intensities: I°/I%", I' /1%t and I°! /J%°%,

From the plot we may draw several conclusions.

Firstly, we observe that the contributions to the far-field noise from wavenumbers smaller
than 5 and wavenumbers larger than 12 are negligible. Secondly, most of the radiated noise
comes from wavenumbers roughly between 6 and 10, between the peaks of the energy and
dissipation spectra (see Fig. 14). These scales carry significant levels of both energy and
dissipation (see Fig. 15). Thirdly, the contribution to 7'°* from the correlation between
acoustic pressure generated by “smaller” scales and “larger” scales is large, especially for
the scales primarily responsible for noise generation (k € [6, 10}}, suggesting that the scales
corresponding to wavenumbers on both sides of the cut-off k., can generate sound at the
same frequency.

We conclude that the primarily scales responsible for noise generation lie between en-
ergy and dissipation-range scales. In the current simulation the primary noise sources are
at scales 2-3 times smaller than the energy-containing scales and 1.5-2 times larger than
the dissipation/vorticity dominated scales. However, because the Reynolds number of the
simulated turbulence is low, the peaks in the energy and dissipation spectra are not well
separated and there is no inertial range. Consequently, it is difficult to know if the interme-
diate scales in the simulation generate noise because they still carry a significant amount
of energy, or because they carry a high level of the vorticity or dissipation. Likely both are
true. .

This calculation is also relevant to the use of LES in acoustic noise computations. The

results of Fig. 16 suggest that a LES must include scales at least 2-3 times smaller ﬁhﬁai_ll_t_h_'g o
integral length scale in order to capture the most productive acoustic sources.: I_t_ is _'p_o_ssibie:, R
therefore, that the decaying LES described in Sec. 2 has an insufficient spatial resolution. .
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However, because the energy spectra of the DNS and the LES are very different it is difficult
to draw categorical conclusions.

5. Conclusions

The simulations described herein suggest that acoustic power generated by isotropic tur-
bulence is proportional to Af%'3 /L, with the coefficient of proportionality « slightly larger
than 2 (@ = 2.2 with decaying DNS, 2.5 with decaying LES and o = 2.1 with forced
DNS). Our stationary, high-resolution DNS indicates that the acoustic pressure spectrum
(Fig. 12) peaks at a frequency four times higher than the inverse eddy turnover time and
over a decade higher than the peak in the velocity frequency spectrum, suggesting that
the dominant acoustic sources are within eddies smaller that the integral-scale. Spectral
filtering of the simulated velocity field indicates that, for the studied low Reynolds number
turbulence, the turbulence scales primarily responsible for the generated noise lie between
the energy and vorticity dominant scales.
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