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A variational multiscale sugbridmodel including an explicit filtering is studied in the framework of an equal-order

finite element formulation for solving compressibleNavier–Stokes equations in entropyvariables.The filtering is here

achieved by considering embedded piecewise polynomials, whose implementation is made easier with the use of

isoparametric and symmetric elements. Ahybrid formulation combining a detached-eddy simulation near thewalls is

also proposed to be able to tackle realistic industrial configurations. The numerical developments are assessed with

the Taylor–Green vortex, by comparison with a reference result provided by direct numerical simulation. Finally,

new findings are reported with the direct noise computation of the LEISA-2 configuration, a three-element high-lift

airfoil as part of the benchmark for airframe noise computation.

Nomenclature

A
i

= Jacobian matrix of Euler flux
A

0
= change of variables matrix

K
ij

= diffusive matrix
k = wave number, m−1

nn = number of nodes (mesh)
Oi = interpolation functions of ith spatial order
p = pressure, Pa
T = temperature, K
T = subgrid-scale tensor
U = conservative variables
u = �u; v; w�, velocity vector and its components, m∕s
V = entropy variables
x = spatial coordinates, m
Δ = mean local length scale (element, filter), m
ν = kinematic viscosity, m2∕s
ρ = mass density, kg∕m3

Ω = volume of the computational domain, m3

Superscripts

uR = resolved velocity field (LES), the velocity being uR�u 0
u 0 = unresolved field
u
∘

= low-wavenumber filtered field (VMS), the resolved field
being u

∘ � u 0 0
uR = mean resolved field, the resolved field being uR � u�
u� = resolved fluctuating field
u 0 0 = high-wave-number filtered field (variational multiscale)

I. Introduction

L ARGE-EDDY simulation (LES) is currently an effective
approach to investigate realistic aeronautical problems such as

the flight envelope limits of an aircraft, frequently characterized by
large regions of separated flows, and the prediction of aerodynamic
noise. The equations to be solved are obtained by applying a spectral
low-pass filter in the space domain to the compressible Navier–
Stokes equation. The smallest turbulent scales are filtered out, and the
effects of these subgrid scales are usually modeled by a turbulent
viscosity. A high additional numerical cost has to be paid, however,
for the simulation of wall-bounded turbulent flows. Detached-eddy
simulation (DES) provides an attractive alternative technique in this
context. The unsteady Reynolds-averaged Navier–Stokes (RANS)
equations are solved near the wall based on a statistical turbulence
model, whereas a formal large-eddy simulation is performed
elsewhere. Various clevermodels have been proposed in the literature
[1]. The most classical formulation is based on the Spalart–Allmaras
statistical model [2] combined with a Smagorinsky model for the
large-eddy simulation, and it is known [3,4] as the delayed detached-
eddy simulation model (DDES).
In parallel with these developments, much progress has beenmade

in LES modeling, in particular by implementing a more explicit
separation of spatial scales. The focus here is on variational
multiscale methods introduced by Hughes et al. [5–7] in the
framework of unstructured meshes and in continuity with the recent
work by Sagaut and Levasseur [8] and Levasseur et al. [9]. Using
the entropy variables, the symmetrized compressible Navier–Stokes
equations are solved by a semidiscrete Galerkin/least-squares
formulation associated with an implicit time-integration. The small
scales are then identified through a variational projection, and the best
results have been obtained by using a hyperviscosity subgrid-scale
model [9]. A squarematrix of size the number of nodesmust, however,
be inverted to compute the filtered field.Amass lumping technique has
been introduced by these authors to reduce the numerical cost.
The properties of the filter are unfortunately deteriorated by this
approximation, in particular when the filter order is increased.
The aim of the present study is to investigate a variational

multiscale (VMS) method for large-eddy simulation including an
explicit filtering for the two-band decomposition, but the view taken
to calculate the filtered field differs from the previous contributions.
The filtering procedure is here based on embedded polynomial
interpolation functions, can be applied to a mere linear element, and
can also be naturally extended to high-order elements. Moreover, a
hybrid formulation is proposed combining the new explicit filtering
and the VMS model on the one hand, and a DDES formulation near
the walls on the other hand, to tackle realistic industrial applications,
as illustrated with the noise of a high-lift aerofoil in this study.
There is a strong motivation for improving the accuracy of the
flow description in this region [10], in particular for aeroacoustic
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applications when wall pressure fluctuations are used as input in an
integral equation.
The paper is organized as follows. The Galerkin least-squares

finite element method and the VMS model are first described in
Sec. II for the entropy variables. In addition, the new procedure to
calculate the filtered fields and the hybrid formulation are presented.
TheTaylor–Greenvortices have been retained to assess the newVMS
model, and LES numerical results are reported in Sec. III. Finally, the
noise of a three-element high-lift airfoil introduced in the framework
of the benchmark for airframe noise computation [11] is considered.
This LEISA-2 problem allows to illustrate the benefits of the new
developments for a realistic simulation in aeronautics but also to
report new findings.

II. Numerical Method

A. Governing Equations in Terms of Entropy Variables

The flow is assumed to be compressible, and air is considered as a
perfect gas in local thermodynamic equilibrium. The fluid is
Newtonian, the bulk viscosity is neglected, and the thermal flux is
provided by Fourier’s law. The Navier–Stokes equation reformulated
in a matrix form reads

U;t �A
i
U;i �

�
K

ij
U;j

�
;i

(1)

whereU � �ρ; ρu; ρet� represents the conservative variables (ρ is the
density, u is the velocity vector, and et is the total energy); A

i
is

the Jacobianmatrix of Eulerian flux in the ith direction; andK
ij
is the

diffusive matrix. The index preceded by a comma denotes a partial
derivative. The conservative formulation (1) is not well suited for
numerical simulations in finite elements. An entropy formulation of
the compressible Navier–Stokes equation is preferred [12,13],
leading to a problem recast into a matrix form involving only
symmetrical and positive definite matrices. By considering the
generalized entropy function defined byH�U� � −ρs, where s is the
entropy, and the change of variables V � �∂H∕∂U�, the Navier–
Stokes equation (1) can be reformulated as [9]

fA
0
V;t � fA

i
V;i �

�fK
ij
V;j

�
;i

(2)

The Jacobian matrix fA
0
� U;V is associated with the change of

variables; the flux vectors are given byfA
i
� A

i
fA

0
and fK

ij
� K

ij
fA

0
;

and the unknown vector is V � �1∕T��h − Ts − kuk2∕2;u;−1�,
where h is the enthalpy, and T is the temperature. The cumbersome
expression of all theses matrices is not repeated here [9,12].

B. Finite Element Algorithm

Equation (2) is solved with a finite element method [14]
implemented in the in-house solver AETHER developed by Dassault
Aviation. A description of the flow solver can be found in Chalot and
Perrier [15]. In what follows, only the main steps of the numerical
algorithm are introduced. The variational formulation is obtained by
multiplying Eq. (2) with weighting functions W chosen in the same
functional space as the unknown vector V, that isZ

Ω
W ⋅

hfA
0
V;t � fA

i
V;i − �fK

ij
V;j�;i

i
dΩ � 0 (3)

where fA
0
V;t � fA

i
V;i − �fK

ij
V;j�;i is defined as the residual part of

Eq. (2), and Ω denotes the volume of the computational domain.
The Galerkin formulation for the compressible Navier–Stokes
equations based on equal-order finite elements require a specific
stabilization procedure [16]; the reader can refer to the review by
Hughes et al. [13] on this topic. To fix this well-identified problem, a
stabilization term is added to the weighting functions. Namely, the
vector W is replaced by W � τL�W�, where L ≡ fA

i
∂∕∂xi −

�fK
ij
∂∕∂xj�;i is associated with the Navier–Stokes operator (see

Eq. (2)), and τ is a characteristic time-scale matrix based on the

eigenvalues of fA
0
,fA

i
, and fK

ij
. Thus, the semidiscreteGalerkin least-

squares formulation of Eq. (2) readsZ
Ω

h
W � τL�W�

i
⋅
hfA

0
V;t � L�V�

i
dΩ � 0 (4)

This stabilization procedure is defined locally through thematrix τ
on each element, corresponding to the addition of an artificial
viscosity to also control flow regions dominated by convection.
Moreover, the streamline upwind Petrov–Galerkin stabilization, in
which the diffusion term is neglected in the weighting functions,
is also implemented in the AETHER solver.
The space discretization is obtained by projecting Eq. (4) on the

space of equal-order interpolation functions. These functions are
noted Na, where a indicates the associated node number. Lagrange
polynomials are used, taking the value 1 at xa and 0 otherwise, that is
Na�xb� � δab, where δab stands for the Kronecker symbol. The
polynomial order of the interpolation functions can be increased, as
illustrated in Fig. 1 for a one-dimensional element, to increase the
numerical order of the space discretization. It must also be observed
that the resolution on triangular elements is of second order for
O1-interpolation functions.
The finite elements considered in this study are isoparametric, that

is the same interpolation or shape functions are used to interpolate the
space coordinates x and the unknown vector V, and they are also
symmetric. The Jacobian matrices involved in metric tensors can be
easily calculated thanks to the two interpolation formulas

V �
Xnn
a

Na�x�Va and x �
Xnn
a

Na�x�xa

where nn is the number of modes. These symmetrical elements have
flat faces and nodes at equal distance from each others. An easier
algorithmic implementation is then obtained because the Jacobian
matrix is shared by all elements. The space differentiation is also
straightforward inside the element. Another property induced by this
formulation, and which will be used for implementing the filtering, is
that a polynomial interpolation function in the reference element
remains polynomial in the real element.

C. Variational Multiscale Approach for Large-Eddy Simulation

Asmentioned in Sec. I, the Navier–Stokes equations are filtered in
space for large-eddy simulation. This leads to the introduction of
additional terms in the governing equations. These subgrid-scale
terms represent the interactionswith themissing scales and need to be
modeled. Among all these terms, the velocity subgrid-scale tensorTu

is dominant [17–19], and consequently only this term is considered

Fig. 1 Interpolation functions O1 on the left and O2 on the right.
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thereafter. IfUR denotes the unknownvector associatedwith resolved
scales (see the sketch of the turbulent kinetic energy E�k� in Fig. 2a,
where km stands for the mesh cutoff wave number), the filtered
Navier–Stokes equations are given by

UR
;t �AR

i
UR

;i �
�
KR

ij
�ν;UR�UR

;j

�
;i
� Tu

The standard closure forTu is provided by the Smagorinskymodel

[17,19]. Dissipation effects are imposed through the introduction of a
turbulent viscosity νt, and the tensor Tu is expressed from the

deviatoric part SD of the strain tensor as

8><
>:
Tu �

�
KR

ij

�
νt;U

R
�
UR

;j

�
;i

νt � �CSΔm�2
������������������������������������
2SD�uR�∶SD�uR�

q (5)

where Δm is a characteristic scale of the element, and the colon
denotes the matrix product. The nominal value of the Smagorinsky
constant is taken to beCS � 0.18, but this turbulencemodel is known
to be very dissipative [19–21]. Several models such as the selective
Smagorinsky model [21,22] and the dynamic Smagorinsky model
[23] have brought improvements by decreasing the value of this
artificial viscosity νt thanks to the local properties of the flow,without
modifying the Laplacian functional form, and thus the large range of
resolved scales affected by the subgrid-scale dissipation [24].
To overcome this difficulty, thevariationalmultiscale approach has

been retained by following the previous studies by Sagaut and
Levasseur [8] and Levasseur et al. [9]. For this purpose, the resolved
velocity fielduR is split into large u

∘
and small u 0 0 scales, as illustrated

in Fig. 2b, where kf is the filter cutoff wave number associated with
the scale separation. An explicit filtering is here implemented to
perform the scale separation; this point is developed in the next
section. The key idea of such a model is to neglect the interactions
between the larger resolved scales and the subgrid scales. Using the
same formalism as in expression (5), the VMS formulation is then
given by 8>>>><

>>>>:

Tu �
�
KR

ij
�νt;U 0 0�U 0 0

;j

�
;i

νt � �CVMSΔm�2
��������������������������������������
2SD�u 0 0�∶SD�u 0 0�

q
CVMSΔm � CSΔf��Δf∕Δm�4∕3 − 1�−3∕4

(6)

where the expression of the coefficient CVMS can be determined by
following the rationale introduced by Lilly [23] with the relevant
range of scales, leading to the last relationship in system (6). The two
length scales Δf and Δm are linked to the filter and the element,
respectively. The mean length scale can be reasonably built on the
cube root of its volume Ωe as Δm � ������

Ωe3
p

. A macro-element of
volume ΩM, defined as the element built on each element sharing a
common node, is also introduced, as illustrated in Fig. 3. The filter
length scale is then computed as Δf �

��������
ΩM3

p
. The use of these two

volumeswithΩe < ΩM allows to ensure that the coefficientCVMS can
always be determined over a given unstructured grid. Moreover, the
VMS model is only active away from the wall where the mesh is
unstructured but almost isotropic, hence the choice made here. The
definition of the length scales Δm and Δf is not unique and is still
discussed [10] in the literature.
Both formulations (5) and (6) are solved for the entropy variables

introduced in the previous section; see Eq. (2). Accordingly, the
general filtering Navier–Stokes equation is given by

fA
0

R
VR

;t � fA
i

R
VR

;i �
�fK

ij

RVR
;j

�
;i
�fTv

where the tensorfTv again involves subgrid-scale terms introduced by

the filtering. The VMS approach (6) for entropy variables reads as

8>>>><
>>>>:

fTv �
�fK

ij

R�νt;V 0 0�V 0 0
;j

�
;i

νt � �CVMSΔm�2
���������������������������������������
2SD�V 0 0�∶SD�V 0 0�

q
V 0 0 � 1

TR

�
TRVR

1 ; u
0 0
1 ; u

0 0
2 ; u

0 0
3 ;−1

�
T

(7)

The nonlinear change of variables leads to a particular expression
of the subgrid terms in the primitive energy equation with respect to
the Smagorinsky model.

D. Explicit Filtering Within Finite Element Method

The splitting of the resolved velocity field uR into a low-wave-
number component u

∘
and its complement u 0 0, as drawn in Fig. 2, is

performed by introducing an explicit filtering procedure within the
finite element method. Motivations for using an explicit filtering in
LES and various numerical issues can be found in reviews [17,19,25],
but the filtering procedure is almost exclusively developed for
structured meshes. Nevertheless, Najafi-Yazdi et al. [26] have recently
proposed the implementationof compact discrete filters on unstructured
two-dimensional grids. In order not to affect too much the efficiency
of the finite element algorithm, the filtering is here achieved by
considering embedded piecewise polynomials. Brazell et al. [27] have
proposed a similar approach to implement the dynamic Smagorinsky
model within the discontinuous Galerkin method. The local solution
determinedwithOi functions (see Fig. 1) is interpolated at a lower order
usingOi−1 polynomials, as illustrated in Fig. 4. For a solution obtained
at order O3, the resolved field uR is described with O2 interpolation
functions and the filtered field u

∘
withO1 interpolation functions.More

a) b)
Fig. 2 Representations of a) classical LES approach, and b) separation of resolved scales for the VMS approach.

Fig. 3 Macro-element ΩM used for the calculation of Δm at xa.
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generally, the filtering order isOf � Om −Oif , whereOm is the order
of theNavier–Stokes simulation, andOif is the order of the interpolation
functions used to calculate the filtered field. A robust numerical
approach is thus obtained,witha reasonable computational cost, and the
increase of the order of the Navier–Stokes simulation is associated with
that of the filtering procedure.

E. Hybrid Variational Multiscale Reynolds-Averaged

Navier–Stokes Formulation

The twoLESmodels provided byEqs. (5) and (6) are implemented
through a DES-like approach [1,28,29] in the solver. The DDES
model of Spalart et al. [4] based on the Spalart–Allmaras (S-A)
turbulencemodel is here solved in the near-wall region of the attached
boundary layer, and a large-eddy simulation is performed elsewhere.
In the original model, the transition between the two zones is driven
by the fd function 8>><

>>:
fd � 1 − tanh��8rd�3�
rd � νt � ν��������������

uRi;ju
R
j;i

q
�κd�2

(8)

whered is the distance to thewall, and κ is thevonKármán constant in
the logarithmic law. The DDES model reduces to the S-A model in
the region where fd → 0, whereas a large-eddy simulation provided
by the DDES model is performed in the region where fd → 1. This
function has been slightly adapted in the present study to introduce
the VMS model, which will replace the DDES model in the region
fd → 1. The modified transition function fc is given by

fc �

8>><
>>:
0 if fd < αi
fd − αi
αs − αi

if fd ∈ �αi; αs�
1 if fd > αs

where the values of the coefficients αs and αi must be taken in the
interval [0, 1], with αs > αi. The numerical values have been set to
αs � 0.9 and αi � 0.5 in this study. In that way, the application of the
S-A model is enforced near the wall, but a full VMS model is applied
before the edge of the boundary layer. This transition function fc is
applied to the turbulent viscosity νt, to the filtered velocity field u 0 0,
and to the gradient of the entropy variables ∂V 0 0∕∂x. The transition has
been chosen linear for an easier implementation.At eachnodexa of the
mesh, the hybrid variables used as input in theVMSformulation (7) are
thus calculated with the following relationships:8>>>>><

>>>>>:

u 0 0jhyb � �1 − fc�uR � fcu
0 0

∂V 0 0

∂x

����
hyb

� �1 − fc�
∂VR

∂x
� fc

∂V 0 0

∂x

νtjhyb � �1 − fc�νDDESt � fcν
VMS
t

(9)

III. Taylor–Green Vortices

The Taylor–Green vortices provide an academic framework to
study dissipation mechanisms involved in LES, as proposed by
Fauconnier [30], among others. The homogeneous flow slowly turns
to be turbulent by reaching a peak of dissipation; a complete
description can be found in Brachet et al. [31]. The DNS solution of
Fauconnier [30] is used as a reference solution here. The present
simulations are performed with the compressible AETHER solver.
This is, however, not an issue with respect to the moderate Mach
number of the simulation, M � u0∕c0 ≤ 0.3. This flow becomes
turbulent for a Reynolds number ReL0

� u0L0ρ0∕μ higher than
500, where L0 defines the size of the box, namely Ω �
2πL0 × 2πL0 × 2πL0. The Reynolds number is chosen to be 1500
and corresponds to the value of the DNS [30]. Accordingly, the
minimal number of points in each direction to correctly solve the
turbulent flow isN � 256, and the time step isΔt � 5 × 10−3 s. Two
structuredmeshesbased onO3 finite element are usedon a sameboxof
length 2π m (i.e.,L0 � 1 m). The first mesh is the DNSmesh used to
compare AETHER DNS results with the numerical results by
Fauconnier [30]. The second mesh is the LES mesh with N � 64
points per direction.
Two quantities aremore particularly examined: the dissipation and

the kinetic energy. They are made dimensionless by the quantities
tc � L0∕u0 for the time t, u20 for the kinetic energy K, and u

2
0∕tc for

the dissipation. The kinetic energy K is calculated in the volume as

K � 1

ρ0Ω

Z
Ω
ρ
u ⋅ u
2

dΩ

whereas the dissipation is defined as ϵT � −∂K∕∂t in the present
case. This total dissipation can be split into three different
contributions. The first component is the resolved dissipation ϵR

determined from the LES-resolved scales

ϵR � 2ν

ρ0Ω

Z
Ω
ρSD�uR�∶SD�uR� dΩ (10)

The second dissipation ϵ 0 0 is associated with the subgrid-scale
model and is computed as

ϵ 0 0�u 0 0� � 2

ρ0Ω

Z
Ω
ρνt�u 0 0�SD�u 0 0�∶SD�u 0 0� dΩ (11)

for the VMS model and ϵ 0 0�uR� for the Smagorinsky model. In an
ideal LES simulation, ϵ 0 0 is the strict complement of ϵR to obtain ϵT .
Unfortunately, stabilization and numerical errors are also introduced.
This last implicit contribution denoted ϵN can be obtained by
considering the balance equation ϵT � ϵR � ϵ 0 0 � ϵN and is expected
to be small for a DNS.
The time evolutions of K and ϵT are plotted in Fig. 5. At the

beginning, turbulent structures consist of large vortices with a weak
dissipation rate. From t � 2, these large structures start to break into
smaller ones, and an energy transfer from larger scales to smaller
scales occurs. The kinetic energy begins to fall, and the dissipation
increases accordingly. Three snapshots of the turbulent flow based on
the λ2 criterion [32] are displayed in Fig. 6. The transition to
turbulence is clearly visible between Figs. 6a and 6b.As expected, the
dissipation is basically imposed by the larger scales of the flow,
reaching a maximum at t � 9, as shown in Fig. 6b. A full energy
cascade is then observed, and the flow motion is finally stopped by
the molecular dissipation effects. It has been checked that ϵT takes
values very close to ϵR, and a good comparison is foundwith theDNS
by Fauconnier [30], as displayed in Fig. 5.
Three LES results are reported here, performed on the LES grid

with the numerical parameters provided in Table 1. Various other
results have been obtained [33] but are not shown here. The turbulent
kinetic energy spectrum is plotted in Fig. 7 for the three models A, C,
and E. The VMS and Smagorinsky models follow the DNS results
up to the mesh cutoff wave number k∕kmax � 64∕254 ≃ 0.25. The
resolution of the low-wave-number components are imposed by the

Fig. 4 Filtering of a quadratic solution uR in solid line using linear
interpolation functions.
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spatial domain size. The VMS model is able to correctly preserve the
energy cascade occurring in the wave-number range k∕kmax ∈
�0.04; 0.6�, without creating energy pile-up near the cutoff wave
number [21]. Moreover, the flow is not fully isotropic, leading to a
spectral slope diverging from the classical −5∕3.
The time evolution of the resolved dissipation ϵR (refer to Eq. (10))

is plotted in Fig. 8 for the three LES. The subgrid-scale dissipation ϵ 0 0
(see Eq. (11)) has been added in dotted lines for VMS models. The
dissipation (A) of the filtered DNS has a lower peak compare to the
full DNS (see Fig. 5b) because smallest structures have been removed
on the LES grid. The Smagorinsky model (C) deviates at t � 5 from
the DNS result and provides the lowest level for the resolved
dissipation. Large structures that generate the energy cascade and
impose the dissipation rate are affected toomuch by the Smagorinsky
model. This interpretation is confirmed by examining the two
quantities ϵR and ϵ 0 0. Both curves have the same shape but are different
in level, which is expected because ϵ 0 0 differs from ϵR only by the
scalar νt, which is also computed from the resolved field. These results
are slightly improved by the dynamic Smagorinsky model.

For completeness, results obtained from two filtering procedures
have been reported. TheVMSmodel (D) is based on aGaussian filter
[9] and succeeds to accurately recover the resolved dissipation. A
global inversion of the filtering matrix leads to a well-resolved
filtered solution, inducing a high numerical cost here because no
mass lumping is performed. TheVMS subgrid-scale dissipation ϵ 0 0 is
100 times lower than thevalue obtainedwith the Smagorinskymodel.
Its dynamics strictly follows the time events of the Taylor–Green
vortices described by Brachet et al. [31] and retrieved by Fauconnier
[30]. The model stands still to zero until t � 7. The vortex flow then
becomes heavily distorted, corresponding to a full turbulent flow and
the activation of the model. The second event occurs around t � 8,
when the flow breakdown begins, up to the dissipation peak at t � 9.

Fig. 6 DNS results at a) t � 2, b) t � 9, and c) t � 15. Vortical structures are shown using the λ2 criterion for the value of 0.4 ×L0∕u0 colored by the
vorticity in the z direction.

Table 1 Captions associated with the different
displayed results

Case Description Symbol

A DNS results of Fauconnier, filtered on the
LES mesh [30]

Solid line

B LES with dynamic Smagorinsky model
(Fourier space) [30]

Diamond

C Present LES, Smagorinsky model,
finite element O3, Eq. (5)

Square

D Present LES, VMS model, finite element O3,
Gaussian filter (order 2), Eq. (7)

Circle

E Present LES, VMS model, finite element O3,
interpolation filtering (order 1), Eq. (7)

Triangle

a) b)
Fig. 5 Time evolution of a) kinetic energy, and b) total dissipation: Fauconnier’s DNS (squares), AETHER’s DNS (circles), and Fauconnier’s DNS
projected on the LES grid (solid line).

Fig. 7 Kinetic energy spectrum at t � 10 for AETHER DNS (squares),

Smagorinsky model (C) (triangles), and VMS model (E) (diamonds).
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The second VMS model (E) is based on the new interpolation
filtering introduced in the previous section and provides satisfying
predictions. The subgrid-scale dissipation is lower than VMS
model D, but much better than other models. The difference between
the two VMS models can be observed with the time evolution of the
dissipation. VMS model D involves a second-order filter, whereas
VMS model E involves a first-order filtering to meet industrial
requirements, with a computational cost 20 times lower. The flatter
evolution obtained with VMS model E is clearly induced by the
simplification of the filtering method. Despite this deteriorated
performance of the filtering, VMSmodel E is retained to evaluate the
near-wall treatment in the next section. The formulation indeed
represents a good compromise between computing efficiency and
accuracy.

IV. Noise of a Three-Element High-Lift Airfoil

The LEISA-2 problem has been introduced by Manoha and Pott-
Pollenske [11] in the framework of the benchmark for airframe noise
computation (BANC), available to the aeroacoustic community [34].
The slat-wing flat system is shown in Fig. 9 with a stowed chord of
C � 300 mm, obtained when the slat and the flat are retracted in
cruise condition. The slat chord isCs � 55.8 mm, and the deflection
angle is 27.834 deg. This high-lift configurationmodel comes from the
original FNGAirbus geometry and corresponds to one of the smallest
models built in the literature for experimental studies. The database
was obtained from measurements performed in two facilities. The
model was firstmounted byDLR,GermanAerospace Center in the F2
closed-section wind tunnel located in ONERA Le Fauga for
aerodynamic investigations, whereas the acoustic measurements were
achieved in the Acoustic Windtunnel Braunschweig (AWB) anechoic
open-jet wind tunnel at DLR Braunschweig. The database includes
particle image velocimetry, laser Doppler velocimetry, and two-point
correlations of the turbulent velocity field as well as wall pressure and
radiated acoustic field spectra for comparison.
An insightful review on airframe noise is provided by Dobrzynski

[35]. The present study focuses on the flow around the slat, identified
as the dominant noise source, and aims at demonstrating that the
VMS model (7) implemented in the hybrid DDES formulation (9) is

able to reproduce the various physical phenomena encountered in
such a configuration. An overview on similar geometries can be
found in the numerical studies by Choudhari and Khorrami [36],
Reuß et al. [37],Deck andLaraufie [38], Terracol et al. [39], andmore
recently Zhang et al. [40]. The laminar boundary layer developing
near the cusp, that is the slat lower trailing edge, gives rise to the shear
layer (1) generated in the slate-cove region, as illustrated in Fig. 10.
Kelvin–Helmholtz instabilities (point 1-a) develop before vortex
pairing and nonlinear interactions produce coherent turbulent
structures. Their impingements on the slat inner part of the suction
side (point 1-c) generate a strong impact noise (point 1-d) and tones
through an aeroacoustic feedback loop. The latter appear to be an
artifact of the model due to its moderate Reynolds number compared
with those of the full scale geometry. Furthermore, this noise
mechanism is significantly affected by the angle of attack and the
freestream Mach number. The turbulent boundary layer develops
along the slat suction side, leading to von Kármán vortices (point 2)
after separation from the slat trailing edge. This wake flow is also
disrupted by the turbulent bursts resulting from the shear-layer
impingement (point 2-a).

A. Numerical Parameters

The two-dimensional LEISA-2 profile displayed in Fig. 9 has been
extruded along the y axis from y � 0 mm to y � 60 mm. Periodic
conditions are applied in the spanwise direction. The size of the
computational domain is expected to contain at least two integral
length scales. This was verified a posteriori in the present simulations.
The inflow conditions [11] are the pressure P0 � 100;136 Pa,

Fig. 8 Resolved (solid line) and subgrid-scale dissipation (dashed line): a) A, B, C, D models; and b) A, D, E models (refer to Table 1). Dissipation ϵ 0 0
multiplied by a factor 100 for VMS (D) and 10 for VMS (E).

Fig. 9 Cross-sectional view of the LEISA2 (F16) high-lift wing. Fig. 10 Expected physical phenomena in the slat region.
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the freestream Mach number M∞ � 0.1804, the temperature T0 �
289.45 K, and the angle of attack α � 6.15 deg. The Reynolds
number based on the stowed chord is Re � Cu∞∕ν ≃ 1.2 × 106,
whereu∞ � M∞ × c0 is the freestream velocity, and c0 is the speed of
sound. The Reynolds number based on the slat chord Cs is, however,
more relevant for the slat region, Res ≃ 2.5 × 105. The developing
boundary layer around the slat leading edge is thus initially laminar.
To keep a reasonablemesh size, the flowaround the slat is privileged

in terms of node density. One of the main goals of the present study is
indeed to demonstrate that the present hybrid model is able to describe
the physical aeroacoustic mechanism involved in the slat cove, which
has been identified as the dominant noise source [36]. The grid in the
transverse direction is regular with a step size ofΔy � 0.5 mm. In the
x and z axes, themesh is fully unstructured. The tetrahedral elements of
order 3, corresponding to a spatial quadratic interpolation, have been
selected. Three areas with distinct mesh sizes have been defined, as
shown in Fig. 11. The first area is designed to have an average length
scale of Δx � Δz � 0.2 mm. The second area following the shear
flow between the slat and the main wing is designed to satisfy an
average length scale of Δx � Δz � 0.15 mm. The third area located
around the trailing edge of the slat lower part, the so-called cusp, has an

average scale of Δx � Δz � 0.1 mm. The resulting grid is made of
nn � 35 × 106 nodes and 26 × 106 elements. Themesh properties are
summarized in Table 2, where the subscript “ref” corresponds to the
area of interest between the slat and the wing,Δxiref is the mean length
scale in a transverseplaneof the ith subareadescribedpreviously,Δyref
is the length scale along the y axis, and Δnmin is the distance of the
closest point from thewall. The time step is taken equal to7.0 × 10−7 s,
corresponding to a Courant-Friedrichs-Lewy (CFL) number of
�U∞ � c0�Δt∕Δm ≃ 2.8 around the slat cusp.
The simulation is performed with the AETHER code and the

hybridVMSmethod (7) including the interpolation filtering, whereas
the near-wall flow is computed with a DDES-like procedure
according to the hybrid formulation (9). A RANS simulation based
on the Spalart–Allmaras turbulence model is first carried out to
initialize the VMS computation. The large-eddy simulation is then
performed during 12.5 convected times C∕u∞ so that the transient
regime leaves the computational domain. The data are then recorded
during 125 ms corresponding to roughly 25 convected times.
Finally, four other large-eddy simulations have been performed,

but they are not directly reported here [33]. All these additional
simulations are based on the selective Smagorinskymodel combined

a) b)

c) d)
Fig. 11 Mesh building steps near the slat region: a) initial mesh, b) isotropic homogenization, c) refinement in the shear layer, and d) refinement near the
slat trailing edge.

Table 2 Properties of the final mesh for the LEISA-2 benchmark

nn × 106 Oi Δx1ref C × 10−4 Δx2ref C × 10−4 Δx3ref C × 10−4 Δyref C × 10−4 Δnmin C × 10−4

35 3 6.66 5.00 3.33 16.66 0.05
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with the DDES approach, except that the turbulent viscosity is based
on the magnitude of the local vorticity through the rotation rate
tensor. The first two are performed on the same grid (see Table 2),
with a spatial orderO2 andO3, and the two others are performedwith
a spatial orderO2 for the interpolation functions, but with a gridmade
of nn � 38 × 106 and nn � 89 × 106 nodes, respectively.

B. Overview of the Turbulent Flow

Thedimensionless turbulent kinetic energykt ��u�2�v�2�w�2�∕
�2u2∞� is plotted in Fig. 12a, where u� denotes the fluctuating velocity
field. The turbulent activity is concentrated along the shear layer, and the
turbulent kinetic energy reaches its maximum around the impact area
with a value kt ≃ 0.06. The recirculating flow that occurs inside of the
slat cavity can also be clearly identified. A schlierenlike view obtained
by computing the norm of the density gradient k∇ρk∕2 is shown in
Fig. 12b to illustrate the turbulent flow development. On the early stage
of the shear layer, the generation of Kelvin–Helmholtz vortices is
observed. These coherent structures are convected until a breakdown
occurs. The view appears to be more blurry, meaning that smaller
structures aregenerated through the energy cascade.These structures are
partly dragged in the cavity recirculation, whereas the main part is
sucked by thewake. Moreover, von Kármán structures can be observed
in the wake.
To illustrate the improvement made by the VMS model, the

longitudinal velocity gradient ∂u∕∂x used as input in the strain tensor
SD for LES models is now examined. The results obtained with the
DDES Smagorinsky model on the same grid are also considered for
comparison. Both fields have been normalized with u∞∕C and are
displayed in Fig. 13. The DDES Smagorinsky model is activated not
only in the whole recirculating turbulent flow but also in the outer

area of the cavity slat, as indicated by the large spots around the
leading edgeof themainwing inFig. 13a.On the contrary, the explicit
filtering introduced by the VMS model (7) to feed the strain tensor,
which finally determines the value taken by the turbulent viscosity,
enables the selection of the thinner resolved structures, as shown in
Fig. 13b. The regions where the viscosity model needs to be applied
are thus better identified.

C. Near-Wall Flow

The computed static pressure distribution is plotted in Fig. 14 and is
compared to the reference measurements (F2-ONERA). The flow is
found to be attached along the slat-wing flat airfoil. The wall pressure
coefficient is well predicted except along the slat extrados, where the
simulation provides overestimated values. This discrepancy, however,
must be put in perspectivewith installation effects. The reference angle
of attack α has been slightly adjusted in the different wind tunnels to
recover the same flow regime.AdditionalRANSsimulations [33] have
shown that the experimentalCp distribution is recovered for a value of
the angle of attackofα ≃ 5.85 deg. The referencevalue ofα is kept for
this study in agreement with the benchmark [11].
The boundary layer presents distinct evolutions around the slat,

with a thicker boundary layer along the extrados; refer to Fig. 13.
Mean wall-normal velocity profiles have been reported in Fig. 15 in
wall units, for three positions along the intrados near the slat cusp in
solid line and three positions along the extrados near the slat trailing
edge in dashed line. The probe positions are provided in Fig. 12a.
Thanks to themeanpressuregradient inducedby the airfoil curvature, a
thinner laminar boundary layer develops along the bottom part of the
slat. The turbulent Reynolds number is about Reτ � uτδ∕ν ≃ 50,
and the turbulent viscosity is never greater than one fourth of the

a) b)
Fig. 12 Representations of a) dimensionless turbulent kinetic energy, and b) instantaneous schlierenlike view (arbitrarily units).

Fig. 13 Representations of a) snapshot of dimensionless ∂uR∕∂xused as input in theDDESSmagorinskymodel, andb) snapshot of dimensionless ∂u 0 0∕∂x
for the VMS model.
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molecular one in this region. On the contrary, a beginning of the
boundary-layer transition occurs on the upper side through the DDES-
VMS hybrid approach. The Reynolds number is aroundReτ ≃ 250 in
this area, and an early stage of logarithmic regionmight be observed in
the velocity profiles. A transition prediction of the boundary layers has
been performed using the code 3C3D developed by Perraud et al. [41]
at ONERA, and both slat boundary layers are found to be laminar.
The behavior of the hybrid model Eq. (9) is illustrated in Fig. 16,

with the transversemeanvelocity profile of the boundary layeruR� at
the slat intrados represented in the solid line. This velocity is
composed of theRANS solution from thewall up to the interfacewith
the VMS-LES region, defined by the transition function fd in dashed
line (refer to Eq. (8)) and of the average of the VMS solution in the
higher part. The production region of the boundary layer is located in
the resolved region of the large-eddy simulation, which ensures a
correct development of the turbulent flow.

D. Velocity Spectra

The turbulence development has been examined from the
trailing edge of the slat cusp inside the cavity; refer to Fig. 12b.

With the effective angle of attack being slightly higher for the
simulation than for experiments, as already discussed with the mean
pressure distribution in the previous section, this misalignment leads
difficulties for the interpretation.Nevertheless, the computed spectrum
of the longitudinal velocity fluctuation is compared with hot-wire
measurements in Fig. 17 for probe 11108-9-2 located near the
impingement. An excellent agreement is found, indicating that the
developing shear layer is well reproduced by the VMS model.
Numerical power spectral densities (PSDs) are calculated with the

periodogram algorithm using 50 blocks without overlap. The time
history of the velocity spectrum along the shear layer is provided in
Fig. 18; the symbols correspond to the probe position along the shear
layer displayed in Fig. 12b. For the first positions near the cusp, the
PSD of the velocity is dominated by a peak associated with Kelvin–
Helmholtz structures. The peak frequency can be estimated from the
relationshipfKH � 0.033um∕δθ, where δθ is themomentum thickness,
and um is the mean velocity of the shear layer. From the properties of
the mean velocity profile in the shear layer [33], one obtains
fKH ≃ 30 kHz. The convective development of the transitional shear
layer is reflected in the decrease of the peak associated with the
momentum thickness growth and by the broadband feature of spectra.
The Reynolds number is, however, not high enough to observe the

Fig. 15 Transversemeanvelocityprofiles:positions1 (triangles, solid line),
2 (circles, solid line), and3 (squares, solid line) along the intrados; positions 1
(triangles, dashed line), 2 (circles, dashed line), and 3 (squares, dashed line)
along the extrados.

Fig. 16 Behavior of the hybrid method near the wall at position 2 at the
slat intrados: transition function fd (dashed line), uR

�
(solid line), and

hybrid mean velocity �u�jhyb (dotted line).

Fig. 17 PSD of the longitudinal fluctuating velocity at probe 11108-9-2:
LES-VMS (squares), and measurements (F2-ONERA).

Fig. 14 Computed wall pressure coefficient around the three-element
airfoil in solid line; symbols stand for experimental data [11].
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−5∕3 slope of isotropic turbulence. Last, no tone is observed in the
present simulation with respect to the selected angle of attack and the
spanwise lengthof the computational domain.Tones couldbegenerated
by resonances in the slat cave. As in a cavity, the physical mechanism
can be interpreted as Rossiter-like modes. The reader can refer to the
study by Terracol et al. [39] for a complete discussion on this topic.

The evolution of the velocity spectra in the slat wake is plotted in
Fig. 19. The first probe, corresponding to square symbols, is located
inside the boundary layer just before the trailing edge, as shown in
Fig. 12b, and the turbulence intensity is weak at this location. Spectra
are marked by several bumps developing along the wake flow. The
fundamental frequency is associated with the vortex shedding
occurring at the slat trailing edge [42,43]. The vonKármán frequency
can be estimated from the Strouhal number St � fsl∕u∞ � 0.2
based on the trailing edge thickness l � 0.25 mm, which yields
fs ≃ 50 kHz. At least the three first harmonics of this frequency can
be observed in velocity spectra. The wake flow appears to be
transitional, in agreement with the moderate Reynolds number based
on the slat chord Res, and is also perturbed by the shear-layer
impingement inside the cove slat, generating turbulent bursts. That
can also be explained by the unusual enlargement of the peaks
mentioned previously. Both flows finally merge near the slat
trailing edge.

E. Radiated Acoustic Field

An overview of the radiated acoustic field is shown in Fig. 20, with
a snapshot of the divergence of the fluctuating velocity. Three distinct
noise components can be observed in the slat region. They are
associated with the vortex shedding at the slat trailing edge, with the
shear-layer impingement inside the slat cove at a lower frequency,
and with the interaction of the slat wake with the main body at a
higher frequency. Moreover, as already mentioned in a previous
section dealing with the static pressure distribution, the flow remains
attached along the three-body system.
Two methods have been used to determine the radiated pressure,

linked to the possibilities offered by the solver. Both approaches are
based on the Curle formulation [44], in which only the fluctuating
wall pressure term is considered as input data; refer to Eq. (12). The
integration is performed over the three surfaces of the high-light
wing. In the first method, the computed wall pressure is stored every
25 time steps, and the PSD of the radiated pressure field is then
determined for an observer located at a distance r � 1 m and an
angle θ � −90 deg, that is below the three-body airfoil. The result is
plotted in dashed line in Fig. 21. In the second method valid for
compact surfaces only, the variation of the retarded time in Curle’s
integral is assumed to be negligible. The lift coefficient CL stored at
each time step by default in the solver can then be used in the integral
formulation to estimate the acoustic far-field spectrum

p 0�x; t� � 1

4πrc0

Z
S

r ⋅ n
r

∂p�y; τ�
∂t

dy ≃
ρ∞U

2
∞

4πrc0

∂CL

∂t
(12)

where r � x − y is the separation vector, n is the outward normal
vector, and τ � t − r∕c0 is the retarded time. The result is drawn in
solid line in the same figure. Both calculations are in agreement in the
low-frequency part, up to 10 kHz, which validates the assumption
acoustically compact surface made in the second method.
Furthermore, with the sample frequency being higher for the
estimation based on the lift coefficient, a hump at 50 kHz can be now

Fig. 19 Evolution of the longitudinal velocity spectrum along the slat
wake (refer to Fig. 12b for symbols).

Fig. 20 Snapshot of the divergence of the fluctuating velocity field ∇ ⋅ u� in per second.

Fig. 18 Evolution of the longitudinal velocity spectrum along the shear
layer (refer to Fig. 12b for symbols).
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recorded, corresponding to a Strouhal number value of St � 0.2
associated with the von Kármán vortex shedding. Measurements
are also reported in Fig. 21, in following the benchmark
recommendations to take account of the variation of the spanwise
length and other installation effects.Microphone number 4, located at
the center of the (ONERA) antenna [34], has been chosen. There is an
overall good agreement between these experimental data and the
numerical predictions, in particular for the numerical results obtained
with the assumption of compact surfaces. The frequency range
0–30 kHz of the experiments does not allow detection of the vortex
shedding. The shedding frequency will be shifted to a lower audible
frequency for a full-scale plane with a longer chord. Tonal peaks are
also present at lower frequencies, about 1 kHz, in both experiments,
especially for the AWB data. As already mentioned, the presence of
such peaks strongly depends on the incidence angle. This is well
illustrated here by the discrepancy between the measurements in the
twowind tunnels F2 andAWB. The emergence of peaks is associated
with the impingement of the shear layer in the slat cove, which is
reinforced for particular values of the angle of attack. The present
numerical simulations appear to be closer to the effective F2
configuration, that is, without dominant tonal noise.
Finally, the directivity of the radiated sound field has been

computed from both large-eddy simulations based on the VMS and
the selective Smagorinsky models. The results are plotted in Fig. 22.

A dipolar pattern can be observed, with a minimum at θ � 180 deg
in the upstream direction and a maximum at θ ≃ −70 deg. The
directivity slightly depends on the presence of the freestreamM∞ and
of the angle of attack α. The numerical estimations obtained with the
selective Smagorinsky model [21] systematically overpredict those
of the VMS model, and thus of the experimental data by referring to
Fig. 21, by a factor of 2–3 dB.

V. Conclusions

In this study, a high-order VMS subgrid model including an
explicit filtering is proposed in the framework of an equal-order finite
element formulation for solving the compressible Navier–Stokes
equation recast for entropy variables. The filtering procedure based
on embedded polynomial interpolation functions appears to be a
good compromise between accuracy and efficiency, and its
implementation is made easier by the use of isoparametrical and
symmetrical elements. ADES-like formulation is also proposed to be
able to investigate realistic flow configurations. The VMSmodel has
been assessed by computing the Taylor–Green vortex, and the
dissipation mechanisms involved in this model have been clearly
identified.
A DES-like formulation is also proposed to be able to investigate

industrial flow configurations. Original numerical results have been
obtained with the study of the LEISA-2 problem, a high-lift system
introduced in the framework of the BANC. From a numerical point of
view, the hybrid VMS model provides good numerical results, by
selecting the right flow areaswhen the explicit filtering is involved. In
addition, the flow resolution near the wall is not significantly
deteriorated. The VMS hybrid model is able to recover the physical
effects occurring inside the slat cavity and predicts good results in
terms of spectral evolution for the turbulent flow and its acoustics.
The evolution of the shear layer inside the cover-slat region is
correctly predicted, as well as vortex pairing leading to a broadband
spectrum near the impingement point, in agreement with
experiments. Despite the uncertainty regarding the angle of attack,
the far-field acoustic spectrum is in good agreement with the F2
experiment. The radiated noise ismainly generated by the shear-layer
impingement inside the slat cavity. Furthermore, the von Kármán
vortex shedding modulated by turbulent structures coming from this
impingement region has also been captured. Finally, a direct noise
computation of this three-element high-lift airfoil has been performed
with an original finite element flow solver.
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