
Statistics of peak overpressure and shock steepness for linear
and nonlinear N-wave propagation in a kinematic turbulence

Petr V. Yuldasheva)

M. V. Lomonosov Moscow State University, Moscow, 119991, Russia

S�ebastien Ollivier
Universit�e de Lyon, Universit�e Lyon 1, LMFA UMR CNRS 5509, Ecully, F-69134, France

Maria M. Karzovab) and Vera A. Khokhlovac)

M. V. Lomonosov Moscow State University, Moscow, 119991, Russia

Philippe Blanc-Benon
Universit�e de Lyon, Ecole Centrale de Lyon, CNRS, LMFA UMR CNRS 5509, Ecully, F-69134, France

(Received 19 May 2017; revised 5 October 2017; accepted 11 November 2017; published online 5
December 2017)

Linear and nonlinear propagation of high amplitude acoustic pulses through a turbulent layer in air

is investigated using a two-dimensional KZK-type (Khokhlov–Zabolotskaya–Kuznetsov) equation.

Initial waves are symmetrical N-waves with shock fronts of finite width. A modified von K�arm�an

spectrum model is used to generate random wind velocity fluctuations associated with the turbu-

lence. Physical parameters in simulations correspond to previous laboratory scale experiments

where N-waves with 1.4 cm wavelength propagated through a turbulence layer with the outer scale

of about 16 cm. Mean value and standard deviation of peak overpressure and shock steepness, as

well as cumulative probabilities to observe amplified peak overpressure and shock steepness, are

analyzed. Nonlinear propagation effects are shown to enhance pressure level in random foci for

moderate initial amplitudes of N-waves thus increasing the probability to observe highly peaked

waveforms. Saturation of the pressure level is observed for stronger nonlinear effects. It is shown

that in the linear propagation regime, the turbulence mainly leads to the smearing of shock fronts,

thus decreasing the probability to observe high values of steepness, whereas nonlinear effects dra-

matically increase the probability to observe steep shocks. VC 2017 Acoustical Society of America.
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I. INTRODUCTION

Nonlinear propagation of high amplitude acoustic waves

through inhomogeneous media is an important problem for

modern theoretical and applied acoustics.1 Most research

activity on high amplitude wave propagation in turbulent

atmosphere was motivated by the sonic boom problem.2–6

Sonic booms are generated during supersonic passage of an

aircraft through the atmosphere.7 The sonic booms heard on

the ground are perceived by people as highly annoying

noise.8–10 This annoyance presents a major obstacle that pro-

hibits overland supersonic flights. Perception studies suggest

that both the perceived loudness and the annoyance of the

sonic boom tend to increase with the increase of its peak

overpressure and decrease of the shock rise time.11 The rise

time is classically defined as the time required for the acous-

tic pressure to increase from 10% to 90% of the peak over-

pressure [see Fig. 1(a)]. For N-shaped sonic booms, typical

peak overpressure and rise time values at the ground are

50–100 Pa and 1–5 ms, respectively.6

Although the sonic boom problem has been extensively

explored since the early 1960s, recent efforts to develop

small supersonic business jets (SSBJ) and low boom airplane

concepts spurred interest in this research.12–14 Due to advan-

ces in computational fluid dynamics, considerable progress

has been achieved in predicting of the near-field and mid-

field sonic booms.15 However, certain effects related to the

propagation of shock booms in unsteady atmosphere are still

needed to be investigated. Note that SSBJ are designed to

generate “low-boom” signatures, which are supposed to be

quieter than classical N-waves.8 However, it is still reason-

able to use classical N-waves to investigate atmospheric

propagation effects on acoustic shock waves since the results

are simpler for interpretation and can be generalized to other

cases with different wave signatures.

While propagating in the atmosphere from flight altitude

(typically 10 km) toward the ground, a sonic boom wave is

affected by numerous physical processes such as geometrical

wavefront spreading, refraction, scattering, thermoviscous

absorption, molecular relaxation, and nonlinear propagation

effects. Appearance of classical N-shaped waves in a far-field

is attributed to nonlinear effects.3 In a quite atmosphere, the

balance between molecular relaxation and nonlinear effects
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results in sonic booms rise times on the order of one millisec-

ond.16,17 When an N-wave enters the lowest part of the atmo-

sphere spanning the first 1–2 km above the ground [Planetary

Boundary Layer (PBL)], its propagation can be affected by

the turbulence. Variability of sonic boom signatures in terms

of their shape, peak overpressure, and shock front rise time

was reported since the earliest flight tests.2,18–20 The rise times

in the turbulent atmosphere were reported to be much larger

than those predicted by the relaxation theory.21

It is now generally accepted that wind velocity turbulent

fluctuations and sound speed thermal inhomogeneities in the

PBL are the main factors which cause random distortions of

the sonic boom signatures.5 Several early analytical theories

attempted to explain the large variability of the rise time and

the peak overpressure in terms of basic physical principles,

such as refraction, scattering, diffraction on turbulence inho-

mogeneities, formation of random caustics, and wavefront

folding.22–25 For example, Pierce and Maglieri26 argued that

acoustic wave refraction on the sound speed or wind inho-

mogeneities in a boundary layer produces the wavefront rip-

pling with different spatial scales.26 The rippling with large

spatial scales leads to wavefront folding at caustics and the

appearance of spikes via a “refraction-focusing-diffraction”

mechanism.23 At the same time, small scale ripples are

responsible for wavefront folding which occurs repeatedly as

the wavefront propagates through the turbulent layer. The

resulting shock front thus can be considered as a tightly

packed bundle of multiple separate microshocks, which

effectively looks like a shock with increased rise time. On

the other hand, nonlinear propagation effects tend to steepen

the diffused shocks, thus acting in the opposite way as the

turbulence does. A question remains: does the turbulence

always result in shock front smearing or do sharper shocks

occur due to nonlinear effects, particularly in random foci?

Although several efforts have been made to clarify this ques-

tion, no definitive answer has been given yet.27–31

In order to better understand different aspects of nonlin-

ear pulse propagation in the turbulence, several laboratory

scale experiments were performed.27,32–34 The main advan-

tage of such experiments is that both the source of shock

waves and the turbulence can be well controlled. In these

experiments, the pulse wavelength and characteristic scales of

the turbulence were downscaled by a factor between 1000 and

10 000. N-waves were usually produced by electrical sparks

and turbulent field was generated either by jets27,32,33 or by

hot air convection.32,34 Typical waveform distortions and

peak overpressure statistics were shown to be similar to that

observed for sonic booms. However, experimental results on

the rise time statistics were not studied in detail. The limited

bandwidth of the microphones (Br€uel & Kjær 4138) did not

permit the measurement of rise time values smaller than

2.5 ls. However, using custom made microphones or optical

methods, it was observed that the rise time can be significantly

shorter, in the range of [0.2, 2] ls.27,35–37 Large rise times of

distorted waveforms (up to tens of microseconds) thus were

measured correctly, while the shortest rise times were overes-

timated.32–34 Since the shock was not accurately measured in

laboratory-scale experiments, the detailed analysis of turbu-

lence effects on the shock structure must be done on the basis

of numerical simulations.

The goal of this paper is to study statistics of the most

important parameters of N-waves propagating through a

turbulent layer using numerical simulations. A nonlinear

parabolic two-dimensional (2D) KZK-type (Khokhlov–

Zabolotskaya–Kuznetsov) evolution equation is used in a

numerical model.38,39 Homogeneous isotropic incompress-

ible turbulence with modified von K�arm�an spectrum is

chosen to set inhomogeneous distributions of the refraction

index associated with wind velocity fluctuations. Physical

parameters of the model are chosen to represent laboratory

scale experiments.33,34 An alternative method to analyze

waveform signatures is used. Instead of the classical rise

time definition (from 10% to 90% of the peak overpres-

sure), the shock front steepness is defined as a more appro-

priate parameter to characterize the shock front structure

of distorted waveforms.39 The interplay between diffrac-

tion on random inhomogeneities and nonlinear propagation

effects is investigated. Cumulative probabilities, mean

value, and standard deviation of the peak overpressure and

the shock front steepness are analyzed.

The paper is organized as follows. The theoretical model

based on the KZK-type equation combined with the model of

random velocity field is described in Sec. II. The definition of

the shock steepness and the numerical algorithm used in sim-

ulations are presented in Sec. III. The effects of the intensity

of turbulent fluctuations and nonlinearity on N-wave statistics

are presented in Sec. IV. Concluding remarks are given in

Sec. V.

II. THEORETICAL MODEL

A. Sound propagation

Numerical experiments based on different models were

extensively used to study the problem of wave propagation

in random media. Ray tracing methods predicted multiple

FIG. 1. (a) N-wave pressure signature with classical definition of shock rise

time ssh and (b) sketch of the propagation problem considered in the current

paper.
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focusing and formation of caustics at sufficiently long propa-

gation distances.40–42 The distance where the probability of

the appearance of caustics reaches a maximum was deter-

mined in ray tracing simulations and calculated analyti-

cally.43 However, ray tracing theories poorly predict the

acoustic field near caustics since diffraction effects are not

included. Other approaches based on a modified KZK equa-

tion or extensions of the Westervelt equation were more suc-

cessful.28,38,39,44–48 Among different physical effects, these

models incorporate diffraction and are not expensive from

the computational point of view if one compares them with

full-wave propagation models.15,49,50 The KZK-type equa-

tion was used to simulate the laboratory scale experiment

with turbulence produced by a jet.39 Simulations differ from

experiments on several aspects: the model was implemented

in 2D geometry and the initial N-wave had a plane wavefront,

while in the experiment the spark source produces spherical

N-waves which propagate through a three-dimensional turbu-

lence. Despite these differences, simulations qualitatively

and quantitatively agree with experimental results showing

similar wave distortions and peak overpressure statistics.

As previously done in Ref. 39, N-wave propagation

through the turbulence is simulated here using the 2D KZK-

type parabolic equation

@2p

@s@z
¼ c0

2
D?pþ b

2q0c3
0

@2p2

@s2
þ d

2c3
0

@3p

@s3
þ l

c0

@2p

@s2
: (1)

Here p is the acoustic pressure, z is the longitudinal spatial

coordinate, x is the transversal spatial coordinate [Fig. 1(b)],

s ¼ t� z=c0 is the retarded time, t is time, D?p ¼ @2p=@x2

is the transversal Laplacian in the case of 2D geometry; q0,

c0, b, and d are the density, ambient sound speed, nonlinear-

ity coefficient, and absorption coefficient of the medium,

respectively. Values of the physical parameters in Eq. (1) are

chosen to represent air conditions of earlier experiments33,34

at 20 �C temperature with 40% humidity: q0 ¼ 1:18 kg=m3;
c0 ¼ 344 m=s; b ¼ 1:2; d ¼ 38 mm2=s.

Equation (1) takes into account diffraction (the first

term on the right hand side of the equation), nonlinearity

(the second term), and thermoviscous absorption (the third

term). The equation also includes refractive distortions of

the wavefront produced by sound speed or wind velocity

inhomogeneities (the fourth term). The refraction index that

corresponds to these inhomogeneities is defined as

l ¼ Dcþ uz

c0

; (2)

where the sound speed Dcðx; zÞ describes scalar-type inhomo-

geneities (for example, thermal), and the function uzðx; zÞ is

the z-component of the wind velocity vector field u ¼ ðux; uzÞ.
The transversal component uxðx; zÞ of the velocity vector is

neglected since its effect on the acoustic field was shown to be

weak in comparison with effect of the longitudinal compo-

nent.39 The model is applicable in the case of smooth velocity

inhomogeneities with small Mach numbers uz=c0 � 1, which

primarily results in scattering angles in the forward direction

up to 20� off the axis.

Note also that for realistic modeling of shock wave

propagation in air, the vibrational relaxation of molecular

nitrogen and oxygen must be taken into account since relaxa-

tion effects results in different structure of the shock front

depending on its amplitude.51 However, as this paper is

mostly focused on the effects of diffraction on random inho-

mogeneities in combination with nonlinear propagation,

relaxation effects are not added to the model.

B. Turbulence

In this study, only wind velocity fluctuations are included

in the model (kinematic turbulence), whereas sound speed

inhomogeneities Dc are set to zero. Randomly inhomogeneous

medium is considered as a static refraction index field (“frozen”

turbulence). It is assumed therefore that the travel time of the

acoustic wave through the inhomogeneity layer is much smaller

than the characteristic evolution time of the turbulence. This

assumption is valid since the sound speed in air is about 340 m/

s, while wind velocity in the atmospheric boundary layer and in

laboratory experiments is on the order of 10 m/s.33,52

Random realizations of homogeneous incompressible iso-

tropic turbulence are synthesized using a modified von

K�arm�an spectrum.52 This spectrum in the inertial region

satisfies Kolmogorov’s “five-thirds” power law53 and allows

the modelling of multi-scale effects of the turbulence on acous-

tic wave propagation. Although this model is an idealized rep-

resentation of the real turbulence, it was widely used in many

theoretical studies and numerical simulations of acoustic and

electromagnetic wave propagation through turbulent

media.28,43,53,54 Note also that the von K�arm�an spectrum of the

homogeneous isotropic turbulence model fits the turbulence

spectra measured in the laboratory-scale experiments.33,34 A

summary of the modified von K�arm�an model is given below.

To describe the homogeneous isotropic turbulence, a

spectral tensor UijðK1;K2Þ is introduced.52 Here the indices i
and j take values of 1 or 2, which correspond to the velocity

components ux or uz, respectively. The spectral tensor

UijðK1;K2Þ is a Fourier transform of the two point correla-

tion function Rijð~rÞ ¼ huið~r0Þujð~r0 þ~rÞi of the ith and jth
components of the velocity vector fluctuations; ~r0 and ~r are

arbitrary radius-vectors and brackets hi indicate the ensem-

ble average. For the incompressible flow, the spectral tensor

can be expressed via the kinetic energy spectrum E(K) as52

Uij K1;K2ð Þ ¼ E Kð Þ
pK

dij �
KiKj

K2

� �
: (3)

Here K1 and K2 are turbulence wavenumbers that correspond

to the x and z coordinates, K ¼ j~K j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

1 þ K2
2

p
, and dij is

the Kronecker symbol. The modified von K�arm�an energy

spectrum of the turbulence is defined as55

E Kð Þ ¼ 5

3

11

6

hl2i
L

5=3
0

K3 exp �K2=K2
m

� �
K2 þ K2

0

� �17=6
: (4)

Here the spectrum is written in terms of the refraction index

l, in which turbulent fluctuations intensity is referred to as

lrms ¼
ffiffiffiffiffiffiffiffiffi
hl2i

p
¼

ffiffiffiffiffiffiffiffiffi
hu2

z i
p

=c0. The spectrum in Eq. (4) has two
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scaling parameters: K0 ¼ 1=L0 and Km ¼ 5:92=l0. The

parameter L0 is the “outer scale” that characterizes the size

of the largest inhomogeneities; the parameter l0 is the “inner

scale” that characterizes the smallest scales, where the

energy of turbulent fluctuations dissipates due to viscous

forces.

The values of the scaling parameters are set to match

typical conditions of laboratory-scale experiments: L0

¼ 160 mm and l0 ¼ 5 mm.27,32–34 The refraction index fluc-

tuation intensity varied between lrms ¼ 0:25% and lrms

¼ 2%, which also covers the typical range of this parameter

measured in laboratory-scale experiments.

In addition to the energy spectrum E(K), one-dimensional

spectra representing distribution of fluctuations intensity over

spatial wavenumbers K1 or K2 separately were introduced.52

The longitudinal spectrum of the uz component as a function

of the wavenumber K2, and the transversal spectrum as a func-

tion of the wavenumber K1 are defined by Eqs. (5) and (6),

respectively,

E 1ð Þ
22 K2ð Þ ¼

ð1
�1

E Kð Þ
pK

1� K2
2

K2

� �
dK1; (5)

E 2ð Þ
22 K1ð Þ ¼

ð1
�1

E Kð Þ
pK

1� K2
2

K2

� �
dK2: (6)

Note that even in the case of an isotropic homogenous

turbulence, the spectral tensor UijðK1;K2Þ of a single compo-

nent, for example uz, is anisotropic. Therefore, longitudinal

[Eq. (5)] and transversal [Eq. (6)], one-dimensional spectra

are different. The two points correlation function Rijð~rÞ is

also anisotropic, and can be represented as a combination of

longitudinal f(r) and transversal g(r) functions

Rij ~rð Þ ¼ f � gð Þ rirj

r2
þ gdij: (7)

The longitudinal f(r) and transversal g(r) correlation func-

tions are not independent and are related by the following

equation in 2D geometry:52

g rð Þ ¼ @

@r
rfð Þ: (8)

Following the method of random Fourier modes

described in Ref. 28, the inhomogeneous velocity field is

generated by summing 8000 randomly oriented spatial

Fourier modes. Wavenumbers of Fourier modes are distrib-

uted between Kmin ¼ 0:02 m�1 and Kmax ¼ 4000 m�1 in log-

arithmical scale. The quality of generated turbulent fields is

verified by calculating correlation functions and spatial spec-

tra over large refraction index realizations (20 m by 20 m).

There is a good agreement between theoretical correlation

functions [Fig. 2(a), solid curves] and corresponding func-

tions obtained from a random realization [Fig. 2(a), dashed

curves]. It is seen [Fig. 2(a)] that the transversal correlation

function is narrower than the longitudinal one. This means

that inhomogeneities of the uz velocity component are elon-

gated along the z axis. Anisotropy of a single velocity com-

ponent is explained by the fact that the fluid particles move

more easily in the direction of a local disturbance than trans-

verse to it. The same anisotropy is seen on the one-

dimensional spectra [Fig. 2(b)]. The transversal spectrum

has higher amplitudes in the inertial wavenumbers range of

K0 < K1;2 < Km, but lower amplitudes if K1;2 < K0 in com-

parison with the longitudinal spectrum.

III. NUMERICAL ALGORITHM

A. Numerical method

The KZK-type equation [Eq. (1)] is solved following

the method of fractional steps with the operator splitting pro-

cedure of the second order.56 Effects of diffraction, absorp-

tion, nonlinearity, and inhomogeneities are described by

differential operators that are solved successively using dif-

ferent numerical schemes for each step along the propaga-

tion coordinate. Both time-domain and frequency-domain

representations of the acoustic field are used to efficiently

implement the method with these split operators. Transitions

between the time and frequency domains are performed

using fast Fourier transform (FFT) routines implemented in

the FFTW library.57

The parabolic diffraction operator is calculated in the

time domain using the Crank–Nikolson scheme.58 The longi-

tudinal transport of acoustic waveforms due to sound speed

inhomogeneities is taken into account using the exact solu-

tion in the frequency domain in order to avoid dispersion

and absorption associated with time-domain schemes for the

transport equation. The absorption term is also calculated in

the frequency domain using exact solutions for each har-

monic. A conservative Godunov-type time domain algorithm

is used to calculate the nonlinear term of the equation.59

This allowed capturing accurately the evolution of nonlinear

acoustic pulses using a small number of grid points at the

shocks. All algorithms except the Crank–Nikolson scheme

are implemented in parallel using OpenMP software

technology.

The spatial grid steps (Dz ¼ 1 mm and Dx ¼ 0:4 mm)

are chosen according to the turbulence characteristic scales

and the wavelength k ¼ 13:8 mm of the initial N-wave

FIG. 2. (a) Longitudinal, f(z), and transversal, g(x), correlation functions of

the turbulence for the modified von K�arm�an spectrum model: exact func-

tions (solid curves), and computed by averaging over a 20� 20 m2 synthe-

sized refraction index field lðx; zÞ (dashed curves). Parameters of the

spectrum are: L0 ¼ 160 mm, l0 ¼ 5 mm, and lrms ¼ 1%. (b) Corresponding

longitudinal (dashed-dotted curves) and transversal (dotted curves) one-

dimensional spectra.
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measured as the distance between the front and rear shocks.

The propagation distance is zmax ¼ 6 m (440 k) in linear sim-

ulations and zmax ¼ 4:5 m (330 k) in nonlinear simulations.

The transversal size of the computation domain is 19:2 m

(1390 k). The temporal grid step is 0:04 ls, which is suffi-

cient to model the fine structure of shocks. For example, in

the case of an initial N-wave with peak overpressure

p0 ¼ 400 Pa, the rise time is ssh ¼ 0:40 ls. With the given

temporal grid step there are at least ten grid points per shock

front, and the number of grid points per initial N-wave is

1000. The time window is 1280 ls long, comprising 32 000

grid points, and the middle of the N-wave is located at

t0 ¼ 300 ls after the beginning of the time window provid-

ing zero-padded intervals of 280 ls and 960 ls before and

after the initial N-wave waveform, respectively. These large

temporal margins are necessary since refraction on random

inhomogeneities leads to large fluctuations of arrival time

and increase of the waveform duration.

B. Initial pressure waveform and boundary condition

A plane wave with a symmetric N-wave pressure profile

is set as a boundary condition to Eq. (1) (Fig. 1). The nega-

tive and positive peak pressures of the wave have the same

magnitude, and the front and rear shocks have the same struc-

ture. The initial duration of 40 ls corresponds to the

laboratory-scale experiments.33 Such waveform represents

classical sonic booms in the far-field when entering the PBL3

and is well reproducible in experiments with spark sour-

ces.35,36 Note also that, despite the sonic boom community is

now paying more attention to “low-boom” signatures,14 sym-

metric N-waves are used here since experimental data are

available, and because waveforms distorted by turbulence are

“easier” to interpret. However, the effects of turbulence are

expected to be similar for both types of the waveforms.

The rise time of finite amplitude waves is determined by

a balance between thermoviscous absorption and nonlinear

propagation effects.60 For example, a stationary solution for

a unipolar plane shock wave in a thermoviscous fluid is

described by hyperbolic tangent function known as the

Taylor shock. The classical 10%–90% rise time of the

Taylor shock is inversely proportional to the peak

overpressure

�ssh ¼
4:4dq0

bpmax

¼ C

pmax

; (9)

where the constant C for the chosen air parameters is equal

to 166 Pa: ls. However, in the case of N-wave propagating in

the quiescent air, better fit with simulation data is found with

the value C ¼ 150 Pa: ls. Thereby, the rise time of the initial

N-wave is set according to the equation �ssh ¼ C=p0 where p0

is the initial peak overpressure, and C ¼ 150 Pa: ls. In non-

linear simulations, the peak overpressure p0 is varied in the

range between 50 and 400 Pa in order to investigate nonlin-

ear effects of different strengths. In linear simulations, the

initial waveform corresponds to the nonlinear propagation

case with initial peak overpressure p0 ¼ 200 Pa and rise

time �ssh ¼ 0:75 ls.

Rigid wall boundary conditions are set in the transverse

direction. One-meter large buffer zones adjacent to the

boundaries permit to minimize reflections from edges of the

computational domain. In these buffer zones the refraction

index is smoothly attenuated from its normal value to zero.

Thus, at the edges of the computational domain, the wave is

almost plane and it propagates parallel to the boundaries.

C. Statistical analysis method

For each particular combination of the model parame-

ters, numerical simulations are run over four random realiza-

tions of the refraction index in order to increase statistical

sampling. Buffer zones of each realization are discarded.

Then four realizations with resulting transversal width of

17:2 m (1246k) are combined to one realization with equiva-

lent width of 68:8 m (4985k) in order to perform statistical

analysis. The ergodicity hypothesis is assumed when statisti-

cal data along transversal coordinate at each propagation dis-

tance are collected. According to this hypothesis, the spatial

averaging over one sufficiently long realization is equivalent

to the averaging over many realizations at a single location

(ensemble averaging). The ergodicity of the acoustic field in

simulations originates from the ergodicity of the refraction

index field and the fact that the wavefront of the incident

wave is plane. Probability distributions of different wave-

form parameters are acquired at each propagation distance

and used to calculate mean values, standard deviations, and

cumulative probabilities. It is checked that in each particular

case, the four different realizations mentioned above resulted

in similar statistical distributions.

D. Definitions of the waveform parameters

The peak overpressure and the rise time are the main

parameters used here to characterize wave signatures. The

peak overpressure pmax is defined as the maximum peak pos-

itive overpressure of the waveform. The classical 10%–90%

rise time is clearly defined and can be easily calculated for

waveforms close to an N-wave (Fig. 1). On the contrary, it is

much more intricate to evaluate in this way the rise time of

the distorted waveforms. For example, such evaluation gives

largely overestimated values in the case of significantly dis-

torted waveform. An alternative method based on evaluating

the time derivative of the pressure waveform is used here.33

With this method, the steepest shock front of any waveform

is automatically selected and a more meaningful rise time

value is returned.

To illustrate various definitions of the rise time, an exam-

ple of a waveform distorted during propagation through turbu-

lence is given in Fig. 3(a). A segment of the waveform in the

time interval between s ¼ 253 ls and s ¼ 273 ls is magnified

in Fig. 3(b). In this particular example, two shocks are identi-

fied. The first shock is located at the time s ¼ 255 ls and the

second is around s ¼ 270 ls. Following the classical definition

of the rise time, times t1 and t2 defined by pðt1Þ ¼ 0:1pmax and

pðt2Þ ¼ 0:9pmax are calculated and marked in Fig. 3(b) by

triangle markers and solid vertical lines. Thus, the classical

rise time in this particular case is equal to t2 � t1 ¼ 15:4 ls,
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which is very large in comparison with the apparent 1 ls rise

time of the first shock.

Following the alternative definition of the rise time based

on the waveform derivative,33 the first derivative of the wave-

form segment shown in Fig. 3(b) is calculated and is pre-

sented in Fig. 3(c). The two highest local maxima on the

graph correspond to the two shock fronts. At the first step of

the rise time evaluation, the highest (global) maximum of the

first derivative dmax is found. This maximum corresponds to

the steepest part of the waveform and thus automatically indi-

cates the strongest shock, which is the first shock in the given

example. Then the rise time is evaluated as the interval

between the times on both sides of the maximum for which

the level is 0:386dmax. These two time points are marked in

Fig. 3(b) and Fig. 3(c) as t3 and t4 (filled circle markers,

dashed vertical lines). The threshold value 0:386dmax is cho-

sen such as the rise time estimated from the derivative fits

the classical 10%–90% definition in the case of a classical N-

wave in quiescent air.33 The resulting rise time in this exam-

ple is 1:1 ls, which is close to the apparent rise time.

As soon as the times t3 and t4 are found, the shock

amplitude is defined as Dp ¼ pðt4Þ � pðt3Þ. Then the

steepness of the shock is defined as the ratio of the shock

amplitude to the rise time ssh ¼ t4 � t3:

smax ¼
Dp

ssh

: (10)

Mathematically, the steepness is the first order finite differ-

ence, which approximates the first derivative near the steep-

est shock front. Note that since in quiescent air the rise time

is inversely proportional to the peak overpressure [Eq. (9)],

and Dp ¼ 0:8pmax, then the steepness is proportional to the

overpressure square:

smax ¼ 0:8p2
max=C: (11)

This means that the steepness is very sensitive to the changes

in the peak overpressure and is expected to fluctuate more in

turbulence than the peak overpressure.

To highlight the effect of turbulence on the waveform

parameters, the results are reported in normalized form in

Secs. IV A and IV B. The peak overpressure pmax and the

steepness smax are normalized to their respective values in

quiescent air pmax0 and smax0 at the corresponding propaga-

tion distance

Pmaxðx; zÞ ¼ pmaxðx; zÞ=pmax0ðzÞ; (12)

Smaxðx; zÞ ¼ smaxðx; zÞ=smax0ðzÞ: (13)

IV. RESULTS AND DISCUSSION

In the first part of this section, simulation results for lin-

ear wave propagation are presented and statistical properties

of the acoustic field in the turbulence are discussed. In the

second part, the role of nonlinear effects on random distor-

tions of the acoustic field is investigated.

A. Effect of turbulence intensity on N-wave statistics

The results of numerical simulations presented below

demonstrate how the distance of formation of caustics and

statistical characteristics of the acoustic field (probability

distributions, mean value, standard deviation, and cumula-

tive probabilities) change with the intensity of the turbulent

fluctuations lrms. For this purpose, linear propagation of

plane N-waves in turbulence with four different intensities

lrms (0.25%, 0.5%, 1.0%, and 2.0%) is considered. In this

first series of simulations, both the thermoviscous absorption

and the nonlinear terms in Eq. (1) are disabled. In this case,

only diffraction on turbulence inhomogeneities modifies the

acoustic field during propagation.

Examples of spatial distributions of the refraction index

l with lrms ¼ 1% and of the normalized peak overpressure

Pmax are shown in Fig. 4. Examples of the distorted wave-

forms are presented in Fig. 5. Probability distributions of the

normalized peak overpressure at four propagation distances

are shown in Fig. 6. Mean value and standard deviation of

the normalized peak overpressure are plotted in Fig. 7 as

functions of the propagation distance.

FIG. 3. (Color online) Rise time and shock steepness definitions based on

analysis of the waveform derivative: (a) a waveform with several shocks;

(b) zoom on the interval around the first two shocks; (c) waveform deriva-

tive over the zoomed interval.
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Characteristics of the random acoustic field are

explained by the formation of caustics at a particular dis-

tance, which depend on the characteristics of turbulent inho-

mogeneities.26 At the first stage of wave propagation, mean

value and standard deviation of the normalized peak over-

pressure increase (Fig. 7), which indicates that the acoustic

pressure fluctuates due to random wavefront rippling and

following focusing and defocusing processes [Fig. 4(b)].

Probability distributions at this stage become wider as shown

in Figs. 6(a), 6(b), and 6(c). A global maximum of the mean

value and the standard deviation appears at a particular dis-

tance, where most of strong caustics are formed. These

strong caustics are produced by the largest inhomogeneous

structures of the multi-scale turbulent field. The amplitude

gain in these large-scale caustics is greater than in smaller

size caustics. The spatial distribution of the acoustic energy

at this stage is the most inhomogeneous: amplitude fluctua-

tions of the acoustic field attain their maximum due to for-

mation of narrow high amplitude foci and large low

amplitude defocusing zones [Fig. 4(b)].

Random focusing and defocusing processes continue

further with the increase of the propagation distance in the

turbulent layer. However, at this stage, the waveforms at

FIG. 4. (a) Example of spatial realization of the refraction index l of kine-

matic turbulence with lrms ¼ 1%. (b) Corresponding normalized peak over-

pressure Pmax in the case of linear wave propagation. The vertical dashed

line indicates the distance where the probability to observe strongly focused

waveforms Pr(Pmax > 2) has a maximum.

FIG. 5. Examples of randomly distorted waveforms at the propagation dis-

tance z¼ 1.1 m in the case of the turbulence intensity lrms ¼ 1% and linear

propagation.

FIG. 6. Probability distributions of the normalized peak overpressure Pmax

at several propagation distances in the kinematic turbulence with lrms

¼ 1%: (a) z ¼ 0:28 m, (b) z¼ 0.55 m, (c) z¼ 1.1 m, and (d) z¼ 2.2 m. Class

size of histograms is 0.01. Vertical dashed lines indicate the mean values.

FIG. 7. (a) Mean value and (b) standard deviation of the normalized peak

overpressure Pmax as functions of the propagation distance z in the case of

linear N-waves propagation in the kinematic turbulence with lrms ¼ 1%.

The gray line is the linear approximation for the initial rise of Pmax standard

deviation, given by equation 0:5z=zref , where zref is the refraction length of

the turbulent layer.
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different spatial locations have random signatures with

larger rise times, longer duration, and do not resemble the

initial N-wave (Fig. 5). In other words, the acoustic field

loses its coherence, the focusing process becomes less effec-

tive, and gradual decay of the mean value and the standard

deviation is observed. However, the decrease of the standard

deviation of Pmax is rather slow in comparison with its initial

rise. For example, probability distributions shown in Figs.

6(c) and 6(d) look very similar and almost equally wide,

although the first of them is captured at the propagation dis-

tance where peak overpressure fluctuations have a maxi-

mum, and the second corresponds to the twice greater

distance.

The mean value of the normalized peak overpressure

Pmax [Fig. 7(a)] has a maximum magnitude for the given

simulation conditions, which is about 1.1. This magnitude of

the maximum is determined by the focusing gain in caustics

and depends on the spatial dimensions of the inhomogeneous

structures and on the frequency content of the initial wave.

For example, waveforms with shorter rise time have greater

focusing gains than those with larger rise time. Note that in

several publications where similar N-wave propagation sim-

ulations were performed, the mean value of the normalized

peak overpressure was shown to be less than one.39,61 It is

explained by the fact that in these simulations, thermovis-

cous absorption was considered, so that the N-waves had

larger rise times and correspondingly smaller focusing gains.

The same behavior of the mean value of the normalized

peak positive pressure was found in laboratory-scale experi-

ments on N-wave propagation through turbulence.33,34

The standard deviation dPmax is a measure of the inten-

sity of acoustic field fluctuations. It is seen in Fig. 7(b) that

before reaching the global maximum, the standard deviation

grows almost linearly with the propagation distance as

shown by a solid line. Such linear increase of the standard

deviation was also found in a model where the turbulent

medium was represented by an infinitely thin random phase

screen with a Gaussian correlation function and where the

propagation of N-waves was simulated using the KZK non-

linear parabolic equation.61 In the case of the phase screen

model, analytical solutions for the first statistical moments

of the N-wave amplitude were derived using geometrical

acoustics approximation.42 Linear increase of the standard

deviation also was found: dPmax � 0:5z=zr for z� zr, where

zr is the refraction length of the phase screen defined as a

quantity inversely proportional to the standard deviation of

rays convergence.62 Mathematically, rays convergence of

the phase screen is the second derivative of its phase. The

refraction length indicates the distance where most of the

first caustics occur.

In the present case of continuous inhomogeneous layer,

one can define a refraction length similarly to the result of

the geometrical acoustics obtained with the phase screen

model. The initial linear increase of the standard deviation

of the peak overpressure is fitted by the expression dPmax

¼ 0:5z=zref , where zref is defined as the refraction length of

the turbulent layer. The refraction length approximately indi-

cates the distance where the amplitude in random foci (caus-

tics) is the highest. The refraction length is evaluated for the

four values of lrms (Table I). It is found that the relation

between the refraction length and the turbulence intensity

can be written as follows:

zref ¼ zref0ðlrms0=lrmsÞ0:90; (14)

where zref0 ¼ 0:8 m for the arbitrary chosen reference value

of lrms0 ¼ 1%. The refraction length zref is then used to scale

the propagation distance as

�z ¼ z
zref0

zref

: (15)

The mean value and the standard deviation of the nor-

malized peak overpressure are plotted in Fig. 8 as functions

of the scaled propagation distance. One can see that when

the propagation distance is appropriately scaled, the propa-

gation curves of the mean value and the standard deviation

for different lrms are very similar. However, some small dif-

ferences can be noticed. Despite the fact that nonlinear and

thermoviscous absorption effects are disabled, the propaga-

tion conditions with low and high turbulence intensity are

not fully equivalent. At lower lrms values (higher zref ), the

acoustic wave crosses more characteristic turbulent scales

before arriving to the distance where strong caustics associ-

ated with larger turbulent structures form. Along this

TABLE I. Refraction length zref , propagation distance zcaust where the prob-

ability Pr(Pmax > 2) has a maximum, maximum values of Pr(Pmax > 1:5)

and Pr(Pmax > 2) probabilities for different turbulence intensities lrms.

lrms, % 0.25 0.5 1 2

zref , m 2.8 1.5 0.8 0.43

zcaust, m 3.4 1.9 1.1 0.60

Pr(Pmax > 1:5), max. 18.8 18.7 19.5 19.3

Pr(Pmax > 2), max. 3.9 4.4 4.9 5.4

FIG. 8. (Color online) Mean value (a) and standard deviation (b) of the nor-

malized peak overpressure Pmax as functions of the scaled propagation dis-

tance �z in the case of linear propagation with different levels of turbulence

intensity lrms: 0.25% (solid curve), 0.5% (dashed-dotted curve), 1% (dotted

curve), and 2% (dashed curve). Note that in the case with lrms ¼ 1% the

normalized distance is equal to the physical distance in meters (�z ¼ z). The

gray line is the linear approximation for the initial rise of Pmax standard

deviation, given by equation 0:5z=zref , where zref is the refraction length of

the turbulent layer.
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propagation path the wave accumulates more phase distor-

tions induced by small-scale turbulent structures. The most

sensitive part of the acoustic pulse to these small-scale phase

fluctuations is the shock front. Small-scale distortions lead to

smoothening of the shock, thus reducing the peak overpres-

sure in strong caustics. As a result, the standard deviation

maximum is slightly lower for lrms ¼ 0:25% than for lrms

¼ 2% [Fig. 8(b)].

Formation of high amplitude foci (caustics) can be

investigated in details via calculation of the cumulative prob-

abilities of the peak overpressure over the high amplitude

tails of the probability distributions (Fig. 6). For this pur-

pose, a cumulative probability Pr(Pmax > a) is defined here

as the probability to observe the normalized peak overpres-

sure which exceeds a given threshold a. Inspection of the

random realization presented in Fig. 4(b) indicates that in

high amplitude foci, the peak overpressure is typically

amplified by a factor between 2 and 4 in comparison with

the reference values. The threshold value a ¼ 2 is therefore

chosen. The results for a ¼ 1:5 are also shown, since the

probability Pr(Pmax > 1:5) is several times greater than

Pr(Pmax > 2) and is less susceptible to statistical sampling

error.

In Fig. 9, the cumulative probabilities for two thresholds

(a) a ¼ 1:5 and (b) a ¼ 2:0 are plotted using the scaled prop-

agation distance �z. The probability curves are very similar

for different lrms with small quantitative differences. They

have a distinctive maximum, the position of which is marked

in Fig. 9 by a vertical line and is denoted as zcaust in Table I.

Appearance of this maximum corresponds to the formation

of caustics and supports the general explanation of propaga-

tion curves of the mean value and the standard deviation

given above. Since the position of the maximum is almost

the same for different lrms, it means that the distance zcaust

depends on lrms almost similarly as zref . Thus, approxi-

mately, zref and zcaust are proportional to each other:

zcaust � 1:3zref (see Table I for comparison). The maximum

of the probability Pr(Pmax > 2) is slightly lower for smaller

values of the turbulence intensity lrms (Table I). This fact is

explained similarly as previously done for the slightly

different maxima of the standard deviation curves in Fig. 8.

At the same time, maxima of the probability Pr(Pmax > 1:5)

have almost the same value for all turbulence intensities

(about 19%). It means that small-scale ripples mainly affect

the fine structure of the shock fronts, which is related to the

focusing gain in random foci. From the present analysis

where absorption and nonlinear propagation effects are not

considered, one can conclude that random focusing leads to

the appearance of significant number of waveforms with

amplified peak overpressure [for example,

Pr(Pmax > 2)�5%].

The theory of geometrical acoustics was used previously

to analytically calculate the probability to observe caustics

as a function of the propagation distance.43 A typical proba-

bility curve of that kind has a maximum at a certain distance.

The distance zcaust derived here from the position of the

maximum of the probability Pr(Pmax > 2) obtained with the

KZK model can be compared to the distance of the most

probable appearance of caustics in geometrical acoustics

approximation. The geometrical acoustics analysis has led to

a l�2=3
rms scaling law for that distance, while zcaust is propor-

tional to l�0:90
rms .

The mean value and the standard deviation of the steep-

ness as functions of the scaled propagation distance �z are

shown in Fig. 10, and cumulative probabilities for the same

threshold levels as for the peak overpressure (a ¼ 1:5 and

2.0) are shown in Fig. 11. One can observe that the different

scaled curves of the mean value and the standard deviation

of the steepness are even more similar than the peak over-

pressure ones are. The evolution of the steepness statistics

with the propagation distance indicates that, in the absence

of absorption and nonlinearity, turbulence acts mostly as a

destructive factor and leads to smoothening of sharp shock

fronts. In contrast to the peak overpressure, the mean value

of the steepness decreases monotonically and much more

rapidly, and the maximum of the standard deviation is

noticeably lower. For example, the maximum standard devi-

ation of the normalized steepness is 0.33, whereas for the

FIG. 9. (Color online) Cumulative probabilities Pr(Pmax > a) to observe the

normalized peak overpressure Pmax greater than (a) a ¼ 1:5 and (b) a ¼ 2:0
as functions of the scaled propagation distance �z for different levels of lrms:

0.25% (solid curve), 0.5% (dashed-dotted curve), 1% (dotted curve), and

2% (dashed curve). Vertical dashed lines indicate the distance where the

probability Pr(Pmax > 2) is maximum.

FIG. 10. (Color online) Mean value (a) and standard deviation (b) of the

normalized steepness Smax as functions of the scaled propagation distance �z
in the case of linear propagation of N-waves for different levels of lrms:

0.25% (solid curve), 0.5% (dashed-dotted curve), 1% (dotted curve), and

2% (dashed curve). The gray line is the linear approximation for the initial

rise of standard deviation of the normalized steepness.
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normalized peak overpressure it is between 0.43 and 0.5.

The destructive effect of turbulence on shock fronts is seen

more clearly on cumulative probability curves: the maxima

of the probabilities Pr(Smax > 2) and Pr(Smax > 1:5) are

about 0.7% and 5.0%, respectively, which are considerably

lower than maxima of the probabilities Pr(Pmax > 2)¼ 5%

and Pr(Pmax > 1:5)¼ 20%. Note also that maxima of the

cumulative probabilities Pr(Smax > 2) and Pr(Smax > 1:5)

appear at half shorter distance compared to the maxima of

the peak overpressure cumulative probabilities [Figs. 11(a)

and 11(b)]. At the distance zcaust, where the peak overpres-

sure cumulative probability Pr(Pmax > 2) has its maximum,

the steepness probability Pr(Smax > 2) is weak (0.1%). Thus,

the shock front structure is significantly distorted by turbu-

lence at much shorter propagation distances than the distance

where strong caustics form.

These results support early analytical theories, which

attempted to explain anomalously large and variable rise

times measured in real atmosphere.26 Here, the evidence of

multiple shocks and smoothed shock fronts produced by

small-scale rippling is demonstrated using several examples

of waveforms at the propagation distance z ¼ 1:1 m for

lrms ¼ 1% (Fig. 5). Note that an amplified waveform [Fig.

5(a)] with the peak overpressure of about two times higher

than the incident wave has a very smooth shock (rise time

about 6 ls) composed presumably of three separate shocks

with slightly different arrival times. On the contrary,

strongly distorted waveforms shown in Fig. 5(b) have much

shorter rise times of about 1:5 ls. These results indicate that,

at least in the linear propagation model, high values of the

peak overpressure are not necessarily associated to steep

shocks.

In the presence of absorption and nonlinear effects,

greater discrepancies between scaled propagation curves of

the mean value, standard deviation, and cumulative probabil-

ities are expected. For example, without inhomogeneities,

absorption leads to an increase in the rise time with the prop-

agation distance. In turbulence, on average, this process also

takes place. Since the distance of formation of strong caus-

tics is almost inversely proportional to the turbulence inten-

sity [see Eq. (14)] and the N-wave waveforms have, on

average, larger rise times at larger distances, smaller ampli-

tudes are expected in random caustics for smaller turbulence

intensities. As a result, thee standard deviation and the

cumulative probability Pr(Pmax > 2) are expected to be

smaller as well.

Linear N-wave propagation investigated in this section

can be considered as a reference case to compare with more

general situations. Despite the complex interplay of different

physical effects, overall evolution of the mean value, stan-

dard deviation, and cumulative probabilities presented for

the linear case should be more or less the same. In the fol-

lowing section, nonlinear and absorption effects are consid-

ered in the propagation model and statistical data of the peak

overpressure and steepness are analyzed with fixed intensity

of the kinematic turbulent field (reference case lrms ¼ 1%).

B. Effect of nonlinear propagation on N-wave
statistics

In this section, nonlinear propagation effects are consid-

ered. The nonlinear and thermoviscous absorption terms in

Eq. (1) are enabled together with the inhomogeneous term.

A balance between thermoviscous absorption and nonlinear

steepening of the waveform provides finite rise time of the

shock front. Four cases with different amplitudes of the ini-

tial N-wave varying from 50 to 400 Pa are simulated to

investigate nonlinear effects of different strength. The inten-

sity of the turbulent field is fixed at lrms ¼ 1%, so the nor-

malized distance is identical to the physical distance �z ¼ z.

Nonlinear effects greatly complicate the analysis of

N-wave propagation in a randomly inhomogeneous medium.

The most important manifestation of nonlinear effects is their

tendency to steepen the shock front in the case of amplified

shock amplitude, while this effect is partly balanced by ther-

moviscous absorption. Higher amplitudes thus necessarily

result in sharper shocks. As a result, nonlinear propagation

effects tend to counterbalance turbulence effects that lead to

increased rise time. This process is known as “healing” of the

shock front.17 Since the focusing gain in the caustics is higher

and the rise time is shorter, nonlinear effects are expected to

increase both the fluctuations of the peak overpressure and

the steepness. In particular, the probability to observe peaked

waveforms with high amplitude is expected to be higher in

the case of stronger nonlinearities. However, when the pulse

amplitude is sufficiently high, nonlinear effects lead to the

saturation of the focusing gain in random foci due to effective

absorption of wave energy at the shock and to a nonlinear

refraction effect. The nonlinear refraction mechanism limits

the focusing gain via flattening the concave wavefront of

focused wave since wavefront segments with higher ampli-

tudes propagate faster than wavefront parts with lower

amplitudes.63,64

The mean value and the standard deviation of the nor-

malized peak overpressure are plotted as functions of the

propagation distance z in Fig. 12. Qualitatively, their evolu-

tions with the distance are similar for all initial amplitudes

and agree with the results obtained with the linear propaga-

tion model (Sec. IV A). However, the evolution of the mean

value with the distance has no pronounced maximum in the

FIG. 11. (Color online) Cumulative probabilities Pr(Smax > a) to observe

the normalized steepness greater than (a) a ¼ 1:5 and (b) a ¼ 2:0 as func-

tions of the scaled propagation distance �z for lrms: 0.25% (solid curve),

0.5% (dashed-dotted curve), 1% (dotted curve), and 2% (dashed curve).

Vertical dashed lines indicate the distance where the probability

Pr(Pmax > 2) has a maximum.
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nonlinear case [Fig. 12(a)]. Instead, at propagation distances

shorter than the refraction length, the mean value of the nor-

malized peak pressure is almost constant and differs from

unity by few percents only. At distances greater than the

refraction length, the mean value decreases. Note that the

same behavior of the peak overpressure mean value was

observed in laboratory scale experiments.27,33,34 Also, the

rate of decrease of the mean value depends on the initial N-

wave amplitude and is the lowest for the highest amplitudes.

The linear growth rate of the standard deviation is differ-

ent at different amplitudes and also deviates from the rate

obtained in Sec. IV A with the linear propagation model. This

result is expected since N-waves with different initial ampli-

tudes have different initial rise times. Higher values of the

standard deviation for small and moderate amplitudes (50,

100, and 200 Pa) indicate the increase of intensity of fluctua-

tions at distances closer than the refraction length. At the high-

est initial pressure level (400 Pa), the focusing gain saturation

in random foci tends to decrease the standard deviation.

However, at larger distances, higher standard deviation levels

are observed in the case with strongest nonlinearity.

The cumulative probability curves of the peak overpres-

sure shown in Fig. 13 clarify the role of nonlinear effects in

the process of random focusing. The probability to observe

waveforms with the peak overpressure amplified at least by

a factor of two [Pr(Pmax > 2), Fig. 13(b)] nearly doubles

(from 1.9% to 3.4%) when the initial N-wave amplitude p0

increases from 50 to 100 Pa (Table II). The maximum of the

probability Pr(Pmax > 2) is about 4% for p0 ¼ 200 Pa, then

it decreases for further increase of p0. This behavior of cumu-

lative probabilities results from the nonlinear saturation of

the focusing gain in random foci as described above. At the

same time, the maximum of the probability Pr(Pmax > 1:5)

does not vary as much as the probability Pr(Pmax > 2). It

means that the nonlinear amplification of the peak overpres-

sure mainly appears in high amplitude foci. Another impor-

tant observation is that, around their maximum, the

probability curves Pr(Pmax > 1:5) and Pr(Pmax > 2) broaden

with the increase of the nonlinearity strength, and the proba-

bility remains high beyond the maxima located approxi-

mately at the distance zcaust (vertical dashed line in Fig. 13).

Nonlinear effects tend to maintain the effectiveness of ran-

dom focusing due to a nonlinear shock front “healing” mech-

anism even in the case of a partially diffused acoustic field.

Since the probability curves of Pr(Pmax > 2) are very

wide and the statistical sampling error can shift the position

of their maximum zmax, it is more accurate to analyze the

propagation distance where this probability reaches 90% of

its maximal value. This distance is denoted as z90max and

compared with zmax in Table II. It is seen that the distance

z90max is 10%–20% shorter than zmax and is equal approxi-

mately to one meter.

The most significant change of the statistics due to non-

linear effects is observed for the shock front steepness.

While the mean value does not greatly change with the

increase of the initial N-wave amplitude [Fig. 14(a)], the

standard deviation indicates higher variability [Fig. 14(b)].

For example, at p0 ¼ 50 Pa, the maximum of the standard

deviation is dSmax ¼ 0:45, whereas at p0 ¼ 400 Pa, it is

more than twice higher (dSmax ¼ 1:05). Note the difference

with the results obtained for the standard deviation of the

peak overpressure, where its values are in a range between

FIG. 12. (Color online) Mean value (a) and standard deviation (b) of the

normalized peak overpressure Pmax in the case of nonlinear propagation

with different amplitudes of the initial N-wave: 50 Pa (solid curve), 100 Pa

(dashed-dotted curve), 200 Pa (dotted curve), 400 Pa (dashed curve). Gray

curves correspond to linear wave propagation. Vertical dashed line indicates

the distance where the probability Pr(Pmax > 2) is maximum in the linear

case.

FIG. 13. (Color online) Cumulative probabilities Pr(Pmax > a) to observe

the normalized peak overpressure Pmax greater than the thresholds (a) a
¼ 1:5 and (b) a ¼ 2:0 as functions of the propagation distance z in the case

of nonlinear propagation with different amplitudes of the initial N-wave:

50 Pa (solid curve), 100 Pa (dashed-dotted curve), 200 Pa (dotted curve),

400 Pa (dashed curve). The gray curve corresponds to linear wave propaga-

tion. Vertical dashed lines indicate the distance where the probability

Pr(Pmax > 2) is maximum in the linear case.

TABLE II. Cumulative probabilities to observe waveforms with normalized

peak overpressure greater than a¼ 2 and a ¼ 1:5 for different amplitudes of

the initial N-wave: maximum values of Pr(Pmax > 2) and Pr(Pmax > 1:5);

distance zmax where the probability Pr(Pmax > 2) is maximum (in meters);

and distance z90max where Pr(Pmax > 2) attains 90% of its maximum value.

p0, Pa 50 100 200 400

Pr(Pmax > 2), max. 1.9 3.4 4.0 3.2

Pr(Pmax > 1:5), max. 9.8 12.5 13.0 11.3

Pr(Pmax > 2), zmax, m 1.22 1.17 1.18 1.44

Pr(Pmax > 2), z90max, m 1.03 1.06 1.03 1.10
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0.4 and 0.5 for all considered initial wave amplitudes [Fig.

12(b)]. The initial linear growth rate of the steepness stan-

dard deviation dSmax also varies with the pressure amplitude.

It can be higher or lower than the rate observed with the lin-

ear propagation case [gray line in Fig. 14(b)].

Cumulative probability curves indicate that the maxi-

mum of the probability Pr ðSmax > 2) is almost proportional

to the initial wave amplitude [Fig. 15(b)]. However, for

p0 ¼ 400 Pa, the saturation of this probability is observed.

Also, as it is found for peak overpressure probabilities

Pr(Pmax > 1:5) and Pr(Pmax > 2), nonlinear effects broaden

the steepness probability curves Pr(Smax > 1:5) and

Pr(Smax > 2), the probability remains high beyond the caus-

tics formation distance zcaust. The maximum value of the

steepness probability Pr(Smax > 2) is found at a distance

about 20%–30% shorter than it is for the maximum of

the peak overpressure probability Pr(Pmax > 2). The same

difference is observed in z90max distances calculated for

Pr(Smax > 2) and Pr(Pmax > 2). This demonstrates that ran-

dom focusing effects can be observed for the shock front

steepness at shorter distances than for the peak overpressure.

High sensitivity of the shock steepness to nonlinear

effects is explained by the fact that the steepness is propor-

tional to the square of the shock amplitude [Eq. (11)]. Thus,

the rise of the peak overpressure in random foci leads to a

fast increase of the steepness, which in turn enhances subse-

quent focusing. However, there are several limiting factors

such as diffraction effects, effective absorption on shocks,

and nonlinear refraction, which do not allow the amplitude

and the steepness to grow infinitely. Note also how fast the

absolute values of the steepness grow with the initial N-

wave amplitude (Table III): an 8 times increase of p0 results

in a 35 times increase of the steepness at the propagation dis-

tance zcaust. This observation could be important in the con-

text of sonic boom if the same nonlinear enhancement of the

shock front steepness is observed in sonic booms.

V. SUMMARY AND CONCLUSIONS

Linear and nonlinear propagation of short N-waves in

turbulence with modified von K�arm�an spectrum is consid-

ered using numerical simulations based on the KZK-type 2D

parabolic equation. The influence of the turbulence intensity

and the nonlinear propagation effects on the acoustic field

are studied. To investigate the structure of the shock front, a

steepness parameter is defined as a ratio of the shock ampli-

tude to the corresponding rise time. The shock front ampli-

tude and the rise time are calculated using the waveform

derivative. Mean value, standard deviation, and cumulative

probabilities of the peak overpressure and shock front steep-

ness are analyzed as functions of the propagation distance.

Cumulative probabilities to observe waveforms with peak

FIG. 14. (Color online) Mean value (a) and standard deviation (b) of the

normalized steepness Smax in the case of nonlinear propagation with differ-

ent amplitudes of the initial N-wave: 50 Pa (solid curve), 100 Pa (dashed-

dotted curve), 200 Pa (dotted curve), 400 Pa (dashed curve). Gray curves

correspond to linear wave propagation.

FIG. 15. (Color online) The cumulative probabilities Pr(Smax > a) to observe

the normalized steepness Smax greater than (a) a ¼ 1:5 and (b) a ¼ 2:0 as

functions of the propagation distance z in the case of nonlinear propagation

with different amplitudes of the initial N-wave: 50 Pa (solid curve), 100 Pa

(dashed-dotted curve), 200 Pa (dotted curve), 400 Pa (dashed curve). Vertical

dashed lines indicate the distance where the probability Pr(Pmax > 2) is max-

imum in the linear case. Gray curves correspond to linear wave propagation.

TABLE III. Cumulative probabilities to observe waveforms with normal-

ized shock front steepness greater than a¼ 2 and a ¼ 1:5 for different

amplitudes of the initial N-wave: maximum values of Pr(Smax > 2) and

Pr(Smax > 1:5); distance zmax where the probability Pr(Smax > 2) is maxi-

mum (in meters); and distance z90max where Pr(Smax > 2) attains 90% of its

maximum value. The last line shows the absolute values of the shock front

steepness in homogeneous air (smax0) at a propagation distance z¼ 1.1 m.

p0, Pa 50 100 200 400

Pr(Smax > 2), max. 2.2 4.5 7.3 8.5

Pr(Smax > 1:5), max. 8.0 10.6 12.7 13.6

Pr(Smax > 2), zmax, m 0.90 0.87 0.96 1.18

Pr(Smax > 2), z90max, m 0.74 0.72 0.76 0.82

smax0 at z ¼ zcaust ¼ 1:1 m, Pa/ls 15 50 170 520
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overpressure and steepness amplified by a factor of two or

higher are used to detect the appearance of highly peaked

waveforms and sharp shock fronts.

Results of numerical experiments within a linear propa-

gation model corroborated the conclusions of analytical the-

ories describing the shock front interaction with turbulence.

It is shown that multiple wavefront folding produced by

small-scale inhomogeneities mainly leads to smoothening of

shock fronts. For example, the highest probability to observe

shock fronts with doubled or higher steepness is relatively

low and rated below 0.7%. At the same time, large-scale

inhomogeneities are still able to produce high peak overpres-

sures in random foci. The cumulative probability to observe

waveforms with peak overpressure amplified by a factor of

two or higher is about 5%.

Variation of the turbulence intensity lrms in the absence

of absorption and nonlinear effects results in longitudinal scal-

ing of the acoustic field statistics according to a power law

l�0:9
rms . This result means that in stronger turbulence, random

foci appear at a closer propagation distance, and this distance

is almost inversely proportional to the turbulence intensity.

Nonlinear N-wave propagation in the turbulence results

in important quantitative differences from the linear propa-

gation case. The cumulative probability to observe wave-

forms with high peak overpressures is shown to be sensitive

to the strength of nonlinear effects. For moderate pressure

amplitude of the initial N-wave, the cumulative probability

increases with the initial wave amplitude. However, for

higher initial wave amplitude, the saturation of the focusing

gain in random foci leads to saturation of the cumulative

probability curves. The variation range of the cumulative

probability of Pmax is relatively small. For example, the max-

imum of the probability of twofold gain in Pmax is rated

between 2% and 4% for eightfold increase of the initial

amplitude between p0 ¼ 50 Pa and p0 ¼ 400 Pa.

Statistics of the shock steepness is found to be more sen-

sitive to the strength of the nonlinear effects in comparison

to statistics of peak overpressure. The maximum of the

cumulative probability to observe doubled and higher steep-

ness is rated between 2% and 8% for the same range of ini-

tial N-wave amplitudes (between 50 and 400 Pa), which is

almost one order of magnitude higher in comparison with

the linear propagation case. This result proves that even if

nonlinear effects are weak, the shock front steepening they

produce is sufficient to compensate shock front smoothening

due to diffraction on turbulent inhomogeneities. Also, wave-

forms with high values of the shock steepness appear at

20%–30% smaller propagation distances than waveforms

with high peak overpressures.

In this paper, the problem of linear and nonlinear acous-

tic pulse propagation through a turbulent medium is ana-

lyzed for characteristic parameters close to previous

laboratory scale experiments. However, similar results can

be expected in the case of the real atmosphere and sonic

boom scales since physical mechanisms involved in acoustic

wave propagation are the same. Application of the presented

numerical model to investigate statistics of sonic booms is

the subject of the future work.
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