

Source sensing

sylvain.cheinet@isl.eu

A joint initiative of:

Bundesministerium der Verteidigung

French German Research Institute of Saint-Louis

www.isl.eu

1997-2004 Lower atmosphere physics (obs, NWP)

2005 -2018 Activity « Acoustic propagation & sensing » Outdoor acoustics: measurements, modeling, Applications for Defence & Security

Sensing of outdoor acoustic sources

(Passive sensing)

Acoustic sensing of noise

Airport / airplane noise

© ISL 2018 according to ISO 16016

Traffic noise

Traffic noise mapping

Wind turbine noise

Monitor **noise** e.g. neighborhood, infrastructures, transports, (Usually) continuous sources, Normative metrics L_{eq}

Acoustic sensing of sources

Monitor sources at the origin of sound Metrics: sensing performance Characterization in Pa

Acoustic sensing of sources

Noise localization 100 – 2 000 Hz

Bioacoustic monitoring 200 - 50 000 Hz

> Nuclear explosion monitoring < 10 Hz

Shot monitoring 20 – 10 000 Hz

© ISL 2018 according to ISO 16016

Large diversity of applications Many common points & challenges

French German Research Institute of Saint-Louis w

Acoustic sensing systems

		Hardware	Software
	Detection	Sensor selection	Denoising
	Localization	Sensor spacing & positioning	Impulse / Continuous Tracking
2	Classification		
	Identification		

Principle of beamforming with a uniform linear array

TDOA multilateration, 3 distributed sensors

Vehicle tracking with 2 bearings And a Kalman filter processing

Acoustic sensing systems

		Hardware	Software
	Detection	Sensor selection	Denoising
200	Localization	Sensor spacing & positioning	Impulse / Continuous Tracking
G	Classification		Features extraction Spectral / Temporal domain, databases
	Identification		Still quite a challenge
101 2070 ALLO		Cf. Bird classification F. Sèbe	
J		Database & feature extra	ction

Tank passing-by. Damarla, « Battlefield Acoustics », 2015

French German Research Institute of Saint-Louis

Positioning vs. other sensing technologies

+	-
Low cost, occupation, autonomy, weight	
Robust, all-weather, day-night	
Passive, omni-directional sensing	

Positioning vs. other sensing technologies

+	_
Low cost, occupation, autonomy, weight	Not so directional, array & processing
Robust, all-weather, day-night	Sensitive to noise, denoising / filtering
Passive, omni-directional sensing	

Positioning vs. other sensing technologies

Fusion with other technos e.g. DL acoustics, CI with EO/EM

© ISL 2018 according to ISO 16016

Fusion with other technos e.g. DL acoustics, CI with EO/EM

Fusion with other technos e.g. DL acoustics, CI with EO/EM

New sensors: MEMS, vector

Fusion with other technos e.g. DL acoustics, CI with EO/EM

New sensors: MEMS, vector

Adapt systems to new scenarii

Fusion with other technos e.g. DL acoustics, CI with EO/EM

New sensors: MEMS, vector

Adapt systems to new scenarii

Predictions of environment & propagation

-> Prediction of system's performance

-> Support to design

-> Support to operation

French German Re

French German Research Institute of Saint-Louis www

In summary,

- Acoustic sensing systems are used in various applications
 - Structural differences versus other technologies (+ / -)
- In theory, may be sensitive to outdoor environment due to propagation
 - Modulation & decoherence of signatures
 - Present trends reinforce the issue
- Remainder of the presentation
 - How, really, propagation alters sensing performance
 - Monitor and improve sensing performance *Specific to each application. Here, shot sensing.*

Propagation & Sensing of battlefield sounds © ISL 2018 according to

1. Background

Battlefield acoustic sensing

Powerful, transient sources 100 - 10.000 Pa, 0.5 - 50 ms

Battlefield acoustic sensing

Wide-band sensors Antenna systems

Battlefield acoustic sensing

Ranges 100 m – 10 km All environments

Experimental tools

Shots & field trials Environmental characterization Operational systems Acoustic sensors / array (in-house developments)

Numerical modelling of impulse sounds

The ISL Time-domain Model (ITM)

$$\begin{cases} \frac{\partial \vec{w}_a}{\partial t} = -(\vec{u}.\vec{\nabla})\vec{w}_a - (\vec{w}_a.\vec{\nabla})\vec{u} - \frac{\vec{\nabla}p_a}{\rho} + \frac{\vec{F}}{\rho} \\ \frac{\partial p_a}{\partial t} = -(\vec{u}.\vec{\nabla})p_a - \rho c^2 \vec{\nabla}.\vec{w}_a + \rho c^2 Q \\ (c,\rho) = \text{fonction}(P,T,q) \end{cases}$$

- Time domain (impulse, measurements)
- Discretization $\Delta x \propto \lambda$
- High Perf Computing
- Boundary conditions PML+ ground
- Suitable for general / complex environments

ITM State-of-the-art Pulses < 2000 Hz in 3D+time at < 1 km

1-1

Propagation & Sensing of battlefield sounds © ISL 2018 according to

2. Propagation effects on pulses

Experiment

J. Acoust. Soc. Am., 2018

Gas cannon, 156 dB peak at 1 m 14 mics, bars of 3 mics Environment monitoring (ground, wind) Moderate wind (2 – 5 m/s)

Experiment

J. Acoust. Soc. Am., 2018

Gas cannon, 156 dB peak at 1 m 14 mics, bars of 3 mics Environment monitoring (ground, wind) Moderate wind (2 – 5 m/s)

56 consecutive shots circle configuration, 30 mn

- More experimental tests
- Literature
- Modeling (FDTD, PE, Rays)

Pulse modulations / wind convection, range

Pulse modulations / refraction

- Signal always above noise
- Strong recombinations of the signature
- Time-domain and frequency domain
- Investigate the physics of these modulations

Pulse modulations / refraction

- Refraction due to wind gradients
- Induces duct, reflexions, shadows
- Early arrivals caused by direct rays
- Dispersive (HF)

© ISL 2018 according to ISO 16016

Pulse modulations / ground

• Source-caused dip at 600 Hz

© ISL 2018 according to ISO 16016

1-1

- Additional dip 200 Hz due to ground impedance
- Enhanced downwind (more reflexions)
- The dip reinforces with range

Pulse modulations / surface wave

- Low-frequencies are unaffected (in this experiment)
- Sensitive to ground characteristics, surface wave
- Dominates the signal upwind

Pulse modulations / pulse spread

- All signals undergo major shot-to-shot fluctuations in shape, so-called 'spread'
- Stronger at HF, thus more visible downwind
- Low turbulence conditions show much less of these fluctuations
- Dominantly caused by **atmospheric turbulence** (ground heterog., source)

Cf. Stochastic uncertainty, D Ecotière

Pulse modulations / wander

French German Research Institute of Saint-Louis

Pulse modulations / two-... coherence(s)

© ISL 2018 according to

Propagation & Sensing of battlefield sounds

- ▶3. Impact on sensing
- Example 1: mortar shot
- Example 2: sniper shot

Example 1: mortar shot sensing

Example 1: expected sensitivities

91091 Detection Variat

to

ccord

Variations of the peak & energy (x2-3)

Expect better detection downwind

S Localization

Expect uncertainty of some degrees

Classification Variation Expect so

Variations of the spectral balance (25 dB)

Expect sensitivity of classification

Example 1: Sensitivity of operational system *Appl. Acoust., 2015*

Example 1: Sensitivity of operational system Appl. Acoust., 2015

Detection Range 1150 m 400 m	

As expected,

- the detection range is much larger downwind
- localization uncertainty: 2-3°

NB: More severe weather conditions happen...

Example 2: sniper shot sensing

4 microphones antenna

44

time

Example 2: sniper shot sensing

Example 2: test of standard processing algorithm *Appl. Acoust., 2015*

Example 2: test of standard processing algorithm *Appl. Acoust., 2015*

Example 2: physical sensitivity Appl. Acoust., 2015

Example 2: physical sensitivity Appl. Acoust., 2015

1-1

Surveillance in open environments,

A summary

ISI 2018 gccording to ISO 16016

•Pulses are sensitive to the OPEN environment,

•Combined, complex parameters,

•This sensitivity affects 1st generation of sensing systems,

•Predicting these effects is still a R&D challenge

Propagation & Sensing of battlefield sounds © ISL 2018 according to ▶ 4. Mitigating propagation effects

The urban environment

Surveillance in urban / built areas

Built areas are of primary concern for surveillance

Sensing in the urban environment (1)

Urban maps become easily available

© ISL 2018 according to ISO 16016

Sensing in the urban environment (2)

44

3D+time FDTD is feasible at low wavelengths of interest

Sensing in the urban environment (3)

- Predict environment
 - Predict pulse
 - Adapt sensing ?

- TOA and AOA are severly affected by urban obstacles
- Multilateration (TOA), beamforming (AOA) collapse
- Functional challenge: localize explosion
 10 m accuracy, block-size area, 5-10 sensors, known map

© ISL 2018 according

Time reversal: principle

Time reversal: tests

JASA, 2016

Localization is degraded for far+NLOS microphones.

These microphones hardly contribute to the interference pattern

Damped by 3D spherical spreading + urban attenuation (forward x backward).

Time reversal localization suffers in outdoor environments

Signal matching JASA, 2016

© ISL 2018 according to ISO 16016

Cold phase, form a **reference database** Time-Of-First-Arrival (TOA), with simulations

Hot phase (0.1s), TOA are measured, transmitted to PC, **best matching comparison** gives localization

- Robust and standard, « multilateration », « time delay », « analog prediction »
 - Supervised approach, 3D urban propagation model for the database
 - Overcomes signal fading issue (no backward)

Results Acta Acust. Acust., 2016

Results Acta Acust. Acust., 2016

The method is efficient, including in NLOS

On-going / perspectives

Move toward application real-time calculations demonstrator (TRL5)

Extend to other complex scenarios artillery shot (complex)

Projectile's trajectory

Propagation & Sensing of battlefield sounds © ISL 2018 according to Conclusions

Summary

Acoustic sensing systems are used in many applications

Propagation effects are a key factor to their sensing

Their management is a R&D challenge: complex & promising

It requires the full panel of TRL and expertise

- experiments (real + small-scale)
- high-fidelity modeling / engineering modeling / processing
- environmental assessment

Nice opportunities of R&D

Pulse propagated in 3D after 100 m, without and with turbulence

Nota Bene

Many aspects of the present « propagation & sensing » discussions are common to

- Outdoor acoustics
- Underwater acoustics (Flatté et al., 1979)
- Outdoor optics (Bound. Lay. Meteorol. 2011)
- Electro-Magnetism / Radio waves (J. Appl. Met., 2011)

M. Cosnefroy, A. Dagallier, L. Ehrhardt, Th. Broglin

Other colleagues from

ISL, ARL, BAAINBW, CRREL, DGA, ECMWF, LMFA, NATO SET 233...

sylvain.cheinet@isl.eu

