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Outline 
 
 Introduction: the large variety of sound propagation problems 

and the need for various numerical approaches 
 

 A simple classification of the numerical approaches 
 

 Full wave approaches (BEM, FEM) 
 

 High frequency approximation and ray tracing 
 

 Paraxial or parabolic equations 
 

 Dealing with the randomness of the atmosphere 

CeLyA Summer School on Atmospheric Sound Propagation, June 13-15 2018, Lyon 



Propagation of acoustic waves in the atmosphere: a question of 
scales and of medium complexity 
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Propagation over short distances* 
in complex build environment 
(reflexions, diffraction, 3D 
complicated geometries). 
Temperature gradients and wind 
usually not important 

* distances have often to be compared 
to wavelength; short distance meaning 
then limited number of wavelengths 
 

acoustic source 

microphones 



Propagation of acoustic waves in the atmosphere: a question of 
scales and of medium complexity 
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Propagation over very large 
distances  with relatively 
smooth topography. 
Temperature gradients, 
wind effects very important. 
Random variability at smaller 
scales: it may be mandatory 
to introduce a statistical 
approach 



Simulation of detection capability of explosive signals from Mt Etna (minimum 
amplitude detectable by an infrasound network) 
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Influence of 
seasonal variability 
of the atmosphere 



Propagation of acoustic waves in the atmosphere: a question of 
scales and medium complexity 
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Propagation over large 
distances  with influence of 
topography near the source 
and of temperature and 
wind gradients. 

Complexity of the source: 
rapidly moving (train, 
aircraft); flow generated 
sound (wind turbines) 
 



 

To sum up 
 

Multiple situations in terms of 
 Propagation distance, from hundreds of meters to thousands of km 
 Complexity of topography:  from town areas to nearly flat terrain 
 Complexity of physical effects to be taken into account: sound speed gradients, 

wind gradients, ground modelling, non linear effects for strong natural and 
artificial sources (volcanoes, thunder, explosions, sonic boom of supersonic 
aircraft …) and randomness (atmospheric turbulence) 

 Complexity of noise sources: from point-like to complex aerodynamic and 
moving sources (trains, aircraft, meteorites for example) 

 

Consequences 
 No unique versatile numerical method to cover all these situations. 
 Various model equations will be used from simple Helmholtz eq. to full Navier-

Stokes eq. 
 Often, for a given problem, at least 2 methods will  have to be combined: a 

detailed, precise, method for describing the very near field of the source; and 
an “asymptotic ” method to propagate this near field up to distant observers. 
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Physics-based vs engineering (or heuristic) methods 
 

Choosing which method to employ depends on the required fidelity, time 
constraints, and available computational resources. Short time constraints and 
reasonable fidelity requirements suggests the use of a heuristic model; these 
engineering models use different approximations to sound propagation and are 
typically used for noise mapping.  
Sophisticated codes have been developed for such purposes, such as  Nord2000 
model or Harmonoise model.  
Such approaches will be discussed in other lectures during this summer school. 
 
In this talk we will focus on physics-based methods, which are by construction 
more precise but often computer- intensive and necessitate a detailed knowledge 
of the state of the atmosphere and of the boundary conditions. 

CeLyA Summer School on Atmospheric Sound Propagation, June 13-15 2018, Lyon 



In the following  slides we will give a rapid description of what we think are the 
more appropriate methods to deal with “long range” sound propagation through 
the atmosphere.  
In today’s lecture we will consider only linear propagation and focus more on 
meteorological effects than terrain effects. 
We will also  focus on what can be now considered as ”classical” approaches, 
mainly in the frequency domain. 
  
Tomorrow Didier Dragna will discuss more deeply more recent approaches in the 
time-domain (FDTD) and the associated ground modelling. 

Physics-based vs engineering (or heuristic) methods 
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A list (not complete!) of candidate numerical methods 
 
1. BEM: build environment; homogeneous medium at rest (or with uniform 

flow). 
2. FEM for Helmholtz eq.: build environment; sound speed gradients possible. 
3. Geometrical acoustics : sound speed and wind gradients OK; high frequency 

approximation; diffraction by buildings possible for simple geometries (GTD). 
4. Paraxial eq. : sound speed gradients OK; wind possible with some 

approximations. Not applicable when back scattering important (town areas) 
5. Finite Difference approximation of Euler/Navier-Stokes eq. (FDTD); all effects 

can be included but practical application limited to “short” distances (in 
terms of nb of wavelengths) due to computational cost. Often used as 
reference solution for benchmarking approximate methods. 

 
1-2: frequency domain mainly, but time domain possible. Linear acoustics. 
3: freq. or time domain. Non linear extensions exist. 
4: freq. domain mainly, but time domain possible. Non linear extensions exist. 
5: mainly time domain (but freq. domain also possible). Linear to fully non linear. 
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Models and Equations 

Homogeneous, non moving medium: Helmholtz equation 
 
 
 
 

Boundary conditions (typically impedance ground; rigid bodies …) 
Sommerfeld radiation condition (in 3D) 
 
 
 
 

Free field Green’s function 
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Time dependence 
exp(+it) 



Influence of temperature gradients (change of density and speed of sound) 
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*variation of density often negligible except 
for very low frequencies (infrasound typically);  
in all this lecture we will neglect also the 
effect of gravity. 

No analytic form for the Green’s function (in general) 

Influence of flow 
No exact equation for one variable only (acoustic pressure) in the more general 
case. 
2nd order wave equations can be obtained as high frequency approximations 
(convected wave/Helmholtz equation; Pierce’s equations - they are more 
general), or for a potential flow (which is not appropriate for propagation in the 
atmospheric boundary layer). 
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This equation has been popular for some time in the aeroacoustics community 
but, due to its limited validity for arbitrary flows and the existence of unstable 
solutions induced by the coupling between acoustic perturbations and vorticity 
fluctuations, the main stream approach is now to use the linearized Euler 
equations (LEEs), a system of 3 coupled equations for pressure, velocity and 
entropy fluctuations. 
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For a unidirectional shear flow, a 3rd order equation for the acoustic pressure can be 
obtained (Lilley/Goldstein equation).  
 
For example with  
 

0 2 1V V (x )x



With some reasonable assumptions for atmospheric propagation (eq. correct to 
first order in Mach number), Ostashev & Wilson reduced the problem to the 
solution of only 2 coupled eq. for acoustic pressure and velocity . 

20
0 0

0
0

0

p'
' 0

' 1
'. ' 0

D
c v

Dt

D v
v V p

Dt





   

    

0
0 0 0

0
0 02

0 0

0
0

'
'. ' ' 0

' 1 '
'. ' 0

s'
' 0

D
v v V

Dt

D v
v V p p

Dt

D
v s

Dt


  



 

      

      

  

Linearized Euler Equations can be written as  

These equations are often used in Finite Difference Time 
Domain simulations 
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Boundary Element Method (BEM) 

Choice method for build environment when atmospheric effects can be neglected 
Based on the Kirchhoff-Helmholtz integral theorem; use of an analytic form of the 
Green’s function of homogeneous Helmholtz equation (typically the free field 
Green’s function); Sommerfeld radiation condition automatically taken into 
account. 
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Other Green’s functions can be used (a 
combination of similar functions for 
propagation above a reflective ground for 
example; a Hankel function for 2D problems). 

 Direct  field Diffracted field 
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The direct field is not a problem (the source is supposed to be known); it 
corresponds to the field which would be observed without the obstacle For the 
diffracted field, it is necessary to elaborate somewhat. 
To determine the layer potentials (i.e. the unknown factors multiplying the 
Green’s function and its derivative under the integral sign), it is necessary to put 
the observation point x on the surface S of the obstacle. (technically this is a bit 
subtle as the Green’s function becomes singular, G~1/r and G’~1/r2). For a regular 
point (with a tangent; not a corner point for which a slightly different formula 
exists) the result is simply: 
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Warning: this is not a simple formula! But an integral equation, as the unknown 
(p) is present both inside and outside of the integral sign. 
This equation is solved using a discretization of the integral by a collocation 
method or (usually) by a finite element approach (BEM for Boundary Element 
method). This step is the delicate part of the integral formulation, which 
necessitates the use of 2 different meshes: 
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1st step: Solve the integral equation which gives access to the layer potentials on 
the obstacles (element size typically smaller than l/6). 
 

2nd step: Compute the acoustic field at various points (outside the obstacles) by the 
surface integration of a now perfectly known and non singular function. 
 

A 3rd step consists simply in adding the direct field to get the final result 
 
This approach is used in various commercial software, such as VirtualLab Acoustics 
(LMS/Siemens) or the Acoustic BEM module of VA ONE from ESI Group. 

The boundary element method effectively reduces complex 3D geometry to 2D 
surface dimensions. Only the surface areas of the structural systems that are 
vibrating or scattering sound need to be modeled.  
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They are however some specific difficulties, such as the existence of “irregular 
frequencies”, or the fact that the matrices resulting from the FE discretization are 
full and complex. These questions are now well treated in commercial software, 
with efficient numerical techniques such as the Fast Multipole Method (FMM) 
implementation of BEM. 
We refer the reader to the websites of the companies, and to the book by N. Atalla 
& F. Sgard, Finite Element and Boundary Methods in Structural Acoustics and 
Vibration, CRC Press, 2015. 

Note that BEM can be formulated also in time 
domain (example from TDBEM in LMS Virtual Lab) 
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A simple example of BEM computation 
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BEM computation of noise barrier efficiency 



FEM for non homogeneous Helmholtz equation 

Main advantage relative to BEM: volume meshing allows for variation of density 
and speed of sound induced by temperature gradients. Very well adapted to 
encapsulated problems in which the areas to be meshed are clearly delimited.  
 

Main drawbacks:  
Due to volume meshing with element size smaller than l/6 typically, the method is 
limited to low frequencies or short propagation range. 
The presence of a numerical boundary at small distances from the source region 
may produce artificial reflexions (no way to reproduce simply the Sommerfeld 
radiation condition). In the past this was a real difficulty; a numerical trick 
sometimes used was the adjunction of a layer of so-called “infinite elements” 
around the FE domain. Nowadays the preferred approach is to add a rather limited 
region around the classical FE mesh in which a very rapid absorption of acoustic 
waves takes place with (nearly) no spurious reflexions, by achieving an impedance 
matching at the boundary of the FE domain: the Perfectly Matched Layer. PML 
zones are routinely used in commercial codes, whether specific to acoustic 
propagation (Virtual Lab for example) or generic FE codes, such as Comsol 
Multiphysics. 
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Perfectly Matched Layers 

In this technique, initially developed for electromagnetic fields (Bérenger,1994), 
only finite elements are used. But in a region limiting the computational domain, 
the equations to be solved are changed in order to provide a very strong 
absorption of the incident waves. 

 
For this an imaginary part of the wavenumber is introduced to provide an 
exponential decay of the acoustic waves inside the absorbing zone (this is similar 
to, but much stronger than the “real” absorption due to viscous and thermal 
effects in the atmosphere) 
The exponential decay has to be sufficiently important so that the waves arriving 
at the exit boundary are of negligible amplitude and then the numerical BC at exit 
plays no role (we can impose a hard wall condition for example). 
In practice numerical codes (such as Comsol Multiphysics) use a transformation of 
coordinates (into the complex plane) in the direction normal to the boundary 
(analytic continuation).  
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which is a modified Helmholtz equation, with a complex wavenumber, whose 
imaginary part induces an exponential decay of the signal; for a right going wave: 
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Denoting by   the depth of the PML, the incident amplitude is reduced by a factor: 
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Solving the Helmholtz equation in the modified coordinate 
system is then equivalent to solve 
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In Cartesian coordinates: 



At the exit of the PML zone, the residual amplitude can be made so small that the 
reflective wave will be negligible, whatever the imposed  BC. 
 

There is also no reflexion at the entrance of the PML zone, as velocity and 
pressure are continuous functions at the interface (say in  x=0), and this is true 
even if a very strong attenuation is selected; hence the name Perfectly Matched 
Layer: the acoustic impedance in the PML is matched to the medium value and 
therefore no reflexions can be generated.  
 
The remarkable result is that this property of non reflexion at the interface, which 
is easy to obtain for normal incidence by using the simple BC Z=Zc=c), is also 
verified for oblique incidence, the attenuation being introduced only in the 
direction normal to the interface. 
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FEM computation of diffraction by a 2D noise barrier (f=800Hz) 

Note the absence of visible reflections at the limits of the FE domain, 
 and the extremely rapid decrease of pressure level inside the (quite small) PML zone  
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Ray tracing 

The physical idea is to extend the concept of plane waves to non homogeneous 
and moving media.  We will then define locally plane waves, associated to the 
tangent plane of the wavefront. 
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The approximation will be better and better as the ratio between the wavelength 
and the characteristic length scale L of the non homogeneities decreases. Formally 
the equations of geometrical acoustics are obtained for the limit 
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This physical idea of the existence of a small parameter l/L, or equivalently a large 
one (angular frequency ) can be formalized through a development in an 
asymptotic series. We illustrate below the mathematical mechanism on the simple 
Helmholtz equation (variable speed of sound, but density kept constant). The 
procedure can be extended to more complicated equations, including LEEs in the 
presence of an arbitrary flow. 
The first step consists in introducing a “locally plane” form for the pressure 
fluctuation. 
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An asymptotic series is then introduced using the small parameter 1/  
(physically  l/L) 

n
0 n

n 1

A
A A





 




   

0 n 0 n 0 nn n 1 n 1
1 1 1

2
2 22

0 n 0 nn 2 2 2 n 2
1 1

1 1 1
A A 2i A 2i A i A i A

1 1 1
A A A A 0

c c

  

 

 

 

          
  


      

 

  

 

Helmholtz eq.: 

And by grouping terms in decreasing powers in : 
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This series can be pursued, but 
in practice only the first two eq. 
are used 
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The first eq. is known as the Eikonal equation; it will allow to compute the paths 
followed by the acoustic energy (acoustic rays). 
The second one will give access to the pressure amplitude along each ray. 

The eikonal equation is a first order non linear equation and it can be solved by 
the method of characteristic lines 
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This results in a system of coupled first order ODEs which are easily solved using 
for example  a Runge-Kutta method. 
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The first system describes the convection of acoustic waves 
at the local speed of sound. 
The second system is associated to the refraction of the 
wave by the sound speed gradient .  
(x is the courant position along the ray, and t is the travel 
time along the ray). 
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Sound speed decreasing with height 

Sound speed increasing with height 

Specular reflection on the ground surface 
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Ray equations in the presence of an arbitrary flow: a very similar form 

Convection of acoustic wave by the local flow 
velocity. As a consequence rays are no longer 
orthogonal to wave fronts! 
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gc Conservation of acoustic energy flux through a 
ray tube (consequence of the 2nd eq. in the 
asymptotic series) gives access to the pressure 
amplitude along each ray. 
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M is the local Mach number V/c 
dS the area of an infinitesimal 
ray tube and  the unit normal 
to the wavefront. * In practice S will be estimated by solving an  other set 

of ODEs for the geodesic elements of the ray system 
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(in red the limiting ray) 
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Ray tracing pros and cons 

Ray tracing is very simple to implement; it gives a clear physically appealing, 
qualitative, view of sound propagation in a complex environment. 
 
But some difficulties appear when willing to obtain quantitative information 
(sound levels): 
 

Shadow zones: no rays and so no other information than “low sound level”. 
 

Caustics: neighbouring rays cross and then amplitude is theoretically infinite; in 

practice the prediction of level will be unprecise. 
 
These 2 difficulties are a consequence of having neglected all diffraction effects, 
by taking a limit of “infinite” frequency. 
 “Corrections” have been proposed but in practice, when it is necessary to 
estimate precisely the sound pressure level in these regions, it is better to turn to 
a wave approach such as paraxial approximations. 
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Ray tracing pros and cons 

Outside these problematic zones, computing sound level is a bit complicated as 
ray tracing is fundamentally a Lagrangian  approach: we trace acoustic trajectories, 
not knowing in advance where they will arrive. 
 

To compute the sound level at a given point, one has to determine all the rays  
joining the source to the receiver (the so called eigenrays) and add the different 
contributions in amplitude and phase. This can be tedious especially in 3D. 
 
To finish, it is important to note that an eigenray corresponds to an extremum 
value of the travel time between source and receiver (Fermat’s principle); the 
stability of the travel time relative to small variations of the ray path (induced by 
say local temperature variations) is central to the development of travel time 
acoustic tomography, an inversion technique used to infer the structure of thermal 
and velocity fluctuations in the atmosphere from acoustic measurements. 
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Effective sound speed 

As shown above, the presence of flow changes dramatically the equations of 
sound propagation. In the high frequency limit we have seen that the propagation 
becomes anisotropic due to the vector nature of the velocity; as a consequence 
rays are no more normal to wavefronts.  
However when the velocity is small, as is the case for sound propagation near the 
ground, it is possible  to introduce an approximate method to take into account 
the effect of wind  via an “effective sound speed”; this trick permits the use of 
wave methods developed for a non homogeneous medium at rest, for example 
the parabolic equation method. 
The wind is supposed to be nearly horizontal with component V, and the vertical 
propagation angle is also supposed to be small.  
The effective sound speed is given by   
 
 

 being the azimuthal angle (between the vertical plane containing source and 
receiver and the wind velocity); note that out-of-plane effects are thus neglected. 

The following slide offers a comparison of ray traces obtained with the exact 
equations and the “scalar” ones obtained with the effective sound speed (no 
temperature gradient; linear evolution of wind with height). 
 

coseffc c V  
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Exact rays (black) vs effective sound speed rays (red): differences are 
noticeable only for large values of emission angle 

 

Launch angles  30 

CeLyA Summer School on Atmospheric Sound Propagation, June 13-15 2018, Lyon 



Parabolic equations 

Parabolic (or paraxial)approximations are trying to combine numerical efficiency 
(compared to FE solution of Helmholtz eq.) with partial inclusion of diffraction 
effects. 
The key idea is to construct one-way equations, that is equations describing only 
the forward propagation of waves (from source to receiver) in contrast to the 
classical Helmholtz equation (a two-way eq.) supporting both forward propagating 
and backward propagating waves. 
This can be seen as a generalization of the decomposition of the 1D wave eq. with 
constant speed of sound: 
 2
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Forward propagating wave (with exp(+it) time dependence) 

Backward propagating wave;  
coupling between the 2 waves can occur only through a reflecting BC. 
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For a stratified medium, in which the refraction index does not depend on x1 (in 
what follows we limit ourselves to 2D propagation in a vertical plane), we can write 
formally: 

2 2
2 2
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p p
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Where c0 is a “reference value” of the speed of sound, for example the value at the 
source position, or an average over some vertical distance. 
This factorization is exact as Q does not depend on x1 and then commutes with the 
x1 derivative. In this case a one-way equation can be formally written for the 
forward propagating wave as 

0
1

ik Q p 0
x

 
  

 

This eq. is or parabolic type as only a first order derivative 
along x1 appears. Efficient “marching” algorithms in x1 
direction are available for such a parabolic eq., which is 
similar to the time-dependent heat equation (x1 playing here 
the role of time). 
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How to obtain an explicit form to  Q? 
The physical idea is to consider Q as a slightly perturbed operator; if we write Q as 

 
1/2 1/2

2 2
2 2

2 2 2 2
0 2 0 2

1 1
Q= n 1+ n 1

k x k x

    
             

e<<1 m=? 

It is clear that e is a small parameter for sound propagation in the atmosphere, 
typically smaller than 0.1; to interpret m let us consider a plane wave inclined by an 
angle q relative to the horizontal direction. 

0 1 0 2
ik cos x ik sin x

2
2 2

2 2
0 2

p e e

1 p
p sin p;ie sin

k x

 q  q


m    q m q



It is now clear that  m can also be considered as a small parameter for waves  
propagating at small angles relative to the horizontal direction . 
A Taylor expansion is thus quite natural and we have to first order 
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and the equation for p is then 

which is known as the Standard Parabolic 
Equation SPE, developed in the early 70s 
for sound propagation in the ocean (Fred 
Tappert). 

To remove rapid evolutions of p at the wavelength scale, a further change of 
variable is often used, by introducing the “envelope” of the pressure wave : 
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This equation can be solved via spatial Fourier transforms (split step Fourier 
algorithm, Green’s function parabolic eq., GFPE) or finite differences (Crank-
Nicholson PE, CNPE) or FE. 
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dB scale 
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dB scale 
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f=2000Hz 
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The SPE is considered to give excellent results for propagation angles lower than 
15-20° . In some cases a higher range of validity is important. 
One simple idea would be to consider a higher order Taylor expansion of the 
square root operator (the resulting PE would involve 4th order derivatives in the 
plane normal to x1).  
In practice a different approach is used. The square root is approximated by a 
rational function expansion, or Padé approximant. 
The classical (1,1) approximation is given by 

2
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By matching expansions up to  
order 2, we get 
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And the resulting parabolic equation (for p) is given by 
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This 3rd order Wide Angle PE (but 1st order in x1!) is due to Claerbout (with 
application to seismic migration) and is considered to be accurate for propagation 
angles up to 45°. 
 It is usually solved by a Crank-Nicholson finite difference approach. (Wide Angle 
CNPE). 
 

This equation can be generalized to include the effects of density gradients and of 
flow (with some approximations). 
For details, we refer to the book by V. Ostashev & K. Wilson, Acoustics in Moving 
Inhomogeneous Media (2nd Edition), CRC Press, 2015. 
See also Computational Ocean Acoustics (2nd Edition), F. Jensen, W. Kuperman, M. 
Porter & H. Schmidt, Springer, 2011. 
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Inclusion of (volume) random fluctuations in numerical simulations 
of sound propagation in the atmosphere  
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Up to now we have considered that the propagation medium was inhomogeneous 
and possibly moving, but deterministic; we have not considered the intrinsic 
randomness of the atmosphere (“turbulence”). We have taken into account only 
“mean values” of the local speed of sound and of the wind. The inclusion of 
randomness can however have some very significant effects on the mean acoustic 
level (notably in shadow zones) and on the 2-point coherence of the pressure field, 
which has a profound impact on the detection and localization of acoustic sources  
using microphone arrays. 
 
We will consider here only “line of sight” propagation, not scattering off the main 
axis of propagation. In such a case methods based on parabolic equations are the 
most appropriate numerical tools for long range propagation, but  FDTD techniques 
(based on LEEs) can also  be considered (see lecture by Didier Dragna). 
 



The main difficulty when dealing with random fluctuations of the propagation 
medium is that we have to estimate statistically averaged values of the pressure, 
intensity (pressure squared), and product of pressure fluctuations computed at 2 
different points, or coherence functions  (to limit ourselves to 2-point statistics). 
 
Two approaches are possible:  
 
 Obtaining and solving equations for these averaged values 

 
 Solving “deterministic” equations for a large number of individual realizations 

(or snapshots) of the random medium and performing averaging in a  post-
processing  step. 
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Equations 

Relatively small random fluctuations will be superimposed on the deterministic 
(averaged) model of the atmosphere. In the (standard) parabolic equation 
framework, the equation to be considered  for the wave envelope (or complex 
amplitude) writes as 
 

 2 2 2

1

2 1 2 0T effik n k
x

e


        


2

T  is the “transverse Laplacian” (Laplacian in the plane (x2, x3); random 
fluctuations are intrinsically 3D). 
 

The random fluctuations enter through  

T’ and v’ are the fluctuations of temperature and of the component of the velocity 
along the principal  direction of propagation, x1. They are random processes 
characterized by a spatial correlation function or a spatial Fourier spectrum. Often 
Gaussian (simple form with only one characteristic length scale) or, better, von 
Karman (with outer and inner scales and a typical Kolmogorov inertial range in-
between) spectra are used. 
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Statistical moments 

The acoustic pressure field is written as the sum of the statistical mean value of 
the complex amplitude (the mean field) and a fluctuating part 

1 1 1( , ) ( , ) '( , )T T Tp x x p x x p x x 

The main quantity of interest  is the second order moment for a given horizontal 
range, at the same transverse position (mean-squared pressure, acoustic intensity) 
or at 2 different positions (mutual coherence function).  
 
 
 
 

Closed form solutions can be found for free field propagation in a statistically 
homogeneous medium  (a Markov hypothesis for the random field has to be used) 
and for specific initial conditions. For a plane wave for example the coherence 
function depends only on the separation distance between the 2 observation 
points and can be expressed as a function of the spatial spectrum of the random 
fluctuations. An example of coherence functions is given in the next slide. 

1 2 1 2

*( , , ) '( , ) ' ( , )T T T Tx x x p x x p x x 
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Computed coherence functions for 
moderate wind, f=500Hz. From 
Ostashev & Wilson, 2015. 

Laboratory measurements of  
coherence functions  for velocity 
turbulence (Ostashev, Blanc-Benon 
& Juvé, 1998) 



For propagation in a refractive 
atmosphere above an impedance 
ground, a closed form equation for the 
second moment was derived by Wilson 
& Ostashev, 2001, and numerically 
solved for 2D propagation in a vertical 
plane.  
While conceptually appealing, this 
approach is highly computationally 
demanding, requiring much more 
computation time than the “snapshot” 
method to be presented below. We 
show here a result taken from the cited 
paper and comparing PE results with 
and without turbulence. 
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Mean-squared pressure (and transverse coherence function) 
in a refractive atmosphere 

Deterministic 
shadow zone 



The “snapshot” method is numerically very simple to implement; it consists of 
solving the classical PE (SPE or WAPE) for a series of realizations of the random 
fluctuations “added” to the deterministic part of the index of refraction (Monte 
Carlo approach). 
The only difficulty is to generate realistic random fluctuations (without using 
unsteady CFD); several kinematic methods (i.e. not based on the dynamical eq. of 
motion, but synthesized from prescribed second-order spatial statistics) exist, 
most of them using a sum of (spatial) Fourier modes.  This method allows an easy 
and exact description of (incompressible) velocity fluctuations. One disadvantage 
is the difficulty to take into account  non homogeneous random fields. 
The PE code is run on a sufficient number of realizations to obtain statistical 
convergence; typically N=100 realizations are sufficient for estimating the mean 
acoustic level, but a larger number is required for estimating the coherence 
function or pdfs. 
The numerical cost is important as the not only we have to consider a large 
number of runs, but also as the step of the numerical grid has to be reduced in 
order to well describe the influence of the smaller random scales (however it is 
not useful in practice to resolve scales lower than say l/10). 
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The method of snapshots 
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The modified von Karman spectrum  is a 
good approximation of experiments 

K 

- Wave-vector direction and phase  of the modes 
are  uniformly distributed  over [ 0, ]  to ensure 
isotropy and statistical homogeneity 
 
- Amplitudes of modes are fixed according  
 to a given form of the energy spectrum. 
 

Modeling  of random fluctuations: 
Random Fourier Modes (RFM)* 

* Other techniques can be used, RFG (Frehlich), 
spatial filtering of random fields … 
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Typical realization of a random velocity field 
Fourier modes synthesis-von Karman energy spectrum 

CeLyA Summer School on Atmospheric Sound Propagation, June 13-15 2018, Lyon 

Mach number of 
longitudinal 
fluctuations 



Numerical simulation of sound propagation  
in an upward refracting atmosphere  (f=800Hz, WAPE) 

Without 
turbulence 

With 
 turbulence 

Level relative to 
free field 

 (dB) 
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Propagation of an initially plane wave 
in a realization of wind turbulence 
(a) Wind amplitude generated by RFG model 

(b) FDTD, f=300Hz 
Ehrhardt & al., JASA 2013 
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And a time domain 
computation to make  a link 
with tomorrow’s lecture 

file:///C:/Daniel/Conférences/Summer_School_2018/CONT-T1-P-zoom.avi


Thank you for attention 
 
 
 

Any questions? 
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