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Context: Outdoor sound propagation

Outdoor sound propagation Transportation noise

interaction with the ground:
- reflexion over an absorbing
ground

- diffraction due to the terrain
profile and/or obstacles
(screens, ...)

inhomogeneous atmosphere:
- wind profile
- temperature
- diffusion by atmospheric
turbulence

- broadband noise
- moving source
- propagation range up to 5 km
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Context: Interest of time-domain approaches

Time-domain approaches for outdoor sound propagation:

development for twenty years [1-3]

due to the growth of computational power

Broadband computation

single run =⇒ results over a frequency band

Sources in motion are simply taken into account

Doppler effect + convective amplification

Outputs are time-domain signals

one can hear the results

interest for perception and auralization

Adapted for pulse signals (ex: transient signals, blast waves, ...)

Nonlinear effects
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Time-domain equations (1)

Several set of equations possible for studying sound propagation in the atmosphere:

the full Navier-Stokes equations
ex: predicting infrasound propagating in the upper atmosphere where nonlinear
and thermoviscous effects can be important

Study by Sabatini et al. [4]

Infrasonic source located on the
ground

Sound speed profile in the atmosphere
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Time-domain equations (1)

Several set of equations possible for studying sound propagation in the atmosphere:

the full Navier-Stokes equations
ex: predicting infrasound propagating in the upper atmosphere where nonlinear
and thermoviscous effects can be important

Snapshots of the normalized pressure + acoustic rays superimposed
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Time-domain equations (2)

the full Euler equations
ex: predicting blast wave propagation, sonic boom

Study by Yamashita & Suzuki [5]

Flight altitude: 6 km - Mach number: 1.4
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Time-domain equations (3)

In most common cases in atmospheric sound propagation,
propagation is a linear process and thermoviscous effects can be neglected
=⇒ one can linearize the Euler equations around the ambient values

Linearized Euler equations (LEEs) for atmospheric sound propagation: [3]

∂p
∂t

+ V0.∇p + ρ0c2
0∇.v = ρ0c2

0Q,

ρ0
∂v
∂t

+ ρ0(V0.∇)v + ρ0(v.∇)V0 +∇p = R.

Acoustic variables

p acoustic pressure
v acoustic velocity

Medium properties

ρ0 density
V0 mean flow = wind
c0 sound speed

Source terms

Q mass source
≈ monopolar source

R external forces
≈ dipolar source

Other possible forms: 3 equations on (p, ρ, v), ...

Equations written in conservative form:

∂U
∂t

+
∂E
∂x

+
∂F
∂y

+
∂G
∂z

+ H = S,
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Comparison with other numerical approaches

Temperature Wind Reflexion over Diffraction
profile profile the ground (topography,

obstacles, ...)
Geometrical methods

Ray-tracing + Geometrical +++ +++ +++ +++
theory of diffraction

Wave-based methods
Paraxial approximations +++ +++ +++ +
Boundary element method (BEM) + + +++ +++
Transmission Line Matrix (TLM) [6] +++ + +++ +++
Linearized Euler equations (LEEs) +++ +++ +++ +++
...

Geometrical 

methods Paraxial 

approximation

Wave-based methods

High-frequency

assumption
No back-scattering

N N3
N4

Complexity

Cost 

estimate

LEEs
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Numerical methods for the LEEs (1)

Discretization in time and space

t = 0 t = ∆ t t = n t∆

Basic idea to solve
∂U
∂t

= K (U) with K (U) = S−
∂E
∂x
−
∂F
∂y
−
∂G
∂z
− H

1. we set the initial conditions U(t = 0)

2. we compute the spatial derivatives of the fluxes
∂E
∂x

,
∂F
∂y

and
∂G
∂z

to evaluate K (U)

3. we integrate in time to obtain U(t = ∆t)
....
n. we obtain U(t = n∆t)
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Numerical methods for the LEEs (2)

To solve the LEEs, we need:

a numerical differential method

a time-integration method

Numerous numerical methods available in the literature:
- numerical differentiation methods

finite differences
pseudospectral methods [7]

finite element method

finite volume method

....

- time-integration methods

Runge-Kutta algorithms
Adams-Bashforth algorithm

....

Hereafter, the presentation is restricted to finite-difference methods and Runge-Kutta
algorithms

Remark:
- the acronym FDTD (for finite-difference time-domain) is usually employed when
time-domain equations are solved using finite difference methods to evaluate
the spatial derivatives
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Finite difference methods: standard schemes (1)

p
l−

pp

∆ x

l+11 l

Taylor series expansion:

pl−1 = pl −∆x
∂ p
∂x

∣∣∣∣
l

+
∆x2

2
∂2 p
∂x2

∣∣∣∣∣
l

−
∆x3

6
∂3 p
∂x3

∣∣∣∣∣
l

+ ...

pl+1 = pl + ∆x
∂ p
∂x

∣∣∣∣
l

+
∆x2

2
∂2 p
∂x2

∣∣∣∣∣
l

+
∆x3

6
∂3 p
∂x3

∣∣∣∣∣
l

+ ...

=⇒ standard scheme with a 3-points second-order stencil

∂ p
∂x

∣∣∣∣
l

=
pl+1 − pl−1

2∆x
+ O(∆x2)

Higher order schemes are obtained by keeping more terms in the Taylor series
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Finite difference methods: standard schemes (2)

Ex: 5-points fourth-order standard scheme

p
l−

p pp

∆ x

l
p

l+ l+l− 212 1

∂ p
∂x

∣∣∣∣
l

=
1

∆x

[
−

1
12

(pl+2 − pl−2) +
2
3

(pl+1 − pl−1)

]
+ O(∆x4)

General formula for schemes over a 2N + 1 points stencil:

∂ p
∂x

∣∣∣∣
l

=
1

∆x

N∑
j=1

aj (pl+j − pl−j )

D. Dragna Time-domain approaches 12 / 62



Finite difference methods: effective wave number (1)

For a harmonic wave p = exp(ikx):

- its derivative:
∂ p
∂x

∣∣∣∣
l

= ikp

- its finite difference approximation:

∂ p
∂x

∣∣∣∣
l︸ ︷︷ ︸

ik∗p

=
2i

∆x

N∑
j=1

aj sin(jk∆x)p

Notion of effective wave number:

k∗∆x = 2
N∑

j=1

aj sin(jk∆x)

0 /4 /2 3 /4
0

/4

/2

3 /4

— FD 2nd order — FD 6th order
— FD 4th order — FD 8th order

Long wavelengths (k∆x < π/8 corresponding to a resolution λ/∆x of at least 16
points per wavelength) are sufficiently discretized and k∗ ≈ k

For short wavelengths (π/8 < k∆x < π), k∗ 6= k ; increasing the order of FD schemes
allows one to reduce the error

Note that the maximal wavenumber is k = ∆x/π corresponding to two points per
walength
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Finite difference methods: effective wave number (2)

Dispersion relation for the advection equation:
∂p
∂t

+ c0
∂p
∂x

= 0

- exact equation: ω = c0k

- finite difference approximation: ω = c0k∗(k∆x)

Dispersion relation modified by the finite difference approximation

Ex: propagation of a harmonic wave

∂p
∂t

+ c0
∂p
∂x

= 0 with p(t = 0) = exp(ikx)

Analytical solution: pana(x , t) = exp(ikx − ikc0t)

Numerical solution: pnum(x , t) = exp(ikx − ik∗c0t)
= pana(x , t) exp[−i(k∗ − k)c0t]

At x = n∆x , the signal recorded at the time t = x/c0 is:

pnum(x , t = x/c0) = pana(x , t = x/c0) exp[−in(k∗ − k)∆x ]

=⇒ phase error that increases as the propagation time increases
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Finite difference methods: optimized schemes

Schemes used in computational aeroacoustics

High order + Large stencil with coefficients aj optimized to miminize the numerical error
over a given range of wavenumber:

optimization for 0 ≤ k∆x ≤ π/2 in Tam & Webb [8]

optimization for π/16 ≤ k∆x ≤ π/2 in Bogey & Bailly [9]

0 /4 /2 3 /4
0

/4

/2

3 /4

/16 /8 /4 /2
10

-8

10
-6

10
-4

10
-2

10
0

— FD 2nd order —FD 4th order — FD 6th order —FD 8th order

— optimized FD 4th order over 11 points of Bogey & Bailly [9]
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Finite difference methods: Accuracy

Error on the phase lower than 10 %
(|k∆x − k∗∆x | ≤ 0.10π)

Number of points per wavelength:
- is very large for low order schemes
- decreases as the order increases

Example: f = 340 Hz, λ = 1 m
propagation distance 100 m
- 2nd order: λ/∆x ≈ 115 =⇒ 11500 points
- 4th order: λ/∆x ≈ 18 =⇒ 1800 points
- 8th order: λ/∆x ≈ 7 =⇒ 700 points
- optimized 4th order: λ/∆x ≈ 4 =⇒ 400 points

1 2 5 10 20 50 100 200

2

4

8

16

32

64

128

Long-range propagation:
- propagation over a large number of
wavelengths

- high-order schemes mandatory,
especially for 3D computations

— FD 2nd order — FD 4th order
— FD 6th order — FD 8th order
— optimized FD 4th order over

11 points of Bogey & Bailly [9]
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Time-integration method: Runge-Kutta algorithm

First-order differential equation of the form
∂u
∂t

= F (u) can be integrated in time using

explicit Runge-Kutta algorithms (among others)

value of u at the n th time step ∆t : u(n∆t) = un

u0 is given and succesive iterations are performed to obtain un

Low storage p-stages Runge-Kutta algorithm:

u(0) = un,

u(l) = un + αl ∆t F
(

u(l−1)
)
, for 1 ≤ l ≤ p

un+1 = u(p).

Standard schemes of order p
- coefficients αl obtained from

Taylor series
- order 4 usually chosen

Optimized schemes
- high order
- coefficients αl optimized in the frequency

space: accuracy + stability
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Time-Integration method: Accuracy

Harmonic wave: u = exp(ikx − iωt)

Amplification factor:

- exact:
un+1

un
= exp(−iω∆t)

- with RK method:
un+1

un
= |G(ω∆t)| exp(−iω∗∆t)

/8 /4 /2
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Dissipation error

/8 /4 /2
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Phase error

standard 4-stage 4th order RK

optimized 6-stage 2nd order RK of Bogey & Bailly [9]
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Time-integration method: Stability

Harmonic wave: u = exp(ikx − iωt)

Amplification factor:
un+1

un
= |G(ω∆t)| exp(−iω∗∆t)

Instability if |G(ω∆t)| > 1

or ω∆t > (ω∆t)max

ex: standard 4th order RK, ω∆t < 2.8

Dispersion relation:
ω = kc0 or ω∆t = k∆x CFL with

the Courant-Friedrichs-Lewy number:

CFL =
c0∆t
∆x

Maximal possible value of k∆x is π

0 /4 /2 3 /4 4 /3
0

0.5

1

1.25

standard 4-stage 4th order RK

optimized 6-stage 2nd order RK
of Bogey & Bailly [9]

=⇒ instability occurs if CFL > CFLmax with CFLmax = (ω∆t)max/π

ex: standard 4th order RK, CFLmax ≈ 0.9

Actually, because the dispersion relation is ω = k∗c0, CFLmax depends on both the
time-integration method and the differentiation method
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Non-reflecting boundary conditions

Computational domain in volume-discretization methods needs to be truncated

=⇒ at the open boundaries, need to have a reflection-free boundary condition

Two widely spread methods:

perfectly matched layers

non-reflecting boundary condition of Tam and Dong

Numerous other possible methods!

non−reflecting boundary conditions

impedance boundary conditions
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Perfectly Matched Layers (PML)

Principle: use an absorbing layer at the outer boundaries which do not generate
reflected waves at the interface [10]

Change of variable:

x → x +
i
ω

∫ x

x0

σdx

σ > 0 in the PML and null
elsewhere

Harmonic wave:
x

0

σ = 0 σ>0

x

PML

p = exp(ikx − iωt) =⇒ p = exp

(
ikx − iωt −

k
ω

∫ x

x0

σdx

)
Ex : 1-D advection equation

∂p
∂t

+ c0
∂p
∂x

= 0 =⇒
∂p
∂t

+ c0
∂p
∂x

+ σp = 0

Method:

very efficient

unstable in the presence of a mean flow
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Non-reflecting boundary condition of Tam and Dong

Principle: in the farfield, propagative waves of the form: [11,12]
p ≈ F (r/vg − t)
v ≈ F (r/vg − t)er

with vg the group velocity

Solution of the equations:

∂p
∂t

+ vg

(
∂

∂r
+

1
r

)
p = 0,

∂v
∂t

+ vg

(
∂

∂r
+

1
r

)
v = 0.

re
r

re
r

re
r

vg

0

Source

V0

The above equations are solved instead of the LEEs at the outer boundaries

Method:

very efficient, even on the presence of a mean flow

requires however to specify the location of the source region
difficult to apply if there are multiple sources or moving sources

D. Dragna Time-domain approaches 22 / 62



1 Equations

2 Numerical methods
Numerical differentiation methods: finite differences
Time-integration method: Runge-Kutta algorithm
Non-reflecting boundary conditions
Numerical techniques for long-range computations

3 Including the interaction with the ground
Reflexion over the ground
Topography

4 Including the atmosphere inhomogeneities
Mean fields
Turbulent fields

5 Some illustrations
Comparaison with experimental results on a complex site
Moving source

6 Conclusions

7 References

D. Dragna Time-domain approaches 23 / 62



Numerical techniques for long-range computations (1)

Volume discretization methods are very costly for lange-range computations

Some numerical techniques can be employed to reduce their cost:

1. For impulsive sources, the acoustic signal usually has only a limited spatial extent
=⇒ moving window: reduce the computational domain to a small domain

around the pulse that moves with it [2,7]

x

z

t1

c0

x

z

t1t2 >
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Numerical techniques for long-range computations (2)

2. Coupling between the LEEs and the parabolic equation

near-field: resolution of the LEEs which allow to account precisely of diffraction
by obstacles (including back-scattering) and of complex wind fields

far-field: resolution of the parabolic equation, which is more efficient for
long-range computations

Example of application in Van Renterghem et al. [13]
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Reflexion over an absorbing ground

Two possible approaches:

locally-reacting ground
=⇒ reflection over the ground can be modelled through a surface impedance

extended-reacting ground
=⇒ propagation of the acoustic waves into the ground is computed

Impedance boundary condition

θ θI

Impedance

wave wave
ReflectedIncident

Z

Transmitted
wave

R

Propagation into the ground

θ θI R

wave wave

ReflectedIncident

Transmitted

wave

θ
T
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Impedance boundary condition (1)

Surface impedance

caracterize the reflexion of waves over a surface: absorption and phase shift

for natural grounds, use mainly of semi-empirical models, with a single parameter

frequency domain

P(ω) = Z (ω)V (ω) =⇒

time domain

p(t) =

∫ +∞

−∞
z(t − t ′)v(t ′)dt ′

Impedance models proposed in the literature developed in the frequency domain
=⇒ translation in the time domain?
Not straightforward:

some physical conditions, such as causality, “lost” in the frequency domain

widely used models, such as the one proposed by Delany and Bazley are
deduced from measurements

Some references from the literature in acoustics:
- Miki [14]: modification of the Delany and Bazley model
- Rienstra [15]: three necessary conditions to formulate the impedance boundary

condition in the time-domain
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Impedance boundary condition (2)

Three necessary conditions in Rienstra [15]:

1. reality condition Z∗(ω) = Z (−ω) in the complex plane

2. passivity condition Re[Z (ω)] ≥ 0 for ω > 0

3. causality condition z(t) = 0 for t < 0

Remarks:

condition similar to those defining a positive-real function in circuit analysis

impedance is not a transfer function:
=⇒ the causality condition should also be check for the admittance (Rienstra)

real quantity of interest: reflexion coefficient?

Recent study to investigate these conditions for the impedance models used in outdoor
sound propagation in Dragna & Blanc-Benon [16]:
- semi-infinite ground Z = Zc

- rigidly-backed layer Z = Zc coth(−ikcd)
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Impedance boundary condition (3)

Some results:

physically-based models (Zwikker and Kosten, Hamet and Bérengier, variable
porosity) are physically admissible

Delany and Bazley (in its usual form) is not causal

Miki model for a rigidly-backed layer is not passive at low frequencies

proposition of a modified Miki model that is passive

Surface impedance for a
rigidly-backed layer:

— Delany and Bazley

- - - Miki

- · - modified Miki

10
−3

10
−2

10
−1

10
0

10
1

0

1

2

ρ
0
ω/σ

R
e[

Z
]/(

ρ 0c 0)
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Impedance boundary condition (4)

Other study done by Kirby in [17]

retrieves that the Miki model is not passive

shows also that the real part of the density is negative at low frequencies

Additional study in Dragna, Attenborough & Blanc-Benon [18]

the real part of the density is also negative at low frequencies for the modified Miki
model

Real part of the density for a
porous medium:

— Delany and Bazley

- - - Miki

- · - modified Miki

10
−3

10
−2

10
−1

10
0

10
1

0

1

2

3

ρ
0
ω/σ

R
e

[ρ
]/

ρ
0

Summary:
- semi-empirical models can be modified to be admissible for a particular case
- in the general case, the surface impedance would however not be physical
- physical-based models yield comparable results and must be preferred

D. Dragna Time-domain approaches 29 / 62



Numerical implementation (1)

Naive approche to evaluate p(t) = [v ∗ z](t) =

∫ t

−∞
v(t ′)z(t − t ′) dt ′

=⇒ requires a large memory space and CPU time for long-range propagation

Lot of works in the literature to develop efficient convolution methods (e.g. [19-23])

Time-domain impedance boundary condition (TDIBC) suitable for high-order solver in
Troian et al. [24]

1. Approximate Z (ω) by a rational function

Z (ω) ≈ ZP(ω) = Z∞ +
a0 + a1(−iω) + ...+ aP−1(−iω)P−1

1 + b1(−iω) + ...+ bP(−iω)P

Decomposition into partial fractions

ZP(ω) = Z∞ +
N∑

k=1

Ak

λk − iω
+

M∑
k=1

1
2

[
Bk + iCk

αk + iβk − iω
+

Bk − iCk

αk − iβk − iω

]
with corresponding time response:

z(t) ≈ Z∞δ(t) +
N∑

k=1

Ak e−λk t H(t) +
M∑

k=1

e−αk t [Bk cos(βk t) + Ck sin(βk t)]H(t)

instantaneous response first-order system response second-order system response
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Numerical implementation (2)

2. Formulation of the convolution by a set of first-order differential equations
For that, introducing z(t) into the convolution leads to:

p(t) = Z∞v(t) +
N∑

k=1

Akφk (t) +
M∑

k=1

[Bkψ
(1)
k (t) + Ckψ

(2)
k (t)] (1)

where the new variables, called accumulators, bring the information of the convolution:

φk (t) =

∫ t

−∞
v(t ′)e−λk (t−t′)dt ′

ψ
(1)
k (t) =

∫ t

−∞
v(t ′)e−αk (t−t′) cos(βk (t − t ′))dt ′

ψ
(2)
k (t) =

∫ t

−∞
v(t ′)e−αk (t−t′) sin(βk (t − t ′))dt ′

Time-variations of the accumulators governed by first-order differential equations:

dφk

dt
+ λkφk (t) = v(t) (2)

dψ(1)
k

dt
+αkψ

(1)
k (t)− βkψ

(2)
k (t) = p(t) (3)

dψ(2)
k

dt
+αkψ

(2)
k (t) + βkψ

(1)
k (t) (4)

=⇒ TDIBC imposed with (1) with accumulators obtained by solving (2)-(4)
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Numerical implementation (3)

Example of rational approximations of the surface impedance:
Hamet and Bérengier impedance model [25]
rational approximation with N = 2 and M = 0
over the frequency band 50-800 Hz
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Propagation into the ground

Ground usually assumed to be a porous medium with a rigid frame
=⇒ can be treated as an equivalent fluid with frequency-dependent properties

frequency domain

−iωP + Kg(ω)∇ · V = 0

−iωρg(ω)V +∇P = 0
=⇒

time domain
∂p
∂t

+ [Kg ∗ ∇ · v](t) = 0[
ρg ∗

∂v
∂t

]
(t) +∇p = 0

Kg = ωZc/kc compressibility and ρg = Zckc/ω density

Examples of equations obtained for two models;

equations based on the Zwikker and Kosten model [2, 27]
∂v
∂t

+
Ω

ρ0q2
∇p +

σ0Ω

ρ0q2
v = 0 ∂p

∂t
+
ρ0c2

Ω
∇ · v = 0

equations without convolutions but limited applications [28]

equations based on the Wilson’s relaxation model [28]
∂v
∂t

+
Ω

ρ0q2
[sv ∗ ∇p] +

1
τv

v = 0 ∂p
∂t

+
ρ0c2

Ω
[se ∗ ∇ · v] = 0

equations based on the Johnson-Champoux-Allard model [29]

Convolutions can be computed using the same method than impedance [30]

D. Dragna Time-domain approaches 33 / 62



Application on a 3D case (1)

Propagation of an acoustic impulse into an inhomogeneous atmosphere

sound speed profile c(z) = c0 + Ac ln
z + z0

z0
with Ac = 2 m s-1 and z0 = 0.1 m

Ground: a rigidly backed layer of thickness 0.1 m with two set of parameters:

a soft ground with σ0 = 10 kPa s m-2, q = 1.8, Ω = 0.5 and sB = 1

a harder ground with σ0 = 200 kPa s m-2, q = 1.8, Ω = 0.5 and sB = 1

Three different ground modelling:

Zwikker and Kosten propagation equations (equations without convolutions)

Wilson’s equations (equations with convolutions)

an impedance boundary condition using the Wilson’s relaxation model

Numerical specification

domain: [-5 m; 155 m]× [-6.6 m; 6.6 m] × [-0.1 m; 25 m]

moving frame

≈ 140 million of points
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Application on a 3D case (2)

Ground with σ0 = 10 kPa s m-2

Observer at x = 150 m, y = 0 m and z = 2 m

Fair agreement between the results for the
impedance boundary condition and for Wilson’s
equations
=⇒ extended reaction required

Results obtained with the Zwikker and Kosten
and Wilson’s equations dramatically different

Zwikker and Kosten equations

Wilson’s equations

Wilson’s impedance model
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Application on a 3D case (3)

Ground with σ0 = 200 kPa s m-2

Observer at x = 150 m, y = 0 m and z = 2 m

Results obtained with the impedance boundary
condition match closely those with Wilson’s
equations
=⇒ σ0 high enough so that local reaction can
be assumed

Small discrepancies remain between the
results obtained with the Zwikker and Kosten
and with the Wilson’s equations

Zwikker and Kosten equations

Wilson’s equations

Wilson’s impedance model

Time series of p
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Reflexion over an absorbing ground: Summary

Time-domain impedance boundary condition

use of a rational to approximate the impedance
- few poles usually required
- accurate approximation

computation of the convolution replaced by integration of first-order differential
equation

well-suited for high-order methods

Time-domain propagation equations in the ground

convolutions that can be evaluated as the impedance BC

required if the ground is extended-reacting

equations obtained up to now for some impedance models
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Topography: curvilinear coordinates (1)

A structured grid is necessary for finite difference methods
=⇒ accounting for a non flat ground is not straightforward

Non-flat terrain profile H(x , y)

Change of variable: [30]
z → z + H(x , y)

∂

∂x
→

∂

∂x
−
∂ H
∂x

∂

∂z
∂

∂y
→

∂

∂y
−
∂ H
∂y

∂

∂z
∂

∂z
→

∂

∂z
Ground

z

x

H x, y(      )

Generalization: curvilinear coordinates [31]

Physical domain ⇐⇒ Computational domain
(x , y , z) (ξ, ζ, η)

Method used in computational aeroacoustics [32]
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Topography: curvilinear coordinates (2)

Physical domain

η
ξ

z

x

Ground
ξ

Computational domain
η

Linearized Euler equations:

Cartesian case curvilinear case

∂U
∂t

+
∂E
∂x

+
∂F
∂y

+
∂G
∂z

+ H = S =⇒
∂U∗

∂t
+
∂E∗

∂ξ
+
∂F∗

∂ζ
+
∂G∗

∂η
+ H∗ = S∗

E∗ =
ξx E + ξy F + ξzG

J
, F∗ =

ζx E + ζy F + ζzG
J

, G∗ =
ηx E + ηy F + ηzG

J
,

U∗ =
U
J
, H∗ =

H
J

et S∗ =
S
J
.

J: jacobian of the geometrical transformation
ξx , ξy , ...: metrics of the transformation (ξx = ∂xi/∂x)
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Topography: curvilinear coordinates (3)

Summary:

same numerical methods than for a flat ground

nonflat terrains even with large slopes (around 45◦) can be accounted for

the geometrical transformation, and a fortiori the terrain profile has to be smooth
(no slope discontinuities)

Other approaches are required for a more general description of the boundary

immersed boundary method for structured grid?

unstructured grids well-suited
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Mean field

With the LEEs, mean field of T0 and V0 can be taken into account and their effect on
the acoustic field investigated:

using analytical profiles
- vertical linear or logarithmic profiles [33, 34]
- profiles from the Monin-Obukhov similarity theory

using profiles obtained from numerical simulation
- solvers of the fluid mechanics equations [1,26]
- meteorological models (see Aumond et al. [35])

Example: effect of the wind on the efficiency of noise barriers
in Van Renterghem & Botteldooren [26]

without wind with wind
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Turbulent field

Fluctuations :

temperature T (through c0) : scalar field

velocity V : vector field

Synthetic turbulence

generated via Fourier modes or related methods [36-38]

Fluctuations of wind velocites generated by the random fluctuations generation (RFG)
algorithm in Ehrhardt et al. [38]
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Example: diffusion by a volume of turbulence

Temperature fluctuations at the center of the domain with a von Kármán spectra [37]

Harmonic plane wave with f = 100 Hz

Sound pressure level relative( dB) to the incident
field 20 log10(|p1|/|p0|)

Scattering cross-section

numerical solution:
— single realization
— ensemble-averaging

over 200 realizations

- - - theory in far-field
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Description of the experimental site

Measurements on the railway site near La Veuve in
May 2010:

Topography

Surface impedances

Meteorological conditions

Campaign carried out with:

SNCF test department

Institut Français des Sciences et Technologies
des Transports, de l’Aménagement et des
Réseaux (IFSTTAR)

Impulsive source: blank pistol shots

Receivers located at: 7.5 m, 25 m and 100 m

Comparison with numerical simulation in [39]

Propagation line

Gap in near-field
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Site modelling: topography

Topography measurement done by the SNCF test department
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Ground profile relatively flat

Gap at x = 18 m whose depth is 0.8 m

Five types of ground impedances

— ballast
— soil
— grassy ground
— road
— field
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Site modelling: surface impedances

In situ measurement using the transfer
function method

Road: perfectly reflecting ground

Soil, grassy ground and field:
Miki model of a rigidly backed layer [14]

Ballast:

measurement difficult on the
experimental due to reflexions on rails

additional measurement realized on
the IFSTTAR’s site in Bouguenais

Hamet and Bérengier impedance
model [25]
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Site modelling: source

Impulsive source: blank pistol shots

Source located at zS = 1 m

3 shots

Positioning error

Results for the three shots

22 24 26

0

5

10

x 10
−4

t, ms

p
/ρ

0
c

02

Waveforms

2000 4000 6000 8000
40

50

60

70

f, Hz

L
p
, 
d
B

Sound pressure levels

=⇒ Comparisons up to 3000 Hz
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Site modelling: meteorological conditions

Meteorological mast located at 125 m from the center of the railway track:

propeller anemometers and temperature sensors at heights of 1 m, 3 m and 10 m

sonic anemometer at a height of 10 m

humidity sensor at a height of 3 m

Downwind conditions

Profiles determined with the Monin-Obukhov similitude theory
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Numerical specification

2-D Simulations
linearized Euler equations in curvilinear coordinates
optimized finite difference schemes of Bogey & Bailly [9]
mesh sizes ∆ξ = ∆η = 0.01 m with 11000 and 1500 points respectively in the
ξ-direction and in the η-direction
CFL = 0.6 and 22000 time iterations

Curvilinear transformation:
x = ξ,

z = η + H(ξ),

with ground profile H(ξ) approximated by splines

Correction 2D/3D [40]

Snapshot of the acoustic pressure at t = 71 ms
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Comparison of the results: time domain

— measurement

- - - numerical prediction

- · - numerical prediction with time-alignment

At the receiver M1:

arrival time of the direct wave well
predicted

arrival time and amplitude of the reflected
wave well predicted

At the receiver M2:

small time delay between the
measurement and the numerical prediction

good agreement between the waveforms

At the receiver M3:

larger time delay

shape of the waveforms are similar
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Comparison of the results: frequency domain

— measurement

- - - numerical prediction

Good overall agreement up to 2 kHz

Position of interference patterns
well-predicted

Sound exposure level (SEL):

SEL = 10log10

∫ +∞

−∞

p(t)2

p2
ref

dt

with pref = 210−5 Pa

SEL experimental numerical
result prediction

M1 101.1 dB 100.5 dBx = 7.5 m
M2 92.2 dB 92.0 dBx = 25 m
M3 79.3 dB 79.1 dBx = 100 m
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Moving source above an absorbing ground

Analytical solutions known only in simple cases

source moving at a constant height and constant speed above a flat ground in a
homogeneous atmosphere [41-44]

Time-domain approaches well-suited for studying the radiation of moving sources: [45]

broadband source, with any trajectory possible

broadband formulation for the surface impedance

x
y

z

R

R

R

O

1

2

3

V0

Source

ZS

Source speed V0 = 50 m.s-1 and height
z = 2 m

Source S(x, t) = Q(x− V0t)s(t)

3D simulation
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Results: perfectly reflecting ground

Spectrogram of the acoustic pressure at the observer
located at R1 - x = 0 m, y = 5 m, z = 3 m, dB/Hz

numerical solution
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Interference when Re,2 − Re,1 = (1/2 + n)λ, n integer
Re,1 distance between the source and the observer at the emission time

Re,2 distance between the image source and the observer at the emission time

Analytical solution: source + image source

Excellent agreement between the analytical and numerical solutions
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Comparison of the numerical results for the two surfaces (1)

Spectrogram of the acoustic pressure at the observer
located at R1 - x = 0 m, y = 5 m, z = 3 m, dB/Hz

perfectly relfecting ground
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Comparison of the numerical results for the two surfaces (2)

Sound pressure level SPL(x, t) =

∫ +∞

0
DSP(x, f , t)df , dB

R1 - x = 0 m, y = 5 m, z = 3 m
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Perfectly reflecting ground:
SPL higher when the source approaches the receiver (t < 0): convective
amplification

Absorbing ground:
not always the case
=⇒ competition between ground absorption and convective amplification

D. Dragna Time-domain approaches 55 / 62



1 Equations

2 Numerical methods
Numerical differentiation methods: finite differences
Time-integration method: Runge-Kutta algorithm
Non-reflecting boundary conditions
Numerical techniques for long-range computations

3 Including the interaction with the ground
Reflexion over the ground
Topography

4 Including the atmosphere inhomogeneities
Mean fields
Turbulent fields

5 Some illustrations
Comparaison with experimental results on a complex site
Moving source

6 Conclusions

7 References

D. Dragna Time-domain approaches 56 / 62



Conclusions

Time-domain approaches well-suited for atmospheric sound propagation

broadband computation

pulse signals

sources in motion

Solving linearized Euler equations:

possible to account for most of the important physical phenomena

possible to use hybrid approaches with more efficient methods for long range

The same numerical methods can be used for nonlinear propagation in the
atmosphere [4]

Perspectives:

better description of the source
- radiation of vibrating bodies at rest or in motion
- aerodynamic source: coupling with a large-eddy simulations code, that gives
the acoustic field generated by the source region

better description of the atmosphere
- including time-varying wind and temperature fields obtained by large-eddy
simulations

including atmospheric absorption (especially relaxation effects)
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