

Numerical methods: time-domain approaches

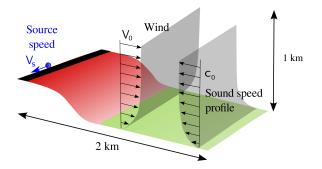
Didier Dragna

Laboratoire de Mécanique des Fluides et d'Acoustique UMR CNRS 5509 - École Centrale de Lyon didier.dragna@ec-lyon.fr

14 June 2018, CeLyA Summer School 2018 on Atmospheric Sound Propagation Valpré, Écully

http://acoustique.ec-lyon.fr

Context: Outdoor sound propagation



Outdoor sound propagation

interaction with the ground:

- reflexion over an absorbing ground
- diffraction due to the terrain profile and/or obstacles (screens, ...)

inhomogeneous atmosphere:

- wind profile
- temperature
- diffusion by atmospheric turbulence

Transportation noise

- broadband noise
- moving source
- propagation range up to 5 km

Time-domain approaches for outdoor sound propagation:

- development for twenty years [1-3]
- due to the growth of computational power

Broadband computation

 $\bullet\,$ single run \Longrightarrow results over a frequency band

Sources in motion are simply taken into account

Doppler effect + convective amplification

Outputs are time-domain signals

- one can hear the results
- interest for perception and auralization

Adapted for pulse signals (ex: transient signals, blast waves, ...) Nonlinear effects

2 Numerical methods

- Numerical differentiation methods: finite differences
- Time-integration method: Runge-Kutta algorithm
- Non-reflecting boundary conditions
- Numerical techniques for long-range computations
- 3 Including the interaction with the ground
 - Reflexion over the ground
 - Topography
- Including the atmosphere inhomogeneities
 - Mean fields
 - Turbulent fields

- Comparaison with experimental results on a complex site
- Moving source

6 Conclusions

2 Numerical methods

- Numerical differentiation methods: finite differences
- Time-integration method: Runge-Kutta algorithm
- Non-reflecting boundary conditions
- Numerical techniques for long-range computations
- 3 Including the interaction with the ground
 - Reflexion over the ground
 - Topography
- Including the atmosphere inhomogeneities
 - Mean fields
 - Turbulent fields
- Some illustrations
 - Comparaison with experimental results on a complex site
 - Moving source

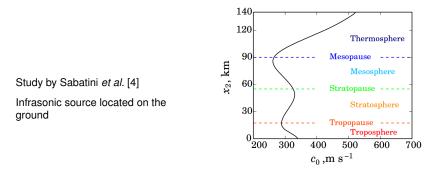
6 Conclusions

Time-domain equations (1)

Several set of equations possible for studying sound propagation in the atmosphere:

• the full Navier-Stokes equations

ex: predicting infrasound propagating in the upper atmosphere where nonlinear and thermoviscous effects can be important



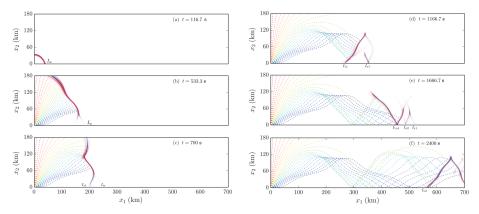
Sound speed profile in the atmosphere

Time-domain equations (1)

Several set of equations possible for studying sound propagation in the atmosphere:

the full Navier-Stokes equations

ex: predicting infrasound propagating in the upper atmosphere where nonlinear and thermoviscous effects can be important



Snapshots of the normalized pressure + acoustic rays superimposed

Time-domain equations (2)

• the full Euler equations

ex: predicting blast wave propagation, sonic boom

y/L_{NWM} Study by Yamashita & Suzuki [5] Flight altitude: 6 km - Mach number: 1.4 4 L_{NWM} = 5.6 m 0.8 5 0 2 3 7 4 6 8 0.4 x/L_{NWM} y, n -0.4 30 Tail fin--0.8 CFD (w/o fin) 0 2 з 4 x, m 5 6 7 8 WPM (w/o fin) 20 Flight test (w/fin) 20 20 Meteorological data Pressure Rise, Pa Atmospheric model 10 15 15 Altitude, km Altitude, km Altitude, km 10 10 10 0 5 5 5 -10 0 0 200 00 250 30 Atmos. Temperature, K 300 0 50 1 Atmos. Pressure, kPa 100 0.5 1 1.5 Atmos. Density, kg/m³ -20 -30 -10 0 10 20 30 40 50 Relative Time, ms

Time-domain equations (3)

In most common cases in atmospheric sound propagation,

propagation is a linear process and thermoviscous effects can be neglected \implies one can linearize the Euler equations around the ambient values Linearized Euler equations (LEEs) for atmospheric sound propagation: [3]

$$\begin{split} &\frac{\partial \boldsymbol{\rho}}{\partial t} + \mathbf{V}_0 \cdot \nabla \boldsymbol{\rho} + \rho_0 c_0^2 \nabla \cdot \mathbf{v} = \rho_0 c_0^2 Q, \\ &\rho_0 \frac{\partial \mathbf{v}}{\partial t} + \rho_0 (\mathbf{V}_0 \cdot \nabla) \mathbf{v} + \rho_0 (\mathbf{v} \cdot \nabla) \mathbf{V}_0 + \nabla \boldsymbol{\rho} = \mathbf{R}. \end{split}$$

Acoustic variables	Medium properties	Source terms
<i>p</i> acoustic pressure v acoustic velocity	$ \rho_0 $ density V ₀ mean flow = wind	Q mass source $pprox$ monopolar source
	c_0 sound speed	R external forces \approx dipolar source

Other possible forms: 3 equations on $(p, \rho, \mathbf{v}), \dots$

Equations written in conservative form:

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{E}}{\partial x} + \frac{\partial \mathbf{F}}{\partial y} + \frac{\partial \mathbf{G}}{\partial z} + \mathbf{H} = \mathbf{S},$$

Comparison with other numerical approaches

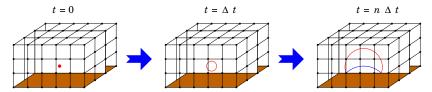
	Те	emperature profile	Wind profile	Reflexion over the ground	Diffraction (topography, obstacles,)
Geometrical methods					
Ray-tracing + Geometrical		+++	+++	+++	+++
theory of diffraction					
Wave-based methods					
Paraxial approximations		+++	+++	+++	+
Boundary element method (BEM)		+	+	+++	+++
Transmission Line Matrix (TLM) [6]		+++	+	+++	+++
Linearized Euler equations (LEEs)		+++	+++	+++	+++
Geor	netrical	Wave-based methods			
me	thods	Parax approxin		LEEs	
Complexity	-frequency umption	No back-scattering			
Cost	Ν	N	3	\mathbb{N}^4	
estimate					

2 Numerical methods

- Numerical differentiation methods: finite differences
- Time-integration method: Runge-Kutta algorithm
- Non-reflecting boundary conditions
- Numerical techniques for long-range computations
- Including the interaction with the ground
 - Reflexion over the ground
 - Topography
- Including the atmosphere inhomogeneities
 - Mean fields
 - Turbulent fields
- Some illustrations
 - Comparaison with experimental results on a complex site
 - Moving source

6 Conclusions

Discretization in time and space



Basic idea to solve
$$\frac{\partial \mathbf{U}}{\partial t} = \mathcal{K}(\mathbf{U})$$
 with $\mathcal{K}(\mathbf{U}) = \mathbf{S} - \frac{\partial \mathbf{E}}{\partial x} - \frac{\partial \mathbf{F}}{\partial y} - \frac{\partial \mathbf{G}}{\partial z} - \mathbf{F}$

1. we set the initial conditions $\mathbf{U}(t=0)$

2. we compute the spatial derivatives of the fluxes $\frac{\partial \mathbf{E}}{\partial x}$, $\frac{\partial \mathbf{F}}{\partial y}$ and $\frac{\partial \mathbf{G}}{\partial z}$ to evaluate $K(\mathbf{U})$

3. we integrate in time to obtain $\mathbf{U}(t = \Delta t)$

n. we obtain **U**($t = n\Delta t$)

....

Numerical methods for the LEEs (2)

To solve the LEEs, we need:

- a numerical differential method
- a time-integration method

Numerous numerical methods available in the literature:

- numerical differentiation methods
 - finite differences
 - pseudospectral methods [7]
 - finite element method
 - finite volume method
 -

- time-integration methods
 - Runge-Kutta algorithms
 - Adams-Bashforth algorithm
 -

Hereafter, the presentation is restricted to finite-difference methods and Runge-Kutta algorithms

Remark:

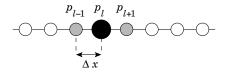
- the acronym FDTD (for finite-difference time-domain) is usually employed when time-domain equations are solved using finite difference methods to evaluate the spatial derivatives

2 Numerical methods

• Numerical differentiation methods: finite differences

- Time-integration method: Runge-Kutta algorithm
- Non-reflecting boundary conditions
- Numerical techniques for long-range computations
- 3 Including the interaction with the ground
 - Reflexion over the ground
 - Topography
- Including the atmosphere inhomogeneities
 - Mean fields
 - Turbulent fields
- Some illustrations
 - Comparaison with experimental results on a complex site
 - Moving source

6 Conclusions



Taylor series expansion:

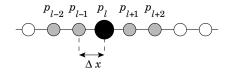
$$p_{l-1} = p_l - \Delta x \left. \frac{\partial p}{\partial x} \right|_l + \frac{\Delta x^2}{2} \left. \frac{\partial^2 p}{\partial x^2} \right|_l - \frac{\Delta x^3}{6} \left. \frac{\partial^3 p}{\partial x^3} \right|_l + \dots$$
$$p_{l+1} = p_l + \Delta x \left. \frac{\partial p}{\partial x} \right|_l + \frac{\Delta x^2}{2} \left. \frac{\partial^2 p}{\partial x^2} \right|_l + \frac{\Delta x^3}{6} \left. \frac{\partial^3 p}{\partial x^3} \right|_l + \dots$$

 \implies standard scheme with a 3-points second-order stencil

$$\frac{\partial p}{\partial x}\Big|_{l} = \frac{p_{l+1} - p_{l-1}}{2\Delta x} + O(\Delta x^2)$$

Higher order schemes are obtained by keeping more terms in the Taylor series

Ex: 5-points fourth-order standard scheme



$$\frac{\partial p}{\partial x}\Big|_{l} = \frac{1}{\Delta x} \left[-\frac{1}{12} (p_{l+2} - p_{l-2}) + \frac{2}{3} (p_{l+1} - p_{l-1}) \right] + O(\Delta x^4)$$

General formula for schemes over a 2N + 1 points stencil:

$$\frac{\partial p}{\partial x}\Big|_{l} = \frac{1}{\Delta x} \sum_{j=1}^{N} a_{j}(p_{l+j} - p_{l-j})$$

Finite difference methods: effective wave number (1)

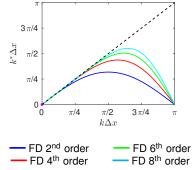
For a harmonic wave $p = \exp(ikx)$:

- its derivative:
$$\left. \frac{\partial p}{\partial x} \right|_{l} = i k p$$

- its finite difference approximation:

$$\frac{\frac{\partial p}{\partial x}}{ik^*p} = \frac{2i}{\Delta x} \sum_{j=1}^N a_j \sin(jk\Delta x)p$$

Notion of effective wave number: $k^* \Delta x = 2 \sum_{j=1}^{N} a_j \sin(jk\Delta x)$ — FD 2nd order — FD 4th order



Long wavelengths ($k\Delta x < \pi/8$ corresponding to a resolution $\lambda/\Delta x$ of at least 16 points per wavelength) are sufficiently discretized and $k^* \approx k$

For short wavelengths ($\pi/8 < k\Delta x < \pi$), $k^* \neq k$; increasing the order of FD schemes allows one to reduce the error

Note that the maximal wavenumber is $k = \Delta x / \pi$ corresponding to two points per walength

Finite difference methods: effective wave number (2)

Dispersion relation for the advection equation: $\frac{\partial p}{\partial t} + c_0 \frac{\partial p}{\partial x} = 0$

- exact equation: $\omega = c_0 k$
- finite difference approximation: $\omega = c_0 k^* (k \Delta x)$

Dispersion relation modified by the finite difference approximation

Ex: propagation of a harmonic wave

 $\begin{aligned} \frac{\partial p}{\partial t} + c_0 \frac{\partial p}{\partial x} &= 0 \text{ with } p(t=0) = \exp(ikx) \\ \text{Analytical solution: } p_{\text{ana}}(x,t) &= \exp(ikx - ikc_0t) \\ \text{Numerical solution: } p_{\text{num}}(x,t) &= \exp(ikx - ik^*c_0t) \\ &= p_{\text{ana}}(x,t) \exp[-i(k^* - k)c_0t] \end{aligned}$

At $x = n\Delta x$, the signal recorded at the time $t = x/c_0$ is:

$$p_{\text{num}}(x, t = x/c_0) = p_{\text{ana}}(x, t = x/c_0) \exp[-in(k^* - k)\Delta x]$$

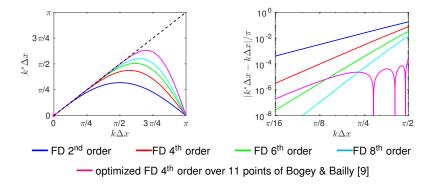
 \implies phase error that increases as the propagation time increases

Finite difference methods: optimized schemes

Schemes used in computational aeroacoustics

High order + Large stencil with coefficients a_j optimized to miminize the numerical error over a given range of wavenumber:

- optimization for $0 \le k\Delta x \le \pi/2$ in Tam & Webb [8]
- optimization for $\pi/16 \le k\Delta x \le \pi/2$ in Bogey & Bailly [9]



Finite difference methods: Accuracy

Error on the phase lower than 10 % $(|k\Delta x - k^*\Delta x| \le 0.10\pi)$

Number of points per wavelength:

- is very large for low order schemes
- decreases as the order increases

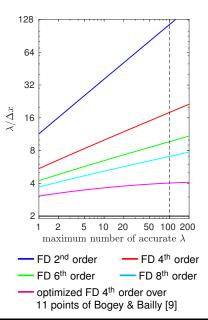
Example: f = 340 Hz, $\lambda = 1$ m

propagation distance 100 m

- 2nd order: $\lambda/\Delta x \approx 115 \Longrightarrow 11500$ points
- 4th order: $\lambda/\Delta x \approx 18 \Longrightarrow$ 1800 points
- 8th order: $\lambda/\Delta x \approx 7 \Longrightarrow$ 700 points
- optimized 4th order: $\lambda/\Delta x \approx 4 \Longrightarrow 400$ points

Long-range propagation:

- propagation over a large number of wavelengths
- high-order schemes mandatory, especially for 3D computations



Numerical methods

• Numerical differentiation methods: finite differences

• Time-integration method: Runge-Kutta algorithm

- Non-reflecting boundary conditions
- Numerical techniques for long-range computations
- 3 Including the interaction with the ground
 - Reflexion over the ground
 - Topography
- Including the atmosphere inhomogeneities
 - Mean fields
 - Turbulent fields

Some illustrations

- Comparaison with experimental results on a complex site
- Moving source

6 Conclusions

First-order differential equation of the form $\frac{\partial u}{\partial t} = F(u)$ can be integrated in time using explicit Runge-Kutta algorithms (among others)

- value of *u* at the *n* th time step $\Delta t : u(n\Delta t) = u_n$
- *u*₀ is given and succesive iterations are performed to obtain *u_n*

Low storage *p*-stages Runge-Kutta algorithm:

$$u^{(0)} = u_n,$$

$$u^{(l)} = u_n + \alpha_l \,\Delta t \, F\left(u^{(l-1)}\right), \text{ for } 1 \le l \le p$$

$$u_{n+1} = u^{(p)}.$$

Standard schemes of order p

- coefficients α_l obtained from Taylor series
- order 4 usually chosen

Optimized schemes

- high order
- coefficients α_l optimized in the frequency space: accuracy + stability

Time-Integration method: Accuracy

Harmonic wave: $u = \exp(ikx - i\omega t)$ Amplification factor: - exact: $\frac{u_{n+1}}{\omega} = \exp(-i\omega\Delta t)$ Un - with RK method: $\frac{u_{n+1}}{dt} = |G(\omega \Delta t)| \exp(-i\omega^* \Delta t)$ Un 10⁰ 10⁰ $\frac{||\mathbf{x}|^{-1}}{|\mathbf{x}|^{-2}} = \frac{|\mathbf{x}|^{-1}}{|\mathbf{x}|^{-2}} = \frac{|\mathbf{x}|^{-2}}{|\mathbf{x}|^{-2}} = \frac{|$ 10⁻¹ $\frac{\underline{5}}{\underline{5}}$ 10⁻² - 10⁻³ 10⁻⁴ 10⁻⁵ 10⁻⁵ $\pi/8$ $\pi/4$ $\pi/2$ $\pi/4$ $\pi/2$ π $\pi/8$ π $\omega \Delta t$ $\omega \Delta t$ **Dissipation error** Phase error

standard 4-stage 4th order RK

optimized 6-stage 2nd order RK of Bogey & Bailly [9]

Time-integration method: Stability

Harmonic wave: $u = \exp(ikx - i\omega t)$ 1.25 Amplification factor: 1 $\frac{u_{n+1}}{dt} = |G(\omega \Delta t)| \exp(-i\omega^* \Delta t)$ Un G Instability if $|G(\omega \Delta t)| > 1$ 0.5 or $\omega \Delta t > (\omega \Delta t)_{max}$ ex: standard 4th order RK. $\omega \Delta t < 2.8$ 0 $\pi/4$ $\pi/2$ $3\pi/4$ $4\pi/3$ 0 π Dispersion relation: $\omega \Delta t$ $\omega = kc_0$ or $\omega \Delta t = k\Delta x$ CFL with standard 4-stage 4th order RK the Courant-Friedrichs-Lewy number: $CFL = \frac{c_0 \Delta t}{\Delta x}$ optimized 6-stage 2nd order RK of Bogey & Bailly [9] Maximal possible value of $k\Delta x$ is π

 \Longrightarrow instability occurs if CFL > CFL_{max} with CFL_{max} $= (\omega \Delta t)_{max}/\pi$

ex: standard 4^{th} order RK, $CFL_{max}\approx 0.9$

Actually, because the dispersion relation is $\omega = k^* c_0$, CFL_{max} depends on both the time-integration method and the differentiation method

Numerical methods

- Numerical differentiation methods: finite differences
- Time-integration method: Runge-Kutta algorithm
- Non-reflecting boundary conditions
- Numerical techniques for long-range computations
- Including the interaction with the ground
 - Reflexion over the ground
 - Topography
- Including the atmosphere inhomogeneities
 - Mean fields
 - Turbulent fields
- Some illustrations
 - Comparaison with experimental results on a complex site
 - Moving source

6 Conclusions

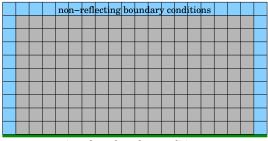
Computational domain in volume-discretization methods needs to be truncated

 \Longrightarrow at the open boundaries, need to have a reflection-free boundary condition

Two widely spread methods:

- perfectly matched layers
- non-reflecting boundary condition of Tam and Dong

Numerous other possible methods!



impedance boundary conditions

Perfectly Matched Layers (PML)

Principle: use an absorbing layer at the outer boundaries which do not generate reflected waves at the interface [10]

Change of variable:

 $x \to x + \frac{\mathrm{i}}{\omega} \int_{x_0}^x \sigma \mathrm{d}x$

 $\sigma > 0$ in the PML and null elsewhere

Harmonic wave:

$$p = \exp(ikx - i\omega t) \implies$$

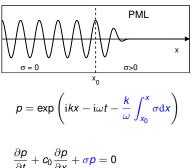
Ex: 1-D advection equation

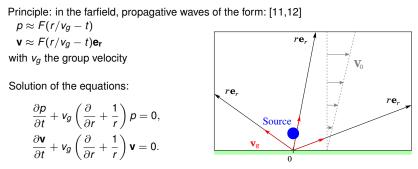
$$\frac{\partial p}{\partial t} + c_0 \frac{\partial p}{\partial x} = 0 \qquad \implies \qquad \frac{\partial p}{\partial t}$$

Method:

• very efficient

unstable in the presence of a mean flow





The above equations are solved instead of the LEEs at the outer boundaries

Method:

- very efficient, even on the presence of a mean flow
- requires however to specify the location of the source region difficult to apply if there are multiple sources or moving sources

Numerical methods

- Numerical differentiation methods: finite differences
- Time-integration method: Runge-Kutta algorithm
- Non-reflecting boundary conditions
- Numerical techniques for long-range computations
- 3 Including the interaction with the ground
 - Reflexion over the ground
 - Topography
- Including the atmosphere inhomogeneities
 - Mean fields
 - Turbulent fields
- Some illustrations
 - Comparaison with experimental results on a complex site
 - Moving source

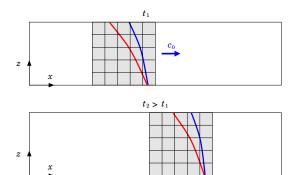
6 Conclusions

Numerical techniques for long-range computations (1)

Volume discretization methods are very costly for lange-range computations

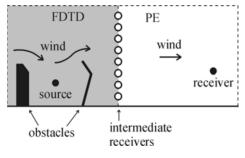
Some numerical techniques can be employed to reduce their cost:

- 1. For impulsive sources, the acoustic signal usually has only a limited spatial extent
 - ⇒ moving window: reduce the computational domain to a small domain around the pulse that moves with it [2,7]



2. Coupling between the LEEs and the parabolic equation

- near-field: resolution of the LEEs which allow to account precisely of diffraction by obstacles (including back-scattering) and of complex wind fields
- far-field: resolution of the parabolic equation, which is more efficient for long-range computations



Example of application in Van Renterghem et al. [13]

2 Numerical methods

- Numerical differentiation methods: finite differences
- Time-integration method: Runge-Kutta algorithm
- Non-reflecting boundary conditions
- Numerical techniques for long-range computations

3 Including the interaction with the ground

- Reflexion over the ground
- Topography

Including the atmosphere inhomogeneities

- Mean fields
- Turbulent fields

Some illustrations

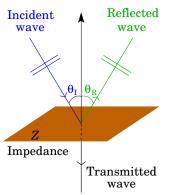
- Comparaison with experimental results on a complex site
- Moving source

6 Conclusions

Reflexion over an absorbing ground

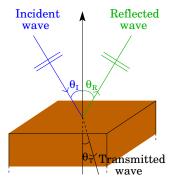
Two possible approaches:

- Iocally-reacting ground
 - \implies reflection over the ground can be modelled through a surface impedance
- extended-reacting ground
 - \implies propagation of the acoustic waves into the ground is computed



Impedance boundary condition

Propagation into the ground



Surface impedance

- caracterize the reflexion of waves over a surface: absorption and phase shift
- for natural grounds, use mainly of semi-empirical models, with a single parameter

frequency domaintime domain $P(\omega) = Z(\omega)V(\omega)$ \Rightarrow $p(t) = \int_{-\infty}^{+\infty} z(t-t')v(t')dt'$

Impedance models proposed in the literature developed in the frequency domain \implies translation in the time domain?

Not straightforward:

- some physical conditions, such as causality, "lost" in the frequency domain
- widely used models, such as the one proposed by Delany and Bazley are deduced from measurements

Some references from the literature in acoustics:

- Miki [14]: modification of the Delany and Bazley model
- Rienstra [15]: three necessary conditions to formulate the impedance boundary condition in the time-domain

Three necessary conditions in Rienstra [15]:

- 1. reality condition $Z^*(\omega) = Z(-\omega)$ in the complex plane
- 2. **passivity** condition $\text{Re}[Z(\omega)] \ge 0$ for $\omega > 0$
- 3. **causality** condition z(t) = 0 for t < 0

Remarks:

- condition similar to those defining a positive-real function in circuit analysis
- impedance is not a transfer function:
 - \implies the causality condition should also be check for the admittance (Rienstra)
- real quantity of interest: reflexion coefficient?

Recent study to investigate these conditions for the impedance models used in outdoor sound propagation in Dragna & Blanc-Benon [16]:

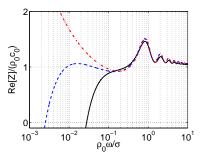
- semi-infinite ground $Z = Z_c$
- rigidly-backed layer $Z = Z_c \coth(-ik_c d)$

Some results:

- physically-based models (Zwikker and Kosten, Hamet and Bérengier, variable porosity) are physically admissible
- Delany and Bazley (in its usual form) is not causal
- Miki model for a rigidly-backed layer is not passive at low frequencies
- proposition of a modified Miki model that is passive

Surface impedance for a rigidly-backed layer:

- Delany and Bazley
- **- -** Miki
- • modified Miki

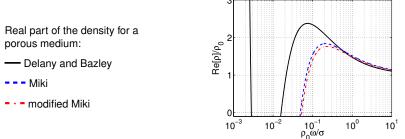


Other study done by Kirby in [17]

- retrieves that the Miki model is not passive
- shows also that the real part of the density is negative at low frequencies

Additional study in Dragna, Attenborough & Blanc-Benon [18]

• the real part of the density is also negative at low frequencies for the modified Miki model



Summary:

- semi-empirical models can be modified to be admissible for a particular case
- in the general case, the surface impedance would however not be physical
- physical-based models yield comparable results and must be preferred

Naive approche to evaluate $p(t) = [v * z](t) = \int_{-\infty}^{t} v(t')z(t - t') dt'$

 \implies requires a large memory space and CPU time for long-range propagation

Lot of works in the literature to develop efficient convolution methods (e.g. [19-23])

Time-domain impedance boundary condition (TDIBC) suitable for high-order solver in Troian et al. [24]

1. Approximate $Z(\omega)$ by a rational function

$$Z(\omega) \approx Z_P(\omega) = Z_{\infty} + \frac{a_0 + a_1(-i\omega) + \dots + a_{P-1}(-i\omega)^{P-1}}{1 + b_1(-i\omega) + \dots + b_P(-i\omega)^P}$$

Decomposition into partial fractions

$$Z_{P}(\omega) = Z_{\infty} + \sum_{k=1}^{N} \frac{A_{k}}{\lambda_{k} - i\omega} + \sum_{k=1}^{M} \frac{1}{2} \left[\frac{B_{k} + iC_{k}}{\alpha_{k} + i\beta_{k} - i\omega} + \frac{B_{k} - iC_{k}}{\alpha_{k} - i\beta_{k} - i\omega} \right]$$

with corresponding time response:

$$z(t) \approx Z_{\infty}\delta(t) + \sum_{k=1}^{N} A_k e^{-\lambda_k t} \mathsf{H}(t) + \sum_{k=1}^{M} e^{-\alpha_k t} [B_k \cos(\beta_k t) + C_k \sin(\beta_k t)] \mathsf{H}(t)$$

instantaneous response first-order system response second-order system response

2. Formulation of the convolution by a set of first-order differential equations

For that, introducing z(t) into the convolution leads to:

$$p(t) = Z_{\infty}v(t) + \sum_{k=1}^{N} A_k \phi_k(t) + \sum_{k=1}^{M} [B_k \psi_k^{(1)}(t) + C_k \psi_k^{(2)}(t)]$$
(1)

where the new variables, called accumulators, bring the information of the convolution:

$$\begin{split} \phi_k(t) &= \int_{-\infty}^t \mathbf{v}(t') \mathrm{e}^{-\lambda_k(t-t')} \mathrm{d}t' \\ \psi_k^{(1)}(t) &= \int_{-\infty}^t \mathbf{v}(t') \mathrm{e}^{-\alpha_k(t-t')} \cos(\beta_k(t-t')) \mathrm{d}t' \\ \psi_k^{(2)}(t) &= \int_{-\infty}^t \mathbf{v}(t') \mathrm{e}^{-\alpha_k(t-t')} \sin(\beta_k(t-t')) \mathrm{d}t' \end{split}$$

Time-variations of the accumulators governed by first-order differential equations:

$$\frac{\mathrm{d}\phi_k}{\mathrm{d}t} + \lambda_k \phi_k(t) = v(t) \quad (2)$$

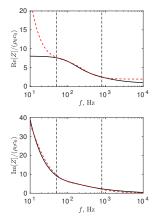
$$\frac{\mathrm{d}\psi_k^{(1)}}{\mathrm{d}t} + \alpha_k \psi_k^{(1)}(t) - \beta_k \psi_k^{(2)}(t) = p(t) \quad (3) \qquad \frac{\mathrm{d}\psi_k^{(2)}}{\mathrm{d}t} + \alpha_k \psi_k^{(2)}(t) + \beta_k \psi_k^{(1)}(t) \quad (4)$$

 \implies TDIBC imposed with (1) with accumulators obtained by solving (2)-(4)

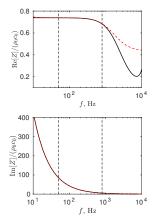
Numerical implementation (3)

Example of rational approximations of the surface impedance:

- ----- Hamet and Bérengier impedance model [25]
- --- rational approximation with N = 2 and M = 0 over the frequency band 50-800 Hz



semi-infinite ground of flow resistivity 100 kPa s $m^{\text{-}2}$



rigidly backed layer of flow resistivity 10 kPa s m⁻² and thickness 1 cm

Propagation into the ground

Ground usually assumed to be a porous medium with a rigid frame \implies can be treated as an equivalent fluid with frequency-dependent properties

frequency domain

 $-\mathrm{i}\omega P + K_g(\omega)\nabla\cdot\mathbf{V} = 0$

 $-\mathrm{i}\omega\rho_{g}(\omega)\mathbf{V}+\nabla \mathbf{P}=\mathbf{0}$

$$\frac{\partial p}{\partial t} + [K_g * \nabla \cdot \mathbf{v}](t) = 0$$
$$\left[\rho_g * \frac{\partial \mathbf{v}}{\partial t}\right](t) + \nabla \rho = 0$$

 ${\it Kg}=\omega Z_c/k_c$ compressibility and $ho_g=Z_ck_c/\omega$ density

Examples of equations obtained for two models;

• equations based on the Zwikker and Kosten model [2, 27]

$$\frac{\partial \mathbf{v}}{\partial t} + \frac{\Omega}{\rho_0 q^2} \nabla \rho + \frac{\sigma_0 \Omega}{\rho_0 q^2} \mathbf{v} = 0 \qquad \qquad \frac{\partial \rho}{\partial t} + \frac{\rho_0 c^2}{\Omega} \nabla \cdot \mathbf{v} = 0$$

 \implies

equations without convolutions but limited applications [28]

equations based on the Wilson's relaxation model [28]

$$\frac{\partial \mathbf{v}}{\partial t} + \frac{\Omega}{\rho_0 q^2} \left[\mathbf{s}^{\mathbf{v}} * \nabla \mathbf{p} \right] + \frac{1}{\tau_{\mathbf{v}}} \mathbf{v} = 0 \qquad \qquad \frac{\partial \mathbf{p}}{\partial t} + \frac{\rho_0 c^2}{\Omega} \left[\mathbf{s}^{\mathbf{e}} * \nabla \cdot \mathbf{v} \right] = 0$$

equations based on the Johnson-Champoux-Allard model [29]

Convolutions can be computed using the same method than impedance [30]

Application on a 3D case (1)

Propagation of an acoustic impulse into an inhomogeneous atmosphere

• sound speed profile $c(z) = c_0 + A_c \ln \frac{z + z_0}{z_0}$ with $A_c = 2 \text{ m s}^{-1}$ and $z_0 = 0.1 \text{ m}$

Ground: a rigidly backed layer of thickness 0.1 m with two set of parameters:

- a soft ground with $\sigma_0 = 10$ kPa s m⁻², q = 1.8, $\Omega = 0.5$ and $s_B = 1$
- a harder ground with $\sigma_0 = 200$ kPa s m⁻², q = 1.8, $\Omega = 0.5$ and $s_B = 1$

Three different ground modelling:

- Zwikker and Kosten propagation equations (equations without convolutions)
- Wilson's equations (equations with convolutions)
- an impedance boundary condition using the Wilson's relaxation model

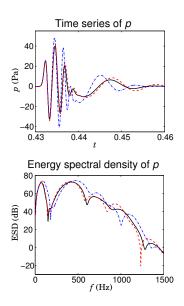
Numerical specification

- domain: $[-5 \text{ m}; 155 \text{ m}] \times [-6.6 \text{ m}; 6.6 \text{ m}] \times [-0.1 \text{ m}; 25 \text{ m}]$
- moving frame
- $\bullet \approx$ 140 million of points

Ground with $\sigma_0 = 10$ kPa s m⁻²

Observer at x = 150 m, y = 0 m and z = 2 m

- Fair agreement between the results for the impedance boundary condition and for Wilson's equations
 ⇒ extended reaction required
 - \implies extended reaction required
- Results obtained with the Zwikker and Kosten and Wilson's equations dramatically different
- ----- Zwikker and Kosten equations
 - Wilson's equations
- --- Wilson's impedance model



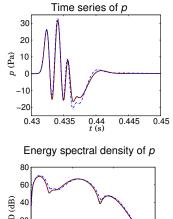
Ground with $\sigma_0 = 200$ kPa s m⁻²

Observer at x = 150 m, y = 0 m and z = 2 m

 Results obtained with the impedance boundary condition match closely those with Wilson's equations

 $\Longrightarrow \sigma_0$ high enough so that local reaction can be assumed

- Small discrepancies remain between the results obtained with the Zwikker and Kosten and with the Wilson's equations
- ----- Zwikker and Kosten equations
 - Wilson's equations
- ---- Wilson's impedance model





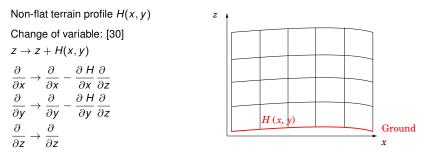
Time-domain impedance boundary condition

- use of a rational to approximate the impedance
 - few poles usually required
 - accurate approximation
- computation of the convolution replaced by integration of first-order differential equation
- well-suited for high-order methods

Time-domain propagation equations in the ground

- convolutions that can be evaluated as the impedance BC
- required if the ground is extended-reacting
- equations obtained up to now for some impedance models

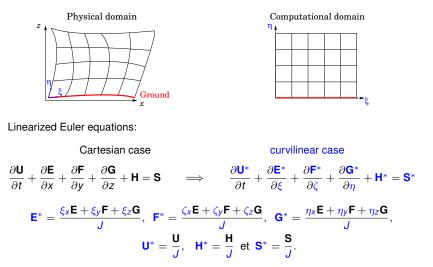
A structured grid is necessary for finite difference methods \implies accounting for a non flat ground is not straightforward



Generalization: curvilinear coordinates [31]

Method used in computational aeroacoustics [32]

Topography: curvilinear coordinates (2)

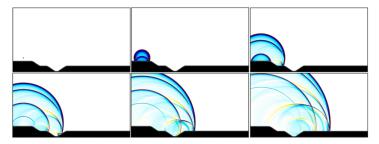


J: jacobian of the geometrical transformation $\xi_x, \xi_y, ...$: metrics of the transformation $(\xi_x = \partial x i / \partial x)$

Topography: curvilinear coordinates (3)

Summary:

- same numerical methods than for a flat ground
- nonflat terrains even with large slopes (around 45°) can be accounted for
- the geometrical transformation, and a fortiori the terrain profile has to be smooth (no slope discontinuities)



Other approaches are required for a more general description of the boundary

- immersed boundary method for structured grid?
- unstructured grids well-suited

Equations

2 Numerical methods

- Numerical differentiation methods: finite differences
- Time-integration method: Runge-Kutta algorithm
- Non-reflecting boundary conditions
- Numerical techniques for long-range computations
- 3 Including the interaction with the ground
 - Reflexion over the ground
 - Topography

Including the atmosphere inhomogeneities

- Mean fields
- Turbulent fields

Some illustrations

- Comparaison with experimental results on a complex site
- Moving source

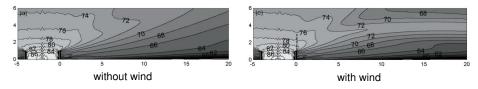
6 Conclusions

7 References

With the LEEs, mean field of T_0 and V_0 can be taken into account and their effect on the acoustic field investigated:

- using analytical profiles
 - vertical linear or logarithmic profiles [33, 34]
 - profiles from the Monin-Obukhov similarity theory
- using profiles obtained from numerical simulation
 - solvers of the fluid mechanics equations [1,26]
 - meteorological models (see Aumond et al. [35])

Example: effect of the wind on the efficiency of noise barriers in Van Renterghem & Botteldooren [26]

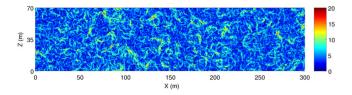


Fluctuations :

- temperature T (through c_0) : scalar field
- velocity V : vector field

Synthetic turbulence

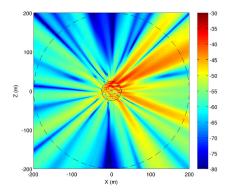
• generated via Fourier modes or related methods [36-38]



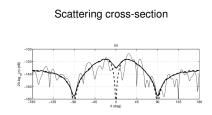
Fluctuations of wind velocites generated by the random fluctuations generation (RFG) algorithm in Ehrhardt *et al.* [38]

Example: diffusion by a volume of turbulence

Temperature fluctuations at the center of the domain with a von Kármán spectra [37] Harmonic plane wave with f = 100 Hz



Sound pressure level relative(dB) to the incident field $20 \log_{10}(|p_1|/|p_0|)$



numerical solution:

- - ensemble-averaging over 200 realizations
- --- theory in far-field

Equations

2 Numerical methods

- Numerical differentiation methods: finite differences
- Time-integration method: Runge-Kutta algorithm
- Non-reflecting boundary conditions
- Numerical techniques for long-range computations
- 3 Including the interaction with the ground
 - Reflexion over the ground
 - Topography
- Including the atmosphere inhomogeneities
 - Mean fields
 - Turbulent fields

Some illustrations

- Comparaison with experimental results on a complex site
- Moving source

6 Conclusions

7 References

Description of the experimental site

Measurements on the railway site near La Veuve in May 2010:

- Topography
- Surface impedances
- Meteorological conditions

Campaign carried out with:

- SNCF test department
- Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)

Impulsive source: blank pistol shots

Receivers located at: 7.5 m, 25 m and 100 m

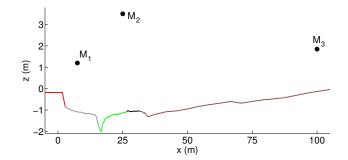
Comparison with numerical simulation in [39]

Propagation line

Gap in near-field

Site modelling: topography

Topography measurement done by the SNCF test department



Ground profile relatively flat

Gap at x = 18 m whose depth is 0.8 m

Five types of ground impedances

- ballast

— soil

grassy ground

— road

- field

Site modelling: surface impedances

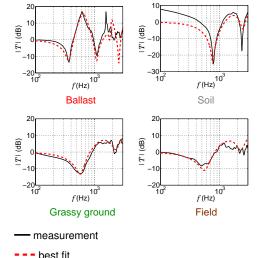
In situ measurement using the **transfer** function method

Road: perfectly reflecting ground

Soil, grassy ground and field: Miki model of a rigidly backed layer [14]

Ballast:

- measurement difficult on the experimental due to reflexions on rails
- additional measurement realized on the IFSTTAR's site in Bouguenais
- Hamet and Bérengier impedance model [25]



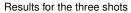
Site modelling: source

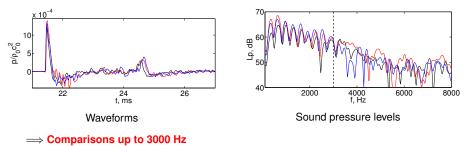
Impulsive source: blank pistol shots

Source located at $z_S = 1 \text{ m}$

3 shots

Positioning error





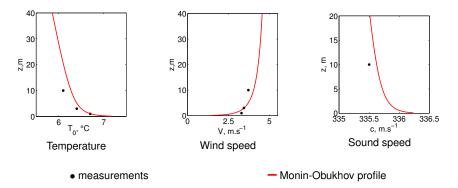
Site modelling: meteorological conditions

Meteorological mast located at 125 m from the center of the railway track:

- propeller anemometers and temperature sensors at heights of 1 m, 3 m and 10 m
- sonic anemometer at a height of 10 m
- humidity sensor at a height of 3 m

Downwind conditions

Profiles determined with the Monin-Obukhov similitude theory



Numerical specification

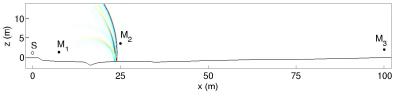
- 2-D Simulations
 - linearized Euler equations in curvilinear coordinates
 - optimized finite difference schemes of Bogey & Bailly [9]
 - mesh sizes $\Delta \xi = \Delta \eta = 0.01$ m with 11000 and 1500 points respectively in the ξ -direction and in the η -direction
 - CFL = 0.6 and 22000 time iterations

Curvilinear transformation:

$$\begin{aligned} x &= \xi, \\ z &= \eta + H(\xi), \end{aligned}$$

with ground profile $H(\xi)$ approximated by splines

Correction 2D/3D [40]



Snapshot of the acoustic pressure at t = 71 ms

Comparison of the results: time domain

measurement

- - numerical prediction
- · numerical prediction with time-alignment

At the receiver M1:

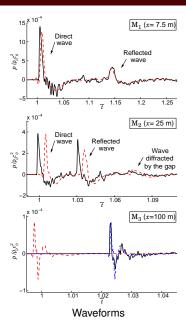
- arrival time of the direct wave well predicted
- arrival time and amplitude of the reflected wave well predicted

At the receiver M₂:

- small time delay between the measurement and the numerical prediction
- good agreement between the waveforms

At the receiver M₃:

- Iarger time delay
- shape of the waveforms are similar



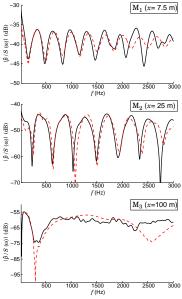
Comparison of the results: frequency domain

- measurement
- --- numerical prediction
- Good overall agreement up to 2 kHz

Position of interference patterns well-predicted

Sound exposure level (SEL): SEL = $10\log_{10} \int_{-\infty}^{+\infty} \frac{p(t)^2}{p_{ref}^2} dt$ with $p_{ref} = 210^{-5} \text{ Pa}$

SEL	experimental result	numerical prediction
$M_1 = 7.5 \text{ m}$	101.1 dB	100.5 dB
$M_2 x = 25 m$	92.2 dB	92.0 dB
$M_3 = 100 \text{ m}$	79.3 dB	79.1 dB



Normalized energy spectral densities

- Numerical differentiation methods: finite differences
- Time-integration method: Runge-Kutta algorithm
- Non-reflecting boundary conditions
- Numerical techniques for long-range computations
- - Reflexion over the ground
- - Mean fields
 - Turbulent fields

Some illustrations

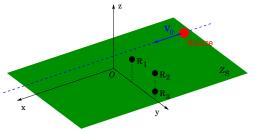
- Comparaison with experimental results on a complex site
- Moving source

Analytical solutions known only in simple cases

• source moving at a constant height and constant speed above a flat ground in a homogeneous atmosphere [41-44]

Time-domain approaches well-suited for studying the radiation of moving sources: [45]

- broadband source, with any trajectory possible
- broadband formulation for the surface impedance

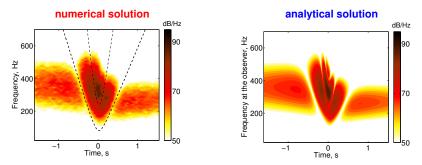


Source speed $V_0 = 50 \text{ m.s}^{-1}$ and height z = 2 m

Source $S(\mathbf{x}, t) = Q(\mathbf{x} - \mathbf{V}_0 t) s(t)$

3D simulation

Spectrogram of the acoustic pressure at the observer located at $R_1 - x = 0$ m, y = 5 m, z = 3 m, dB/Hz



Doppler effect

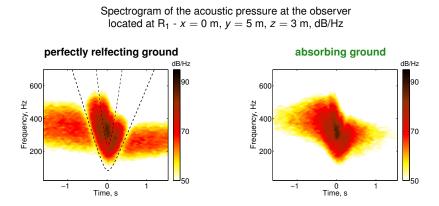
Interference when $R_{e,2} - R_{e,1} = (1/2 + n)\lambda$, n integer

- Re,1 distance between the source and the observer at the emission time
- Re,2 distance between the image source and the observer at the emission time

Analytical solution: source + image source

Excellent agreement between the analytical and numerical solutions

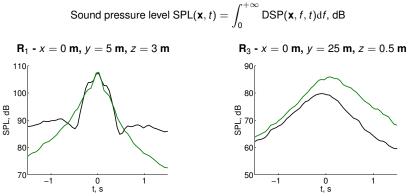
D. Dragna



Destructive interferences suppressed

PSD lower for the absorbing ground when the source is far from the observer

Comparison of the numerical results for the two surfaces (2)



perfectly reflecting ground

- absorbing ground

Perfectly reflecting ground:

• SPL higher when the source approaches the receiver (t < 0): convective amplification

Absorbing ground:

not always the case

 \Longrightarrow competition between ground absorption and convective amplification

D. Dragna

Time-domain approaches

Equations

2 Numerical methods

- Numerical differentiation methods: finite differences
- Time-integration method: Runge-Kutta algorithm
- Non-reflecting boundary conditions
- Numerical techniques for long-range computations
- Including the interaction with the ground
 - Reflexion over the ground
 - Topography
- Including the atmosphere inhomogeneities
 - Mean fields
 - Turbulent fields
- 5 Some illustrations
 - Comparaison with experimental results on a complex site
 - Moving source

6 Conclusions

7 References

Conclusions

Time-domain approaches well-suited for atmospheric sound propagation

- broadband computation
- pulse signals
- sources in motion

Solving linearized Euler equations:

- possible to account for most of the important physical phenomena
- possible to use hybrid approaches with more efficient methods for long range

The same numerical methods can be used for nonlinear propagation in the atmosphere [4]

Perspectives:

- better description of the source
 - radiation of vibrating bodies at rest or in motion
 - aerodynamic source: coupling with a large-eddy simulations code, that gives the acoustic field generated by the source region
- better description of the atmosphere
 - including time-varying wind and temperature fields obtained by large-eddy simulations
- including atmospheric absorption (especially relaxation effects)

Equations

2 Numerical methods

- Numerical differentiation methods: finite differences
- Time-integration method: Runge-Kutta algorithm
- Non-reflecting boundary conditions
- Numerical techniques for long-range computations
- 3 Including the interaction with the ground
 - Reflexion over the ground
 - Topography
- Including the atmosphere inhomogeneities
 - Mean fields
 - Turbulent fields
- Some illustrations
 - Comparaison with experimental results on a complex site
 - Moving source

Conclusions

7 References

General references:

- Blumrich R. & Heimann D., (2002), "A linearized Eulerian (LE) sound propagation model for studies of complex meteorological effects", J. Acoust. Soc. Am. 112, 446-455.
- [2] Salomons, E., Blumrich R. & Heimann D., (2002), "Eulerian Time-Domain Model for Sound Propagation over a Finite-Impedance Ground Surface. Comparison with Frequency-Domain Models", Acta Acust. united Ac. 88, 483-492. J. Acoust. Soc. Am. 112, 446-455.
- [3] Ostashev V.E., Wilson D.K., Liu L., Aldridge D.F., Symons, N.P. & Marlin, D., (2005), "Equations for finite-difference, time-domain simulation of sound propagation in moving inhomogeneous media and numerical implementation", *J. Acoust. Soc. Am.* 117, 503-517.

Examples of numerical studies:

- [4] Sabatini R., Marsden O., Bailly C. & Bogey C., (2016), "A numerical study of nonlinear infrasound propagation in a windy atmosphere", J. Acoust. Soc. Am., 140, 641-656.
- [5] Yamashita R. & Suzuki K., (2016), "Full-Field Sonic Boom Simulation in Stratified Atmosphere", AIAA J. 54, 3223-3231.
- [6] Guillaume G., Aumond P., Gauvreau B. & Dutilleux G., (2014). "Application of the transmission line matrix method for outdoor sound propagation modelling – Part 1: Model presentation and evaluation", *Appl. Acoust.* 76(2), 113–118.
- [7] Hornikx M., Waxler R. & Forssén J., (2010), "The extended Fourier pseudospectral time-domain method for atmospheric sound propagation", J. Acoust. Soc. Am. 128(4), 1632–1646.

Finite difference schemes and time-integration:

- [8] Tam C.K.W. & Webb J.C., (1993), "Dispersion-relation preserving finite difference schemes for computational acoustics", J. Comp. Phys. 107, 262–281.
- [9] Bogey C. & Bailly C., (2004), "A family of low dispersive and low dissipative explicit schemes for noise computation", J. Comp. Phys. 194, 194-214.

Non-reflecting boundary conditions:

- [10] Bérenger J.P., (1994), "A perfectly matched layer for the absorption of electromagnetic waves", J. Comp. Phys. 114, 185–200.
- [11] Tam C.K.W. & Dong Z., (1996), "Radiation and outflow boundary conditions for direct computation of acoustic and flow disturbances in a nonuniform mean flow.", *J. Comput. Acoust.* 4, 175–201.
- [12] Bogey C. & Bailly C., (2002), "Three-dimensional non-reflective boundary conditions for acoustic simulations: far field formulation and validation test cases", *Acta Acust. united Ac.* 88(4), 463–471.

LEE-PE coupling:

[13] Van Renterghem T., Salomons E. & Botteldooren D., (2005), "Efficient FDTD-PE model for sound propagation in situations with complex obstacles and wind profiles", *Acta Acust. united Ac.* 91, 671–679. Admissibility conditions for an impedance model:

- [14] Miki Y., (1990), "Acoustical properties of porous materials Modifications of Delany-Bazley models", J. Acoust. Soc. Jpn. 11(1), 19–24.
- [15] Rienstra S., (2006), "Impedance models in time domain, including the extended Helmholtz resonator model", 12th AIAA/CEAS Aeroacoustics Conference, Cambridge, MA, USA, 8-10 May 2006, AIAA 2006-2686,.
- [16] Dragna D. & Blanc-Benon P., (2014), "Physically admissible impedance models for time-domain computations of outdoor sound propagation", *Acta Acust. united Ac.* 100, 401-410.
- [17] Kirby R., (2014), "On the modification of Delany and Bazley fomulae", Appl. Acoust. 86, 47-49.
- [18] Dragna D., Attenborough K. & Blanc-Benon P., (2015), "On the inadvisability of using single parameter impedance models for representing the acoustical properties of ground surfaces", *J. Acoust. Soc. Am.* 138, 2399-2413.

Time-domain impedance boundary condition:

- [19] Botteldooren D., (**1995**). "Finite-difference time-domain simulation of low-frequency room acoustic problems", *J. Acoust. Soc. Am.* **98**(6), 3302–3308.
- [20] Heutschi K., Horvath M. & Hofmann J., (2005). "Simulation of ground impedance in finite difference time domain calculations of outdoor sound propagation", *Acta Acustica united with Acustica*, 91, 35–40.
- [21] Ostashev V.E., Collier S.L., Wilson D.K., Aldridge D.F., Symons N.P. & Marlin D.H. (2007), "Padé approximation in time-domain boundary conditions of porous surfaces", *J. Acoust. Soc. Am.* 122(1), 107–112.

- [22] Reymen Y., Baelmans M. & Desmet W., (2006). "Time-Domain Impedance Formulation based on Recursive Convolution", 12th AIAA/CEAS Aeroacoustics Conference, Cambridge, MA, USA, 8-10 May 2006, AIAA Paper 2006-2685.
- [23] Cotté B., Blanc-Benon P., Bogey C. & Poisson, F., (2009). "Time-domain impedance boundary conditions for simulations of outdoor sound propagation", AIAA J. 47, 2391–2403.
- [24] Troian R., Dragna D., Bailly C. & Galland M.A., (2017), "Broadband liner impedance eduction for multimodal acoustic propagation in the presence of a mean flow", *J. Sound Vib.* 392, 200-216.

Surface impedance model:

[25] Bérengier M., Stinson M.R., Daigle G.A. & Hamet J.F., (1997). "Porous road pavement: Acoustical characterization and propagation effects", J. Acoust. Soc. Am. 101, 155–162.

Propagation equations in the ground:

- [26] Van Renterghem T. & Botteldooren D. (2003), "Numerical simulation of the effect of trees on downwind noise barrier performance", *Acta Acustica united with Acustica* 89, 764–778.
- [27] Wilson D.K., Ostashev V. E., Collier S.L., Symons N.P., Aldridge D.F. & Marlin, D.H., (2007), "Time-domain calculations of sound interactions with outdoor ground surfaces", *Appl. Acoust.* 68(2), 173–200.
- [28] Umnova O. & Turo D., (2009), "Time domain formulation of the equivalent fluid model for rigid porous media", J. Acoust. Soc. Am. 125, 1860–1863.
- [29] Dragna D., Pineau P. & Blanc-Benon P. (2015), "A generalized recursive convolution method for time-domain propagation in porous media", J. Acoust. Soc. Am. 138, 1030-1042.

References: interaction topography/inhomogeneous atmosphere

Topography:

- [30] Heimann D. & Karle R., (2006). "A linearized Euler finite-difference time-domain sound propagation model with terrain-following coordinates", J. Acoust. Soc. Am. 119(6), 3813–3821.
- [31] Dragna D., Blanc-Benon P. & Poisson F., (2013). "Time-domain solver in curvilinear coordinates for outdoor sound propagation over complex terrain", J. Acoust. Soc. Am. 133(6), 3751-3763.
- [32] Marsden O., Bogey C. & Bailly C., (2005), "High-order curvilinear simulations of flows around non-Cartesian bodies", J. Comp. Acous. 13, 731-748.

Mean field:

- [33] Cotté B. & Blanc-Benon, P., (2009), "Time-domain simulations of sound propagation in a stratified atmosphere over an impedance ground", J. Acoust. Soc. Am. (125(5), EL 202-207.
- [34] Dragna D., Cotté B., Blanc-Benon P. & Poisson F., (2011). "Time-domain simulations of outdoor sound propagation with suitable impedance boundary conditions", AIAA J. 49, 1420–1428.
- [35] Aumond P., Guillaume G., Gauvreau B., Lac C., Masson V. & Bérengier M., (2014) "Application of the Transmission Line Matrix method for outdoor sound propagation modelling – Part 2: Experimental validation using meteorological data derived from the meso-scale model Meso-NH", *Appl. Acoust.* 76(2), 107–112.

Turbulent field:

- [36] Frehlich R., Cornman L. & Sharman R., (2001), "Simulation of three-dimensional turbulent velocity fields", J. Appl. Meteorol. 40, 246–258.
- [37] Cheinet S., Ehrhardt L., Juvé D. & Blanc-Benon P., (2012), "Unified modeling of turbulence effects on sound propagation", J. Acoust. Soc. Am. 132(4), 2198-2209.
- [38] Ehrhardt L., Cheinet S., Juvé D. & Blanc-Benon P., (2013), "Evaluating a linearized Euler equations model for strong turbulence effects on sound propagation", *J. Acoust. Soc. Am.* 133(4), 1922-1933.

Comparison with experimental data:

- [39] Dragna D., Blanc-Benon P. & Poisson F., (2010), "Impulse propagation over a complex site: A comparison of experimental results and numerical predictions", J. Acoust. Soc. Am. 135(3), 1096-1105.
- [40] Parakkal S., Gilbert K.E., Di, X. & Bass H.E., (2010), "A generalized polar coordinate method for sound propagation over large-scale irregular terrain", *J. Acoust. Soc. Am.* 128(5), 2573–2580.

Moving source:

- [41] Norum T.D. & Liu C.H., (**1978**), "Point source moving above a finite impedance reflecting plane-experiment and theory", *J. Acoust. Soc. Am.* **63**(4), 1069-1073.
- [42] Oie S. & Takeuchi R., (1981), "Sound radiation from a point source moving in parallel to a plane surface of porous material", *Acustica* 48(3), 123-129.
- [43] Ochmann M., (2013). "Exact solutions for sound radiation from a moving monopole above an impedance plane", J. Acoust. Soc. Am., 133(4), 1911–1921.
- [44] Attenborough K., Li K.M. & Horoshenkov K., (2007), *Predicting Outdoor Sound*, Taylor & Francis, London and New York.
- [45] Dragna D. & Blanc-Benon P., (2015), "Sound radiation by a moving line source above an impedance plane with frequency-dependent properties", J. Sound Vib. 349, 259-275.
- [46] Dragna D., Blanc-Benon P. & Poisson F., (2014), "Modeling of broadband moving sources for time-domain simulations of outdoor sound propagation", AIAA J. 52, 1928-1939.