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Context: Outdoor sound propagation

Source v, Wind
0
speed
VS 1 km
CO
Sound speed
profile
2 km
Outdoor sound propagation Transportation noise
interaction with the ground: inhomogeneous atmosphere: - broadband noise
- reflexion over an absorbing - wind profile - moving source
ground - temperature - propagation range up to 5km
- diffraction due to the terrain - diffusion by atmospheric
profile and/or obstacles turbulence

(screens, ...)
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Context: Interest of time-domain approaches

Time-domain approaches for outdoor sound propagation:
@ development for twenty years [1-3]
@ due to the growth of computational power

Broadband computation
@ single run = results over a frequency band

Sources in motion are simply taken into account
@ Doppler effect + convective amplification

Outputs are time-domain signals
@ one can hear the results
@ interest for perception and auralization

Adapted for pulse signals (ex: transient signals, blast waves, ...)

Nonlinear effects
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o Equations

9 Numerical methods
@ Numerical differentiation methods: finite differences
@ Time-integration method: Runge-Kutta algorithm
@ Non-reflecting boundary conditions
@ Numerical techniques for long-range computations

9 Including the interaction with the ground
@ Reflexion over the ground
@ Topography
Q Including the atmosphere inhomogeneities
@ Mean fields
@ Turbulent fields
9 Some illustrations
@ Comparaison with experimental results on a complex site
@ Moving source
@ Conclusions
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o Equations
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Time-domain equations (1)

Several set of equations possible for studying sound propagation in the atmosphere:
@ the full Navier-Stokes equations

ex: predicting infrasound propagating in the upper atmosphere where nonlinear
and thermoviscous effects can be important

140
120+ B
Thermosphere
W ---f e Mesopause ----- —
g
. s
Study by Sabatini et al. [4] & 60 1
)]
Infrasonic source located on the
ground 30 i
77777777777 Tropopause ------
0 ) ) Troposphere
200 300 400 500 600 700
Co,mst

Sound speed profile in the atmosphere
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Time-domain equation
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(a) t
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Several set of equations possible for studying sound propagation in the atmosphere:

@ the full Navier-Stokes equations

ex: predicting infrasound propagating in the upper atmosphere where nonlinear
and thermoviscous effects can be important
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Time-domain equations (2

@ the full Euler equations
ex: predicting blast wave propagation, sonic boom
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Study by Yamashita & Suzuki [5] 2
e
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Time-domain equations (3)

In most common cases in atmospheric sound propagation,
propagation is a linear process and thermoviscous effects can be neglected
— one can linearize the Euler equations around the ambient values

Linearized Euler equations (LEEs) for atmospheric sound propagation: [3]

19)
876 + Vo.Vp+ pngV.V = pngO7
ov
pogp po(Vo-V)V + po(v.V)Vo + Vp =R.
Acoustic variables Medium properties Source terms
p acoustic pressure po density Q mass source
v acoustic velocity Vo mean flow = wind ~ monopolar source

R external forces

Co sound speed >
= dipolar source

Other possible forms: 3 equations on (p, p, V), ...

Equations written in conservative form:

N 0k OFLIG s
at  ox 9y Oz -
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Comparison with other numerical approaches

Temperature ~ Wind  Reflexion over Diffraction
profile profile the ground (topography,
obstacles, ...)
Geometrical methods

Ray-tracing + Geometrical

theory of diffraction et et e et
Wave-based methods
Paraxial approximations +++ +++ +++ +
Boundary element method (BEM) + + +++ +4+4+
Transmission Line Matrix (TLM) [6] +++ + +++ +++
Linearized Euler equations (LEEs) +++ +++ +++ +++
Geometrical Wave-based methods
methods Paraxial LEEs

approximation

Complexity

Cost
estimate
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9 Numerical methods
@ Numerical differentiation methods: finite differences
@ Time-integration method: Runge-Kutta algorithm
@ Non-reflecting boundary conditions
@ Numerical techniques for long-range computations
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Numerical methods for the LEEs (1)

Discretization in time and space

t=0 t=At t=nAt

- )= HE

Basic idea to solve %l: =KU)withK(U)=S— — - ————H
1. we set the initial conditions U(t = 0)

) _ OE
2. we compute the spatial derivatives of the fluxes

oF oG
=, = = luate K
ox’ By and 92 to evaluate K(U)

3. we integrate in time to obtain U(f = Af)

n. we obtain U(t = nAt)
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Numerical methods for the LEEs (2)

To solve the LEEs, we need:
@ a numerical differential method
@ a time-integration method

Numerous numerical methods available in the literature:

- numerical differentiation methods - time-integration methods
o finite differences @ Runge-Kutta algorithms
@ pseudospectral methods [7] @ Adams-Bashforth algorithm
@ finite element method o ...
@ finite volume method
° ...

Hereafter, the presentation is restricted to finite-difference methods and Runge-Kutta
algorithms

Remark:

- the acronym FDTD (for finite-difference time-domain) is usually employed when
time-domain equations are solved using finite difference methods to evaluate
the spatial derivatives
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9 Numerical methods
@ Numerical differentiation methods: finite differences
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Finite difference methods: standard schemes (1)

Py P Py
| l
| |
Ax
Taylor series expansion:
d Ax? &P Ax3 58
p,,1:p,—Ax8—p 775 —775
X | 2 ox , 6 Ox /
op Ax? 8 p Ax® 33 p
= Ax =2 // ZF or
Piy1 =P+ Xax ’+ > BXZI 6 6x3/

— standard scheme with a 3-points second-order stencil

op| _ Pt —Pi-

o(Ax?
ox |, 2Ax +0(ax%)

Higher order schemes are obtained by keeping more terms in the Taylor series
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Finite difference methods: standard schemes (2)

Ex: 5-points fourth-order standard scheme

PioPiy Pr Pry Py

<>
Ax
apl 1 [ 1 2
9Pl L L s —pia) + (ot — prt) | + O(Ax4
ax |, Ax[ 12(P/+2 i 2)+3(P/+1 o 1)]-1- (Ax*)

General formula for schemes over a 2N + 1 points stencil:

op| _ 1 5

x|, Ax <
j=1

ai(prj — pi—j)
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Finite difference methods: effective wave number (1)

For a harmonic wave p = exp(ikx): T
/'
- its derivative: 9p = ikp S
ox / 5
o o 4 a2
- its finite difference approximation: =
. N
op 2i . ez
— = — a; sin(jkAx
ox | Ax Z j sin( P
j:1 0¥
ik*p 0 Tl4 ]:sz 3n/4 L
Notion of effective wave number:
N — FD 2" order FD 6™ order
k*Dx =27 " gsin(jkAx) —FD 4" order  — FD 8™ order

j=1

Long wavelengths (kAx < /8 corresponding to a resolution A\/Ax of at least 16
points per wavelength) are sufficiently discretized and k* ~ k

For short wavelengths (7/8 < kAx < w), k* # k; increasing the order of FD schemes
allows one to reduce the error

Note that the maximal wavenumber is k = Ax /7 corresponding to two points per
walength
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Finite difference methods: effective wave number (2)

9 17)
Dispersion relation for the advection equation: a—’; + ¢y 85 0
- exact equation: w = cok

- finite difference approximation: w = cyk*(kAx)

Dispersion relation modified by the finite difference approximation

Ex: propagation of a harmonic wave

op ap . oy .
¥y +co 05 = = 0 with p(t = 0) = exp(ikx)

Analytical solution: paa(X, t) = exp(ikx — ikcyt)

Numerical solution: poum (X, t) = exp(ikx — ik*cpt)
= pana(X7 t) exp[fl(k* - k)Cot]

At x = nAx, the signal recorded at the time t = x /¢ is:
pnum(x, t= X/CO) = pana(X, t= X/Co) exp[—in(k* — k)AX]
— phase error that increases as the propagation time increases
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Finite difference methods: optimized schemes

Schemes used in computational aeroacoustics

High order + Large stencil with coefficients a; optimized to miminize the numerical error
over a given range of wavenumber:

@ optimization for 0 < kAx < /2 in Tam & Webb [8]

@ optimization for 7 /16 < kAx < 7 /2 in Bogey & Bailly [9]

™ 10°
3/ =102 /
5 g g
a4 a2 10
=2 =
4
w4 % 107°
0 108
0 /4 /2 3n/4 T /16 /8 /4 /2
kAzx kAz
— FD 2" order —FD 4t order FD 6t order —FD 8t order

— optimized FD 4" order over 11 points of Bogey & Bailly [9]
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Finite difference methods: Accuracy

128

Error on the phase lower than 10 %
(|kAx — k*Ax| < 0.107) 64 |
Number of points per wavelength:

- is very large for low order schemes
- decreases as the order increases

A Az

Example: f =340 Hz, A=1m
propagation distance 100 m gl
- 2" order: \/Ax = 115 = 11500 points
- 4t order: A/Ax ~ 18 = 1800 points

4F ,
- 8 order: A\/Ax &~ 7 = 700 points /

T
|
|
|
|
|
|
|
|
|
|
|
|
|
I
1
1
1
1
+
1
|
1
|
|
|
|
|

- optimized 4" order: \/Ax ~ 4 = 400 points

. 1 2 5 10 20 50 100 200
Long-range propagation: maximum number of accurate A

- \E)v:/pﬁgr?s%r; over a large number of — FD 2" order — FD 4" order

th _— th
- high-order schemes mandatory, FD 6% order FD 8% order

especially for 3D computations — optimized FD 4" order over
11 points of Bogey & Bailly [9]
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9 Numerical methods

@ Time-integration method: Runge-Kutta algorithm
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Time-integration method: Runge-Kutta algorithm

First-order differential equation of the form ou = F(u) can be integrated in time using
explicit Runge-Kutta algorithms (among others)

@ value of u at the n th time step At : u(nAt) = un
@ U is given and succesive iterations are performed to obtain u,

Low storage p-stages Runge-Kutta algorithm:
u® = up,

u) = up + oy ALF (u(’*‘)) Jfor1<i<p

Unyt = ulP).
Standard schemes of order p Optimized schemes
- coefficients «; obtained from - high order

Taylor series - coefficients o, optimized in the frequency
- order 4 usually chosen space: accuracy + stability
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Time-Integration method: Accuracy

Harmonic wave: u = exp(ikx — iwt)

Amplification factor:
-exact: I — exp(—iwAt)
un

- with RK method: % = |G(wAl)| exp(—iw* At)

n

10° 10°
1071 & 107"
=
T 102 J102
| I
~107 :5 107
1074 210 /\
-5 -5
’
0 /8 /4 /2 s 10 /8 /4 /2 m
wAt wAt
Dissipation error Phase error

standard 4-stage 4™ order RK

optimized 6-stage 2" order RK of Bogey & Bailly [9]
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Time-integration method: Stability

Harmonic wave: u = exp(ikx — iwt)
Amplification factor:
”Z—? = |G(wAt)| exp(—iw* At)
Instability if |G(wAt)| > 1

or wAt > (wAt)max
ex: standard 4" order RK, wAt < 2.8

Dispersion relation:
w = kcy or wAt = kAx CFL with

the Courant-Friedrichs-Lewy number:

cFL — R4
Ax

Maximal possible value of kAx is 7

0 w4 w2 3nld 7 47/3
wAt

standard 4-stage 4" order RK

optimized 6-stage 2" order RK
of Bogey & Bailly [9]

= instability occurs if CFL > CFLmax With CFLmax = (wAf)max/m

ex: standard 4t order RK, CFLmax =~ 0.9

Actually, because the dispersion relation is w = k* ¢y, CFLmax depends on both the
time-integration method and the differentiation method

D. Dragna
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9 Numerical methods

@ Non-reflecting boundary conditions
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Non-reflecting boundary conditions

Computational domain in volume-discretization methods needs to be truncated
— at the open boundaries, need to have a reflection-free boundary condition

Two widely spread methods:
@ perfectly matched layers
@ non-reflecting boundary condition of Tam and Dong

Numerous other possible methods!

non-reflecting|boundary canditions

impedance boundary conditions
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Perfectly Matched Layers (PML)

Principle: use an absorbing layer at the outer boundaries which do not generate
reflected waves at the interface [10]

Change of variable:

o /\AA/\AA
o > 0in the PML and null \/\/\/\/\/ x

elsewhere

c>0
><O
Harmonic wave:
k X
p = exp(ikx — iwt) == p=exp | ikx —iwt — — / odx
w Jx
Ex : 1-D advection equation
op ap op op
=0 =0
at " Pox = at T Pax TP

Method:
@ very efficient

@ unstable in the presence of a mean flow
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Non-reflecting boundary condition of Tam and Dong

Principle: in the farfield, propagative waves of the form: [11,12]
prF(r/vg—1t)
v F(r/vg—t)er

with vy the group velocity

Solution of the equations:

d o 1
—p+vg(—+7)p:o7

ov 0 1
— 4+ vy —+-)v=0. Ve
+ g<6r+r)

Source

The above equations are solved instead of the LEEs at the outer boundaries

Method:
@ very efficient, even on the presence of a mean flow

@ requires however to specify the location of the source region
difficult to apply if there are multiple sources or moving sources
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9 Numerical methods

@ Numerical techniques for long-range computations
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Numerical techniques for long-range computations (1)

Volume discretization methods are very costly for lange-range computations
Some numerical techniques can be employed to reduce their cost:

1. For impulsive sources, the acoustic signal usually has only a limited spatial extent
—> moving window: reduce the computational domain to a small domain

around the pulse that moves with it [2,7]

D. Dragna

z

t1
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Numerical techniques for long-range computations (2)

2. Coupling between the LEEs and the parabolic equation

@ near-field: resolution of the LEEs which allow to account precisely of diffraction
by obstacles (including back-scattering) and of complex wind fields

o far-field: resolution of the parabolic equation, which is more efficient for
long-range computations

FDTD O PE :

; (0] '
wind 8 wind
™~ 8 — !
(0] e |

L] (o) receiver !

source (o) '

obstacles mtqmudmlu
receivers

Example of application in Van Renterghem et al. [13]

D. Dragna Time-domain approaches 24/62



9 Including the interaction with the ground
@ Reflexion over the ground
@ Topography
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Reflexion over an absorbing ground

Two possible approaches:

@ locally-reacting ground
= reflection over the ground can be modelled through a surface impedance

@ extended-reacting ground
= propagation of the acoustic waves into the ground is computed
Impedance boundary condition Propagation into the ground

Incident Reflected Incident Reflected

Impedance

Transmitted
wave
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Impedance boundary condition (1)

Surface impedance
@ caracterize the reflexion of waves over a surface: absorption and phase shift
@ for natural grounds, use mainly of semi-empirical models, with a single parameter

frequency domain time domain
~+0oo
Pl = ZV(w) = PO= [ - OwE)r

Impedance models proposed in the literature developed in the frequency domain
= translation in the time domain?
Not straightforward:

@ some physical conditions, such as causality, “lost” in the frequency domain

@ widely used models, such as the one proposed by Delany and Bazley are
deduced from measurements

Some references from the literature in acoustics:
- Miki [14]: modification of the Delany and Bazley model

- Rienstra [15]: three necessary conditions to formulate the impedance boundary
condition in the time-domain
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Impedance boundary condition (2)

Three necessary conditions in Rienstra [15]:
1. reality condition Z*(w) = Z(—w) in the complex plane
2. passivity condition Re[Z(w)] > 0forw > 0
3. causality condition z(t) = 0fort < 0

Remarks:
@ condition similar to those defining a positive-real function in circuit analysis

@ impedance is not a transfer function:
= the causality condition should also be check for the admittance (Rienstra)

@ real quantity of interest: reflexion coefficient?

Recent study to investigate these conditions for the impedance models used in outdoor
sound propagation in Dragna & Blanc-Benon [16]:

- semi-infinite ground Z = Z;
- rigidly-backed layer Z = Z; coth(—ikcd)
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Impedance boundary condition (3)

Some results:
@ physically-based models (Zwikker and Kosten, Hamet and Bérengier, variable

porosity) are physically admissible
@ Delany and Bazley (in its usual form) is not causal
@ Miki model for a rigidly-backed layer is not passive at low frequencies
@ proposition of a modified Miki model that is passive

2
Surface impedance for a -
rigidly-backed layer: St
£
— Delany and Bazley N
(4]
= = = Miki =
= - = modified Miki 0
107
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Impedance boundary condition (4)

Other study done by Kirby in [17]
@ retrieves that the Miki model is not passive
@ shows also that the real part of the density is negative at low frequencies

Additional study in Dragna, Attenborough & Blanc-Benon [18]
@ the real part of the density is also negative at low frequencies for the modified Miki

m |
ode 3

N

Real part of the density for a
porous medium:

Relplp,

— Delany and Bazley
=== Miki
= - = modified Miki 0

° 10° 107 10 10
pow/c

Summary:

- semi-empirical models can be modified to be admissible for a particular case

- in the general case, the surface impedance would however not be physical

- physical-based models yield comparable results and must be preferred
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Numerical implementation (1)

-t
Naive approche to evaluate p(t) = [v = z|(t) = / v(t)z(t —t')dt’

= requires a large memory space and CPU time for long-range propagation

Lot of works in the literature to develop efficient convolution methods (e.g. [19-23])
Time-domain impedance boundary condition (TDIBC) suitable for high-order solver in
Troian et al. [24]

1. Approximate Z(w) by a rational function

ao + a1 (—iw) + ... + ap_1(=iw)""

Z(w) = Zp(w) = Zoo + 1+ by (—iw) + ... + bp(—iw)P

Decomposition into partial fractions
=Zoo+ Z

with corresponding time response:
N

M
2(t) m Zoo (1) + D Ake MIH() + > e “k![By cos(Bxt) + Ci sin(Bkt)H(t)
k=1 k=1

+EM:1{ By +iCx By — iCx

)‘k —iw ay + 1Bk — iw ay — 1Bk — iw

k=1 2

instantaneous response first-order system response  second-order system response
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Numerical implementation (2)

2. Formulation of the convolution by a set of first-order differential equations
For that, introducing z(t) into the convolution leads to:

p(t) = Zoov(t) +ZAk¢k(t +ZBku ) + Gy (1)] (1)

where the new variables, called accumulators, bring the information of the convolution:

t /
¢k(t):/ V()e Mgy
J-os /
w(k”(t):/ v(t')e k=) cos(By(t — t'))dt’
2 ' 7% /
w(ﬁ(t):/ v(t)e k=) sin(By(t — t'))dt’

Time-variations of the accumulators governed by first-order differential equations:

% +Adk(t) = (D) (2)
awf) W @ o
St (1) - Bo\P(t) =p(t)  (3) a T (D+ Bt (1) (4)

— TDIBC imposed with (1) with accumulators obtained by solving (2)-(4)
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Numerical implementation (3)

Example of rational approximations of the surface impedance:
Hamet and Bérengier impedance model [25]

= === rational approximation with N =2and M =0
over the frequency band 50-800 Hz

20 “ i i
2181Y
LN !
=10 | !
N Y !
0 : L
10" 102 10° 104
f,Hz
40 T T
290
2 : :
Srop N |
0 : T
10" 102 108 104
f, Hz f, Hz
semi-infinite ground of flow resistivity rigidly backed layer of flow resistivity
100 kPa s m2 10 kPa s m?2 and thickness 1 cm
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Propagation into the ground

Ground usually assumed to be a porous medium with a rigid frame
= can be treated as an equivalent fluid with frequency-dependent properties
time domain

op
—iwP + Kg(w)V -V =0 o T KoV -VI(1) =0

— ov
ro 53| 0+ o =0

frequency domain

—iwpg(w)V+ VP =0
Ky = wZc/ ke compressibility and pg = Zcke /w density

Examples of equations obtained for two models;
@ equations based on the Zwikker and Kosten model [2, 27]
7] Q Q 5 2
Ny =vp+ Pov=0 9P | poC”
ot~ poq poq at Q
equations without convolutions but limited applications [28]
@ equations based on the Wilson’s relaxation model [28]
ov Q 1 ap o 02
— 4+ —[s"*Vpl+ —v=0 BP0 gt vVl =0
ot poqzl ! v ot T ol ]

@ equations based on the Johnson-Champoux-Allard model [29]

V.-v=0

Convolutions can be computed using the same method than impedance [30]
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Application on a 3D case (1)

Propagation of an acoustic impulse into an inhomogeneous atmosphere
Z+ 2y

2 with Ac =2ms'andz =0.1m
0

@ sound speed profile ¢(z) = ¢y + Acln

Ground: a rigidly backed layer of thickness 0.1 m with two set of parameters:
@ a soft ground with oy = 10 kPasm?2,g=1.8,Q2=0.5and sg = 1

@ a harder ground with ¢y =200 kPas m?2,g=1.8,Q =0.5and sg = 1

Three different ground modelling:
@ Zwikker and Kosten propagation equations (equations without convolutions)

@ Wilson’s equations (equations with convolutions)

@ an impedance boundary condition using the Wilson’s relaxation model
Numerical specification
@ domain: [-5 m; 155 m]x [-6.6 m; 6.6 m] x [-0.1 m; 25 m]

@ moving frame
@ = 140 million of points
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Application on a 3D case (2)

Ground with oy = 10 kPa s m2 Time series of p

Observeratx =150m,y =0mandz=2m

@ Fair agreement between the results for the
impedance boundary condition and for Wilson’s
equations
— extended reaction required i

@ Results obtained with the Zwikker and Kosten 0.43 0.44 0.45 0.46
and Wilson’s equations dramatically different

80
=====: Zwikker and Kosten equations
60
= Wilson’s equations =
2 40
= === Wilson’s impedance model a 20
A
0
-20
0 500 1000 1500
f (Hz)
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Application on a 3D case (3)

Ground with o = 200 kPa s m™ Time series of p

Observerat x =150m,y =0mandz=2m

@ Results obtained with the impedance boundary
condition match closely those with Wilson’s

equations

— o0¢ high enough so that local reaction can ¥

be assumed 043 0435 044 0445 045
@ Small discrepancies remain between the ¢

results obtained with the Zwikker and Kosten Energy spectral density of p

and with the Wilson’s equations

80

) ) 60
=====: Zwikker and Kosten equations .
2 40
= Wilson’s equations a
@ 20
= === Wilson’s impedance model = 0
-20 ;‘»."
0 500 1000 1500

f(Hz)
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Reflexion over an absorbing ground: Summary

Time-domain impedance boundary condition

@ use of a rational to approximate the impedance
- few poles usually required
- accurate approximation

@ computation of the convolution replaced by integration of first-order differential
equation

@ well-suited for high-order methods

Time-domain propagation equations in the ground
@ convolutions that can be evaluated as the impedance BC
@ required if the ground is extended-reacting
@ equations obtained up to now for some impedance models
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Topography: curvilinear coordinates (1)

A structured grid is necessary for finite difference methods
= accounting for a non flat ground is not straightforward

Non-flat terrain profile H(x, y) z

Change of variable: [30]
z—z+ H(x,y)
0 7] OH O

- - R E— —

— =
ox ox ox 0z
0 1o} OH o

_—— — - — Lt I
oy ay dy 0z H(x b

0 o [I— Ground
=z 5 =
0z 0z x

Generalization: curvilinear coordinates [31]

Physical domain <— Computational domain
(x, ¥, 2) (& ¢ n)

Method used in computational aeroacoustics [32]
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Topography: curvilinear coordinates (2)

Physical domain Computational domain
z n

Ground

Linearized Euler equations:

Cartesian case curvilinear case
U OB OFLOG s — U OB LS s
at  ox 9y Oz - ot ¢ ¢ an n
E*_§XE+£yF+£ZG F*_CXE"FC}/F""CZG G*_77XE+77,VF+772G
- J ’ - J ’ - J ’
U H S
Ur=—, H"=— et S"=—.
J’ J J

J: jacobian of the geometrical transformation
&x, &y, ... metrics of the transformation (£x = 9xi/0x)
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Topography: curvilinear coordinates (3)

Summary:
@ same numerical methods than for a flat ground
@ nonflat terrains even with large slopes (around 45°) can be accounted for

@ the geometrical transformation, and a fortiori the terrain profile has to be smooth
(no slope discontinuities)

Other approaches are required for a more general description of the boundary
@ immersed boundary method for structured grid?
@ unstructured grids well-suited
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0 Including the atmosphere inhomogeneities
@ Mean fields
@ Turbulent fields
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Mean field

With the LEEs, mean field of Ty and V; can be taken into account and their effect on
the acoustic field investigated:
@ using analytical profiles
- vertical linear or logarithmic profiles [33, 34]
- profiles from the Monin-Obukhov similarity theory
@ using profiles obtained from numerical simulation
- solvers of the fluid mechanics equations [1,26]
- meteorological models (see Aumond et al. [35])

Example: effect of the wind on the efficiency of noise barriers
in Van Renterghem & Botteldooren [26]

without wind with wind
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Turbulent field

Fluctuations :
@ temperature T (through cy) : scalar field

@ velocity V : vector field

Synthetic turbulence
@ generated via Fourier modes or related methods [36-38]

0 50 100 150 200 250 300
X (m)

Fluctuations of wind velocites generated by the random fluctuations generation (RFG)
algorithm in Ehrhardt et al. [38]
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Example: diffusion by a volume of turbulence

Temperature fluctuations at the center of the domain with a von Karman spectra [37]

Harmonic plane wave with f = 100 Hz

35 Scattering cross-section

numerical solution:

— single realization

— ensemble-averaging
over 200 realizations

X (m)

Sound pressure level relative( dB) to the incident === theory in far-field
field 201og1o(lp11/1Pol)
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9 Some illustrations
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Description of the experimental site

Measurements on the railway site near La Veuve in
May 2010:

@ Topography
@ Surface impedances
@ Meteorological conditions

Campaign carried out with:

@ SNCF test department

@ Institut Frangais des Sciences et Technologies
des Transports, de '’Aménagement et des
Réseaux (IFSTTAR)

Impulsive source: blank pistol shots

Receivers located at: 7.5 m, 25 m and 100 m

Comparison with numerical simulation in [39]

Gap in near-field
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Site modelling: topography

Topography measurement done by the SNCF test department

[ 3
w

2k \ \ , ,
0 25 50 75 100
X (m)
— ballast
Ground profile relatively flat |
— S0i
Gap at x = 18 m whose depth is 0.8 m — grassy ground
Five types of ground impedances — :OT::
— fie
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Site modelling: surface impedances

In situ measurement using the transfer
function method

IT (dB)
1T (dB)

Road: perfectly reflecting ground

Soil, grassy ground and field:
Miki model of a rigidly backed layer [14]

Ballast:

ITI (dB)

@ measurement difficult on the
experimental due to reflexions on rails

@ additional measurement realized on 10° 10°
the IFSTTAR's site in Bouguenais ffHZ)
@ Hamet and Bérengier impedance Grassy ground Field
model [25] — measurement
== = best fit
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Site modelling: source

Impulsive source: blank pistol shots
Source located at zg = 1 m
3 shots

Positioning error

Results for the three shots

70

60}/

Lp, dB

50

40

2000

4dOO BObO 8000
f, Hz
Waveforms Sound pressure levels

= Comparisons up to 3000 Hz
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Site modelling: meteorological conditions

Meteorological mast located at 125 m from the center of the railway track:
@ propeller anemometers and temperature sensors at heights of 1 m, 3mand 10 m
@ sonic anemometer at a height of 10 m
@ humidity sensor at a height of 3 m

Downwind conditions

Profiles determined with the Monin-Obukhov similitude theory

40 40 20
30 30 15
E 20 € oo €49 .

10 . 10 . 5

0 6 _ . 7 % 25 5 %355 a5 336 3365
TO’ ¢ V, ms™ c, ms

Temperature Wind speed Sound speed

e measurements = Monin-Obukhov profile
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Numerical specification

2-D Simulations
@ linearized Euler equations in curvilinear coordinates
@ optimized finite difference schemes of Bogey & Bailly [9]

@ mesh sizes A¢ = Anp = 0.01 m with 11000 and 1500 points respectively in the
¢-direction and in the n-direction

@ CFL = 0.6 and 22000 time iterations

Curvilinear transformation:

x=¢,

z=mn+H(),
with ground profile H(&) approximated by splines
Correction 2D/3D [40]

10- \
E . Y
N 5 s |\/|1 "w\;‘. 2 M?
S I
L L Il L
0 25 50 75 100
X (m)

Snapshot of the acoustic pressure at t = 71 ms
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Comparison of the results: time domain

15210 M, (x=7.5m)
oi
— measurement 10 e
. e o Reflected
= == numerical prediction 5 J wave
S
= - = numerical prediction with time-alignment °
At the receiver M1 : 1 1.05 11 7 115 12 125
@ arrival time of the direct wave well F10 M, (= 25m)
predicted 4 Direct
Reflected
@ arrival time and amplitude of the reflected w2 \ /e givave
wave well predicted H / by the gap

At the receiver Ma:

@ small time delay between the " 1 g e 1
. . . X
measurement and the numerical prediction : M (x=100 m)

@ good agreement between the waveforms

At the receiver M3:

@ larger time delay

@ shape of the waveforms are similar e To 02 Loz Loa
t
Waveforms
D. Dragna
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Comparison of the results: frequency domain

— measurement

=== numerical prediction

Good overall agreement up to 2 kHz

Position of interference patterns = 500 oo TR0 2000 2003000
well-predicted 0 M, =25 )
Sound exposure level (SEL): g .

+o0o p(t)Z % !
SEL = 10logy, dt g /

- przef & 60

I
\

!

_ ) .

o 500 1000 1500 2000 2500 3000
(Hz)

1
'
'
|
]
\

with pref = 2107% Pa

SEL experimental | numerical M; (x=100 m)
result prediction
LMo | 1014dB | 100508
N :M225 m 92.2dB 92.0dB
M3 i -
X = 100 m 793 dB 791 dB 500 1000 ;(5}3;)) 2000 2500 3000

Normalized energy spectral densities
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9 Some illustrations

@ Moving source
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Moving source above an absorbing ground

Analytical solutions known only in simple cases
@ source moving at a constant height and constant speed above a flat ground in a
homogeneous atmosphere [41-44]

Time-domain approaches well-suited for studying the radiation of moving sources: [45]
@ broadband source, with any trajectory possible
@ broadband formulation for the surface impedance

Source speed Vy = 50 m.s™! and height
z=2m

Source S(x, t) = Q(x — Vot)s(t)

3D simulation
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Results: perfectly reflecting ground

Spectrogram of the acoustic pressure at the observer
locatedatR{ -x=0m,y =5m, z=3m, dB/Hz

numerical solution analytical solution
dB/Hz dB/Hz
\ | ," 7 N
600 Voo % ~ 600 90
L 3
b [ 3
- L . Q
g4oo o 400
. =
;.)_ ' 70 E 70
w N g o -
200 3 . $ 200
=}
>, o
°
w
50 50

Tim%, s Timg, s
Doppler effect

Interference when Rg » — Re 1 = (1/2 4+ n)A, n integer
@ R, 4 distance between the source and the observer at the emission time
@ R, distance between the image source and the observer at the emission time

Analytical solution: source + image source

Excellent agreement between the analytical and numerical solutions
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Comparison of the numerical results for the two surfaces (1)

Spectrogram of the acoustic pressure at the observer
locatedatR{ -x=0m,y =5m, z=3m, dB/Hz

perfectly relfecting ground absorbing ground
dB/Hz dB/Hz

90 600

600

200

n
=]
S

Frequency, Hz
S
o
j
~
o
Frequency, Hz
S
o
o

0 50 0 50
Time, s Time, s

Destructive interferences suppressed

PSD lower for the absorbing ground when the source is far from the observer
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Comparison of the numerical results for the two surfaces (2)

+o0
Sound pressure level SPL(x, t) = / DSP(x, f, t)df, dB
0

Ri-x=0m,y=5m,z=3m R3-x=0m,y=25m,z=05m
110 90
100 80
o o
© ©
i 90 i 70
o o
w (2]
80 60
[Sa— 0 1 R 0 1
t,s t, s
— perfectly reflecting ground — absorbing ground

Perfectly reflecting ground:
@ SPL higher when the source approaches the receiver (t < 0): convective
amplification
Absorbing ground:
@ not always the case
— competition between ground absorption and convective amplification
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@ Conclusions

Time-domain approaches



Conclusions

Time-domain approaches well-suited for atmospheric sound propagation
@ broadband computation
@ pulse signals
@ sources in motion

Solving linearized Euler equations:
@ possible to account for most of the important physical phenomena
@ possible to use hybrid approaches with more efficient methods for long range

The same numerical methods can be used for nonlinear propagation in the
atmosphere [4]

Perspectives:

@ better description of the source
- radiation of vibrating bodies at rest or in motion
- aerodynamic source: coupling with a large-eddy simulations code, that gives
the acoustic field generated by the source region

@ better description of the atmosphere
- including time-varying wind and temperature fields obtained by large-eddy
simulations

@ including atmospheric absorption (especially relaxation effects)
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