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x Introduction q

Textbooks

Batchelor, G.K., 1967, An introduction to fluid dynamics, Cambridge University Press, Cambridge.

Bailly C. & Comte Bellot G., 2003 Turbulence, CNRS éditions, Paris (out of print).

——–, 2015, Turbulence (in english), Springer, Heidelberg.

(360 pages, 147 illustrations, Foreword by Charles Meneveau, 53 € for ECL students)

Bailly C. & Comte Bellot G., 2003, Turbulence (in french), CNRS éditions, Paris.

——–, 2015, Turbulence (in english), Springer, Heidelberg.

Springer, ISBN 978-3-319-16159-4,

360 pages, 147 illustrations.

(discount for students, 53 €)

Candel S., 1995, Mécanique des fluides, Dunod Université, 2nd édition, Paris.

Cousteix, J., 1989, Turbulence et couche limite, Cépaduès, Toulouse.

Davidson P.A., 2004, Turbulence. An introduction for scientists and engineers, Oxford University Press, Oxford.

Davidson, P.A., Kaneda, Y., Moffatt, H.K. & Sreenivasan, K.R., Edts, 2011, A voyage through Turbulence,

Cambridge University Press, Cambridge.

Guyon E., Hulin J.P. & Petit L., 2001, Physical hydrodynamics, EDP Sciences / Editions du CNRS, première édition

1991, Paris - Meudon.
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x Introduction q

Textbooks (cont.)

Hinze J.O., 1975, Turbulence, McGraw-Hill International Book Company, New York, 1ère édition en 1959.

Landau L. & Lifchitz E., 1971, Mécanique des fluides, Editions MIR, Moscou.

Also Pergamon Press, 2nd edition, 1987.

Lesieur M., 2008, Turbulence in fluids : stochastic and numerical modelling, Kluwer Academic Publishers, 4th

revised and enlarged ed., Springer.

Pope S.B., 2000, Turbulent flows, Cambridge University Press.

Tennekes H. & Lumley J.L., 1972, A first course in turbulence, MIT Press, Cambridge, Massachussetts.

Van Dyke M., 1982, An album of fluid motion, The Parabolic Press, Stanford, California.

White F., 1991, Viscous flow, McGraw-Hill, Inc., New-York, first edition 1974.

3 Centrale Lyon | LMFA Stability and Turbulence – cb1 – 17-12-2023



Introduction

Atmospheric wind tunnel (LMFA)

4 Centrale Lyon | LMFA Stability and Turbulence – cb1 – 17-12-2023



x Introduction q

Turbulent flows are part of everyday life !

Geophysical flows

astrophysics, climate, wheather, environment, hydraulics

Transportation industry : space, aeronautics, marine & submarine

and also sport applications

Transport of fluids (energy industry, chemistry), production of energy

Biology (physiology, biomechanics, medicine)

Complex flows (two-phase flows, including solid particles, ...)

External aerodynamics • Noise of turbulent flows (aeroacoustics) • Sound propa-

gation (atmosphere, ocean) • Fluid-solid coupling and vibroacoustics • Combus-

tion (reactive flows)

Fluid mechanics is involved in many societal challenges
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x Introduction q

Turbulent flows

- unsteady aperiodic motion

- unpredictable behaviour

- presence of a wide range of scales (eddies)

Turbulence appears when the source of the kinetic energy which drives the fluid

motion is able to overcome viscosity effects
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x Introduction q

Simulation of the growth of cosmic structure (galaxies and voids)
(cosmological hydrodynamics)

Simulation of the growth of cosmic structure

(galaxies and voids) when the Universe was 0.9

billion years old, then 3.2 billion and 13.7 billion

years old (today)

Volker Springel / Max Planck Institute for Astrophysics

https://news.cnrs.fr/articles/euclid-on-a-quest-to-understand-dark-energy

Structure formation in an

expanding universe : N -body

simulation (red temperature) with

70 billions particles ; 500 million

light-years long on each side

Institut d’Astrophysique de Paris (Pichon)

& CEA (Teyssier)
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x Introduction q

Weather satellite images
www.meteofrance.com • www.meteo-lyon.net

https://www.meteoblue.com/fr/meteo/semaine/lyon_france_2996944

Intertropical convergence zone
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x Introduction q

Annual mean temperature in Lyon - Bron Airport - from 1921 to 2018
(from Météo France, Le Monde 08.01.2019)
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x Introduction q

Cyclone Katrina - Sept. 2005 - Category 5

Wind gusts of 280 km/h (average during 1 minute in USA), 80% of New Orleans

was flooded, Dixon et al., 2006, Nature, 441, 586-587

(1464 people died in the hurricane and subsequent floods according to the

Louisiana Department of Health)
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x Introduction q

Earth’s (land and marine) surface temperature from 1850 to 2020
expressed as ‘anomaly’ from 1961-90 in dashed line

data from www.cru.uea.ac.uk
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Near-surface wind speeds 10 meters above the Atlantic Ocean
Data collected by the SeaWinds scatterometer on-board NASA’s QuikSCAT satel-

lite (NASA’s Jet Propulsion Laboratory)
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x Introduction q

Eruption of the subglacial Grimsvötn volcano, Iceland, on 21 May 2011
An initial large plume of smoke and ash rose up to about 17 km height.

Courtesy of Thördïs Högnadóttir, Institute of Earth Sciences, University of Iceland
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x Introduction q

Propeller hydrodynamics

(propeller cavitation)
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x Introduction q

Hydrodynamics : azimuth thruster

Cruise vessel

Harmony of the Seas

(2016)

Azimuth thruster : configuration of marine propellers placed in pods that can be rotated to any

horizontal angle (azimuth), making a rudder unnecessary. It is equipped with a new-generation

exhaust gas cleaning system (multi-stream scrubbers) and also features a hull lubrication system

allowing the ship to float on air bubbles (created around the hull) thus reducing drag and

increasing fuel efficiency.
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x Introduction q

Aeronautics

Tip vortex behind an airplane

Fleet Air Arm Corsair III in 1944,

(unintended) visualization of the

propeller wake

Boeing 767-370/ER

16 Centrale Lyon | LMFA Stability and Turbulence – cb1 – 17-12-2023



x Introduction q

Emirates A380-800 over Arabian Sea on Jan 7th 2017, wake turbulence sends
business jet in uncontrolled descent www.avherald.com

The CL-604 passed 1000 feet below

an Airbus A380-800 while enroute

over the Arabian Sea, when a short

time later (1-2 minutes) the aircraft

encountered wake turbulence

sending the aircraft in uncontrolled

roll turning the aircraft around at

least 3 times, both engines flamed

out, the Ram Air Turbine could not

deploy possibly as result of G-forces

and structural stress, the aircraft lost

about 10,000 feet until the crew was

able to recover the aircraft exercising

raw muscle force, restart the engines

and divert to Muscat.

wingspan of 19.6 m (Canadair

Challenger 604) versus 79.7 m

(A380)
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x Introduction q

Aerodynamics of cars and trucks

Optifuel Lab 3 - Renault Trucks

laboratory vehicule - aims to reduce

fuel consumption by 13%

High Reynolds number wake control to improve

acoustic and aerodynamic performance

(LMFA - T. Castelain ; Renault Trucks, Pprime, PSA, Ampère)
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x Introduction q

Aerodynamics of cars and trucks (cont.)

Characterisation of the flow in a water-puddle

under a rolling tire with refracted PIV method

(LMFA, LHEEA, Nextflow Software, Michelin ; S. Simoens &

M. Michard)
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x Introduction q

Elite cyclist : reduction of drag ... (Blocken & Toparlar, J. Wing. Eng. Ind. Aerodyn., 2015)

... when a cyclist rides in front of a car

For a 50 km individual time trial : 3 ≤ d ≤ 10 m =⇒ 1 mm→ 4 s time reduction !

Recommendation for UCI, d ≥ 30 m

20 Centrale Lyon | LMFA Stability and Turbulence – cb1 – 17-12-2023



x Introduction q

Sport Aerodynamics

Influence of crosswind on a cyclist

formation (Par 2019)

Kraemer et al., 2021, SN Applied Sciences

Pacer formations for a top runner

(Par 2021)

Massimo Marro, Jack Leckert‡, Ethan Rollier‡, Pietro
Salizzoni and Christophe Bailly

Wind tunnel evaluation of novel drafting formations

for an elite marathon runner

Proc. Roy Soc. A, 479, 2023
‡ undergraduate students at Centrale Lyon
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x Introduction q

Reynolds’ experience (1883) : laminar versus turbulent regime

Reynolds, O., 1883, An experimental investigation of

the circumstances which determine whether the mo-

tion of water shall be direct or sinuous, and of the law

of resistance in parallel channels, Phil. Trans. Roy. Soc.,

174, 935-982.
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x Introduction q

Control parameter : the Reynolds number

ReD =
ρUdD

µ
=
UdD

ν
∼ diffusion time

convection time
∼ D

2/ν

D/Ud

The transition from a laminar to a turbulent state occurs for

ReD ∼ 2300

D characteristic length of the mean shear

Ud bulk velocity

The concept of a turbulent regime

(wrt a laminar state) was introduced

by Boussinesq (1872, 1877) and Rey-

nolds (1883, 1894)

Osborn Reynolds

(1842-1912)

Joseph Boussinesq

(1842-1929)
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x Introduction q

Turbulent subsonic (round) jet ReD = ujD/ν

Prasad & Sreenivasan (1989)

ReD ≃ 4000
Dimotakis et al. (1983)

ReD ≃ 104

Kurima, Kasagi & Hirata (1983)

ReD ≃ 5.6× 103
Ayrault, Balint & Schon (1981)

ReD ≃ 1.1× 104
Mollo-Christensen (1963)

ReD = 4.6× 105
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x Introduction q

Weak interaction between two wakes

Wakes produced by a couple of

cylinders with the same diameter :

visualization with fluorescein and

congo red dye from the trailing edge

cylinders, and laser light-sheet for

illumination.

Béguier, C. & Fraunié, F., 1991, Double wake

flow with heat transfer, Int. J. of Heat and Mass

Transfert, 34(4/5), 973-982
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Turbulent signals
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x Turbulent signals q

Fluctuating velocity signal in the shear layer of a subsonic round jet
(measured by crossed-wire probes at x1 = 2D, x2 =D/2, x3 = 0)

Nozzle diameter D = 50 mm, exit velocity Uj = 30 m.s−1

{ Reynolds number ReD = 105

u ′1(t)
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0
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16
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x Turbulent signals q

Fluctuating velocity signal in the shear layer of a jet (cont.)
u ′1(t) and u

′
2(t) normalised by their rms value, ξ = u ′α(t)/uαrms

Su′1 ≃ 0.21 Tu′1 ≃ 2.74
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x Turbulent signals q

Probability density function of a random variable

Probability density function p(ζ) of a random variable ζ, for instance ζ = u ′i
(centered variables to simply the writing, u ′i = ui − Ūi)

∫ +∞

−∞
p(ζ)dζ = 1 ζn =

∫ +∞

−∞
ζnp(ζ)dζ

Standard deviation (root-mean-square), ζrms ≡
(

ζ2
)1/2

= σζ

Skewness factor Sζ, and flatness or kurtosis factor Tζ,

Sζ ≡
ζ3

ζ3rms

Tζ ≡
ζ4

ζ4rms

For a Gaussian (normal) distribution : Sζ = 0 and Tζ = 3

p(ζ) =
1√
2πσζ

exp








− ζ

2

2σ2
ζ








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x Turbulent signals q

Intermittence at the edge of a free shear flow

T = TT +TP

+
I(x, t)

rotational
turbulent

flow

I(t) = 1
for t ∈ TT

irrotational
entrained
ambient fluid

I(t) = 0
for t ∈ TP

Intermittency factor γ(x),
the probability that the flow at (x, t)
is turbulent

γ = Ī = lim
T→∞

1

T

∫ T

0

I(t)dt =
TT
T

0 0.05 0.1 0.15 0.2

-16

-8

0

8

16

u ′1(t) I(t)

1

0
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x Turbulent signals q

Intermittence at the edge of a free shear flow (cont.)
Importance of entrainment

r

z
δl

Uaxis

Ūz(r,z)

nozzle

potential core
of length zc entrainment of ambient fluid
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x Turbulent signals q

Intermittence at the edge of a free shear flow (cont.)
Importance of entrainment

Visualization with smoke wires

ReD ≃ 5.4× 104
Courtesy of H. Fiedler (1987)

Entrainment by a turbulent round jet from awall

ReD = 106

Florent, J. Méc. (1965)
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x Turbulent signals q

Intermittence

For a centered fluctuating signal u ′1 = Iu
′
T + (1− I)u ′P

where u ′T is the turbulent signal (follows a Gaussian law of variance σ2
T ),

and u ′P is the potential entrained fluid (u ′P = 0 to simplify here, laminar flow)

u ′21 = lim
T→∞

1

T

∫ T

0

I2u ′2T dt = lim
T→∞

TT
T

1

TT

∫

TT

u ′2T dt = γ u
′2
T

We get the following relations, u ′21 = γu ′2T = γσ2
T , and in the same way,

u ′41 = γ u ′4T = γ 3σ4
T for Gaussian turbulence

Hence, for the complete fluctuating signal,

variance : σ2 = γσ2
T flatness factor : T =

3

γ

The flatness (kurtosis) factor is thus larger than for a Gaussian distribution, and

the variance is smaller, meaning that very small and very large values of the ran-

dom variable u ′1 are both more probable (wrt a Gaussian pdf) : this is a feature of

an intermittent signal
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x Turbulent signals q

Intermittence (cont.)

A more general approach requires to include the contribution of the mean flow.

We now consider both contributions uT = Iu1 and uP = (1−I)u1. Themean velocity

when I , 0 is given by

Iu1 = lim
T→∞

1

T

∫ T

0

Iu1dt = lim
T→∞

1

T

∫

TT

u1dt =
TT
T
ŪT = γ ŪT

and by a similar way, (1− I)u1 = (1−γ)ŪP.

Hence, the unconditional mean of u1 = uT + uP reads

Ū1 = γŪT + (1−γ)ŪP

By considering u ′1 = u1 − Ū1 as usual, the variance is given by

(see small classe for a demonstration),

u ′21 = γu ′2T + (1−γ)u ′2P +γ(1−γ)(ŪT − ŪP)
2
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x Turbulent signals q

Zero-pressure-gradient boundary layer on a flat plate
Transition for Rex1 ≃ 3.2× 105 or equivalently for Reδ =Ue1δ/ν ≃ 2800

Ue1

x2

U1(x2)
L

Ue1

Ū1(x2)

x2

0 x1

δ(x1)

laminar transition turbulent

Ue1/L ∼ δ2/ν Ue1/L ∼ u ′/δ

(F. Laadhari, LMFA,

Reδθ ≃ 1000

Ue1 = 2.1 m.s−1 δ ≃ 7 cm)

In laminar regime, molecular diffusion τ ∼ δ2/ν in the transverse direction, com-

pared with the turbulent regime, turbulent diffusion δ/u ′ with u ′ ≃ 0.1Ue1

Lee, Kwon, Hutchins & Monty (Melbourne University)
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x Turbulent signals q

Intermittence in a boundary layer

U∞ = 38 m.s−1 (Cousteix, 1989)

edge motion

= 3/T

The intermittency factor • γi (see slide 33) is here
defined as the probability to be inside a turbulent

burst of the boundary layer (internal flow)

Klebanoff, 1954, NACA TN 3178 ; See also Cousteix (1989)
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x Turbulent signals q

Intermittence in a boundary layer (cont.)

Longitudinal velocity

conditional means : −i inside a turbulent
burst, −e outside a turbulent burst,
entrainment of the external flow

Ue external velocity

Transverse velocity

Kovasznay, Kibens & Blackwelder, 1970, J. Fluid

Mech.,41(2), 283-325 ; See also Cousteix (1989)
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Reynolds decomposition
(see slides of first year, revision of Chapter 5)
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x Reynolds decomposition q

Navier-Stokes equations

As a reminder, Navier-Stokes Eqs. for an incompressible flow,













∇ ·u = 0

∂u

∂t
+u · ∇u = −1

ρ
∇p + ν∇2u

The acceleration of the fluid particleDu/Dt is balanced by two terms on the right

hand-side :

- acceleration of the fluid particle towards the low pressure regions of the flow

- viscous diffusion of the momentum
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x Reynolds decomposition q

Mean and fluctuating quantities

The statistical mean F̄(x, t) of a variable f (x, t) is defined as

F̄(x, t) = lim
N→∞

1

N

N∑

i=1

f (i) (x, t)

where f (i) is the i-th realization : convenient when manipulating equations but

difficult to implement in practice, or even impossible for geophysical flows !

We approximate the ensemble mean F̄ of f = F̄ + f ′ by a sufficiently long time

average of one realization only :

F̄(x) = lim
T→∞

1

T

∫ t0+T

t0

f (x, t′)dt′

Time average makes sense only if turbulence is stationary, that is statistics are

independent of time (refer to signal processing, associated with the hypothesis of

ergodicity).
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x Reynolds decomposition q

Reynolds decomposition

For a given variable f , Reynolds decomposition f = F̄ + f ′ into mean and fluctua-

ting (deviation) components is introduced.

Centered fluctuating field

f ≡ F̄ + f ′ with f ′ = 0 (f ′ = f − F̄ and f ′ = F̄ − F̄ = 0)

Rule for the product of two any variables (f and g here),

f g ≡ (F̄ + f ′)(Ḡ + g ′) = F̄Ḡ + F̄g ′ + f ′Ḡ + f ′g ′

and thus, f g = F̄ Ḡ + F̄ g ′ + f ′ Ḡ + f ′g ′ = F̄ Ḡ + f ′g ′

f g = F̄ Ḡ + f ′g ′ (1)

Reynolds decomposition for velocity : Ui ≡ Ūi + u
′
i with u ′i = 0

Ūi part which can be reasonably calculated

u ′i part which must be modelled (turbulent fluctuations)
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x Reynolds decomposition q

Reynolds Averaged Navier-Stokes (RANS) equations

Assumptions (to simplify) : incompressible flow ∇ ·U = 0

and homogeneous fluid, constant density ρ

How to determine the transport equation of the mean quantities ?

First, substitute the Reynolds decomposition and then,

average the equation,

∂(Ūi + u
′
i)

∂xi
= 0

∂(Ūi +u
′
i)

∂xi
= 0 =⇒ ∂Ūi

∂xi
= 0 (2)

Second, substract the averaged equation from the instantaneous one,

which provides

∂Ui

∂xi
= 0 and

∂Ūi

∂xi
= 0 =⇒ ∂u ′i

∂xi
= 0

The mean flow field Ū is incompressible, and so is the fluctuating field u′
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x Reynolds decomposition q

Reynolds Averaged Navier-Stokes (RANS) equations

∂ (ρUi)

∂t
+
∂

∂xj

(

ρUiUj

)

= −∂p
∂xi

+
∂τij
∂xj

τij = 2µDij

By introducing the Reynolds decomposition, and taking the average

Ui ≡ Ūi +u
′
i p ≡ P̄ + p′ τij ≡ τ̄ij + τ′ij

∂(ρŪi)

∂t
+
∂(ρŪi Ūj)

∂xj
= −∂P̄

∂xi
+
∂

∂xj

(

τ̄ij−ρu ′iu ′j
)

(3)

The term −ρu ′iu ′j is Reynolds stress tensor, unknown, thus leading to a closure

problem for Eqs. (2) and (3). Generally this term is larger than the mean viscous

stress tensor τ̄ except for wall bounded flows, where the viscosity effects become

preponderant close to the wall (no-slip condition, u ′iu
′
j = 0 at the wall)
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x Reynolds decomposition q

Turbulent kinetic energy and dissipation

The turbulent kinetic energy kt and the turbulent dissipation ǫ are two key quan-

tities to examine turbulence dynamics. By introducing the Reynolds decomposi-

tion, using the rule (1), we obtain

for the kinetic energy

UiUi

2
=
ŪiŪi

2
+
u ′iu

′
i

2
kt ≡

u ′iu
′
i

2

kt is the turbulent kinetic energy

for the dissipation

2νDijDij = 2νD̄ijD̄ij +2νd ′ijd
′
ij ǫ ≡ 2νd ′ijd

′
ij

ǫ (m2.s−3) is the dissipation rate of kt (m
2.s−2) induced

by the molecular viscosity
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x Reynolds decomposition q

Concept of turbulent viscosity for turbulence models
introduced by Boussinesq (1877)

To model Reynolds stress tensor −ρu ′iu ′j , one defines by analogy with the viscous

stress tensor τ,

−ρu ′iu ′j = 2µtD̄ij −
2

3
ρktδij = µt

(

∂Ūi

∂xj
+
∂Ūj

∂xi

)

− 2
3
ρktδij (4)

where µt = µt(x, t) is the turbulent viscosity, a property of the flow field, and not

of the fluid as for the molecular viscosity. It is thus expected that µt = µt(Re).

The introduction of a turbulent viscosity for closing Reynolds stress tensor is

an assumption, so not always verified by turbulent flows. In addition, it is also

assumed in Eq. (4) that the turbulent viscosity remains positive (thus inducing

specific behaviours in terms of energy transfer)
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x Reynolds decomposition q

Illustration for a free subsonic round jet
M = 0.16 and ReD = 9.5× 104 (from Hussein, Capp & George, 1994)
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2
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r

zzc

δl Uaxis

Ūz(r,z)nozzle
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ρu ′ru
′
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∂Ūz
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self-similar solution
r

δl
∼ r

z − z0
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x Reynolds decomposition q

Concept of turbulent viscosity for turbulence models (cont.)

Reynolds Averaged Navier-Stokes (RANS) equations

∂Ūi

∂xi
= 0

∂(ρŪi)

∂t
+
∂(ρŪi Ūj)

∂xj
= −

∂(P̄ + 2
3ρkt)

∂xi
+
∂

∂xj

(

2(µ+µt)D̄ij
)

How to compute the turbulent viscosity νt(x, t) ?

From dimensional arguments, the product of a velocity scale by a length scale,

for example νt ∼ k1/2t × k3/2t /ǫ ∼ k2t /ǫ, and then write a transport equation for kt
and ǫ to obtain the famous kt − ǫ model.

There are about 200 turbulent viscosity models published in the literature !

(see Wilcox and Durbin books among others)

47 Centrale Lyon | LMFA Stability and Turbulence – cb1 – 17-12-2023



x Reynolds decomposition q

Turbulent kinetic energy budget
(the demonstration can be found in textbooks)

∂(ρkt)

∂t
+
∂(ρktŪj)

∂xj
︸                ︷︷                ︸

advection by the mean flow

= −ρu ′iu ′j
∂Ūi

∂xj
︸        ︷︷        ︸

production P

∂

∂
− ρǫŪi

xj
︸    ︷︷    ︸

dissipation

+
∂

∂xk

(

−1
2
ρu ′iu

′
iu
′
k − p′u ′k + u ′iτ′ik

)

︸                                ︷︷                                ︸

transport terms

Case of homogeneous turbulence?

(when turbulence statistics are independent of space)
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x Reynolds decomposition q

Heuristic interpretation of the production term P

x1

x2
Ū1

{

u ′2 > 0

u ′1 < 0
u ′1u

′
2 < 0

{

u ′2 < 0

u ′1 > 0
u ′1u

′
2 < 0

P ≃ −ρu ′1u ′2
dŪ1

dx2
> 0 is thus expected !

The production term P is – in general – a transfer from the shear mean flow Ū

to the turbulent field u′ ; but becomes always a positive transfer term using a

turbulent viscosity model (4), a drawback of turbulence models
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Scales and energy cascade
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x Energy cascade q

Scales

Large scale in O(L,u ′) – associated with the geometry (cavity, cylinder, jet, wake,

car, airfoil, pipe, ...) and thus with the size of the flow itself

{ energy transfer (basically) from large scale structures to small scale structures,

but this transfer is stopped by the molecular viscosity when

∂u′

∂t
∼ ν∇2u′

Small scale inO(lη,uη) – known as Kolmogorov (viscous) scales with Re = uηlη/ν =

1. Kolmogorov’s length scale lη plays a fundamental role in experiments (sam-

pling frequency) as well as in numerical simulations (grid size)
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x Energy cascade q

Turbulent mixing layer (Brown & Roshko, 1974)

(Shadowgraphs with a spark source)

Energy cascade in a mixing layer by

increasing the Reynolds number

(through pressure and velocity, ×2
for each view)

More small-scale structures are

produced without basically altering

the large-scale ones (linked to the

transition process, as shown by

Winant & Browand, 1974)

Anatol Roshko

(1923-2017)

52 Centrale Lyon | LMFA Stability and Turbulence – cb1 – 17-12-2023



x Energy cascade q

Local nature of the energy cascade in space

small k intermediate k high k

in physical space
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x Energy cascade q

Taylor-Green vortex flow
Re = 3000 on a 3843 grid at times t = 0, t = 9 and t = 18 (dimensionless variables)

From Fauconnier et al. (2013)

Vortex structures colored by z-vorticity
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x Energy cascade q

Introduction to the energy cascade

From Navier-Stokes Eqs, we can calculate the power developed by the viscous

friction,

P = u′ · ν∇2u′ = u ′iν
∂2u ′i
∂xj∂xj

= ν
∂

∂xj

(

u ′i
∂u ′i
∂xj

)

− ν∂u
′
i

∂xj

∂u ′i
∂xj

= ν∇2

(

u′2

2

)

︸    ︷︷    ︸

(a)

− ν∇u′ : ∇u′

︸      ︷︷      ︸

(b)

(a) = diffusion of the kinetic energy

(b) = rate ǫ of dissipation (per unit mass) of the kinetic energy on average,

see slide 44

High velocity gradients (and thus small scale activity) are required

to ensure dissipation
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x Energy cascade q

Introduction to the energy cascade

U∞
wake

e.g. energy dissipated by the motion at U∞ of a sphere of

diameter D

FD ·U∞ ∝ CD(ReD)ρU3
∞D

2

The power developed by the drag force FD, that is FDU∞, is balanced by the energy

dissipated with the flow ρV × ǫ where V ∝D3

ǫ ∝ CD (ReD)
U3
∞
D

As ReD → 0, ν ր as well as energy which must be dissipated to move inside

the fluid

As ReD→∞, CD = CD(ReD) ≃ cst

ǫ ∝ U
3
∞
D

is independent of the viscosity
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x Energy cascade q

Drag coefficient for a smooth sphere (adapted from Clift, Grace, & Weber, 1978)

ReD = 2× 104 ReD = 2× 105

ReD ≃ 4× 105

RecD ≃ 3× 105
(pictures from Werlé, ONERA)
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x Energy cascade q

and paradox of the energy cascade ...

For high Reynolds number flows when ν goes to zero, the rate of dissipation per

unit mass ǫ becomes independent of the viscosity ν

ǫ = ν |∇u′|2 ≃ cst, leading to possible singularities for the velocity gradients ∇u′ր
(fragmentation of fine scales, still a research topic in turbulence)

Energy cascade - Kolmogorov (1941)

Kinetic energy is not conserved from scales to scales, but the rate of transfer of

this energy ǫ is conserved



















lηuη

ν
= 1 ǫ =

u3
η

lη
lη = ν

3/4ǫ−1/4

ǫ =
u ′3

L
ReL =

u ′L

ν

L

lη
∼ Re3/4L
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x Energy cascade q

As an illustration

Soccer ball

D = 22 cm

U∞ = 100 km.h−1 ≃ 27.8 m.s−1

ReD ≃ 4.1×105

u ′ ≃ 0.15U∞
L ≃D/2
ReL ≃ 3.1× 104

lη ≃ L/Re3/4L ≃ 4.7×10−5 m!

k =
ω

U∞
f =

U∞
lη
≃ 5.8× 105 Hz
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Free shear flows
(flows in the absence of walls !)

Composite schlieren of the free shear layer, with the two streams injected parallel to each other.

The upper stream is 100%N2while the lower is a mixture of 1/3 He and 2/3 Ar, withM1 = 0.59

andM2 = 0.29 Hall, Dimotakis & Rosemann, 1993, AIAA J., 31(12), 2247-2254.
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x Plane mixing layer q

Almost parallel and two-dimensional flow : slow evolution in the x1 direction,
and statistics independent of the spanwise coordinate x3

δ

U1

U2

O

x2

x1

U1 and U2 high- and low-speed

um ≡
U1 +U2

2
convection velocity scale

∆U ≡ U1 −U2 velocity difference, which

characterizes the turbulent diffusion

δ(x1) mixing layer width

L scale of change in the x1 direction
l scale of change in the x2 direction

l/L≪ 1 is a small parameter (parallel flow),

and Re = ∆Uδ/ν ≫ 1 (inviscid flow)
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x Plane mixing layer q

Digression : solution for the laminar viscous diffusion
in the frame moving at um

x2

δν

∆U
2

−∆U2

O

x2

x1

In the local convected frame,

∂U

∂t
= ν

∂2U

∂x22

Self-similar solution

η =
x2

2
√
νt

U =
∆U

2
f (η)

{

f = 0 η = 0

f = 1 η→∞
f ′′ +2ηf ′ = 0

U(x2, t) =
∆U

2
√
πνt

∫ x2

0

e−x̃
2
2/(4νt)dx̃2 δν ∼

√
νt

Solution never observed alone in practice : unstable flow, leading to the develop-

ment of Kelvin-Helmholtz instability waves (a fundamentally inviscid process)
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x Plane mixing layer q

Mean velocity field

Conservation of mass, which provides the transverse velocity scale V
(where ∼ stands for order of magnitude)

∂Ū1

∂x1
+
∂Ū2

∂x2
= 0

∂Ū1

∂x1
∼ ∆U

L
=⇒ V ∼ l

L
∆U

Reynolds-averaged Navier-Stokes equation in the x1 direction

Ū1

∂Ū1

∂x1
+ Ū2

∂Ū1

∂x2
= −1

ρ

∂P̄

∂x1
−∂u

′
1u
′
1

∂x1
−∂u

′
1u
′
2

∂x2
+ν∇2Ū1

– for the convection terms,

Ū1

∂Ū1

∂x1
+ Ū2

∂Ū1

∂x2
= um

∂Ū1

∂x1
+ (Ū1 −um)

∂Ū1

∂x1
+ Ū2

∂Ū1

∂x2
︸                       ︷︷                       ︸

∼ ∆U
∆U

L
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x Plane mixing layer q

Mean velocity field (cont.)

– for the Reynolds stress,

with u ∼ ∆U for the scale of velocity fluctuations,

−∂u
′
1u
′
2

∂x2
∼ u

2

l
∼ (∆U )2

l

Then, by considering the balance between the two dominant (red) terms

um
∆U

L
∼ (∆U )2

l
=⇒ ∆U ∼ l

L
um

– for the pressure term, using the RANS Eq. in the x2 direction

Ū1

∂Ū2

∂x1
︸  ︷︷  ︸

∼ l
L

um∆U

L

+Ū2

∂Ū2

∂x2
= −1

ρ

∂P̄

∂x2
−∂u

′
1u
′
2

∂x1
−∂u

′
2u
′
2

∂x2
︸  ︷︷  ︸

∼ um∆U
L

+ν∇2Ū2

64 Centrale Lyon | LMFA Stability and Turbulence – cb1 – 17-12-2023



x Plane mixing layer q

Mean velocity field (cont.)

– for the pressure term (cont.)

and by integration in the transverse direction,

P̄ + ρu ′22 ≃ cst = p∞ =⇒ 1

ρ

∂P̄

∂x1
≃ 0 in the RANS Eq. in the x1 direction

Finally, the equation governing the mean velocity is

um
∂Ū1

∂x1
≃ −∂u

′
1u
′
2

∂x2
(5)
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x Plane mixing layer q

Self-similar solution

We now look for self-similar solutions of Eq. (5)

Definition of the mixing layer width δ(x1) = x
0.9
2 − x0.12

where xα2 is the transverse location such that Ū1 = U2 +α∆U

Hence, from this definition, we have Ū1(±δ/2) = um ± 0.4∆U

Self-similar variable η =
x2 − x̄2
δ

where x̄2(x1) is usually the line along which Ū2 = 0 (the flow is indeed not sym-

metric about x2 = 0 for various reasons)









Ū1 = um +∆U f (η)

u ′1u
′
2 = (∆U )2g(η)

We expect that the nondimensionalized quantities

f and g are indeed functions of η only (see tutorials)
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x Plane mixing layer q

Champagne, Pao &Wygnanski (J. Fluid Mech., 1976)

U1 =UE = 8 m.s−1, U2 = 0

(the flow, running from the right to the left,

spreads preferentially into the low-speed

stream)
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x Plane mixing layer q

Flow visualization by laser-induced fluorescence in a cross-section plane

Experiments performed in water,

U1 = 57 cm.s−1, U2 = 23 cm.s−1, the

lower low-speed fluid is marked

with fluorescein dye

Bernal & Roshko, 1986, J. Fluid Mech., 170
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x Plane mixing layer q

Shear layer at a stream confluence

Kaskaskia River - Copper Slough

confluence in East Central Illinois

(Rhoads & Sukhodolov, 2004, Water

Resources Research)
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x Plane mixing layer q

Rhône and Saône rivers meeting point, Lyon

Lyon 2021-05-08
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x Jet & plume q

Incursion into the field of forced plumes !

Mount St. Helens Eruption on

16 May 1980 (Washington,

USA). Courtesy of Longview

Daily News, Washington (Rodi,

1982)

Eruption of the subglacial Grimsvötn volcano, Iceland, on 21 May 2011

An initial large plume of smoke and ash rose up to about 17 km height.

Courtesy of Thördïs Högnadóttir, Institute of Earth Sciences, University of Iceland

(Bailly & Comte-Bellot, 2015)
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x Jet & plume q

Incursion into the field of forced plumes (cont.)

Smoke plume in the presence of a near surface temperature

inversion, which hinders vertical turbulent motion and drives the

plume horizontally. The Quays Shopping Centre, near to Tiur and

Cloghoge, taken by Eric Jones (Bailly & Comte-Bellot, 2015)
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x Jet & plume q

Two examples of application

1. Forced plume in atmosphere. At

what altitude does the difference

between the temperature of the

plume and the temperature of the

quiescent surroundings become less

than 1 deg. ?

Data to solve the problem later

D = 1 m

UP = 3 m.s−1

ΘP = 273 K

T0 = 273 K

2. Thermal pollution. At a river

mouth, fresh water is pumped out to

sea in a large round pipe and

released at the bottom. At what

depth must the fresh water be

released to avoid raising the

temperature in the first 30 m below

the surface by more than 1 deg. ?

Data to solve the problem later

Qv = 10 m3.s−1

ρP = 1.0× 103 kg.m−3
TP = 35◦C

ρ0 = 1.03× 103 kg.m−3
T0 = 5◦C
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x Jet & plume q

Boussinesq approximation (1903)

Density fluctuations which appear in gouverning equations result principally

from thermal (as opposed to pressure ∼M2) effects, ρ ≃ ρ(T ). Its Taylor series
leads to

ρ ≃ ρ0(1− β(T −T0)) β = −1
ρ

∂ρ

∂T

∣
∣
∣
∣
∣
p

=
1

T0

(thermal expansion

coefficient for ideal gas)

In the equations for the momentum and mass conservation, density variations

may be neglected except in the buoyancy force ρg

These approximations are valid if the velocity perturbations are small (M≪ 1),

and when the variations in ρ0(z) and T0(z) of the quiescent surroundings are small

over the vertical size of the flow. As an exercise, you can check from hydrostatic

balance that the temperature varies by 1 degree every 100 meters for an adiabatic

atmosphere (6.5 degree /km with a more realistic model)
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x Jet & plume q

Gouverning equations

Viscosity and conductivity are neglected (free jet flow, no wall, Re and Pe ≫ 1).

The hydrostatic balance −∇p0 + ρ0g = 0 is also substracted from the momentum

conservation, which leads to

∂U

∂t
+U · ∇U = − 1

ρ0
∇(p − p0)−

1

T0
(T −T0)g

∇ ·U = 0

∂(T −T0)
∂t

+U · ∇(T −T0) = 0

Reynolds decomposition












T −T0 = T̄ +θ′

p − p0 = P̄ + p′

u = Ū +u′ (no wind, U0 = 0)

Boundary-layer approximation applied to free turbulent flow : the divergence of

the thin shear layer is slow.
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x Jet & plume q

Gouverning equations (cont.)
Reynolds-averaged Euler Eqs. including the buoyancy force

1

r

∂(rŪr)

∂r
+
∂Ūz

∂z
= 0 (6)

1

r

∂(rŪrŪz)

∂r
+
∂(ŪzŪz)

∂z
= −1

r

∂(ru ′ru
′
z)

∂r
+
T̄

T0
g (7)

1

r

∂(rŪrT̄ )

∂r
+
∂(ŪzT̄ )

∂z
= −1

r

∂(ru ′rθ
′)

∂r
(8)

Densimetric Froude number Fr

ambient fluid : ρ0, T0
forced plume : D, UP , ρP , TP = T0 +ΘP (ρPTP = ρ0T0)

Fr =

(

inertial forces

buoyancy forces

)1/2

=

(

U2
P /D

gΘP/T0

)1/2

=
UP

√

Dg(ρ0/ρP − 1)
(9)
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x Jet & plume q

Froude number for forced plumes

Sketch of the mean velocity and tem-

perature fields in the region where

the flow has reached a self-similar

state (z/D ≥ 10)

Pure plume : Fr = 0

Buoyant jet / forced plume :

0 < Fr <∞

Pure jet : Fr =∞

r

z

δt δ

Θm Um Ūz(r,z)T̄ (r,z)

diameter D

potential core
length zc

edge of the
turbulent jet

g

ReFr

entrainement
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x Jet & plume q

Froude number for forced plumes (cont.)
Visualization of starting plumes

Re = 9000, Fr = 58.5

D = 3.2 mm

UP = 3700 mm.s−1

ρP/ρ0 = 1.150

Re = 4000, Fr = 29.3

D = 3.2 mm

UP = 1850 mm.s−1

ρP/ρ0 = 1.150

Diez, Sangras & Faeth, 2003,

J. Heat Transfer, 125
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x Jet & plume q

Derivation of the self-similar solution

Only one length scale (δt ≃ δ) is considered to find the self-similar solution

η =
r

δl(z)



























Ūz =Um(z) f (η)

Ūr =Um(z)g(η)

−ηu ′ru ′z =U2
m(z)h(η)

T̄ =Θm(z)F(η)

−u ′rθ′ =Um(z)Θm(z)H(η)

(10)

At first, we are interested in the asymptotic behavior of the functions Um(z) (ve-
locity on the plume axis), Θm(z) (temperature on the plume axis) and δl(z) (the
half-width of the plume), and not in the expression of the profiles f , g , h, F and

H .
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x Jet & plume q

Self-similar solution (cont.)

Eq. (7) =⇒

−ru ′ru ′z =
∫ r

0

∂ŪzŪz

∂z
r ′dr ′ − Ūz

∫ r

0

∂Ūz

∂z
r ′dr ′ −

∫ r

0

T̄

T0
gr ′dr ′

=
∂

∂z

{

U2
mδ

2

∫ η

0

f 2η ′dη ′
}

−Umf
∂

∂z

{

Umδ
2

∫ η

0

f η ′dη ′
}

−θmδ2
g

T0

∫ η

0

Fη ′dη ′

with the change of variable η ′ = r ′/δ(z)

=
d

dz
(U2

mδ
2)

∫ η

0

f 2η ′dη ′ +U2
mδ

2f 2(η)η
dη

dz

−Umf
d

dz
(Umδ

2)

∫ η

0

f η ′dη ′−U2
mδ

2f 2(η)η
dη

dz
−θmδ2

g

T0

∫ η

0

Fη ′dη ′

by using
d

dx

∫ b(x)

a(x)

I(x,y)dy =

∫ b(x)

a(x)

∂I

∂x
dy + I(x,b(x))

db

dx
− I(x,a(x))da

dx
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x Jet & plume q

Self-similar solution (cont.)

The Reynolds shear stress is finally recast as,

−ηu
′
ru
′
z

U2
m

= h(η)

︸           ︷︷           ︸

given by Eq. (10)

=
(U2

mδ
2)′

U2
mδ

∫ η

0

f 2η ′dη ′ − (Umδ
2)′

Umδ
f

∫ η

0

f η ′dη ′ − θmδ
U2
m

g

T0

∫ η

0

Fη ′dη ′

A self-similar solution can be obtained only if the red terms are constant terms,

and not terms functions of z, which leads to the following behaviours for a plume,

δ ∼ z Um ∼ zm Θm ∼ z2m−1
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x Jet & plume q

Self-similar solution (cont.)

Conservation of the heat flux in a cross-section to determine m
By integration of Eq. (8) in the radial direction,

[

rŪrT̄
]∞

0
︸   ︷︷   ︸

=0

+

∫ ∞

0

(∂ŪzT̄ )

∂z
r ′dr ′ =

[

−ru ′rθ′
]∞

0
︸     ︷︷     ︸

=0

Therefore,
∫ ∞

0

ŪzT̄ r
′dr ′ = cst =⇒ UmΘmδ

2

∫ ∞

0

f Fη ′dη ′ = cst

A self-similar solution is then only possible if

δ ∼ z Um ∼ z−1/3 Θm ∼ z−5/3

Faster decrease in temperature than in velocity

(for a single free round jet, we have δ ∼ z and Um ∼ z−1)
The Froude number value is a constant, Fr2 = (U2

m/δ)/(gΘm/T0) = cst
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x Jet & plume q

Self-similar solution (cont.)

Experimental data collected by Rodi (1986)

In the plume region,

for z/z⋆ > 5.0 with z⋆/D = Fr1/2 (ρP/ρ0)
1/4

Um

UP
≃ 3.5Fr−1/3

(

ρP
ρ0

)1/3(
z

D

)−1/3
Θm

ΘP
≃ 9.35Fr1/3

(

ρP
ρ0

)1/3(
z

D

)−5/3
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x Jet & plume q

Two examples of application

1. Forced plume in atmosphere. At

what altitude does the difference

between the temperature of the

plume and the temperature of the

quiescent surroundings become less

than 1 deg. ?

Data to solve the problem

D = 1 m

UP = 3 m.s−1

ΘP = 273 K

T0 = 273 K

Solution.

TP = T0+ΘP = 2T0 =⇒ ρP =
1
2ρ0 (constant

pressure in the plume, then using p = ρrT )

From its definition (9),

Fr2 =
32/1

9.81× 1 ≃ 0.92 (plume)

Numerically,

z

D
≃

(

1

9.35Fr1/3
Θm

ΘP

)−3/5(
ρ0
ρP

)−1/5

≃
(

1

9.35× 0.921/3
1

273

)−3/5
2−1/5

≃ 95 m

(we verify that the ambient temperature T0
is almost constant along this distance)
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x Jet & plume q

Two examples of application

2. Thermal pollution. At a river

mouth, fresh water is pumped out to

sea in a large round pipe and

released at the bottom. At what

depth must the fresh water be

released to avoid raising the

temperature in the first 30 m below

the surface by more than 1 deg. ?

Data to solve the problem

Qv = 10 m3.s−1

ρP = 1.0× 103 kg.m−3
TP = 35◦C

ρ0 = 1.03× 103 kg.m−3
T0 = 5◦C

Solution.

Two contribution for the buoyancy force :

temperature TP versus T0, and also density

of fresh water (fw) versus salt water (sw)

Mixing of salt and fresh water by

entrainment inside the plume to reach

T = 6◦C; from the conservation of energy,

MfwCpTP +MswCpT0 = (Mfw +Msw)CpT

Msw

Mfw

=
TP −T
T −T0

=
35− 6
6− 5 = 29

In other words, 1 kg of fresh water has

entrained 29 kg of salt water in order to

reach T = 6◦C. For this temperature (and

this altitude), the plume density is then

estimated at

ρ =
ρfw +29ρsw

30
≃ 1.029× 103 kg.m−3
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x Jet & plume q

Two examples of application

Solution (cont.)

For an ideal gas, p = ρrT , and for p = cst, it yields by logarithmic differentiation

−∆ρ
ρ

=
∆T

T

and for a liquid, the boyancy force is −g∆ρ/ρ0, where ∆ρ takes into account temperature and

density effects here. Hence, by analogy with the gas plume, we still use for the liquid plume

ρ − ρ0
ρP − ρ0

≃ 9.35Fr1/3
(

ρP
ρ0

)1/3(
z

D

)−5/3

Numerically, z ≃ 70 m, and the required distance from the nozzle to the surface is thus 100 m.
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Identification of vortical structures
(When is a region of vorticity a vortex?)

2-D 2-C PIV snapshot, u−0.85U∞, colored by vorticity

magnitude ω2, from Salze et al. (2015)
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x Vorticity q

Introduction : deformation of a fluid particle
Taylor series for the velocity in the vicinity of a fluid particle at xP
(at a given time t)

xP

(V )

u(x) = u(xP) +∇u(xP) · (x − xP) + · · ·

ui(x) = ui(xP) +
∂ui
∂xj

∣
∣
∣
∣
∣
∣
xP

(xj − xPj) + · · ·

∂ui
∂xj

=
1

2

(

∂ui
∂xj

+
∂uj
∂xi

)

︸          ︷︷          ︸

Dij

+
1

2

(

∂ui
∂xj
−
∂uj
∂xi

)

︸          ︷︷          ︸

Ωij











D symmetric part of ∇u

Ω antisymmetric part of ∇u

Ωij is associated

with the rotation of

the fluid particle
Ω =












0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0












Ω ≡ 1

2
∇×u (,Ω)
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x Vorticity q

Deformation of vorticity

u(x) = u(xP) +D(xP) · (x − xP)
︸            ︷︷            ︸

deformation

+Ω(xP)× (x − xP)
︸             ︷︷             ︸

rotation

+ . . .

xP

t

xP

→ translation

xP

→ deformation

xP

→ rotation

xP

t + δt

O
x1

x2
Decomposition of fluid-particle motion in a shear flow

The vorticity vector is defined as ω = ∇×u

When ω = 0, absence of vorticity, the flow is irrotational

The vorticity vector ω is twice the angular velocity of the solid-body rotation

motion of the fluid particle, ω = 2Ω.
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x Vorticity q

Example of the Rankine vortex (1858) Rankine (1820-1872)













u(r) = v0
r

r0
=Ω0r r ≤ r0

u(r) = v0
r0
r
=Ω0r0

r0
r

r > r0

(v0 =Ω0r0 = ω0r0/2)
x1

x2

θ

r

u(r)eθ

ω = ω0 = 2Ω0 = cst
for r ≤ r0

0  1  2  3  4  5  6  7

0

1

Solid body motion inside the vortex itself,

i.e. for r ≤ r0 in the vortical region

Irrotational flow outside, for r > r0 : the
localized circular patch of vorticity

produces a velocity field away from the

vortical region
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x Vorticity q

Example of the Rankine vortex (cont.)

Pressure field?

Inviscid steady flow, Euler’s equation

−1
ρ

∂p

∂r
= −

u2
θ

r
















p = p∞ −
ρv20
2

(

2− r
2

r20

)

r ≤ r0

p = p∞ −
ρv20
2

r20
r2

r > r0

More generally, can vortex structures be

identified with local pressure minimum?
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x Identification q

Identification of vortices in turbulent flow

Equation for the pressure (incompressible flow, ρ = cst), by taking the divergence

of Navier-Stokes equation

−1
ρ
∇2p =

∂ui
∂xj

∂uj
∂xi

Using the previous decomposition of the velocity gradient tensor (the product of

a symmetric and an antisymmetric tensor is zero)

∂ui
∂xj

∂uj
∂xi

= (Dij +Ωij)(Dij −Ωij) =DijDij −ΩijΩij =D :D −Ω :Ω

1

ρ
∇2p =Ω :Ω −D :D

A vortex may then be defined by a concentra-

ted flow region dominated by Ω : Ω, and conse-

quently we expect ∇2p > 0 (positive curvature,

local minimum) x1

x2

p
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x Identification q

Identification of vortices (cont.)

The source term of Poisson’s equation for the pressure is one of the three inva-

riants (invariant, that is independent of the orientation of the coordinate system)

of the velocity gradient tensor Aij ≡ ∂ui/∂xj = (∇u)ij

The three invariants of a second-order tensor (A here) are given by


















P = tr(A) = Aii

Q =
1

2

[

tr2(A)− tr(A
2
)
]

=
1

2

[

(Aii)
2 −AijAji

]

R = det(A) =
1

6
tr3(A)− 1

2
tr(A)tr2(A) +

1

3
tr(A

3
)

The incompressibility condition ∇ · u = 0 leads to P = 0 and to Q = −AijAji/2.
Hence, the previous pressure equation reads

1

ρ
∇2p =Ω :Ω −D :D = 2Q

Vortical structures are thus expected to be identified for high positive values of

the invariant Q, leading to the so-called Q-criterion
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x Identification q

As an illustration : total drag breakdown of a car, and iso-surfaces ofQ-criterion
colored with velocity magnitude

(Fiabane, PhD thesis, 2011, ENSTA-PSA)
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x Identification q

Illustration : corner separation in a compressor cascade

Lattice Boltzmann

simulations of corner

separation flow in a

compressor cascade.

Instantaneous isosurface

of Q-criterion, colored by

velocity magnitude.

Turbulent structures

develop around the blades

and accumulate in the

separation zone.

Boudet, Lévêque & Touil,

2022, J. Turbomachinary,

144
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x Identification q

Identification of vortices (cont.)

The eigenvalues λi of A are the roots of the characteristic equation

λ3 −Pλ2 +Qλ−R = 0,

with P = λ1 +λ2+λ3 (P = ∇ ·u = 0 for incompressible flow),

Q = λ1λ2 +λ2λ3+λ1λ3 and R = λ1λ2λ3

Hence, the characteristic equation reads λ3+Qλ−R = 0. In introducing the discri-

minant ∆ =Q3/27+R2/4, one finds three real values λi for ∆ < 0, or two complex

conjugate values λ1,2 = σ ± iω and one real value λ3 for ∆ > 0.

R

Q

∆ < 0

Q⋆ = −3(R2/4)1/3 Q⋆ = 3(R2/4)1/3

D
2

Ω
2

D
2
=Ω

2
(Q = 0)

Q < 0

Q > 0
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x Identification q

Illustration with an incompressible 2-D flow
Stream function ψ = ax21 + bx

2
2 and velocity field

a = −1, b = 1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

a = 1, b = 1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

a = 0, b = 1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
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x Identification q

Illustration with an incompressible 2-D flow

ψ =
ω − s
4

x21 +
ω + s

4
x22



























u1 =
∂ψ

∂x2
=
ω + s

2
x2

u2 = −
∂ψ

∂x1
= −ω − s

2
x1

ω3 =
∂u2
∂x1
− ∂u1
∂x2

= −∇2ψ = −ω − s
2
− ω + s

2
= −ω

D =

(

0 s/2
s/2 0

)

Ω =

(

0 ω/2
−ω/2 0

)

1

ρ
∇2p =ΩijΩij −DijDij =

1

2
(ω2 − s2) = 2Q

Topologie des lignes de courant ψ = cst

elliptiques (ω − s)(ω + s) > 0 =⇒Q > 0 =⇒∇2p > 0

hyperboliques (ω − s)(ω + s) < 0 =⇒Q < 0 =⇒∇2p < 0
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x Identification q

Illustration with an incompressible 2-D flow (cont.)

rotation pure, s = 0 et par conséquent Q < 0

cisaillement pur, ω = 0 et par conséquent Q > 0

cisaillement simple ω = s, et Q = 0

Champ de pression
















u2
∂u1
∂x2

= −1
ρ

∂p

∂x1

u1
∂u2
∂x1

= −1
ρ

∂p

∂x2



















−ω
2 − s2
4

x1 = −
1

ρ

∂p

∂x1

−ω
2 − s2
4

x2 = −
1

ρ

∂p

∂x2

p = p0 +
ω2 − s2

8
(x21 + x

2
2)

99 Centrale Lyon | LMFA Stability and Turbulence – cb1 – 17-12-2023



x Identification q

Local topologies for incompressible flow

From Ooi et al., 1999, J. Fluid Mech.
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Presence of instability waves in turbulent flows
(concluding remarks)
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x Synthesis q

Control of a mixing layer

On cherche à forcer le développement d’une couche de

mélange, en imposant une perturbation spatiale de lon-

gueur d’onde αe au bord de fuite de la plaque séparant

les deux flux rapide et lent.

1. Rappeler en deux ou trois phrases les caractéris-

tiques des ondes qui se développent en aval du bord

de fuite de la plaque séparatrice.

2. Comment déterminer le taux d’amplification de ces

ondes?

3. On sait que cet écoulement admet une solution au-

tosimilaire. Quel mécanisme physique – à décrire en

une phrase – permet d’obtenir un taux de turbulence

borné?
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x Synthesis q

Flow-induced cavity oscillations

h

W

L

D

U∞



















L = 0.04 m

h = 0.1 m

U∞ = 52.2 m.s−1

0 ≤D ≤ 4L

SPL measured inside the cavity
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x Synthesis q

Flow-induced cavity oscillations (cont.)

Cavity depth modes n = 0

(cavity+end-correction)

f = (2n+1)
c∞

4(D +0.41L)

Acoustic modes n = 1

(cavity+channel height)

f = n
c∞

2(h+D)

Aeroacoustic feedback loop

n = 1,2,3

f =
n

L/Uc +2D/c∞

Convection of turbulent structures

within the shear layer, which impact

at the downstream corner,

generation of acoustic waves (depth

modes) and excitation of the shear

layer upstream.

Modelling : frequency selection + gain{ whistle

104 Centrale Lyon | LMFA Stability and Turbulence – cb1 – 17-12-2023



x Synthesis q

Cavity noise : a long-lasting problem in transport

TGV - high speed train (rear engine) - courtesy of SNCF

fuel pressure

relief vent
on a A319

Courtesy of Jan Delf (DLR), refer to AIAA Paper 2002-2470
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x Synthesis q

Measured acoustic spectra at 1 m above a cylindrical cavity

Diameter D = 10 cm, depth H =D, flow speed 50 ≤U∞ ≤ 110 m/s TR-PIV
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U
∞
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U
∞

= 90 m/s

shear-layer
dynamics

acoustic
depth mode

G12(f )

G21(f )

ℑ (G12 ×G21) = 0

=⇒ resonance frequencies +

Marsden et al., 2012, J. Sound Vib., 331

Elder, 1978, J. Acoust. Soc. Am., 63(3)
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x Synthesis q

Shinkansen (Tokyo – Sendai, july ’08)

E2 series – 275 km/h

E4 series – 240 km/h

aerodynamic noise generated

by intercoach spacing
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x Synthesis q

New Hayabusa Shinkensan train (’the bullet train’)

faster
and

QUIETER!
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x Synthesis q

Flow-induced cavity oscillations : aeroacoustic feedback loop
for shallow cavities (at rather high Mach numbers)

L/Uc +L/c = n/f

������������������
��
��
��

✲

✲

✲

U∞

❄

✻
D

✲✛
L

❅
❅

❅
❅

❅
❅

❅
❅

❅❅■

acoustic
waves

✛ pressure
waves

shear layer

Rossiter formula (1964)

St =
f L

U∞
=
n−α

M +
1

κ

f frequency

L length

U∞ free stream velocity

n number of vortices

α phase lag

κ =Uc/U∞, Uc convection velocity

M =U∞/c

– No information about amplitude or mode selection (L/δθ)

– Acoustic resonance can superimpose (longitudinal or depth mode)
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