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Dispersion of contaminants

A pollutant (salinity, particle, heat) of concentration 200g/1 is injected during a time ¢ = 0.01s in the whole
section of a circular pipe of diameter D = 0.2m, with a water flow of bulk velocity Uy = 5 m.s~!. What is
the concentration of this pollutant at 2000D downstream of the pipe?

The two following configurations will be considered to determine the variance of the Lagragian position
of fluid particles, in order to solve this problem,
* free space dispersion by stationary, homogeneous turbulence

* longitudinal dispersion in a pipe
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Ficure 1 - Bulk velocity U; normalized to the friction velocity u, plotted against the Reynolds number
Rep = UyD/v for a circular pipe flow.!

— from 1/le/2 ~ 3.8601og, (Rep C}/z) —0.088

-——= from l/C}/2 ~ 4log,,(Rep C}/Z) -0.40

o data from McKeon et al. (Princeton group, superpipe)



A measurement of Lagrangian velocity autocorrelation
in approximately isotropic turbulence

By D. J. SHLIENt AnD S. CORRSIN
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The Johns Hopkins University

(Received 12 January 1973)

By measuring the heat dispersion behind a heated wire stretched across a wind
tunnel (Taylor 1921, 1935), the Lagrangian velocity autocorrelation was deter-
mined in an approximately isotropic, grid-generated turbulent flow. The tech-
niques were similar to previous ones, but the scatter is less. Assuming self-
preservation of the Lagrangian velocity statistics in a form consistent with
recent measurements of decay in this flow (Comte-Bellot & Corrsin 1966, 1971),
a stationary and an approximately self-preserving form for the dispersion were
derived and approximately verified over the range of the experiment.

Possibly the most important aspect of this experiment is that data were avail-
able in the same flow on the simplest Eulerian velocity autocorrelation in time,
the correlation at a fixed spatial point translating with the mean flow (Comte-
Bellot & Corrsin 1971). Thus, the Lagrangian velocity autocorrelation coefficient
function calculated from the dispersion data could be compared with this cor-
responding Eulerian function. It was found that the Lagrangian Taylor micro-
scale is very much larger than the analogous Eulerian microscale (76 ms compared
with 6-2 ms), contrary to an estimate of Corrsin (1963). The Lagrangian integral
time scale is roughly equal to the Eulerian one, being larger by about 25 %,.

Some measurements of particle velocity autocorrelation
functions in a turbulent flow

By W. H. SNYDERY AnND J. L. LUMLEY

The Pennsylvania State University, University Park, Pennsylvania
(Received 29 June 1970)

Particle velocity autocorrelations of single spherical beads (46-5 4 hollow glass,
87 i glass, 87 u corn pollen, and 46-5 4 copper) were measured in a grid-generated
turbulence. The hollow glass beads were small and light enough to behave like
fluid points; the other types had significant inertia and ‘crossing trajectories’
effects. The autocorrelations decreased much faster for heavier particles, in
contradiction to previous experimental results. The integral scale for the copper
beads was 4 of that for the hollow glass beads. The particle velocity correlations
and the Eulerian spatial correlation were coincident within experimental error
when the separation was non-dimensionalized by the respective integral scale.
The data generated by the hollow glass beads can be used to estimate Lagrangian
fluid properities. The Lagrangian time integral scale is approximated by Lfu’,
where L is the Eulerian integral scale and «’ is the turbulence intensity.
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Numerical simulation of the free space dispersion

We propose to generate a synthetic isotropic turbulent field, here in 2-D to ease laptop simulations, from
random Fourier modes. This stochastic field can be used for the numerical simulation of the dispersion of
particles in homogeneous turbulence. The (real) turbulent field #’ is defined from the following Fourier

integral,
u (x) = Jﬁ(k)eix'kdk

This relation is then discrete in N Fourier modes on the spectral half-space only, that is for k; > 0

N
W (x)=2) ii,cos (kX + 1) 0 (1)
n=1

where 1, ¥, k,, and o, are the amplitude, the phase, the wavenumber and the unit vector aligned with
the spectral component of the n-th Fourier mode respectively, refer to Fig. 2. To generate a homogeneous
velocity field, the probability density function (pdf) must be uniform over 0 < i < 27w, and therefore
p() = 1/(2m). To satisfy the incompressibility condition V- u’ = 0, the unit vector is taken as follows,
0 = €(—sin6,cos 0) where € is randomly chosen equal to +1. Finally, isotropy of the turbulent is obtained
by prescribing for the pdf of 6,

1
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The amplitude of each mode is determined from the discretization of the turbulent kinetic energy spectrum
E (k),

where k; is the turbulent kinetic energy. A Gaussian spectrum is selected here,
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where the scale of velocity fluctuations is given by uy = V2k;/3 and the integral length scale Ly with

koLf =~ 1. A simple linear distribution is chosen for the wavenumbers k;,, = (1n/N)kpay for n = 1,---,N,

where kp,,4 is the highest wavenumber to be considered.

1. Generate a single realization of the synthetic field (1), and plot the 2-D velocity field on a domain
0 <x;,xp < 2Ly where Ly = 27t/ky, and with N = 20 and kp,x = 2ko.

2. Verify numerically that uz.’u]’. — u}%éij when the number of realizations increases to perform the ave-

rage.
3. Plot the two correlation functions f (r) and g(r).

4. Verify that the stochastic turbulent field is Gaussian by computing numerically the skewness and
kurtosis factors.


https://acoustique.ec-lyon.fr/christophe.bailly.php#turbulence

FiGUre 2 — Representation of the n-th Fourier mode in 2-D, see Eq. (1)

5. Application to the free space dispersion. By taking realistic parameter to generate the stochastic
turbulent field, compute the distribution of a large number of contaminant particles by solving
dx/dt = u’ with the same initial condition x = x( at time ¢t = 0. Characterize the distribution of
the cloud of particles, and verify that its variance is driven by the turbulent dispersion coefficient of
Taylor. Any additional representation or discussion is welcome.



