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x Introduction q

Turbulent flows

- unsteady aperiodic motion

- unpredictable behaviour

- presence of a wide range of time and space scales

Turbulence appears when the source of the kinetic energy which drives the fluid

motion is able to overcome viscosity effects, that is the Reynolds number must be

sufficiently large

- astrophysics, geophysical flows including ocean circulation, climate, wea-

ther forecast, hydrology, dispersion of aerosols

- external aerodynamics for aeronautics & ground transportation, internal

flows in mechanical engineering, biomechanics, biological flows

- noise of turbulent flows (aeroacoustics), sound propagation (atmosphere,

ocean), fluid-solid interaction and vibroacoustics
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x Introduction q

Non-linearity of Navier-Stokes’ equations

ρ

(

∂u

∂t
+u · ∇u

)

= −∇p +µ∇2u

The non-linear nature of the convective acceleration u · ∇u is at the origin of the

development of a large range of space and time scales, that are observed in a

turbulent flow.

A (too) simple example illustrating the generation of harmonics is based on the

simplified equation ∂tu + u · ∇u = 0, with u = (u1,u2) in 2-D. By assuming that at

time t0,














u1 (x1,x2, t0) = Acos(k1x1)sin(k2x2)

u2 (x1,x2, t0) = Bsin(k1x1)cos(k2x2)

with Ak1 +Bk2 = 0 to satisfy the incompressibility condition ∇ ·u = 0
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x Introduction q

Non-linearity of Navier-Stokes’ equations (cont.)

A Taylor series of the velocity u around t0 provides

u(x, t) = u(x, t0) + (t − t0)∂tu|t0 + ... with ∂tu|t0 = −u · ∇u|t0

As an illustration, one gets for u1

u1 (x1,x2, t) = Acos(k1x1)sin(k2x2)

+ (t − t0)
k1A

2

2

[

cos(2k1x1)sin
2(k2x2) + sin(2k1x1)cos

2(k2x2)
]

+ ...

It can be noted the production of higher harmonics (2k1,2k2, k1 + k2), that is of

larger wavenumbers corresponding to smaller structures, and also of smaller har-

monics (k1 − k2)

What is a turbulent structure of wavenumber k ?

What is the smallest structure that can survive in the flow, before destruction by

viscosity?
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x Introduction q

Representation in spectral space

Model of a turbulent structure of

wavenumber k : energy is contained in a

narrow band around k = 2π/l, where l is a
characteristic length scale, see figure on the

right

A real turbulent structure (vortex or eddy)

can be decomposed into waves of different

wavelengths, with their amplitude and

phase, using Fourier transform

Various other decompositions can also be

used (wavelets for instance)

A structure of wavenumber k (of size ∼ 1/k)
can be seen as an elementary component of

the previous decomposition

-2 -1 0 1 2

f (r) = cos(kr)exp(− log(2)(r/r0)
2)

with r0 = 4/k here

The Fourier transform of f is cente-

red around k
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x Introduction q

Viscous scales

The energy transfer induced by the convective acceleration u · ∇u is stopped by

the molecular viscosity (impossible to preserve small structures with too large

velocity gradient)

Smallest structures uη kη ∼ 1/lη

∂u

∂t
≃ ν∇2u (Stokes)

The balance between the two terms

∂u

∂t
∼
u2
η

lη
ν∇2u ∼ ν

uη

l2η

leads to

Reη =
lηuη

ν
∼ 1

These viscous scales (uη, lη), also called Kolmogorov’s scales, are the smallest

scales of the flow allowed by viscosity. They impose the spatial resolution ne-

cessary for measurement or simulation
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x Introduction q

Turbulence is part of continuummechanics
Viscous scale lη wrt the free mean path λl of molecules

Knudsen number Kn =
λl

lη
≪ 1

Sensitivity to initial conditions

The nonlinearity of the Navier-Stokes equations does not allow the time evolution

of turbulent fields to be predicted over a long period. The reason for this is that a

small difference in the initial conditions introduces significant differences as time

goes, linked to the largest Lyapunov exponent for chaotic systems.

An initial separation of 1 cm between two fluid particles in the atmosphere results

in a 10 km separation within just a day, the butterfly effect in chaos theory !

Ruelle, D. and Takens, F., 1971, On the nature of turbulence, Commun. Math. Phys., 20, 167–192
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x Introduction q

Mean and fluctuating quantities

The statistical mean F̄(x, t) of a variable f (x, t) is defined as

F̄(x, t) = lim
N→∞

1

N

N
∑

i=1

f (i) (x, t)

where f (i) is the i-th realization : convenient when manipulating equations but

difficult to implement in practice, or even impossible for geophysical flows !

Can we approximate the ensemble mean F̄ of f = F̄+f ′ by a sufficiently long time

average FT of one realization only?

FT =
1

T

∫ T

0

f (t)dt
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x Introduction q

Time average

Time average makes sense only if turbulence is stationary, that is statistics are

independent of time. The autocorrelation coefficientR is then only an even func-

tion of the time separation τ

R(τ) =
f ′(t)f ′(t + τ)

f ′2

We can estimate the difference between FT obtained by a finite integration time

and the true (ensemble) mean value F̄ by considering

FT − F̄ =
1

T

∫ T

0

[

f (t)− F̄
]

dt =
1

T

∫ T

0

f ′(t)dt

The mean square value is

(FT − F̄)
2 =

1

T

∫ T

0

f ′(t1)dt1 ×
1

T

∫ T

0

f ′(t2)dt2
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x Introduction q

Time average (cont.)

By taking the statistical average, that is (FT − F̄)2, one has

(FT − F̄)2 =
f ′2

T 2

�
D

R(t2 − t1)dt1dt2 =
f ′2

T 2

�
D′
R(τ)dt1dτ τ = t2 − t1

The integration over t1 can be achieved by

splitting the domain D′ as follows,
�
D′
R(τ)dt1dτ

=

∫ T

0

(T − τ)R(τ)dτ +

∫ 0

−T

(T + τ)R(τ)dτ

= 2

∫ T

0

(T − τ)R(τ)dτ

t1T

t2
T

0

D

t10

τ

T

−T

D′

T − τ (τ ≥ 0)

T + τ (τ ≤ 0)
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x Introduction q

Time average (cont.)

The mean square error between FT and the true mean value F̄ can thus be esti-

mated as

(FT − F̄)2 = 2
f ′2

T

∫ T

0

(

1−
τ

T

)

R(τ)dτ ≃ 2
f ′2

T

∫ T

0

R(τ)dτ ≃ 2f ′2
Θ

T

if the time integration T is much longer than

the integral time scale Θ, defined by

Θ =

∫ τ⋆

0

R(τ)dτ

where τ⋆ =∞ or the first zero crossing of

R(τ) in practice

The term τ/T is then small in the range of τ
where R(τ) is non-zero, and the time average

value FT → F̄ as T →∞
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R(τ) e−τ/Θ

Θ ≃ 0.3D/Uj

Subsonic jet at ReD = 105

x1 = 0, x2 = 2D
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x Introduction q

Ergodicity

By considering the time average in signal processing to approximate the ensemble

mean, we assume that turbulence is an ergodic process.

Ergodicity expresses the idea that a trajectory of a dynamical system (of a sto-

chastic process signal) will eventually visit all parts of the phase space in which

the system moves, in a uniform and random direction. Statistical properties can

thus be deduced from a single (sufficiently long) realization.
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x Introduction q

Textbooks

Batchelor, G.K., 1967, An introduction to fluid dynamics, Cambridge University Press, Cambridge.

Bailly C. & Comte Bellot G., 2003 Turbulence, CNRS éditions, Paris (out of print).

——–, 2015, Turbulence (in english), Springer, Heidelberg.

(360 pages, 147 illustrations, Foreword by Charles Meneveau)

Bailly C. & Comte Bellot G., 2003, Turbulence (in french), CNRS éditions, Paris.

——–, 2015, Turbulence (in english), Springer, Heidelberg.

Springer, ISBN 978-3-319-16159-4,

360 pages, 147 illustrations.

Candel S., 1995, Mécanique des fluides, Dunod Université, 2nd édition, Paris.

Davidson P.A., 2004, Turbulence. An introduction for scientists and engineers, Oxford University Press, Oxford.

Davidson, P.A., Kaneda, Y.,Moffatt, H.K. & Sreenivasan, K.R., Edts, 2011, A voyage through Turbulence, Cambridge

University Press, Cambridge.

Guyon E., Hulin J.P. & Petit L., 2001, Physical hydrodynamics, EDP Sciences / Editions du CNRS, première édition

1991, Paris - Meudon.
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x Introduction q

Textbooks (cont.)

Hinze J.O., 1975, Turbulence, McGraw-Hill International Book Company, New York, 1ère édition en 1959.

Landau L. & Lifchitz E., 1971, Mécanique des fluides, Editions MIR, Moscou.

Also Pergamon Press, 2nd edition, 1987.

LesieurM., 2008, Turbulence in fluids : stochastic and numerical modelling, Kluwer Academic Publishers, 4th revised

and enlarged ed., Springer.

Pope S.B., 2000, Turbulent flows, Cambridge University Press.

Tennekes H. & Lumley J.L., 1972, A first course in turbulence, MIT Press, Cambridge, Massachussetts.

Van Dyke M., 1982, An album of fluid motion, The Parabolic Press, Stanford, California.

White F., 2005, Viscous fluid flow, 3ed Ed., McGraw-Hill, Inc., New-York (1st Ed. 1974).
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x Organization of the course q

Outline

The main objectives are the mastery of basic concepts (turbulence production,

turbulence boundary layer, role of vorticity, homogeneous and isotropic turbu-

lence, Kolmogorov theory), the development of skills in turbulence modeling, the

critical analysis of results, and the acquisition of a global vision of experimental

approaches.

Introduction

Statistical description of turbulent flows

Wall-bounded turbulent flows

Dynamics of vorticity

Homogeneous and isotropic turbulence

Dynamics of isotropic turbulence – Kolmogorov’s theory

Introduction to experimental techniques
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x Organization of the course q

Outline (cont.)

Practical work

Lab-session Numerical simulation of the mean flow in a channel

BE1 – Small class of 4 hours - exercices

BE2 – Small class of 4 hours to solve a complete problem

Auditors : you are invited to follow these practical activities

(Let us know about it !)

Teaching team Christophe Bailly

Christophe Bogey
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x Organization of the course q

Assessment for this course

There are one practical lab session, and two small classes of 4h (so-called ‘BE’,

may involve signal processing, coding of simple models using Matlab and ana-

lytical developments). For 3rd year students, the grade is obtained with BE

60% and lab work 40%.

Absence : it is possible to exceptionally modify a lab session, only by exchan-

ging your session with that of another student.

Master student, additional final exam (closed book and open notes), wednes-

day 18 december 2024. The final mark will be the max between – the final

exam mark – and (50% final exam + 30% BE + 20% lab work).

Course slides can be downloaded by following this link

https://acoustique.ec-lyon.fr/christophe.bailly.php#turbulence
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x Glossary q

airfoil profil

bluff body corps non profilé

boundary layer couche limite

bulk velocity vitesse de débit

buoyancy flottabilité

curl rotationnel

chord corde

conservative force force qui dérive d’un potentiel (gravité par exemple)

creeping flow écoulement rampant

Darcy friction coefficient coefficient de pertes de charge

drag traînée

density (mass per unit volume) masse volumique

efficiency rendement

energy head charge

friction velocity vitesse de frottement

head loss perte de charge

inviscid flow écoulement non visqueux

leading edge bord d’attaque (d’un profil)

lift portance

lift-to-drag ratio finesse

mass fraction fraction massique

mixture mélange

point vortex tourbillon ponctuel
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x Glossary q

relative density densité

shaft work travail de l’arbre (d’une machine tournante)

skin-friction coefficient coefficient de frottement

slip boundary condition condition aux limite glissante

stall décrochage

strain (deformation) tensor tenseur des déformations

stream function fonction de courant

streamlined body corps profilé

stress tensor tenseur des contraintes

thrust poussée

torque (angular momentum) couple

trailing edge bord de fuite (d’un profil)

vortex shedding frequency fréquence du lâcher tourbillonnaire

vortex sheet nappe (infiniment mince) de vorticité

wake sillage

wall shear stress contrainte pariétale

aka also known as

wrt with respect to
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x Notations q

Both indicial and boldface notations are used to indicate vectors

vector U ≡
−→
U , i-th component Ui, norm U , U2 =U ·U

gravity g, gi = −gδ3i, g = (g1, g2, g3) = (0,0,−g), g = 9.81 m.s−2

density ρ (kg.m−3)

δij Kronecker delta

Einstein summation convention

When an index variable appears twice in a single term (dummy index), it implies

summation of that term over all the values of the index.

Scalar product between two vectors a and b

a · b =
3

∑

i=1

aibi = aibi (dummy index i repeated)

Short quiz δijaj =? δijδij =?

21 Centrale Lyon | LMFA Physics of turbulent flow – cb1 – 04-10-2024



x Notations q

Differential operators (expressed in Cartesian coordinates here)
The dot symbol · is never decorative : scalar product

Gradient

b = ∇f ≡
−−−−→
grad f bi =

∂f

∂xi

Divergence

∇ ·U = div(U) =

3
∑

i=1

∂Ui

∂xi
=
∂Ui

∂xi

Laplacian

∇2f = ∆f =

3
∑

i=1

∂2f

∂xi∂xi
=

∂2f

∂xi∂xi

Curl

∇×U =
−−→
rot U
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x Notations q

Differential operators (cont.)

Explicit expression of the velocity gradient tensor ∇U

∇U =
∂U

∂x
=





























∂U1

∂x1

∂U1

∂x2

∂U1

∂x3
∂U2

∂x1

∂U2
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∂U2

∂x3
∂U3

∂x1
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∂x3
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x Notations q

Differential operators (cont.)

Divergence theorem : the involved surface is a closed surface

(domain D bounded by the surface S and n unit outward normal vector)

∫

D

∇ ·A dV =

∫

S

A ·n dS

for any given tensor A.

As an illustration, one has for the pressure term :
∫

D

∇p dV =

∫

D

∇ · (pI) dV =

∫

S

pI ·n dS =

∫

S

pn dS

n
D

S
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