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L Introduction ™

@ Turbulent flows

- unsteady aperiodic motion
- unpredictable behaviour

- presence of a wide range of time and space scales

Turbulence appears when the source of the kinetic energy which drives the fluid
motion is able to overcome viscosity effects, that is the Reynolds number must be
sufficiently large

- astrophysics, geophysical flows including ocean circulation, climate, wea-
ther forecast, hydrology, dispersion of aerosols

- external aerodynamics for aeronautics & ground transportation, internal
flows in mechanical engineering, biomechanics, biological flows

- noise of turbulent flows (aeroacoustics), sound propagation (atmosphere,
ocean), fluid-solid interaction and vibroacoustics
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L Introduction ™

@ Non-linearity of Navier-Stokes’ equations

p(%+u-Vu) = -Vp+uVu

The non-linear nature of the convective acceleration u - Vu is at the origin of the
development of a large range of space and time scales, that are observed in a
turbulent flow.

A (too) simple example illustrating the generation of harmonics is based on the
simplified equation d,u + u-Vu = 0, with u = (1, u,) in 2-D. By assuming that at
time ¢,

Uq (xl, X9, to) = ACOS(klxl)Sin(kzxz)

U, (xl, X9, to) =B Sin(klxl)COS(k2x2>

with Ak, + Bk, = 0 to satisfy the incompressibility condition V-u =0
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L Introduction ™

@ Non-linearity of Navier-Stokes’ equations (cont.)
A Taylor series of the velocity u around #, provides
u(x,t) = u(x, to) + (t —to) dyul;, +... with dwu|, =—u-Vul,
As an illustration, one gets for u;

Uy (xq,x,,t) = Acos(k;x;)sin(k,x,)
ki A?

+ (t—ty) [cos(2k1x1)sin2(k2x2) + sin(2k1x1)cosz(k2x2)] +o

[t can be noted the production of higher harmonics (2k;, 2k,, k; + k,), that is of
larger wavenumbers corresponding to smaller structures, and also of smaller har-
monics (k; — k)

What is a turbulent structure of wavenumber k?

What is the smallest structure that can survive in the flow, before destruction by

viscosity ?

5 Centrale Lyon | LMFA Physics of turbulent flow



L Introduction ™

@ Representation in spectral space

Model of a turbulent structure of
wavenumber k : energy is contained in a
narrow band around k = 27¢/I, where [ is a
characteristic length scale, see figure on the
right

A real turbulent structure (vortex or eddy)

can be decomposed into waves of different br/(2m)
Wavelengjchs, Wlth. their amplitude and F(r) = cos(kr) exp(—log(2)(r/ry)?)
phase, using Fourier transform with r, = 4/k here

Various other decompositions can also be The Fourier transform of f is cente-
used (wavelets for instance) red around k

A structure of wavenumber k (of size ~ 1/k)
can be seen as an elementary component of
the previous decomposition
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L Introduction ™

@ Viscous scales

The energy transfer induced by the convective acceleration u - Vu is stopped by
the molecular viscosity (impossible to preserve small structures with too large
velocity gradient)

Smallest structures U, k,7 ~ 1/ l,7

u
— ~vyV?u (Stokes)
ot
The balance between the two terms
turbulent kinetic energy )
spectrum E(k) u u’7 2 U
—_—~— vVu ~ V—
ot 1,7 /
1
leads to ,
U
Ren Y
wavenumber k kl, ~1 v

These viscous scales (u,,[,), also called Kolmogorov’s scales, are the smallest
scales of the flow allowed by viscosity. They impose the spatial resolution ne-
cessary for measurement or simulation
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L Introduction ™

@ Turbulence is part of continuum mechanics
Viscous scale I, wrt the free mean path A; of molecules

A
Knudsen number Kn=2l«1

by
@ Sensitivity to initial conditions

The nonlinearity of the Navier-Stokes equations does not allow the time evolution
of turbulent fields to be predicted over a long period. The reason for this is that a
small difference in the initial conditions introduces significant differences as time
goes, linked to the largest Lyapunov exponent for chaotic systems.

An initial separation of 1 cm between two fluid particles in the atmosphere results
in a 10 km separation within just a day, the butterfly effect in chaos theory!

Ruelle, D. and Takens, E.,, 1971, On the nature of turbulence, Commun. Math. Phys., 20, 167-192
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L Introduction ™

@ Mean and fluctuating quantities

The statistical mean F(x, t) of a variable f(x,t) is defined as

F(x,t) = lim lZ’]f(") (x,1)

where f{) is the i-th realization : convenient when manipulating equations but
difficult to implement in practice, or even impossible for geophysical flows!

Can we approximate the ensemble mean F of f = F + f’ by a sufficiently long time
average Fr of one realization only?

T
Fp= %fo F(t)dt
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L Introduction ™

@ Time average

10

Time average makes sense only if turbulence is stationary, that is statistics are
independent of time. The autocorrelation coefficient R is then only an even func-
tion of the time separation t

Ri) f’(t>1;’/(2t + 0

We can estimate the difference between F; obtained by a finite integration time
and the true (ensemble) mean value F by considering

T T
Fr—F= %L |f(t) - Flat = %L F(t)dt

The mean square value is

T T
Fr=FP = [ fean x4 [
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L Introduction ™

@ Time average (cont.)
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By taking the statistical average, that is (Fr — F)?, one has

Iy 2
(FT_F)Z:é2ﬂR(t2_tl)dt1dt2:’§“2 R(T)dtldT T:tz_tl
D D’

The integration over t; can be achieved by 5y T 4
splitting the domain D’ as follows, T T
R(t)dt,dt D - >T -1 (r=0)
DI
T 0 > D’ >
:J (T—T)R(T)d’[+f (T +1)R(t)dT 0 T t 0 t
' - S T4+7 (T<0)
= 2f (T —7)R(t)dt
0 ST
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Time average (cont.)

L Introduction ™

The mean square error between Fr and the true mean value F can thus be esti-

mated as

B _Fp=2l" LT(l —E)R(T)d’[ ~2

T T

if the time integration T is much longer than
the integral time scale ©, defined by

O = f R(t)dt
0
where 7" = oo or the first zero crossing of
R(7) in practice

The term /T is then small in the range of 1
where R(7) is non-zero, and the time average
value F > Fas T — o
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L Introduction ™

Ergodicity

By considering the time average in signal processing to approximate the ensemble
mean, we assume that turbulence is an ergodic process.

Ergodicity expresses the idea that a trajectory of a dynamical system (of a sto-
chastic process signal) will eventually visit all parts of the phase space in which
the system moves, in a uniform and random direction. Statistical properties can
thus be deduced from a single (sufficiently long) realization.
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@ Textbooks

L Introduction ™
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L Introduction ™

@ Textbooks (cont.)

15
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White F., 2005, Viscous fluid flow, 3ed Ed., McGraw-Hill, Inc., New-York (1st Ed. 1974).
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L Organization of the course ™

@ Outline

The main objectives are the mastery of basic concepts (turbulence production,
turbulence boundary layer, role of vorticity, homogeneous and isotropic turbu-
lence, Kolmogorov theory), the development of skills in turbulence modeling, the
critical analysis of results, and the acquisition of a global vision of experimental
approaches.

e Introduction

o Statistical description of turbulent flows

e Wall-bounded turbulent flows

e Dynamics of vorticity

e Homogeneous and isotropic turbulence

e Dynamics of isotropic turbulence — Kolmogorov’s theory

e Introduction to experimental techniques
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L Organization of the course ™

@ Outline (cont.)

@ Practical work

Lab-session Numerical simulation of the mean flow in a channel
BE1 — Small class of 4 hours - exercices
BE2 — Small class of 4 hours to solve a complete problem

Auditors : you are invited to follow these practical activities
(Let us know about it!)

o Teaching team Christophe Bailly
Christophe Bogey
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L Organization of the course ™

@ Assessment for this course

18

o

There are one practical lab session, and two small classes of 4h (so-called ‘BE’,
may involve signal processing, coding of simple models using Matlab and ana-
lytical developments). For 3rd year students, the grade is obtained with BE
60% and lab work 40%.

Absence : it is possible to exceptionally modify a lab session, only by exchan-
ging your session with that of another student.

Master student, additional final exam (closed book and open notes), wednes-
day 18 december 2024. The final mark will be the max between — the final
exam mark — and (50% final exam + 30% BE + 20% lab work).

Course slides can be downloaded by following this link
https://acoustique.ec-lyon.fr/christophe.bailly.php#turbulence
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airfoil

bluff body
boundary layer
bulk velocity
buoyancy

curl

chord
conservative force
creeping flow
Darcy friction coefficient
drag

density (mass per unit volume)
efficiency

energy head
friction velocity
head loss

inviscid flow
leading edge

lift

lift-to-drag ratio
mass fraction
mixture

point vortex
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profil

corps non profilé
couche limite
vitesse de débit
flottabilité
rotationnel
corde

L Glossary ™

force qui dérive d’un potentiel (gravité par exemple)

écoulement rampant
coefficient de pertes de charge
trainée

masse volumique
rendement

charge

vitesse de frottement

perte de charge
écoulement non visqueux
bord d’attaque (d’un profil)
portance

finesse

fraction massique

mélange

tourbillon ponctuel

Physics of turbulent flow



L Glossary ™

relative density densité

shaft work travail de I'arbre (d’une machine tournante)
skin-friction coefficient coefficient de frottement

slip boundary condition condition aux limite glissante

stall décrochage

strain (deformation) tensor tenseur des déformations

stream function fonction de courant

streamlined body corps profilé

stress tensor tenseur des contraintes

thrust poussée

torque (angular momentum) couple

trailing edge bord de fuite (d’un profil)

vortex shedding frequency fréquence du lacher tourbillonnaire
vortex sheet nappe (infiniment mince) de vorticité
wake sillage

wall shear stress contrainte pariétale

aka also known as

wrt with respect to
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L Notations '

@ Both indicial and boldface notations are used to indicate vectors

21

vector U = ﬁ, i-th component U;, norm U, U?=U-U
gravity g, & = —g03;, § = (£1,82,.83) = (0,0,~g), § = 9.81 m.s~?
density p (kg.m™)

0;j Kronecker delta

Einstein summation convention
When an index variable appears twice in a single term (dummy index), it implies
summation of that term over all the values of the index.

Scalar product between two vectors a and b

a-b= Z“z‘bi =a;b; (dummy index i repeated)

Short quiz ~ 0;ia;=? o
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L Notations '

@ Differential operators (expressed in Cartesian coordinates here)
The dot symbol - is never decorative : scalar product

Gradient
b=Vf=gradf b-—af
B B g P axi
Divergence
3
V-U =div(U BU 8U
Laplacian
3
0? f 0* f
2
= A = =
V f f ;’ axl-axi axiaxi
Curl

VxU:ﬁU
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@ Differential operators (cont.)
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Explicit expression of the velocity gradient tensor VU
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vU

_ U _
==

(92U, 9U,

oU, )

axl axZ
JdU, JdU,

8X3
U,

ox; 0x,
dU; dU,

x5
dU;

k axl aX2

9x3 )

L Notations '

Physics of turbulent flow



L Notations '

@ Differential operators (cont.)

Divergence theorem : the involved surface is a closed surface
(domain D bounded by the surface § and n unit outward normal vector)

JV-Zdv:Jjonds
D S

for any given tensor A

As an illustration, one has for the pressure term :

JVpdV:fV-(p?)dv:fp?-ndSZJpnds
D D S S

24 Centrale Lyon | LMFA Physics of turbulent flow



