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L Wall-bounded turbulent flow ™

Wall-bounded turbulent flow

Hurricane Katrina
28 August 2005

51411990 Image # EL-1996-00130
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L Wall-bounded turbulent flow ™

@ Two main classes of wall flows : confined flows & external flows

X2, X2,
Uel . - A
/s/ "
] 2]’1 > Ul (x2)
S(x1) ) U, (x1,x,) R
-— / > -- Y >
X1 Xq
flat-plate boundary layer channel flow
U,2h
Res = Uer0 Re,, = d (U, bulk velocity)
V

fully turbulent for Res > 2800 fully turbulent for Re,;, > 1800

homogeneous flow along x;
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L Wall-bounded turbulent flow ™

Fully developed channel flow

Reynolds-Averaged Navier-Stokes equations : U; = U;(x,) and U, = U; = 0.
In addition, the flow is homogenous along x;

( oP d  — d | dU .
< 0= 83(1 dx1 (pul ) dXz(’/i dxz B pu ”2) (1)
JP d d ..
\ 0= ax2 dx1 (pu M2) dxz(puZuZ) (11)

By integration of Eq. (ii) from the wall (x, = 0) to a current point x,,
one obtains

P (xlle) =P, - puéué

where P, = P(x,,x, = 0) is the mean wall pressure (measurable quantity)
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L Wall-bounded turbulent flow ™

@ Fully developed channel flow

The Navier-Stokes equation (i) can now be rewritten as

T, mean total stress applied to the fluid

By integration along the transverse direction again, up to a current point x,

d_wa = —puiu, + d—Ul—T where T, = d—Ul
dx, 2~ PHt ’udxz v w_l/idxz

X2:0

where T, is the mean shear stress at the wall.
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L Wall-bounded turbulent flow ™

Fully developed channel flow

Introduction of the friction velocity

The friction velocity is the characteristic turbulent velocity scale for the turbulent
boundary layer near the wall. In particular, |u;u |~ Uz

There is a direct link between this friction velocity and the pressure drop. For
X, = h, that is on the symmetry plane of the channel, one has

dP 1dP

d_XT h=-1, — u’ = _Ed_xzf = cst for a pipe flow

In the end, the mean velocity U, is governed by

dU
(%_1)_uiué+vd_szo or equivalently 'Et:fw(l—%) (1)

2

Ur
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@ Fully developed channel flow

L Wall-bounded turbulent flow ™

Plane channel of width 2h = 2D (Comte-Bellot, 1965)
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L Wall-bounded turbulent flow ™

@ Fully developed channel flow
Genevieve Comte-Bellot (PhD thesis, Grenoble in 1963)
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L Wall-bounded turbulent flow ™

@ Small exercise : skin-friction coefficient for a circular pipe
1. Identify the following equation,

A 7 Du L

nl / V.5

_@ D (\ > th V-o
Y e

P1 P 2. For a pipe of diameter D and length L, write the

integral momentum conservation.

3. By introducing the wall shear stress 7, and the
skin-friction coefficient C; = 7,/ (pU7/2) where
U, is the bulk velocity, show that the head pres-
sure lost Ap = p; — p, can be recast as

L1

4. Now consider in the above Reynolds’ decompo-
sition : what should be changed?
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L Wall-bounded turbulent flow ™

@ Small exercise : skin-friction coefficient for a circular pipe

10° 3 ;
10'1 7
S~ [ 1
3 , lam}nar
regime
1072 ¢
I \"‘~~.3fm“m ]
-3 T A | R S T B AT sl \\\\'\H:~
10
109 10° 10% 108 108
Re = UdD/V

— laminar regime C; = 16/Re
——- Blasius’ relationship, Cf ~(0.0791 Re"1/4

-—= 1/C{* =~ 3.860log,,(Re C;*) - 0.088
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e Oregon facility
¢+ Princeton Superpipe

McKeon et al. (2004) - Superpipe, the
Reynolds number is increased through
the pressure

Laminar versus turbulent regime
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L Wall-bounded turbulent flow ™

@ Turbulent boundary layer equations

61

Prandtl’s approximations (0 <« L) for the RANS equations
Conservation of mass

90, aU, 5
— vy
9%, T ox, L

Averaged Navier-Stokes equation along x; (# laminar case)

oU, - JdU 1 9P duju, 0°
U1 F+ Upmr = - = u1u2+v( +—)U1
< 8x1 0x, 0 Ix; dx, 0x>
vooLu u oY)
. L L o 752

We impose the balance between the convection along x; and the turbulent diffu-
sion along x, : a turbulent flow can only be observed if u ~ Vo/L U
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L Wall-bounded turbulent flow ™

@ Turbulent boundary layer equations (cont.)

Averaged Navier-Stokes equation along x,

( 5 o2
1 JP Ju 0\ -
+ = - - - == 4+ v +—|U
< P 9x; 22 ( axg) ’
o U? véU 1 6U?
x Lo L52  ResL o

All the terms are smaller by a factor 0/L (refer also to the laminar boundary layer).
In addition, the pressure term must balance the dominant red term. By integra-

tion in the transverse direction x,, one gets P+pu’* = cst across the boundary layer.
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L Wall-bounded turbulent flow ™

@ Turbulent boundary layer equations (cont.)

63

The mean pressure gra-
dient is imposed by the
external flow (through
wall curvature for ins-
tance)

P+pu?=P, =P,

Centrale Lyon | LMFA

X2p
U, 1P
9% _ 1% gy
Uel N Uel axl paxl ( u er)
1
7] U, (x4, x boundary
5(;)[ 7 Oilxx) bounds
- / >
_________ B X1
L

(from the plate leading edge)
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L Wall-bounded turbulent flow ™

@ Turbulent boundary layer equations (cont.)

7,20, 52U _ 14k 9( ‘Zgzl u;u;) Q)

0x; > ox, pdx, " 0x,
P(x1,x;) = B, —puy’ (ii)

Compared with pipe and channel flows, there is a continuous growth of the boun-
dary layer, and the flow is thus never homogeneous along the x; direction (but
slowly variable). In addition, the mean pressure gradient is imposed by the exter-
nal flow.

In what follows, a zero-pressure-gradient (ZPG) boundary layer is assumed,

dp,
dx1

=0 (uniform external mean flow, U,; = cst)
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L Wall-bounded turbulent flow ™

@ Turbulent boundary layer equations : Ludwig Prandtl (1875-1953)

Ludwig Prandtl with his water tunnel in 1903 and in the mid to late 1930s
(for flow visualization of large structures
using particle tracers)

A voyage through Turbulence
edited by, P. A. Davidson, Y Kaneda, H.K. Moffatt & K.R. Sreenivasan
(Cambridge University Press, 2011)

Anderson Jr, D.J., 2005, Physics Today, 58(12), 42—-48.
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L Wall-bounded turbulent flow ™

@ Small exercise : unsteady free stream velocity

The following unsteady external velocity U,; is imposed for a flow past a flat
plate, U,; = u. (1 —a%x;) + u,ax, sin(wt) where 0 < £; <1 is a normalized distance,
and a > 0 a dimensionless control parameter.

1. Discuss briefly the expression of U,;

2. Calculate the pressure gradient dp,/dx; associated with the unsteady free stream, and its mean
value dP,/dx, over one oscillation period

3. Examine the two cases f =0and f =0
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L Wall-bounded turbulent flow ™

@ Zero-pressure-gradient boundary layer

For a boundary layer (as also for wake flows), a velocity defect U,, — U, is usually
introduced : this quantity is bounded in x, = 0 and in x, — co(0 in practice).
The rearrangement of the mass conservation equation leads to,

d d

8x1(U1U) 8x2(U2Uel) 0 (iii)

By integration in the transverse direction of the Navier-Stokes Egs. (i) + (iii)

* 0 - o0 - oU
Jo ox, —U, (U, - Uel)dx2+lU2(Ul_Uel)]o :[_”1”2””/%21]0

o (U, (U
U?2 =L 1 )dx, +0=0— 12
elax1J:) Uel(Uel ) 2 He

dé U U
—p2==¢ ith Op = L1-=L)g
‘! dxl h ’ J:) Uel( Uel 2

O¢ 1s the momentum thickness of the boundary layer
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L Wall-bounded turbulent flow ™

@ Zero-pressure-gradient boundary layer
Friction velocity u, and local skin-friction coefficient C;

uZZUZ@ C E_pu% — @
' ! spUs dx,

The friction velocity u, is a function of x; (but slow variable) in a boundary layer
(# established flow in pipe)

General expression for the

momentum-integral equation
(Gruschwitz, 1931)

d(U%6 dU
u% — ( el 9) + 5* Uel el
dx, dx,
~
:_(1/p)axlpc
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L Wall-bounded turbulent flow ™

@ Zero-pressure-gradient boundary layer : interpretation of 64?

X, .
A streamline (external flow) | Using the green control volume,
Un=0 __.-"""777777 ! 0 )
___________________ M Ug ! 01 me_m:j (PUer —pUy)dx,
—————— > 0
T b S
; ; : = pUelél
> I
1
A
- Ua i Using the blue control volume,
m, ——> > > m
thickness 6 N : 5
U of the BL edge o pUZLS —f pUldx, - pU2Z 6,
1 I :
MECTII Il Il sl s o 0
0 X 2 1 1
=pUa 1= dx,
0 Uel Uel

Integral momentum conservation (cst pressure)

—qu— J quu n)ds—Lfc nds-— qu(u n)ds

Wall force acting on the wall, F;_,,, = pU 2 5¢p€;
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L Wall-bounded turbulent flow ™

@ Mean velocity of a zero-pressure-gradient boundary layer

70

From the Navier-Stokes Eq. (i), by integration in the normal direction to the wall
up to a given point x,

w90, a0\, 1
L P(Ula_ler Uza—xz)dxz—Tt(xz)—Tw Tt(x2)=_P”1u2+Ma—xz (2)

Simplistic assumption : the left-hand side is approximated by a linear term as
follows,

2 _JU, - U X _ X
J:) p(Ulgll + Uz%i)d?(fz = _32’1—1” Tt(xz) = Tw(l — 32)

As a result, the mean velocity U, is governed by the same equation than for the
channel/pipe (by noting ¢ = h) except that the friction velocity is now a function
of x, u, = u (x;).

(refer to the exercises for further discussion)
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L Wall-bounded turbulent flow ™

Mean velocity profile : the viscous sublayer

Very close to the wall, x,/6 < 1, turbulence cannot develop and the viscous stress
dominates the total stress 7; (at the wall u; = 0),

Ty~ Y———o and T, = pU; in the viscous sublayer

Consequently, a linear evolution of the mean velocity U, is predicted, as in the
case of the Couette flow,

XoUl; X . % .
U =— xj=2 =2 with |, = — = wall unit length
U, V L, U,

In the viscous sublayer, | U; = x,
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L Wall-bounded turbulent flow ™

@ Mean velocity profile : the viscous sublayer (cont.)

» The viscous length scale [, and the friction velocity u, are
the two appropriate scales for describing flow in the near-wall region :
inner scales of the boundary layer

Rey, ~ 1000 U,; =2.1m.s™!
d~7cm u,~0.1m.s™!
x; ~3m (air flow)

=1 = x,=1[,=0.15mm
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L Wall-bounded turbulent flow ™

@ Mean velocity profile : the viscous sublayer (cont.)

35 T rorTTTT T L LR | T rrrTTTTT T rorTTTT

30

25

viscous sublayer

T+ _
1 =X

20
+~
=

15

10

o (data from Osterliind, 1999)

10 10 10 10 10 10

_|_
Lo

Res . 1.7x10* 2.8x10* 43x10* 6.9x10* 1.1x10°> 1.9x10°
Ref =~ 684 1092 1594 2462 3944 6147

) < O \V/ O >
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L Wall-bounded turbulent flow ™

@ Two illustrations of the disparity in scales

Turbulent boundary layer along a flat plate : particle tracing in water, hydrogen
bubble method, U,, = 20.4 cm.s™',Res, = 990
from Visualized flow, Japan Soc. Mech. Eng. (1988)

0 1an

Ny

1000 »A*

Spatially developing turbulent boundary layer on a flat plate
from Lee, Kwon, Hutchins & Monty (University of Melbourne)
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L Wall-bounded turbulent flow ™

@ Mean velocity profile : the logarithmic law

We have two characteristic length scales in a boundary layer : 6 and [, = v/u,,

X
— Ret x 22
Y o

Karman number

Rey ~ 1000 U,  =2.1m.s™!
d~7cm u,~0.1m.s!
x; ~3m (air flow)
[,=0.15mm (xj =1) Re" =467

F. Laadhari (LMFA)

It is thus possible to satisfy x;>1, Re'>1, butalso x,/0«1

As an illustration, one has for this flow,

+

Xy Xy )
= ~6x107"«1
O Re*

x5 =30
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L Wall-bounded turbulent flow ™

Mean velocity profile : the logarithmic law (cont.)

Dimensional analysis

— = , = _
f( v 6) Uel_Ul_

U
—L=f (usz) in the inner layer
uT

XoUr Xy v

” f (%) in the outer layer

By imposing the continuity of the velocity U, and of its derivative dU,/0dx,

(

\

4 _
Ua-U 1 (xz

E — lln(”fx2

)+B
U, K %

Uel
Uy

with =In(Re")+A+B

= —1]n
U, K

2\, a
5)+

where « is the von Karman constant : does not seem to be a universal constant,
even for canonical flows! 0.38<x<0.41
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L Wall-bounded turbulent flow ™

@ Mean velocity profile : the logarithmic law (inner scales)

35 T L | T L T L | T L

T

30
For a zero-

pressure-gradient
boundary layer,

N
Q1
T

N
S
T

k~0.384 B=x~4.17

—
o1
T

—
(@)
T

e 1 2 3

O L PSR | L PSR | L il L M SR | L PR S R R i

10 10 10 10 10 10

log-law x5 > 30 & x,/6 <0.20

(data from Osterliind, 1999)
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L Wall-bounded turbulent flow ™

@ Mean velocity profile : the logarithmic law (outer scales, wake law)

78

(Uel — Ul)/uT

30 T L T L | T L T L |

T

25 For a zero-

| pressure-gradient
boundary layer,

k~0.384 A=x~3.54

T

20

T

15

T

10

n I T T T R n PR S T S R A1 n P T T T T A n P T T S R n P T T T W A

(data from Osterliind, 1999)
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@ Mean velocity profiles in a turbulent pipe flow
Zagarola & Smits (1998, Princeton Superpipe facility)

40 T L T L T L T T
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L Wall-bounded turbulent flow ™

@ Fully developed channel flow : experiments
Comte-Bellot, G. (1965)

30 ‘
]
a ‘/—‘ - | b
| Y i/ | %@ =
A S T 20
%ﬁN\ | ' | l -
~3 1 ;
O % :
ol _ 10
‘ ] | x,/D=118
05 I 'r, | o 57000
' ; ! ' Re @ 120000
I : o ® 230000
0 L l : 0 i |
0 020 040 060 080 x,/D 1 0 20 40 58 80 x,u /v 100

Plane channel of width 2k = 2D 5.7x10* <Re, <2.3x10°

Physics of turbulent flow
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L Wall-bounded turbulent flow ™

@ Fully developed channel flow : Direct Numerical Simulation (DNS)

60 80

100

20 40
Tol, [V

+ Re™ =180, Re” =395, Re” =590

Re"™ =180, Re™ =550, Re™ =950, Re™ =2000

S 16
[ L. CnprseaennL il
[ 3?? ':i:;f;:* + ° .. - 1 I . .1:-3‘}*.
of RIS ] S
F oy 4 et Tos or
5 L i. ., +] 5 fﬁi* 5 1.0
> | % b \\N }¥+ ~
s s .= o ~F
re ¥
1 o
¢' P
L [
M
3
0 1 1 1 0 1 1 1 1 0.0
0 20 40 60 80 100 0 20 40 60 80 100
Tolr [V ToUr [V
0.0
02, Moser, Kim & Mansour (1999)
S s
s T
~-04F
A -
Sl
S -06 - . s
VN Hoyas & Jiménez (2006)
.-i% g,
-0.8 :::1
1.0 ‘ ‘ ‘ ‘
0.0 0.2 0.4 0.6 0.8 1.0
aﬁg/h
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L Wall-bounded turbulent flow ™

@ Balance between production and dissipation in the log-law

For an observer located in the log-law region of a boundary layer, an almost per-
fect balance is found between production and dissipation of the turbulent kine-
tic energy k;, that is

i,
dX2

~  pe inside the log-law

_ ) )
P =—puju,

This result is the starting point of various developments for turbulence models,
even if there is no formal demonstration.
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L Wall-bounded turbulent flow ™

@ Turbulent kinetic energy budget in a channel flow
Ratio of P/(peh) for Re™ =180,550,950,2000 (DNS by Hoyas & Jiménez, 2006)

We can observe the increase of the equilibrium region with the increase of the
Reynolds number

2.0

1.5}

0.5} P

10 10 10 10
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L Wall-bounded turbulent flow ™

@ A first example of turbulence model : mixing length model

84

We first investigate the near wall region, in assuming that x,/0 < 1, to derive the
mixing length model by Prandtl (1925), and the governing equation for the mean
velocity U, (also valid for a channel flow with h = )

dUl L+

ot ) ./ — de_
Ti(Xy) = —puyuy + Py =T or also —ujuy" + ~
2

—L -
dx;

The turbulent viscosity concept (introduced in Chapter 2) leads to

+ uu’ dUT
o - 172+ 1
Ur

+
dx; v

where the turbulent viscosity is dimensionally the product of a velocity scale u’
by a length scale [, that is v, ~ u’ x1,,.

(by analogy with the molecular motion for a perfect gas : v is roughly the product
of the speed of sound by the free mean path)
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L Wall-bounded turbulent flow ™

@ Mixing length model (cont.)

In an algebraic model (aka a zero-equation model), the evolution of the mixing
length [, is imposed by the user. For a boundary layer, a linear evolution in the
normal direction to the wall is assumed, that is [}, = ax]

The velocity scale 1’ is then obtained by assuming that the frequency of the mean
flow is imposed to the turbulent motion (through the production term). This fre-
quency matching leads to i

u™*  dUf

[+ dx}

As a result, the turbulent viscosity and the Reynolds stress component are given
in wall unit by

dU;/
dx;

dU/
dx;

AU;

V: — (l:r_z)z dx*
2

and  —uju,t=(})

+
Vi
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L Wall-bounded turbulent flow ™

Mixing length model (cont.)

The governing equation for the mean velocity can thus be recast as follows with
our assumptions

-1=0

dUr\> dU;
+\2 1 1
(ax3) (dx;“) N dx;,

The mean velocity gradient d U, /dx} satisfies a quadratic equation. The relevant
solution is given by

dU}  -1+/1+4(ax})?

= >0
dx; 2 (ax3)? -

dU;
dx;

) a0 1
— 1 For x; — oo, - — —
dx;  ax;

For x5 — 0,

One finds U; = x3, that is the velocity | A log-law is found for U/, and by
law expected in the viscous sublayer | identification, a = x (x,/0 < 1)
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L Wall-bounded turbulent flow ™

@ Mixing length model (cont.)

However, the previous model has one flaw, and thus requires a correction propo-
sed by Van Driest (see next small classe)

25 ——— ——— ———r

- + +
Ih=1xx; o
— It =xxj(1 —e /) A} =26

——— U{ =x; viscous sublayer
-~ U{ =(1/x)In(x;)+ B

Using Van Driest damping function,
+

4
—uju, ~x,; as x, — 0, rather than

+
) 7 +2 . + +
—u U, ~x,° using ! = xx;.

. . . + 3
However,from the governing equations, it can be shown that —u;u} ~ x7”!
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L Wall-bounded turbulent flow ™

@ The buffer layer : streaks and harpin (horseshoe) vortices

streamwise vorticity associated with X
successive harpin vortices

~15-206
(AT >1000)

ERRRKERLRRKELRKKELLRIEKRRKKELRAKKLKKKRKK

low-speed streaks high-speed streaks
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Cantwell, Coles & Dimotakis (1978)
Visualization of sublayer streaks from

a suspension of aluminium particules
(water, U, =15 cm.s7!)
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L Wall-bounded turbulent flow ™

@ The buffer layer : streaks and harpin (horseshoe) vortices
Conceptual view from Adrian, Meinhart & Tomkins (2000)

PIV measurements
Re59 =7705
plot of u—0.87U,

05 1 15 2 25 3
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L Wall-bounded turbulent flow ™

@ The buffer layer : streaks and harpin (horseshoe) vortices

wv| W

Side view of large eddies in a turbulent boundary layer
by laser-induced fluorescence

Gad-el-Hak, University of Notre-Dame, USA

http://www.efluids.com
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L Wall-bounded turbulent flow ™

@ The buffer layer

/]
Uy
Q, Q
ejections - » Drag generating events fall in the
A X second and fourth quadrant,
v N . .
e ositive turbulent production
\\ . \\ _ >
O\ P\
\ \\ I} \ -
N M{ ) /aUl
S ! 7) ~ _puluzg_
. 5
Qs Q4
sweeps

91 Centrale Lyon | LMFA Physics of turbulent flow



L Wall-bounded turbulent flow ™

@ DNS of a plane channel flow

u = +/-0.100 R+ = 1000 (B1& x 385 x 512}
== 3

i

o1 M
=

o
?

1.0
0.5
Sl @ Laadhari, Phys. Fluids (2007)
Mot = 512 % 385% 512 ~ 101 x 10°
Re, =20100, Re" =1000
(Re*)¥*/n, ~ 0.46
cost~ Re™ ~ 10°
IBM SP4 / CINES

0.5

~1.9 :

t=0.000-1t+=00 #1

Iso-surfaces of the streamwise fluctating velocity
(red u’/U.=0.12, blue u’/U, =-0.12)

& Lo
&
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L Wall-bounded turbulent flow ™

@ DNS of a boundary layer over a flate plate

Isocontours of A, (colour
proportional to the wall distance)
around approximately Res, = 1400

by Schlatter et al. (2009)

http://www.mech.kth.se/~pschlatt/DATA/ &
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http://www.mech.kth.se/~pschlatt/DATA/

@ Turbulent boundary layer with pressure gradient

Dimensionless parameter /3

512 ;ipe _ _5C dUel - Tp] 5c _ JOO Uel - Ul dx2 _ 51 Uel
PUT X1 Ur dxl T, 0 Urg Uy

B =

e time scale of the boundary layer 7, ~ 6./u,

o time scale of the external flow 7, ~ (dU,;/dx;)™!

Coles (1956)

U 1
_ 242y & 2 61:_ +
f, =Acos (25) Kln(é) 0 Kln(Re )+A+B

A =~25 zero pressure gradient
A< 2.5 favorable gradient
A>2.5 adverse gradient
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L Wall-bounded turbulent flow ™

@ Small exercise : key scales for the log-law of a boundary layer

1. Determine the general expression of the Kolmogorov length scale [, by considering the dissi-
pation € and the Reynolds number for viscous scales.

2. Show that in the logarithmic region of the mean velocity profile of a turbulent boundary layer,

the Kolmogorov scale is approximated by the expression
Ly = (xx;)1/4

3. Recall also the expression of the mixing length It and of the turbulent viscosity v;"?
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