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xWall-bounded turbulent flow q

Wall-bounded turbulent flow

52 Centrale Lyon | LMFA Physics of turbulent flow – cb1 – 15-10-2024



xWall-bounded turbulent flow q

Two main classes of wall flows : confined flows & external flows

x1

x2

δ(x1)

Ue1

Ū1(x1,x2)

x2

x1

Ū1(x2)2h

flat-plate boundary layer

Reδ =
Ue1δ

ν
fully turbulent for Reδ ≥ 2800

channel flow

Re2h =
Ud2h

ν
(Ud bulk velocity)

fully turbulent for Re2h ≥ 1800

homogeneous flow along x1
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Fully developed channel flow

Reynolds-Averaged Navier-Stokes equations : Ū1 = Ū1(x2) and Ū2 = Ū3 = 0.

In addition, the flow is homogenous along x1
















0 = − ∂P̄
∂x1
− d

dx1
(ρu ′21 ) +

d

dx2

(

µ
dŪ1

dx2
− ρu ′1u ′2

)

(i)

0 = − ∂P̄
∂x2
− d

dx1
(ρu ′1u

′
2)−

d

dx2

(

ρu ′2u
′
2

)

(ii)

By integration of Eq. (ii) from the wall (x2 = 0) to a current point x2,
one obtains

P̄ (x1,x2) = P̄w − ρu ′2u ′2

where P̄w = P̄ (x1,x2 = 0) is the mean wall pressure (measurable quantity)
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Fully developed channel flow

The Navier-Stokes equation (i) can now be rewritten as

0 = −dP̄w
dx1

+
d

dx2

(

−ρu ′1u ′2 +µ
dŪ1

dx2

)

︸                ︷︷                ︸

τ̄t (x2)

τ̄t mean total stress applied to the fluid

By integration along the transverse direction again, up to a current point x2

dP̄w
dx1

x2 = −ρu ′1u ′2 +µ
dŪ1

dx2
− τ̄w where τ̄w ≡ µ

dŪ1

dx2

∣
∣
∣
∣
∣
∣
x2=0

where τ̄w is the mean shear stress at the wall.
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Fully developed channel flow

Introduction of the friction velocity

uτ ≡
√

τ̄w/ρ

The friction velocity is the characteristic turbulent velocity scale for the turbulent

boundary layer near the wall. In particular, |u ′iu ′j | ∼ u2
τ

There is a direct link between this friction velocity and the pressure drop. For

x2 = h, that is on the symmetry plane of the channel, one has

dP̄w
dx1

h = −τ̄w =⇒ u2
τ = −

1

ρ

dP̄w
dx1

h = cst for a pipe flow

In the end, the mean velocity Ū1 is governed by

u2
τ

(
x2
h
− 1

)

−u ′1u ′2 + ν
dŪ1

dx2
= 0 or equivalently τ̄t = τ̄w

(

1− x2
h

)

(1)
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Fully developed channel flow
Plane channel of width 2h ≡ 2D (Comte-Bellot, 1965)

(wall) (axis)

5.7× 104 ≤ Reh ≤ 2.3× 105 Reτ = 178,392,587
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Fully developed channel flow
Geneviève Comte-Bellot (PhD thesis, Grenoble in 1963)
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Small exercise : skin-friction coefficient for a circular pipe

p1 p2

D
n1

S 1. Identify the following equation,

ρ
Du

Dt
= ∇ ·σ

2. For a pipe of diameter D and length L, write the

integral momentum conservation.

3. By introducing the wall shear stress τw, and the

skin-friction coefficient Cf = τw/(ρU
2
d /2) where

Ud is the bulk velocity, show that the head pres-

sure lost ∆p = p1 − p2 can be recast as

∆p = 4Cf
L

D

1

2
ρU2

d

4. Now consider in the above Reynolds’ decompo-

sition : what should be changed?
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Small exercise : skin-friction coefficient for a circular pipe

10
0

10
2

10
4

10
6

10
8

10
-3

10
-2

10
-1

10
0

laminar
regime

turbulent regime

transition Re ≃ O(103)

laminar regime Cf = 16/Re

Blasius’ relationship, Cf ≃ 0.0791Re−1/4

1/C1/2
f ≃ 3.860log10(ReC

1/2
f )− 0.088

• Oregon facility

� Princeton Superpipe

McKeon et al. (2004) - Superpipe, the

Reynolds number is increased through

the pressure

Laminar versus turbulent regime

ez
D U(r)Ū(r)
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Turbulent boundary layer equations

Prandtl’s approximations (δ≪ L) for the RANS equations

Conservation of mass

∂Ū1

∂x1
+
∂Ū2

∂x2
= 0 =⇒ V ∼ δ

L
U

Averaged Navier-Stokes equation along x1 (, laminar case)


















Ū1

∂Ū1

∂x1
+ Ū2

∂Ū1

∂x2
= −1

ρ

∂P̄

∂x1
− ∂u ′21

∂x1
− ∂u ′1u

′
2

∂x2
+ ν

(

∂2

∂x21
+

∂2

∂x22

)

Ū1

∼ U2

L
∼ U2

L
∼ u2

L
∼ u2

δ
∼ ν

(
U

L2
;
U

δ2

)

We impose the balance between the convection along x1 and the turbulent diffu-

sion along x2 : a turbulent flow can only be observed if u ∼
√
δ/L U
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Turbulent boundary layer equations (cont.)

Averaged Navier-Stokes equation along x2


















Ū1

∂Ū2

∂x1
+ Ū2

∂Ū2

∂x2
= −1

ρ

∂P̄

∂x2
− ∂u ′1u

′
2

∂x1
− ∂u ′22

∂x2
+ ν

(

∂2

∂x21
+

∂2

∂x22

)

Ū2

∼ δ

L

U2

L
∼ δ

L

U2

L
∼ δ

L

U2

L
∼ δ

L

U2

δ
∼ ν

δ

L

U

δ2
∼ 1

Reδ

δ

L

U2

δ

All the terms are smaller by a factor δ/L (refer also to the laminar boundary layer).

In addition, the pressure term must balance the dominant red term. By integra-

tion in the transverse direction x2, one gets P̄+ρu
′2
2 = cst across the boundary layer.
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Turbulent boundary layer equations (cont.)

The mean pressure gra-

dient is imposed by the

external flow (through

wall curvature for ins-

tance)

P̄ + ρu ′22 = Pe = P̄w x1

x2

δ(x1)

Ue1

Ū1(x1,x2)

L
(from the plate leading edge)

Ue1
∂Ue1

∂x1
= −1

ρ

∂Pe
∂x1

(Euler)

boundary
layer
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Turbulent boundary layer equations (cont.)















Ū1

∂Ū1

∂x1
+ Ū2

∂Ū1

∂x2
= −1

ρ

dPe
dx1

+
∂

∂x2

(

ν
∂Ū1

∂x2
−u ′1u ′2

)

(i)

P̄(x1,x2) = Pe − ρu ′22 (ii)

Compared with pipe and channel flows, there is a continuous growth of the boun-

dary layer, and the flow is thus never homogeneous along the x1 direction (but

slowly variable). In addition, the mean pressure gradient is imposed by the exter-

nal flow.

In what follows, a zero-pressure-gradient (ZPG) boundary layer is assumed,

dPe
dx1

= 0 (uniform external mean flow, Ue1 = cst)
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Turbulent boundary layer equations : Ludwig Prandtl (1875-1953)

Ludwig Prandtl with his water tunnel in 1903

(for flow visualization of large structures

using particle tracers)

and in the mid to late 1930s

A voyage through Turbulence

edited by, P. A. Davidson, Y Kaneda, H.K. Moffatt & K.R. Sreenivasan

(Cambridge University Press, 2011)

Anderson Jr, D.J., 2005, Physics Today, 58(12), 42–48.
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Small exercise : unsteady free stream velocity

The following unsteady external velocity Ue1 is imposed for a flow past a flat

plate, Ue1 = u∞(1− ax̃1) +u∞ax̃1 sin(ωt) where 0 ≤ x̃1 ≤ 1 is a normalized distance,

and a > 0 a dimensionless control parameter.

1. Discuss briefly the expression of Ue1

2. Calculate the pressure gradient dpe/dx1 associated with the unsteady free stream, and its mean

value dP̄e/dx1 over one oscillation period

3. Examine the two cases f = 0 and f , 0
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Zero-pressure-gradient boundary layer

For a boundary layer (as also for wake flows), a velocity defect Ue1− Ū1 is usually

introduced : this quantity is bounded in x2 = 0 and in x2→∞(δ in practice).

The rearrangement of the mass conservation equation leads to,

∂

∂x1
(Ū1Ue1) +

∂

∂x2
(Ū2Ue1) = 0 (iii)

By integration in the transverse direction of the Navier-Stokes Eqs. (i) + (iii)
∫ ∞

0

∂

∂x1
Ū1(Ū1 −Ue1)dx2 +

[

Ū2(Ū1 −Ue1)
]∞

0
=

[

−u ′1u ′2 + ν
∂Ū1

∂x2

]∞

0

U2
e1

∂

∂x1

∫ ∞

0

Ū1

Ue1

(

Ū1

Ue1
− 1

)

dx2 +0 = 0−u2
τ

u2
τ =U2

e1

dδθ
dx1

with δθ ≡
∫ ∞

0

Ū1

Ue1

(

1− Ū1

Ue1

)

dx2

δθ is the momentum thickness of the boundary layer
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Zero-pressure-gradient boundary layer

Friction velocity uτ and local skin-friction coefficient Cf

u2
τ =U2

e1

dδθ
dx1

Cf ≡
ρu2

τ
1
2ρU

2
e1

= 2
dδθ
dx1

The friction velocity uτ is a function of x1 (but slow variable) in a boundary layer

(, established flow in pipe)

Theodore von Kármán (1881-1963)

General expression for the

momentum-integral equation

(Gruschwitz, 1931)

u2
τ =

d(U2
e1δθ)

dx1
+ δ⋆ Ue1

dUe1

dx1
︸   ︷︷   ︸

=−(1/ρ)∂x1
Pe
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Zero-pressure-gradient boundary layer : interpretation of δθ ?

streamline (external flow)
U ·n = 0

δ1

Ue1

U1

Ue1

Ū1

x2

0 x1

thickness δ
of the BL edge

ṁe ṁ

ṁe − ṁ
δ

Using the green control volume,

ṁe − ṁ =

∫ δ

0

(ρUe1 − ρŪ1)dx2

= ρUe1δ1

Using the blue control volume,

ρU2
e1δ −

∫ δ

0

ρŪ2
1dx2 − ρU2

e1δ1

= ρU2
e1

∫ δ

0

Ū1

Ue1

(

1− Ū1

Ue1

)

dx2

= ρU2
e1δθ

Integral momentum conservation (cst pressure)

d

dt

∫

V
ρu = 0 =

∫

V
ρ
Du

Dt
−
∫

S
ρu(u ·n) dS =

∫

S
τ ·n dS −

∫

S
ρu(u ·n) dS

Wall force acting on the wall, Ff→w = ρU2
e1δθe1
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Mean velocity of a zero-pressure-gradient boundary layer

From the Navier-Stokes Eq. (i), by integration in the normal direction to the wall

up to a given point x2

∫ x2

0

ρ

(

Ū1

∂Ū1

∂x1
+ Ū2

∂Ū1

∂x2

)

dx2 = τ̄t(x2)− τ̄w τ̄t(x2) ≡ −ρu ′1u ′2 +µ
∂Ū1

∂x2
(2)

Simplistic assumption : the left-hand side is approximated by a linear term as

follows,
∫ x2

0

ρ

(

Ū1

∂Ū1

∂x1
+ Ū2

∂Ū1

∂x2

)

dx2 ≃ −
x2
δ
τw τ̄t(x2) ≃ τw

(

1− x2
δ

)

As a result, the mean velocity Ū1 is governed by the same equation than for the

channel/pipe (by noting δ ≡ h) except that the friction velocity is now a function

of x1, uτ = uτ(x1).

(refer to the exercises for further discussion)
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Mean velocity profile : the viscous sublayer

Very close to the wall, x2/δ≪ 1, turbulence cannot develop and the viscous stress

dominates the total stress τ̄t (at the wall u ′i = 0),

τ̄t ≃ µ
∂Ū1

∂x2
and τ̄w = ρu2

τ in the viscous sublayer

Consequently, a linear evolution of the mean velocity Ū1 is predicted, as in the

case of the Couette flow,
Ū1

uτ
=
x2uτ

ν

Introduction of wall units to form dimensionless variables

Ū+
1 ≡

Ū1

uτ
x+2 ≡

x2uτ

ν
=
x2
lv

with lv =
ν

uτ
≡ wall unit length

In the viscous sublayer, Ū+
1 = x+2
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Mean velocity profile : the viscous sublayer (cont.)

The viscous length scale lv and the friction velocity uτ are

the two appropriate scales for describing flow in the near-wall region :

inner scales of the boundary layer

F. Laadhari (LMFA)

Reθ ≃ 1000 Ue1 = 2.1 m.s−1

δ ≃ 7 cm uτ ≃ 0.1 m.s−1

x1 ≃ 3 m (air flow)

x+2 =
uτx2
ν

= 1 =⇒ x2 = lv = 0.15 mm
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Mean velocity profile : the viscous sublayer (cont.)

10
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x+

2

Ū
+ 1

viscous sublayer
Ū+

1 = x+2

(data from Osterlünd, 1999)

Reδ0.95 1.7× 104 2.8× 104 4.3× 104 6.9× 104 1.1× 105 1.9× 105
Re+δ0.95 684 1092 1594 2462 3944 6147

◦ ⊳ ♦ ▽ � ⊲
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Two illustrations of the disparity in scales

Turbulent boundary layer along a flat plate : particle tracing in water, hydrogen

bubble method, U∞ = 20.4 cm.s−1,Reδθ = 990

from Visualized flow, Japan Soc. Mech. Eng. (1988)

Spatially developing turbulent boundary layer on a flat plate

from Lee, Kwon, Hutchins & Monty (University of Melbourne)
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Mean velocity profile : the logarithmic law

We have two characteristic length scales in a boundary layer : δ and lv = ν/uτ,

x+2 =
x2uτ

ν
= Re+ × x2

δ
Re+ ≡ uτδ

ν
= δ+ Karman number

F. Laadhari (LMFA)

Reθ ≃ 1000 Ue1 = 2.1 m.s−1

δ ≃ 7 cm uτ ≃ 0.1 m.s−1

x1 ≃ 3 m (air flow)

lv = 0.15 mm (x+2 = 1) Re+ ≃ 467

It is thus possible to satisfy x+2 ≫ 1, Re+≫ 1, but also x2/δ≪ 1

As an illustration, one has for this flow,

x+2 = 30
x2
δ

=
x+2
Re+
≃ 6× 10−2≪ 1
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Mean velocity profile : the logarithmic law (cont.)

Dimensional analysis

Ū1

uτ
= f

(
x2uτ

ν
,
x2
δ

)

=⇒

















Ū1

uτ
= f1

(
uτx2
ν

)

in the inner layer

Ue1 − Ū1

uτ
= f2

(
x2
δ

)

in the outer layer

By imposing the continuity of the velocity Ū1 and of its derivative ∂Ū1/∂x2
















Ū1

uτ
=
1

κ
ln

(
uτx2
ν

)

+B

Ue1 − Ū1

uτ
= −1

κ
ln

(
x2
δ

)

+A

with
Ue1

uτ
= ln(Re+) +A+B

where κ is the von Kármán constant : does not seem to be a universal constant,

even for canonical flows ! 0.38 ≤ κ ≤ 0.41

76 Centrale Lyon | LMFA Physics of turbulent flow – cb1 – 15-10-2024



xWall-bounded turbulent flow q

Mean velocity profile : the logarithmic law (inner scales)
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(data from Osterlünd, 1999)

For a zero-

pressure-gradient

boundary layer,

κ ≃ 0.384 B ≃ 4.17
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Mean velocity profile : the logarithmic law (outer scales, wake law)
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ln
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x2
δ

)
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For a zero-

pressure-gradient

boundary layer,

κ ≃ 0.384 A ≃ 3.54
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Mean velocity profiles in a turbulent pipe flow
Zagarola & Smits (1998, Princeton Superpipe facility)
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Fully developed channel flow : experiments
Comte-Bellot, G. (1965)

Plane channel of width 2h ≡ 2D 5.7× 104 ≤ Reh ≤ 2.3× 105
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Fully developed channel flow : Direct Numerical Simulation (DNS)
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Balance between production and dissipation in the log-law

For an observer located in the log-law region of a boundary layer, an almost per-

fect balance is found between production and dissipation of the turbulent kine-

tic energy kt, that is

P ≡ −ρu ′1u ′2
dŪ1

dx2
≃ ρǫ inside the log-law

This result is the starting point of various developments for turbulence models,

even if there is no formal demonstration.
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Turbulent kinetic energy budget in a channel flow

Ratio of P /(ρǫh) for Re+ = 180,550,950,2000 (DNS by Hoyas & Jiménez, 2006)

We can observe the increase of the equilibrium region with the increase of the

Reynolds number
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A first example of turbulence model : mixing length model

We first investigate the near wall region, in assuming that x2/δ≪ 1, to derive the

mixing length model by Prandtl (1925), and the governing equation for the mean

velocity Ū1 (also valid for a channel flow with h = δ)

τ̄t(x2) = −ρu ′1u ′2 +µ
dŪ1

dx2
≃ τ̄w or also −u ′1u ′2 + +

dŪ+
1

dx+2
≃ 1

The turbulent viscosity concept (introduced in Chapter 2) leads to

−u ′1u ′2
+
= −u

′
1u
′
2

u2
τ

= ν+
t

dŪ+
1

dx+2
ν+
t ≡

νt
ν

where the turbulent viscosity is dimensionally the product of a velocity scale u ′

by a length scale lm, that is νt ∼ u ′ × lm.
(by analogy with the molecular motion for a perfect gas : ν is roughly the product

of the speed of sound by the free mean path)
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Mixing length model (cont.)

In an algebraic model (aka a zero-equation model), the evolution of the mixing

length lm is imposed by the user. For a boundary layer, a linear evolution in the

normal direction to the wall is assumed, that is l+m = αx+2

The velocity scale u ′ is then obtained by assuming that the frequency of the mean

flow is imposed to the turbulent motion (through the production term). This fre-

quency matching leads to
u ′+

l+m
=
dŪ+

1

dx+2

As a result, the turbulent viscosity and the Reynolds stress component are given

in wall unit by

ν+
t = (l+m)

2

∣
∣
∣
∣
∣
∣

dŪ+
1

dx+2

∣
∣
∣
∣
∣
∣

and −u ′1u ′2 + = (l+m)
2

∣
∣
∣
∣
∣
∣

dŪ+
1

dx+2

∣
∣
∣
∣
∣
∣

︸       ︷︷       ︸

ν+
t

dŪ+
1

dx+2
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Mixing length model (cont.)

The governing equation for the mean velocity can thus be recast as follows with

our assumptions

(αx+2 )
2

(

dŪ+
1

dx+2

)2

+
dŪ+

1

dx+2
− 1 = 0

The mean velocity gradient dŪ+
1 /dx

+
2 satisfies a quadratic equation. The relevant

solution is given by

dŪ+
1

dx+2
=
−1+

√

1+4 (αx+2 )
2

2 (αx+2 )
2

≥ 0

For x+2 → 0,
dŪ+

1

dx+2
→ 1

One finds Ū+
1 = x+2 , that is the velocity

law expected in the viscous sublayer

For x+2 →∞,
dŪ+

1

dx+2
→ 1

αx+2

A log-law is found for Ū+
1 , and by

identification, α = κ (x2/δ≪ 1)
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Mixing length model (cont.)

However, the previous model has one flaw, and thus requires a correction propo-

sed by Van Driest (see next small classe)

10
-1

10
0

10
1

10
2

10
3

0

5

10

15

20

25 l+m = κx+2
l+m = κx+2(1− e−x

+
2 /A

+
0) A+

0 = 26

U+
1 = x+2 viscous sublayer

U+
1 = (1/κ) ln(x+2 ) +B

Using Van Driest damping function,

−u ′1u ′2
+ ∼ x+2

4 as x+2 → 0, rather than

−u ′1u ′2
+ ∼ x+2

2 using l+m = κx+2 .

However,from the governing equations, it can be shown that −u ′1u ′2
+ ∼ x+2

3 !
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The buffer layer : streaks and harpin (horseshoe) vortices

λ+
2 ≃ 10

≃ 15− 20δ
(λ+

1 ≥ 1000)

λ+
3 ≃ 100

high-speed streakslow-speed streaks

streamwise vorticity associated with
successive harpin vortices

x1

x2

x3

Cantwell, Coles & Dimotakis (1978)

Visualization of sublayer streaks from

a suspension of aluminium particules

(water, U∞ = 15 cm.s−1)
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The buffer layer : streaks and harpin (horseshoe) vortices
Conceptual view from Adrian, Meinhart & Tomkins (2000)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

x1/δ

x
2
/
δ PIV measurements

Reδθ = 7705

plot of u− 0.87Ue1
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The buffer layer : streaks and harpin (horseshoe) vortices

Side view of large eddies in a turbulent boundary layer

by laser-induced fluorescence

Gad-el-Hak, University of Notre-Dame, USA

http://www.efluids.com
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The buffer layer

u ′2

u ′1

Q1Q2

ejections

Q3 Q4
sweeps

Drag generating events fall in the

second and fourth quadrant,

positive turbulent production

P ≃ −ρu ′1u ′2
∂Ū1

∂x2
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DNS of a plane channel flow

Iso-surfaces of the streamwise fluctating velocity

(red u ′/Uc = 0.12, blue u ′/Uc = −0.12)

Laadhari, Phys. Fluids (2007)

ndof = 512× 385× 512 ≃ 101× 106
Reh = 20100, Re+ = 1000

(Re+)3/4/ny ≃ 0.46

cost∼ Re+3 ∼ 109

IBM SP4 / CINES

92 Centrale Lyon | LMFA Physics of turbulent flow – cb1 – 15-10-2024



xWall-bounded turbulent flow q

DNS of a boundary layer over a flate plate

Isocontours of λ2 (colour

proportional to the wall distance)

around approximately Reδθ = 1400

by Schlatter et al. (2009)

http://www.mech.kth.se/~pschlatt/DATA/
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Turbulent boundary layer with pressure gradient

Dimensionless parameter β

β =
δ1
ρu2

τ

dPe
dx1

= −δc
uτ

dUe1

dx1
∼ τbl

τe
δc =

∫ ∞

0

Ue1 −U1

uτ
dx2 = δ1

Ue1

uτ

time scale of the boundary layer τbl ∼ δc/uτ

time scale of the external flow τe ∼ (dUe1/dx1)
−1

Coles (1956)

f2 = Acos2
(
πx2
2δ

)

− 1
κ
ln

(
x2
δ

)
Ue1

uτ
=
1

κ
ln(Re+) +A+B

A ≃ 2.5 zero pressure gradient

A < 2.5 favorable gradient

A > 2.5 adverse gradient

94 Centrale Lyon | LMFA Physics of turbulent flow – cb1 – 15-10-2024



xWall-bounded turbulent flow q

Small exercise : key scales for the log-law of a boundary layer

1. Determine the general expression of the Kolmogorov length scale lη by considering the dissi-

pation ǫ and the Reynolds number for viscous scales.

2. Show that in the logarithmic region of the mean velocity profile of a turbulent boundary layer,

the Kolmogorov scale is approximated by the expression

l+η ≃ (κx+2 )1/4

3. Recall also the expression of the mixing length l+m and of the turbulent viscosity ν+
t ?
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