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x Vortex dynamics q

Dynamics of vorticity
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x Vortex dynamics q

Vorticity vector ω

ω = ∇×u ωi = ǫijk
∂uk

∂xj
ǫijk =

1

2
(i − j)(j − k)(k − i)

permutation tensor

The vorticity is always assumed to be a concentrated (localized) quantity in space,

vortex tube or sheet.

The Biot & Savart law allows to express the velocity field induced by a given

vorticity distribution.

For an incompressible velocity field, ∇ · u = 0. A vector potential defined by

u = ∇×A can thus be introduced, associated with the condition ∇ ·A = 0 (uni-

queness)

This vector potential A satisfies a Poisson equation whose source term is the

vorticity vector,

ω =∇×u = ∇× (∇×A) = ∇ (∇ ·A)−∇2A = −∇2A
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x Vortex dynamics q

Biot & Savart’s law (1820)

From the knowledge of the free-space Green’s function, the integral solution is

given by

A (x) =
1

4π

∫

V

ω(y)
∣
∣
∣x − y

∣
∣
∣

dy

The velocity field is then obtained by taking the curl of A

u (x) = ∇x ×A =
1

4π
∇x ×

∫

V

ω(y)
∣
∣
∣x − y

∣
∣
∣

dy =
1

4π

∫

V

ω(y)× (x − y)
∣
∣
∣x − y

∣
∣
∣
3

dy

y

ω

x r = x − y

u

V

u (x) =
1

4π

∫

V

ω(y)× r

r3
dy

Nonlocal relationship between the vorticity

field ω and the velocity field u
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x Vortex dynamics q

Example of the Rankine vortex (1858) Rankine (1820-1872)













u(r) = v0
r

r0
=Ω0r r ≤ r0

u(r) = v0
r0
r
=Ω0r0

r0
r

r > r0

(v0 =Ω0r0 = ω0r0/2)
x1

x2

θ

r

u(r)eθ

ω = ω0 = 2Ω0 = cst
for r ≤ r0

0  1  2  3  4  5  6  7

0

1

Solid body motion inside the vortex itself,

i.e. for r ≤ r0 in the vortical region

Irrotational flow outside, for r > r0 : the
localized circular patch of vorticity

produces a velocity field away from the

vortical region
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x Vortex dynamics q

Vorticity distribution in a turbulence box

in a slab of 10242 × 128 in the inertial range

Porter, Woodward & Pouquet, Phys. Fluids, 1998
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x Vortex dynamics q

Kelvin’s circulation theorem (1869)

For an inviscid flow submitted to conservative body forces, the circulation around

a material closed curve C is governed by

DΓC

Dt
=

D

Dt

∮

U · dl =

∫

S

1

ρ2
∇ρ ×∇p ·n dS = 0 for barotropic flows, ρ = ρ(p)

Note that constant density, isothermal, and isentropic flows are barotropic. As a

result, the material circulation ΓC is preserved,

C

S

n ω DΓC

Dt
= 0

Γc =

∮

C

U · dl =

∫

S

ω ·n dS = cst
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Introduction to vortex stretching

A consequence of Kelvin’s circulation theorem

dΓ

dt
=

d

dt

[∮

C

u · dl

]

=
d

dt

∫

S

(∇×u) ·n dS =
d

dt

∫

S

ω ·n dS = 0

is that the vorticity flux crossing the material surface S is also an invariant.

Consider an elementary homogeneous vortex tube of length L, radius R and vor-

ticity ω,

L

RS = πR2 ω

Γ =

∮

C

u · dl =

∫

S

ω · dx = πR2ω
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x Vortex dynamics q

Introduction to vortex strechting (cont.)

For this elementary vortex,

- conservation of circulation Γ, R2ω = cst

- conservation of mass, ρπR2L ∼ R2L = cst

and an estimate of the kinetic energy Ec is given by

Ec = ρπR2L
R2ω2

2
∼ R2L R2ω

︸    ︷︷    ︸

cst

ω =⇒ Ec ∼ ω ∼
1

R2
∼ L

The kinetic energy is directly proportional to the vortex length. The increase in

kinetic energy for the vortex - and consequently for the turbulent velocity field, is

associated with vortex stretching. It’s an important basic mechanism to interprete

the behaviour of turbulent flow.

In other words, during the stretching process in one direction, the kinetic energy

in the perpendicular plane increases whereas the length scales decrease.
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x Vortex dynamics q

Introduction to vortex strechting (cont.)

Principal axes of the deformation tensor for shear flow

Ū1 = Sx2 et Ū2 = Ū3 = 0

π
4

shrinking stretching

O
x1

x2

S̄ij =
1

2

(

∂Ūi

∂xj
+
∂Ūj

∂xi

)

=
S

2

(

0 1

1 0

)

S̄d
ij =

S

2

(

1 0

0 −1

)
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x Vortex dynamics q

Helmholtz’s equation

The Helmholtz equation is the transport equation for the vorticity vector, obtai-

ned by taking the curl of the Navier-Stokes equation

∇×

{

∂u

∂t
+u · ∇u = −

1

ρ
∇p + ν∇2u

}

Using the following vectorial identities

∇× (u · ∇u) = ∇×

[

∇

(

u2

2

)

+ω ×u

]

= ∇× (ω ×u)

and moreover ∇× (ω ×u) = u · ∇ω −u∇ ·ω −ω · ∇u+ω∇ ·u

since ∇ ·ω ≡ 0 (solenoidal vorticity field) and ∇ ·u = 0 (incompressible flow)

∂ω

∂t
+u · ∇ω =ω · ∇u−∇×

(

1

ρ
∇p

)

+ ν∇2ω
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x Vortex dynamics q

Helmholtz’s equation (cont.)

Assuming a barotropic flow, that is a flow whose pressure is a function of density

only p = p(ρ), one has for the pressure term

∇×

(

1

ρ
∇p

)

= ∇

(

1

ρ

)

×∇p +
1

ρ
∇× (∇p) = −

1

ρ2
∇ρ ×∇p = 0

The transport equation for vorticity reads

∂ω

∂t
+u · ∇ω =ω · ∇u+ ν∇2ω

{
convection

of ω

}

=
{

3-D effect

(source term)

}

+
{

viscous

diffusion

}

Hermann von Helmholtz

(1821 - 1894)

The evolution of vorticity is directly linked to the term associated with 3-D effect :

this term is zero for a two-dimensional flow, ω · ∇u ≡ 0

2-D flow represents a specific/particular configuration ...
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Interpretation of Helmholtz’s equation

u(x)δt

u(x + δs)δt

δs(t + δt)
δs(t)

ω = ωα

Deformation of an elementary tube

(filament) of vorticity

δs(t + dt)− δs(t)

δt
= u(x + δs)−u(x)

dδs(t)

dt
= δs · ∇u

Length of the elementary tube

δ̃s = ||δs|| = δs ·α α2 = 1

Dδ̃s
Dt

= α · (δs · ∇u)

=
ωi

ω

(

δ̃s
ωj

ω

∂ui

∂xj

)

=
ωiωj

ω2

∂ui

∂xj
δ̃s
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Interpretation of Helmholtz’s equation (cont.)

Furthermore, by neglecting the viscous term in Helmholtz’s ’equation and taking

the scalar product with ω, we obtain

ω·
Dω

Dt
=ω· (ω · ∇u) that is

D

Dt

(

ω2

2

)

= ωiωj
∂ui

∂xj

By identification with the previous equation, it can be deduced that

1

ω2

D

Dt

(

ω2

2

)

=
1

δ̃s

Dδ̃s
Dt

and by integration,
ω

δ̃s
= cst

The length of an elementary tube vortex is thus proportional to vorticity ω. We

find the conclusion already obtained with the dimensional analysis, to highlight

vortex stretching mechanism and the increase in turbulent fluctuations. In addi-

tion, the term associated with the lengthening of vortex tubes corresponds to the

term of 3-D effect in the transport equation of vorticity.
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Interpretation of Helmholtz’s equation (cont.)

Growth of material lines in isotropic

turbulence ReD = 1360 (based on the

grid rod diameter)

Corrsin & Karweit, 1969, J. Fluid Mech., 39(1)

The increase in vortex intensity, and thus in turbulent fluctuations, is accompa-

nied by stretching of vorticity filaments, and by the increase of distance between

fluid particles : the origin of sensitivity to initial conditions ...
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An illustration of the lengthening of vortex filament
(from Tennekes & Lumley, 1972, chap. 8)

Mean flow for which gradients are aligned with the frame axes

∂Ūi

∂xj
=

(

S 0

0 −S

)

Ū1 = Sx1 Ū2 = −Sx2 Ω̄i ≡ 0

pure strain flow

ω′1

ω′2

ω′1

ω′2

Helmholtz’s Eq. linearized around this mean flow (inviscid flow to simplify alge-

bra, not an issue because the viscous terms are linear)

∂ω′

∂t
+ Ū · ∇ω′ =ω′ · ∇Ū

D̄ω′1
D̄t

= +Sω′1
D̄ω′2
D̄t

= −Sω′2
D̄

D̄t
≡

∂

∂t
+ Ūj

∂

∂xj
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An illustration of the lengthening of vortex filament (cont.)

By integration along the mean flow, or with the following formal change of va-

riables ξ1 = x1e
−St, ξ2 = x2e

St and τ = t, one gets

ω′1 = ω0e
St ω′2 = ω0e

−St

The vorticity componentω′1 is thus stretched faster than the componentω′2 through
a nonlinear processus, and finally vorticity fluctuations increase as

ω′21 +ω′22 = 2ω2
0 cosh(2St)
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x Vortex dynamics q

Bradshaw’s tree diagram (1971) illustrating of the concept of energy cascade
originally introduced by Richardson (1926)

direction of vortex streching

anisotropy x3
︷           ︸︸           ︷

x1 x2
︷  ︸︸  ︷

x2 x3
︷  ︸︸  ︷

x1 x3
︷ ︸︸ ︷

x3 x1
︷ ︸︸ ︷

x1 x2
︷ ︸︸ ︷

x2 x3
︷ ︸︸ ︷

x1 x2

return to isotropy
︷︸︸︷

x1 x2
︷︸︸︷

x2 x3
︷︸︸︷

x2 x3
︷︸︸︷

x3 x1
︷︸︸︷

x3 x1
︷︸︸︷

x1 x2
︷︸︸︷

x2 x3
︷︸︸︷

x3 x1
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Plane mixing layer – an example of inverse energy cascade
Identification of vortex pairing

Simulation of a plane mixing layer (M1 = 0.12, M2 = 0.48, Reδω = 1.28 × 104), snaphots of the

vorticity field at 4 consecutive times separated by 17δω/Uc, where Uc is the convection velocity.

(Bogey, Bailly & Juvé, AIAA Journal, 2000)
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Plane mixing layer forced at f0
(f0 fundamental frequency corresponding to most amplified perturbations)
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Plane mixing layer forced at f1
(f1 = f0/2, first subharmonic frequency)
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Plane mixing layer forced at f0 and f1
Vortex pairings occurred at fixed streamwise locations
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Vortex pairing in a plane mixing layer

Winant & Browand

J. Fluid Mech. (1974)
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x Vortex dynamics q

2-D simulations must be proscribed : no energy cascade

Flow separation behind a rounded

leading edge (3-D versus 2-D!)

Spanwise vorticity ωz, from red to blue with

ωz = ±5U∞/H , DNS with inflow perturbations

u ′inflow = 0.1%U∞ (η = 0.125)

Courtesy of Lamballais, Sylvestrini & Laizet

Int. Journal Heat Fluid Flow, 31, 2010

2-D free jet, vorticity field

Bogey (Ph.D. EC-Lyon, 1999)
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Transport equation for the mean vorticity ωi = Ω̄i +ω′i

∂Ω̄i

∂t
+ Ūj

∂Ω̄i

∂xj
= Ω̄j

∂Ūi

∂xj
+

∂

∂xj

(

ω′ju
′
i −ω

′
iu
′
j

)

︸               ︷︷               ︸

(a)

+ν
∂2
Ω̄i

∂xj∂xj
︸   ︷︷   ︸

(b)

(a) ∼ correlation term involving turbulence fluctuations only,

must be closed to solve this equation

(b) ∼ viscous diffusion

In practice, this equation is rarely (if ever !) solved to obtain the mean flow field :

turbulence models are based on the resolution of the mean velocity field (RANS

Eqs.). This equation is theoretically used to study enstrophy.
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x Vortex dynamics q

Enstrophy
Similar to the kinetic energy for velocity, that is

ω′iω
′
i

2
≡
ω′21 +ω′22 +ω′23

2

To quickly derive its transport equation, we assume that there is no mean flow,

that is Ūi ≡ 0 et Ω̄i ≡ 0

∂

∂t

(

ω′iω
′
i

2

)

+
∂

∂xj

(

u ′j
ω′iω

′
i

2

)

= ω′iω
′
j

∂u ′i
∂xj
− ν

∂ω′i
∂xj

∂ω′i
∂xj

+ ν
∂2

∂x2j

(

ω′iω
′
i

2

)

As usual, this Eq. can be greatly simplified for homogeneous turbulence,

in order to isolate basic physical mechanisms

∂

∂t

(

ω′iω
′
i

2

)

= ω′iω
′
j

∂u ′i
∂xj

︸    ︷︷    ︸

(a)

−ν
∂ω′i
∂xj

∂ω′i
∂xj

︸     ︷︷     ︸

(b)

(3)
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Enstrophy (cont.)

The term (a) is linked to the stretching of vortices, and the term (b) to viscous

dissipation.

Historically, the term (a) was assumed to be zero by von Kármán (1937), but Tay-

lor (1938) demonstrated later that this term is not zero and furthermore, must

be positive. It expresses that two fluid particles initially close one from the other

will be later separated by turbulence in average.

Singular behaviour of two-dimensional turbulent flow again,

enstrophy can only decrease

∂

∂t

(

ω′iω
′
i

2

)

= −ν
∂ω′i
∂xj

∂ω′i
∂xj
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Enstrophy (cont.)

In order to solve Eq. (3), the nonlinear term can be modeled with an acceptable

dimensional expression. For instance,

ω′iω
′
j

∂u ′i
∂xj
≃ A(ω2)3/2 A = cst ω2 ≡ ω′iω

′
i

Neglecting viscous effects to simplify calculations, the integration leads to the

following time evolution.

ω2

ω2
0

=
1

[

1−A
√

ω2
0 (t0 − t)

]2

A singularity is thus obtained for a finite time ... refer to Leray (1934), Moffatt

(2000) : artefact induced by the model itself and the incompressibility condition.

Not so easy to derive an acceptable model for physics !
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Helicity
Quantity widely studied by Moffatt (1969)

H ≡

∫

V

u ·ω dx

This quantity is an invariant of the flow motion, under the same assumptions

introduced for Kelvin’s circulation theorem.

For a two-dimensional flow, H = 0.

Interpretation?
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Helicity (cont.)
Sketch of two linked vortex tubes T1 and T2

C1 (S1)

T1

Γ1

Γ2

T2

H =

∫

V

u ·ω dx =

∫

T1

u ·ω dx +

∫

T2

u ·ω dx

Consider the integral over the vortex T1
∫

T1

u ·ω dx ≃ Γ1

∮

C1

u · dl = Γ1

∫

S1

(∇×u) ·n dS

=

{

Γ1Γ2 if C1 and C2 are linked,

0 otherwise

H = ±2nΓ1Γ2 n linking number
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