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L Homogeneous and isotropic turbulence ™

Homogeneous and isotropic turbulence
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L Homogeneous turbulence ™

@ Homogeneous turbulence

126

Generation of turbulence behind a grid, Re;; = 1500 & M = 2.54 cm
Corke & Nagib, in Van Dyke, figs. 152 & 152 (1982)

Statistics are independants of space coordinates in homogeneous directions. In
the present case, the turbulent flow is homogeneous in the x, and x5 directions

(transverse plane), e.g. the Reynolds tensor —u;u; is only a function of x; (and ¢).

The objective is to obtain simple configurations, without transport term
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L Homogeneous turbulence ™

@ Homogeneous turbulence

Wrinkling of a fluid surface in isotropic turbulence
Karweit in Van Dyke, fig. 155 (1982)

A platinum wire generates a continuous sheet of hydrogen bubbles, which is then
deformed by the nearly isotropic turbulence behind the grid.
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L Homogeneous turbulence ™

@ Velocity correlation tensor

Definition : ul(x)
Rij(x,7,t) = uj(x,t)u;(x +7,t) = R;; (r, 1)

i u]f(x + 1’)

>0 >

The function R;; is only a function of the separation vector r, between the two
measurement points x and x’ = x + r : invariance by translation of the observer
location x.

Correlation coefficient R;; (normalized correlation function R;;)

—1 <R;(r) =
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L Homogeneous turbulence ™

@ Velocity correlation tensor (cont.)
A few remarks

@ Autocorrelation

Ry(r,0,0) = u*R4;(r,0,0) with r = (,0,0)
Ry;(r) = Ry;(-r), the autocorrelation function is an even function

o R;i(r) = R;i(-r)

e Incompressibility of the turbulent field

u’ 0 0
_J_ — _
ox; 0 or; Rij{r) =0 8r1R”( r)=0

o R;;j(0)=u®+us+u} =2k
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L Homogeneous turbulence ™

@ Turbulent kinetic energy budget k, (refer to this slide)

130

General case of homogeneous turbulence

a(pkt) . 7 aUl ) aull _
o1 —PU;U; ax]- _Tijax]_ (=P —pe)

Decaying turbulence generated behind a grid,

Stationary turbulence, homogeneous in the plane

(x5, x3) only
- 8kt .

U — = —
183(1 ¢

In a frame moving with the mean velocity Uj,

9k, _
at

—€
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with dU;/dx; = cst to preserve
homogeneous turbulence
(Craya, 1958)
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L Homogeneous turbulence ™

@ Integral length scales

Longitudinal integral length scale : an estimate of the size of the most energetic
turbulent structures, given by the integration of the correlation coefficient of the
velocity component u; between two points in the x; direction

R11A
1

Tavoularis (2003), passive
scalar mixing, Sc ~ 2000

A transverse integral length scale L, = L(lzl) is also introduced

2 (60)
L,=L) = f Ry, (0,7,0)dr
0
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L Homogeneous turbulence ™

@ Turbulence scales

o Large scales (u’,L) associated with production of larger scales by the mean
shear flow; energy containing eddies : the peak of the turbulent kinetic energy
spectrum is located arround kL ~ 1

o We need also to introduce Taylor microscales A associated with large scales of
the dissipation spectrum, and formally defined from the Taylor series of the
velocity correlation coefficient at the origin,

R11A
1
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@ Taylor microscales

Taylor series of u;(r,0,0) as r — 0,

) ) u’
ul (r,0,0) = ”1<O’O’O)+ra_xi

Hence,

Ri1(r,0,0) =u;(0,0,0)u;(r,0,0)

5. ,0up r* o d%u
=U, +ru;——+— U, ——

1 laxl 2 18x%

2 7"2
=u+r +

2 (ou’ 2
RU(T’,O,O)Zl— r_( U1) =1

2
2u
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L Homogeneous turbulence ™

r? d%u,
+ —_
2 Ox?

+ ...
x=0

+ ...
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L Homogeneous turbulence ™

@ Taylor microscales (cont.)

Longitudinal Taylor microscale A, : re .
1 1dRy| 1 (ou))’ () uj(x+re)
/\jzr B 2 drlz =0 B 2“12 &’xl
Transverse Taylor microscale A, —— u(x+re,)
S re;
1 . 1d2R11 _ 1 (aui)z S u{(x)
/\§ 2 dr22 0 2”12 dx,
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L Homogeneous turbulence ™

@ Dissipation rate € of the turbulent kinetic energy

du;

B T du;
pPe = Tzkax psiis;; = /”4 Jx;

) ) 92
) &’ui 8141- u

(a) - N aX] 8X] V?
814/814 azru]' u’z
(b) = 8x o0x; szax]- VT

h .

axi

au]f 2_ 814 ou; 814’5’14
ﬂax 0x;
R/—/ \/—/
(a) (b)

correlation of the turbulent velocity gradients,
dominant term for the dissipation since A < L

derivative of the turbulent velocity correlation
(using the incompressibility condition)

for homogeneous turbulence, (b) is identically zero

and € = e

€' is an approximation of the dissipation € when A <« L, that is for high Reynolds

number turbulent flow (the e" equation is solved in the standard k,
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L Homogeneous turbulence ™

Spectral tensor

The spectral tensor ¢;;(k) is defined as the Fourier transform of the velocity cor-
relation tensor R;;(r)

RZ] (r)e kT 1y

j (Pl] zkrdk

The incompressibility condition formulated in Fourier space reads,

ki(f)ij(k) — kabij(k) =

bij (k) =

[t is essential in practice to introduce one-dimensional spectra, which can be mea-
sured or computed numerically,

k) = | 00 dkaa
RZ

Centrale Lyon | LMFA Physics of turbulent flow



L Homogeneous turbulence ™

@ One-dimensional spectrum

Let us consider the case 1 = j = 1 with a zero separation vector r =0,

W= Ry y(r = 0) = cpll(k)dk:f EV (k) dk,
R’ =

(©.9)

The relation between the autocorrelation R;;(r) with r = (r,0,0), and the one-
dimensional spectrum Eﬁ)(kl) is found to be

+00

Ri1(r1,0,0)= [ ¢y (k) e™"dk = f Eyy (k) endk,
R? -

(6.0)

and conversely by Fourier transform, one has

1 i —ikqr
11 (kl) J Ry (r1,0,0) e "dr,

27T

1
1 E;Y (0)

21

+00
_ (1)) _ 1=
For k; =0, E;|/(0)= J:OO Ry (r,0,0) dry = EZul L¢ Ly=m

”1
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L Homogeneous turbulence ™

Frozen turbulence approximation or Taylor’s hypothesis (1938)

The velocity spectral tensor and the corresponding one-dimensional spectra can-
not be directly measured from the Fourier transform of velocity correlation func-
tions in general. Only the time evolution of the velocity in one given point is
known, that is u;(t).

In order to estimate these spectral functions, it is usually assumed that the turbu-
lent flow is frozen during the measurement, meaning that the observed quantity
is simply convected by the local mean flow U;, which leads to

J - d - ) -
== _U18_x1 k, =2nf/U; Taylor’s hypothesis
passing
27/ frequency f
0 ‘ ’ |
1 /\/\/\
convection )
velocity i
fixed probe)
(fixed p

Centrale Lyon | LMFA Physics of turbulent flow



L Homogeneous turbulence ™

@ Frozen turbulence approximation or Taylor’s hypothesis (1938)

Geoffrey Ingram Taylor (right) at
age 69 (in 1956), in his laboratory
with his assistant Walter Thompson
(Physics Today, May 2000)

At Stanford (1968)

Application to the estimation of L;,  u (t) = ®;(f)

— +00 o0 U _
Uy’ :J Eﬁ)(lﬁ) dk, = J — D (f =k Ul/ZTT)dkl

-~ 0 270
1
m  EVk=0) 1 _®,(f=0)
i = = "1 =
Uy Uy
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. Homogeneous turbulence ™
@ Frozen turbulence approximation or Taylor’s hypothesis (1938)

Spectrum of longitudinal velocity fluctuations
free round jet, Rep, ~ 10°, hot-wire located at x; = 2D and x, = D/2
(see also the time correlation function, ©® =~ L¢/Uj)

Dy (f) for f >0 » EY(k;) for —co < k; < 00
——— toestimate L; and f ™~ law --- to estimate L; and k753 law

107 ¢

11(f)

10* 10° 102 103
]{il (mfl)
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L Homogeneous turbulence ™

Turbulent kinetic energy and dissipation spectra

Turbulent kinetic energy spectrum

1 1
k; = —ERii(r—O)_E R3¢ii(k)dk

Dissipation spectrum

Usually, it is more convenient to first calculate the enstrophy spectrum from the
Fourier transform of the vorticity vector, @ (k) = ik x # (k). It can be shown that,

) )
w;w; 1

=3 | Pt

Then, by noting that € = vw)w;, the following expression is obtained from the
dissipation spectrum

€ =VW,W; = vf k*¢,i(k)dk
0
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L Homogeneous and isotropic turbulence ™
Isotropic turbulence

An isotropic turbulent flow is a class of homogeneous turbulent flow whose sta-
tistics are invariant under rotation of the coordinate axes and under reflection in
a plane.

Impossible to distinguish any privileged direction
a priori, the most simple configuration! (ideal theoretical framework)

In order to characterize properties induced by homogeneous and isotropic turbu-
lence, a virtual device is introduced to measure

— a fluctuating scalar quantity : temperature, pressure, ...

— a fluctuating vector quantity : projection on a given unit vector of the turbulent
velocity, ...

Centrale Lyon | LMFA Physics of turbulent flow



L Homogeneous and isotropic turbulence ™

@ Second-order correlation in one point : Reynolds tensor

Xy X9

A A

rotation by 7t/2
of the device a

A A

) _ ) / _ /)

The two measurements must be equal for isotropic turbulence, and therefore

72 _ 72
u” = u,". More generally,

72 2 22 : ) — )2
U =u"=u" =u by noting u :(u

)1/2
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L Homogeneous and isotropic turbulence ™

@ Second-order correlation in one point : Reynolds tensor

X9

A

X1

(uy - a)(uy-b) = uju,

) ../

Consequently, uju; = —uju; and

X9

A

144 Centrale Lyon | LMFA
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L Homogeneous and isotropic turbulence ™

Second-order velocity correlation in two points
Aatxand Batx +r:

F =

w,-a)(u,-b) Ujsuip(r)
( A )( B )_ A jB aib]-:Ri]- Elib]' 1‘/ o

[ [ B 2
u .
2 ’2 .-
\/”A \/uB al -

The bilinear function F can only be a function of the invariants associated with
the measurement device, that is distances and angles :
rP=rr,a-r=a;r,b-r=>byrj,a-b=ab;=ab;5,;

and also the volume defined by (r,a,b), given by the mixed product

(61 X b) v = eijkaib]-rk

General expression of an isotropic second-order two-point tensor
(Robertson, 1940)
Rij(r) = a(r)rir;+ B(r)o;;

where a and f are two scalar functions of r.
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L Homogeneous and isotropic turbulence ™

@ Second-order two-point velocity correlation (cont.)

It is generally found more convenient to introduce two functions f(r) and g(r)
that can be measured in practice, rather than the two arbitrary functions a(r)
and S(r). Hence,

f(r)=R4(r,0,0) longitudinal correlation function
g2(r)=R1(0,7,0)  transverse correlation function

u(0,7,0)
| > Karman & Howarth (1938)
Rij(r)=(f - g) +g5
r = Te2
Take care of R,-]-(r) = M'zRij(”)

r=re
> P >

u7(0,0,0) uy(r,0,0)
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L Homogeneous and isotropic turbulence ™

Compressibility condition applied to the second-order two-point velocity
correlation recast by Karman & Howarth

:O p— >
r

dR;;(r) d[f-g
91’1- 81"1'

1"1'1’]' + géZ]] =0

which leads for a 3-D turbulence to the following expression (the details are left
as an exercise),

e

The correlation coefficient R;; is determined by a single scalar function, the lon-
gitudinal autocorrelation in space f(r), for incompressible isotropic turbulence.
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L Homogeneous and isotropic turbulence ™

@ Turbulent kinetic energy and dissipation spectra

Using a similar approach applied now to the spectral tensor ¢;;(k), and taking
account for the incompressibility condition, it can be shown that only one scalar
function E(k) is required to specify ¢;;(k), that is

. 5——J) with k= | E(k)dk
drck2\ Y k2 ),

bij (k)

The expression of the dissipation spectrum is then deduced from the relationship
established for homogeneous turbulence, see here,

€ = ZVJ k*E (k) dk
0
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L Homogeneous and isotropic turbulence

@ Isotropic turbulence

Many other remarkable results can be established for homogeneous and isotropic
turbulence : refer to textbooks mentioned in the introduction of this course.

Three points must be however still considered to provide a first full overview of
isotropic turbulence

— How to generate isotropic turbulence in laboratory?

— What is the time evolution of isotropic turbulence?
— Can we measure or derive analytically the expression of E(k)?
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L Homogeneous and isotropic turbulence ™

@ Isotropic turbulence in laboratory

Various configurations have
been investigated to generate
isotropic turbulence. One of

the most famous is the Uy
so-called “Porcupine” by | M
Betchov (1957) U,
—_—
'
U
AR el —
R g
o Turbulence behind a grid, homogeneous but not
The ‘ Porcupine ’. vThe mix%ng o small jets . .
produces a strong turbulence in the region marked 4, B, C. fully ISOtrOPIC turbu1€nt ﬂOW

72 _ 72 _ 2
u =12uy =12 u,

and one typically gets for turbulence intensity
’ UM

2 229  Rey ="

UO v

~ 10*to 10°
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L Homogeneous and isotropic turbulence ™

@ Isotropic turbulence in laboratory (cont.)

Experiences by Comte-Bellot & Corrsin at Johns Hopkins University
J. Fluid Mech., 1966, 25(4) & 1971 48(2)

contraction ¢ ~ 1.27

®
Y UO
¢ Ul = CUO
. ( J 3>
grid
2 2
o u; =1.2u, u?=ul=ulp?
Y
722 .2
) uz = u3
18M

Y
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@ Stanley Corrsin

L Homogeneous and isotropic turbulence ™

Hopkms reSeacher fmd

By Albert Sehlstedt, Jr.

Stanley Corrsin is a specialist in
turbuleuce. a very complex scientific
problem subject that deals with a
planes flying through the clou

lampshade and blood fl
throughhuman bodies.

curling cigarette smoke rising um‘i;
lowi .

Explaining these seemingly com-

monplace occurrences poses a prob-

lem that has puzzled sclent.ists for !

decades.

. “It is sufficiently difficult [a subr
ject] that the problem is not likely to
be solved in my lifetime,” Dr. Corr: .
sin observed in his Maryland Hall of-
fice on the Homewood campus of the
Johns Hopkins University.

“That means I'm not in danger of
being unemployed,” the 62-year-old
scientist with a smile. “Also, 13
think it is aesthetically mtemtmg.
Turbulent flows make beautiful pic-

'l‘urbulent flows are movements i
~of matter in which the velocity at a - |

““Stan is not only

a person who
himself has

. contributed

. [through research],

~ but his discourses

.~ have been
stimulating to other
people.”

— Lawrence Talbot
Berkeley professor

Centrale Lyon | LMFA

SunleyCornh,winneronleAmeﬁcuP' ical Society’s 1983 Fluid Dynamics Prize, is respected as both researcher and teacher.

/mﬁcal review of ﬂmd dynamics,”

which “have touched a legion of stu-
dents and associates.”

“Stan is not only a person who
himself has contributed, but his dis-
courses have been stxmulatmg to oth-
er peonle.” said Lawrence Talbot.

decision-makin that he would rath-
er not undertak
Better to talk of airplanes, soar-

ing albatrosses, flowing water — and
swallowmg ;
There is a “swallowing center,” a

combplex assemblv of muscles and

called non-uniform surface tension
may be the answer, he said.

There is also the question of why
contact lenses stay attached to the
surface of the eye. Dr. Corrsin and
his colleagues examined this mys-
terv. too. but he said. “We never did

Physics of turbulent flow — cb1 — 25-1

who was helping to edit a monograph
on jet propulsion at a place that has
since become famous for guiding
spacecraft to the planets — the Jet
Propulmon Laboratory in Pasadena,

Dr Corrsin said he chose Hopkins

1-2024



L Homogeneous and isotropic turbulence ™

@ Decaying isotropic turbulence

In a frame moving with the mean velocity,

e Decay of the normal stresses

u” _ 1 (tUO— tOUO)_n with  n~1.3

U2 A\M M
Comte-Bellot & Corrsin (1966), Mohamed & Larue (1990)

e The dissipation rate of the turbulent kinetic energy is imposed by
larger turbulent structures,

u’” ok, ) u’?
Lf &’t - Lf/l/l/

(G

where L is the longitudinal integral length scale, L¢ = J f(r)dr
0
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L Homogeneous and isotropic turbulence ™

@ Decaying isotropic turbulence

1.0¢==

o o o
BN (@) (00}

R(kl; UlAt, O, O; to, At)

o
no

©
o

10 100 1000
ULAL/M

o
—h
—h

Time correlation in a frame travelling with the mean velocity U, for different
values of the wavenumber, from k; = 0.25 cm™ (¢)to k =10.10 cm™! (+)

— total signal (full-band case)
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L Homogeneous and isotropic turbulence ™

@ Space-time correlations

Ri1(Ax1,0,0;7) = uj(x, t)uj(x + Axeq, t + 1)/ u{z

10 T T T . . .
— time autocorrelation function
I uy(t) u(t+t) | : . :
. - — 7 (Ax; = 0), which provides the in-
08F| Ax, > . tegral time scale in the fixed frame
[
- . ] ©, ~ L¢/U, (Taylor)
= Tpeak = ACls'l/U'cl
s " /f*\, | ——- time correlation for a given se-
- | .
g PV e ] paration Ax; of the two probes
[
\<_]/ 0.4 I ‘\ . . . . .
o ! \ ‘. — time autocorrelation function
I [ ]
S \ *ee Tpeak = Az /U, ] :
! \ eo, Tpeak = BT1/Uct in the convected frame
0.2 | \\ '/"‘Q‘\. o, . . o
I SN e,
; \ ! \ * “eeee.,, - O :J Re(r)dt
// \\ /'/ \ .....’000 0
0.0 - N .- | N, |

©. ~ Lys/uj represents the time characterizing the loss of coherence
or the memory time of turbulence
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L Homogeneous and isotropic turbulence ™

@ Isotropic turbulence submitted to ...

UNIFORM

@
| " , PARALLEL
2ft. | 8ft. ‘ +fL ROTATING iy FLOW
—— e T \ RADIAL | SECTION G
| Par::lc.'[ Constant rate of swain | Parallel /n+. NORMAL TO ! | !
| dow | 1 tow V. AND STREAMWISE ;
‘ = ‘ r { | | // _—

V4 COMPONENTS

Tiin.

= : : | ' | ‘ ‘
: | : 1 \ “

| ‘ ‘ e STATIONARY = ii s 1

L7 : ?x‘; ‘ S } TEST SECTION igsiiiag ‘ \L
Il al T N . | S, [P ~

B : : g Z T /S 1 EEEI.IEE Es nk =
Qx> - - Qxy Q_x/ :=HE===E=-‘ E E:“ /

- / : | ,/ugslliim E'!iE e —

N |.5mm
ol | e

| TURBULENCE
V; V GENERATING
% r < |
I GRID (ROTATING)

r‘{,/" IE% E; |
~N <
Tucker & Reynolds - Plane strain "* sﬁ’/‘ |

STREAMWISE (HELICAL) MEAN S e e
COORDINATE SYSTEM STREAMUNE (Vg = Vy + VB)

Wigeland & Nagib - Solid body rotation

!

l :"’;/,

Screen slots

Generator

Reference axes

Champagne et al. - Sheared mean flow
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@ Exercise #1
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L Homogeneous and isotropic turbulence ™

Correlation between temperature and a velocity component
in two points x and y = x +r where r = y —x is the separation
vector

1. Expression of the two-point correlation 6(x)u/(y) for iso-
tropic turbulence?

2. Can we generalize the previous result for any scalar
quantity ? (temperature, pressure, concentration, ...)

Physics of turbulent flow



L Homogeneous and isotropic turbulence ™
@ Exercise #2

Scales

1. Show from Karman & Howarth'’s relation, that for 3-D incompressible turbulence,

r a
g—f+§f
2. Deduce that Ly =2L, and that Ap = \/E/\g, by noting that
1 1., 1 3 1,
/\—]2[ = _Ef (0) i 58 (0)

3. Deduce the two followwing addtional expressions of dissipation,
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L Homogeneous and isotropic turbulence ™

@ Exercise #3

1. Estimate the energy dissipation rate in a cumulus cloud,
both per unit mass and for the entire cloud (from Ten-
nekes & Lumley, 1972). Compute the total dissipation
rate in kilowatts. Also estimate the Kolmogorov scale.
Compare with the power received at the surface of the
Earth from the Sun.

Cumulus clouds : the length
scale of the large eddies is
about 250 m and the

fluctuating velocity is 1 m.s™!
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L Dynamics of isotropic turbulence ™

Dynamics of isotropic turbulence — Kolmogorov’s theory

160 Centrale Lyon | LMFA Physics of turbulent flow



L Dynamics of isotropic turbulence ™

@ Introduction

The spectrum of turbulent kinetic energy is the key function for isotropic turbu-
lence. Can we determine the form of E(k) and its time evolution?

The rate of dissipation is imposed by larger structures,

—> €= M’3/Lf

energy-containing eddies u’ ~ k//*>  time ~ L 14

0 kLj~1 kg~ 1 ki,

integral scale Taylor scale Kolmogorov scale

viscous scales (Re,, = 1)

U
3414 — ) 1/41/4

€ 1

%:v
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L Dynamics of isotropic turbulence ™

@ Energy cascade

The higher the Reynolds number is, the more spectra of the kinetic energy and
dissipation will be separated : fully developed turbulence.

’ 3/4 ’
Ly _ Ly (u Lf) _ Re3/4 u'Ly Reynolds number

= _ Re, =— 71
1,7 y3/ae-1/4 v Ly Ly Y, of large structures

Kolmogorov (1941) — energy cascade

The dissipation rate € is imposed by large eddies, but carries out by the smallest
ones (at Kolmogorov scales), it can be argued as assumptions that

— the dissipation rate € is finite, even when Re — oo,

— there is a self-similar dynamics; velocity scale of an eddy of size / va-
ries as u; ~ [P (that is a power law)
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L Dynamics of isotropic turbulence ™

@ Representation in spectral space

physical
space

/ .
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L Dynamics of isotropic turbulence ™

Representation in spectral space (cont.)

For isotropic turbulence, the turbulent kinetic energy spectrum E(k) is decompo-
sed over spheres of radius k, with elementary turbulent structures of wavenum-
ber k as already discussed in the Introduction Chapter.

For exponential spectra, this will be the case for E(k), it is interesting to introduce
a linear representation in logarithmic scale. For a geometric sequence k,,,

k, k,
kn—l/z =a= ]:i/z Akn — kn+1/2 - kn—1/2

and it is always possible to choose the common ratio a such as Ak,/k, = 1.
With a constant bandwidth for dInk = dk/k,

kn+1/2 kn+1/2
J E(k) dk:f kE(k) dInk ~ k,E(k,)
k k

n-1/2 n—1/2

In the same way, the importance of frequency weighted spectra or compensated
spectra is underlined for exponential form.
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L Dynamics of isotropic turbulence ™

@ Benefit of frequency weighted spectrum
equal areas = equal contributions using log-axes

100+ ey 0.4
" ki~ 0.36 x 2.9 ~ 1.04 -
___10?
=
= 107
107
107 10° 10’ 102 10° 10
k
k, = J E(k)dk = J kE(k) dInk von Karman spectrum model,
0 0 4
k
E(k) = T Kjoner = 1.0325
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@ Benefit of frequency weighted spectrum (cont.)

1.2

von Karman spectrum (arbitrary units here)
- fOI'kt:3 T fOI'ktzl.S

log-log scales (to observe the —5/3 law) versus k x E(k) on linear scales
On the right, area of the grey rectangle, 1.25 x1In(10) x 1.05 ~ 3
(error detection is straightforward)
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@ Theory of Kolmogorov — K41

o Eddy of size I and of velocity u,
eddy-life time or turn-over time ¢, ~ [/u,

.

l 1/3
=cst=¢€ — u; ~ (el

l/ul l ( )

o Kinematic energy &; associated with eddies of size | ~ 1/k;
E ~u> ~ (el)¥3

o Turbulent kinetic energy spectrum &; ~ k;E(k;), and thus

ki

E(k;) ~

~ e’ kl_S/ ’ Kolmogorov’s law

Inertial subrange between kL and ki, at high-Reynolds number,
where E(k,e,v) = E(k, €)
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@ Theory of Kolmogorov — K41 (cont.)

In the inertial subrange (fine turbulence structures)
of the turbulent kinetic energy spectrum, there is a
universal spectrum shape

E(k) = CK€2/3k_5/3 CK ~ 1.5

where Cg is the Kolmogorov constant, and this re-
gion widens as the Reynolds number increases.

The original formulation by Kolmogorov (1941, 1962) is ba-
sed on structure functions, see exercises. The theory is still
debated, e.g. self-similarity at small scales, intermittence in
the dissipation process.

Arnold Kolmogorov (1903-1987)
The concept of energy cascade has been introduced by Ri-

chardson (1922), and first developed theoretically by Kolmo-
gorov (1941) and also Obukhov (1941).
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@ Theory of Kolmogorov — Experimental evidence

+00 (1)
72
Uy = Eyy (ky)dk,
—00
Re Ag

O 23 boundary layer (Tielman, 1967)
¢ 23 cylinder wake (Uberoi & Freymuth, 1969)
v 37 grid turbulence (Comte Bellot & Corrsin, 1971)
<4 72 grid turbulence (Comte Bellot & Corrsin, 1971)
m 130 homogeneous shear flow (Champagne et al., 1970)
+ 170  pipe flow (Laufer, 1952)
X 282 Dboundary layer (Tielman, 1969)
O 308 cylinder wake (Uberoi & Freymuth, 1969)
A 401  boundary layer (Sanborn & Marshall, 1965)
> 540 grid turbulence (Kistler & Vrebalovich, 1966)
<4 600 boundary layer (Saddoughi, 1994)
© 780 round jet (Gibson, 1963)
® 850 boundary layer (Coantic & Favre, 1974)
> 1500 boundary layer (Saddoughi, 1994)
® 2000 tidal channel (Grant et al., 1962)
A 3180 return channel (CAHI Moscou, 1991)
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@ Theory of Kolmogorov — Experimental evidence
Measurements of Grant, Stewart & Moilliet (1962)

Vancouver

Island
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@ In summary

The rate of dissipation is imposed by larger structures,
energy-containing eddies u’ ~ k}’>  time ~ L 1474

—> e=~u"/L;

=Y

0 kLf~1 kAg ~ 1 ki, ~1
integral scale Taylor scale Kolmogorov scale

viscous scales (Re, = 1)

YLV S V2 S VSR V2
U

3/4 g
L/ l,7 ~ Re I
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@ Energy cascade in a turbulent mixing layer (Brown & Roshko, 1974)
Shadowgraphs (spark source)

Energy cascade in a mixing
layer by increasing the
Reynolds number (through
pressure and velocity, x2 for
each view)

More small-scale structures
are produced without basically
altering the large-scale ones

Anatol Roshko (1923-2017)
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@ Lin’s equation (1947)
Transport equation for the turbulent kinetic energy spectrum E(k)

A way to derive this equation is

to consider the transport equation for the Reynolds tensor R;; = u;(x)u;(x +7),
known as the Karman & Howarth equation

to take its Fourier transform and to contract subscripts as follows i = j

.. which gives

I

= (k,t) =T (k,t)—2vk“E (k, t)

where the nonlinear term T(E) is linked to the third-order (triple) velocity cor-

relation. This term can be directly associated with the energy transfer between
turbulent structures of different size.
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Lin’s equation (cont.)

In order to illustrate this point, Lin’s equation can be integrated over all the wa-
venumbers k

ﬁf E(k,t)dsz T(k,t)dk—va k*E (k,t)dk

0

= dk,/dt - €

For isotropic turbulence dk,/dt = —e. Consequently, the transfer term integral
must be zero

f T (k,t)dk =0
0

The term T corresponds to the rate of energy transferred to successively smaller
and smaller scales of the turbulent field.

Note that this term T is difficult to measure, and it makes sense only for high
Reynolds number turbulent flows, in order to ensure the presence of an inertial
region in the spectrum E(k).
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@ Lin’s equation (cont.)

Let us introduce the function S(k, t) defined by

S(k,t) = —Lk T (K, t)dk’

S(k,t) represents the A
energy transferred from E(k)
all the wavenumbers
smaller than k (large
structures) to

wavenumbers larger
than k (small

structures) kLy
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