
Physics of turbulent flow - Centrale Lyon 3rdYear - MSc

Small class #3

Guidelines

(i) You can reuse without demonstration all the results mentioned in the slides of the course (by only citing the

considered slide number for instance)

(ii) An essential part of your assignments is to provide valuable comments of your results

Work to do – At the end of this session, you will be asked to write a personal report with your answers and comments,

due on Monday, January 8, 2024.

Turbulent boundary layer model

Themean velocity of a zero-pressure-gradient turbulent boundary layer is governed by the following equa-

tion introduced in classroom,
∫ x2

0
ρ

(

Ū1
∂Ū1

∂x1
+ Ū2

∂Ū1

∂x2

)

dx2 = τ̄t − τw (1)

where τ̄t is the total shear stress, defined and modeled as follows

τ̄t = −ρu ′1u
′
2 +µ

∂Ū1

∂x2
= (µ+µt)

∂Ū1

∂x2
(2)

Eq. (2) can be recast as follows using wall unit variables,

dŪ+
1

dx+2
=

τ̄+t
1+ ν+t

(3)

where a turbulent model must be used to compute the turbulent viscosity ν+t , and where τ+t must be

approximated from Eq. (1). A simple approximation developed in the course is to choose τ̄+t = 1− x2/δ ≃ 1

for x2/δ≪ 1, that is for the inner part of the profile. The edge of the boundary layer corresponding to the

wake region is not investigated in this first part.

1. Solve numerically Eq. (3) for the case of a mixing-length model

l+m = κx+2 (4)

to compute the turbulent viscosity ν+t . The value of the von Kármán constant is chosen to be equal

to κ ≃ 0.41. In order to integrate Eq. (3), we can obtain an analytical expression for the derivative

dŪ+
1 /dx

+
2 by solving a quadratic equation, and then numerically integrate this equation from x+2 = 0

using a Runge-Kutta algorithm (with Matlab using ode45.m for instance, see Appendix).

2. Estimate the constant B of the log-law by computing the expression

B = Ū+
1 −

1

κ
lnx+2

from your numerical solution for x+2 = 200,300,400 and 500. Comment on this result.

3. Compare your numerical solution to the exact analytical solution of Eq. (3), provided by Hinze3

U+
1 =

1

κ

1−
√

1+4 (κx+2 )
2

2 κx+2
+
1

κ
ln

[

2κx+2 +
√

1+4 (κx+2 )
2
]
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4. Repeat the numerical integration of Eq. (3) with the followingmixing-lengthmodel including a dum-

ping function, proposed by Van Driest6

l+m = κx+2
(

1− e−x
+
2 /A

+
0

)

with A+
0 = 26 (5)

5. Plot on the same graph both numerical solutions, as well as the viscous sublayer and the inner log

laws. Comment.

6. Perform a Taylor series of the functions l+m and −u ′1u
′
2

+
for both mixing-length models (4) and (5), and

provide the behaviour of these two functions as x+2 → 0.

7. By considering the incompressibility condition ∇·u′ = 0, provide the theoretical behaviour of −u ′1u
′
2

+

as x+2 → 0.

8. Repeat the numerical integration using the Van Driest model (5) for solving Eq. (3), by using now the

expression of Thomas & Hasani5,7 for τ̄+t

τ̄+t ≃ 1− 3
(

x2
δ

)2

+2

(

x2
δ

)3

which improves the linear approximation1 τ̄+t ≃ 1− (x2/δ). The following numerical value Re+ ≃ 2675

can be used to compare to experimental data.
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τ+12 Blasius (laminar) solution

τ̄+t ≃ 1− x2
δ

(used in the present course)

τ̄+t ≃ 1− 3
(

x2
δ

)2

+2
(

x2
δ

)3

Thomas & Hasani (1989), White (2005)

9. Consider now the following improved mixing length model4 including the wake region























l+minner = κx
+
2

√
τ̄+(1− e−x+2 /A0)

l+mouter = AwRe
+

l+m = l+mouter tanh(l
+
minner/l

+
mouter)

(6)

where the constant value is Aw = 0.085. Compute the mean velocity profile for the case Re+ ≃ 2675.

Comment your results and the construction of the model (6).

10. Bonus : retrieve the laminar solution (see figure in question 8) by using Appendix B.
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Appendix A : Runge-Kutta scheme

In order to integrate ordinary differential equation, you can directly used the ode45.m function from Mat-

lab. You can also write your own script from the following 4th-order Runge-Kutta algorithm. To integrate

the first-order differential equation ∂U/∂t = F (U , t), consider

U
n+1 =U

n +∆t
(

b1K
1 + b2K

2 + b3K
3 + b4K

4
)

where






























K
1 = F (Un, tn)

K
2 = F (Un + a21K

1, tn + c2∆t)

K
3 = F (Un + a32K

2, tn + c3∆t)

K
4 = F (Un + a43K

3, tn + c4∆t)

and with

ci aij
bi

c1 = 0 0

c2 = 1/2 1/2

c3 = 1/2 0 1/2

c4 = 1 0 0 1

1/6 1/3 1/3 1/6

Appendix B : Blasius solution

Consider a laminar two-dimensional boundary layer developing along a flat plate in the presence of a

uniform and steady external flow Ue1.

Ue1
x2

U1(x2)

x2

0 x1

δ(x1)

laminar transition turbulent

Development of a zero-pression-gradient boundary layer on a flat plate. The transition occurs for Rex1 =

x1Ue1/ν ≃ 3.2× 105, that is Reδ = δUe1/ν ≃ 2800.

1. Recall without demonstration the governing equations for a laminar boundary layer, and very briefly

the underlying assumptions.
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2. Introduce the stream function ψ defined by U1 = ∂ψ/∂x2 and U2 = −∂ψ/∂x1, and show that the

problem consists in solving the equation

∂ψ

∂x2

∂2ψ

∂x1∂x2
−
∂ψ

∂x1

∂2ψ

∂x22
= ν

∂3ψ

∂x32
associated with the following boundary conditions,

∂ψ

∂x2

∣

∣

∣

∣

∣

x2=0
= 0

∂ψ

∂x1

∣

∣

∣

∣

∣

x2=0
= 0 and

∂ψ

∂x2

∣

∣

∣

∣

∣

x2→∞
=Ue1

3. Recall very briefly the reasoning that leads to δ ∼
√
νx1/Ue1. The self similarity variable η is then

introduced

η = x2

√

Ue1
νx1

and consequently, ψ (x1,x2) =
√

Ue1νx1 f (η)

Show that the ordinary differential equation satisfied by f , known as the Blasius equation (1908),

reads

2f ′′′ + f f ′′ = 0 (7)

and provide the associated boundary conditions.

4. In order to solve numerically Eq. (7), this equation is recast into a first-order system (which can be

solved using Matlab with ode45.m for example)






















f ′ = g

g ′ = h

h′ = −1
2f h

(8)

over the interval 0 ≤ η ≤ 10, with the following initial conditions at η = 0 : f (0) = 0, g (0) = 0 and

h (0) = α. We then seek to determine the value of α by a so-called shooting method, in order to satisfy

the outer boundary condition at η = 10, that is N (α) ≡ g −1 = 0. A simple and efficiency method is to

use a Newton algorithm,

αn+1 = αn −N (αn) /
∂N

∂α

∣

∣

∣

∣

∣

αn

and to observe that the derivative ∂N/∂α can be obtained by solving, in parallel to (8), the following

variational system2






















F ′ =G

G′ =H

H ′ = −1
2 (Fh+ f H)

where























F = ∂f /∂α

G = ∂g/∂α

H = ∂h/∂α

(9)

with the boundary conditions F(0) = 0,G(0) = 0 and H(0) = 1.

Solve both Eqs (8) and Eqs (9) to determine numerically α and thus the function f .

5. From the computation of the f function, check the following properties for a zero-pressure-gradient

laminar boundary layer,

δ0.99
x1
≃ 4.91

Re1/2x1

δ1
x1
≃ 1.72

Re1/2x1

δθ
x1
≃ 0.664

Re1/2x1
cf =

τw
1
2ρU

2
e1

≃ 0.664

Re1/2x1

where δ1 is the displacement thickness and δθ is the momentum thickness. Calculate the expression

of the transverse velocity U2. What value does U2 take when η→∞ ? Provide an interpretation.

6. Show that

U1
∂U1

∂x1
+U2

∂U1

∂x2
= −

U2
e1

2x1
f f ′′

and then, by considering the integration of the momentum equation from the wall to a current point

x2, plot the evolution of the normalized shear stress τ+12 ≡ τ12/τw.
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