Velocity profile of a laminar boundary layer

Consider a laminar two-dimensional boundary layer developing along a flat plate in the presence of a uniform and steady external flow U_e.

Development of a zero-pressure-gradient boundary layer on a flat plate. The transition occurs for $Re = x_1 U_e / \nu \approx 3.2 \times 10^3$, that is $Re_\delta = \delta U_e / \nu \approx 2800$.

1. Recall without demonstration the governing equations for a laminar boundary layer, and very briefly the underlying assumptions.

2. Introduce the stream function ψ defined by $U_1 = \partial \psi / \partial x_2$ and $U_2 = -\partial \psi / \partial x_1$, and show that the problem consists in solving the equation

$$\frac{\partial \psi}{\partial x_2} \frac{\partial^2 \psi}{\partial x_1 \partial x_2} - \frac{\partial \psi}{\partial x_1} \frac{\partial^2 \psi}{\partial x_2^2} = \nu \frac{\partial^3 \psi}{\partial x_2^3}$$

associated with the following boundary conditions,

$$\frac{\partial \psi}{\partial x_2} \bigg|_{x_2=0} = 0 \quad \frac{\partial \psi}{\partial x_1} \bigg|_{x_1=0} = 0 \quad \text{and} \quad \frac{\partial \psi}{\partial x_2} \bigg|_{x_2 \to \infty} = U_e$$

3. Recall very briefly the reasoning that leads to $\delta \sim \sqrt{\nu x_1 / U_e}$. The self similarity variable η is then introduced

$$\eta = x_2 \sqrt{\frac{U_e}{\nu x_1}}$$

and consequently,

$$\psi(x_1, x_2) = \sqrt{U_e \nu x_1} f(\eta)$$

Show that the ordinary differential equation satisfied by f, known as the Blasius equation (1908), reads

$$2f''' + ff'' = 0$$

and provide the associated boundary conditions.
4. In order to solve numerically Eq. (1), this equation is recast into a first-order system (which can be solved using Matlab with ode45.m for example)

\[
\begin{aligned}
&f' = g \\
g' = h \\
h' = -\frac{1}{2}fh \\
\end{aligned}
\]

(2)

over the interval 0 ≤ η ≤ 10, with the following initial conditions at η = 0 : f(0) = 0, g(0) = 0 and h(0) = a. We then seek to determine the value of a by a so-called shooting method, in order to satisfy the outer boundary condition at η = 10, that is \(N(a) \equiv g - 1 = 0 \). A simple and efficiency method is to use a Newton algorithm,

\[a^{n+1} = a^n - \frac{N(a^n)}{\frac{dN}{d\alpha}|_{a^n}} \]

and to observe that the derivative \(\frac{dN}{d\alpha} \) can be obtained by solving, in parallel to (2), the following variational system

\[
\begin{aligned}
&F' = G \\
&G' = H \\
&H' = -\frac{1}{2}(Fh + fH) \\
\end{aligned}
\]

where

\[
\begin{aligned}
F &= \frac{\partial f}{\partial \alpha} \\
G &= \frac{\partial g}{\partial \alpha} \\
H &= \frac{\partial h}{\partial \alpha} \\
\end{aligned}
\]

(3)

with the boundary conditions \(F(0) = 0, G(0) = 0 \) and \(H(0) = 1 \).

Solve both Eqs (2) and Eqs (3) to determine numerically \(a \) and thus the function \(f \).

5. From the computation of the \(f \) function, check the following properties for a zero-pressure-gradient laminar boundary layer,

\[
\begin{aligned}
\delta_{0.99} &\approx 4.91 \frac{x_1}{\text{Re}_{x_1}^{1/2}} \\
\delta^* &\approx 1.72 \frac{x_1}{\text{Re}_{x_1}^{1/2}} \\
\delta_{\theta} &\approx 0.664 \frac{x_1}{\text{Re}_{x_1}^{1/2}} \\
c_f &\approx \frac{\tau_w}{\frac{1}{2}\rho U_1^2} \approx 0.664 \frac{1}{\text{Re}_{x_1}^{1/2}} \\
\end{aligned}
\]

where \(\delta^* \) is the displacement thickness and \(\delta_{\theta} \) is the momentum thickness. Calculate the expression of the transverse velocity \(U_2 \). What value does \(U_2 \) take when \(\eta \to \infty \)? Provide an interpretation.

6. Show that

\[
U_1 \frac{\partial U_1}{\partial x_1} + U_2 \frac{\partial U_1}{\partial x_2} = -\frac{U_1^2}{2x_1} f f'''
\]

and then, by considering the integration of the momentum equation from the wall to a current point \(x_2 \), plot the evolution of the normalized shear stress \(\tau_{12}^{*} \equiv \tau_{12}/\tau_w \). Compare your numerical result to the expression given by Thomas & Hasani

\[
\tau_{12}^{*} \approx 1 - 3 \left(\frac{x_2}{\delta} \right)^2 + 2 \left(\frac{x_2}{\delta} \right)^3
\]

and to the linear approximation

\[
\tau_{12}^{*} \approx 1 - (x_2/\delta).
\]

7. In the presence of an external velocity \(U_{e1} = U_0 x_1^m \) inducing a pressure gradient, the Blasius equation (1) is modified as follows

\[
f''' + \frac{m+1}{2} f f'' + m(1-f'^2) = 0
\]

known as the Falkner & Skan equation. Using the same numerical procedure, compute the velocity profile for \(m = 1 \) and \(-0.09043\), and comment your results (Hint – the guest value for the Newton algorithm is of importance here, since this equation sometimes admits two solutions; this guest value can be estimated by continuation from the Blasius solution \(m = 0 \))
References

