Instabilité des écoulements et introduction à la turbulence - ECL S7 FLE-a1

http://acoustique.ec-lyon.fr

Travaux dirigés : analyse de signaux turbulents

Turbulent subsonic round jet

Turbulent velocity signals have been measured using x-hot-wire anemometer in a round subsonic jet. The signals have been recorded in data files, refer to Table 1, and collected in the zip file *hwa.zip* to download.

$u_1 \& u_2$	$u_1 \& u_2$	$u_1 \& u_3$	$u_1 \& u_3$
$x_2 = 0, x_3 = 0$	$x_2 = D/2, x_3 = 0$	$x_2 = 0, x_3 = 0$	$x_2 = 0, x_3 = D/2$
data1.dat	data2.dat	data3.dat	data4.dat

Matlab script
$$\begin{cases} load\ data1.m \\ t = data1(:,1); \\ u_1 = data1(:,2); \\ u_2 = data1(:,3); \end{cases}$$

Table 1 – Turbulent velocity signals for a free round jet of diameter D = 50 mm and exit velocity $U_j = 30 \text{ m.s}^{-1}$, corresponding to a Reynolds number value of $\text{Re}_D \simeq 10^5$. The Cartesian coordinates are denoted by (x_1, x_2, x_3) where x_1 is associated with the jet axis, and (u_1, u_2, u_3) are the velocity components. The hotwire probe is located at $x_1 = 2D$.

You can conduct your study fairly freely, but the following points may be considered:

1. For a point located in the jet shear layer $(x_2 = D/2 \text{ ou } x_3 = D/2)$, extract the time signature of $u_1'(t)$, calculate $u_{1\text{rms}}' = (\overline{u_1'^2})^{1/2}$, the skewness S_1 and the flatness T_1 coefficients defined by

$$S_1 = \frac{\overline{u_1'^3}}{(\overline{u_1'^2})^{3/2}} \qquad T_1 = \frac{\overline{u_1'^4}}{(\overline{u_1'^2})^2}$$

- 2. Compare your results with a Gaussian distribution for the longitudinal velocity u_1^\prime and comment.
- **3.** What is the following quantity $(\overline{u_1^2} \overline{u_1}^2)^{1/2}$? Compare this definition to the classical expression of the standard deviation.
- **4.** Calculate the previous statistics for the time derivative of the longitudinal velocity component $\partial u'_1/\partial t$.
- **5.** Calculate the available Reynolds tensor components $\overline{u'_i u'_j}$ on the jet axis and in the shear layer. Comment your results, what is expected?
- **6.** Consider now the probability density function of $u'_i u'_j$ in the shear layer. Plot this function and comment your result.
- 7. By splitting the time signal $u'_1(t)$ into n segments, that are considered as n statistically independent realizations, verify that turbulence is stationary. What is the appropriate time length of each segment?

8. Calculate the time correlation function $R(\tau)$ of the signal $u_i'(t)$ in the jet shear layer and the integral time Θ , defined as

$$R(\tau) = \frac{\overline{u_1'(t)u_1'(t+\tau)}}{\overline{u_1'^2}} \quad \text{and} \quad \Theta = \int_0^{+\infty} R(\tau)d\tau$$

- **9.** How can you link the integral time scale Θ to the longitudinal integral length scale L, obtained from the space correlation of u'_1 in the x_1 direction.
- **10.** Calculate and plot the power spectral density of u'_1 and u'_2 measured at $x_2 = D/2$ (hint : there is a short introduction to Matlab for signal processing on the website).