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x Introduction q

Turbulent flows

- unsteady aperiodic motion

- unpredictable behaviour

- presence of a wide range of time and space scales

Turbulence appears when the source of the kinetic energy which drives the fluid

motion is able to overcome viscosity effects, that is the Reynolds number must be

sufficiently large

- astrophysics, geophysical flows including ocean circulation, climate, wea-

ther forecast, hydrology, dispersion of aerosols

- external aerodynamics for aeronautics & ground transportation, internal

flows in mechanical engineering, biomechanics, biological flows

- noise of turbulent flows (aeroacoustics), sound propagation (atmosphere,

ocean), fluid-solid interaction and vibroacoustics
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x Introduction q

Non-linearity of Navier-Stokes’ equations

ρ

(

∂u

∂t
+u · ∇u

)

= −∇p +µ∇2u

The non-linear nature of the convective acceleration u · ∇u is at the origin of the

development of a large range of space and time scales, that are observed in a

turbulent flow.

A (too) simple example illustrating the generation of harmonics is based on the

simplified equation ∂tu +u · ∇u = 0, with u = (u1,u2) in 2-D. By assuming that at

time t0,








u1 (x1,x2, t0) = Acos(k1x1)sin(k2x2)

u2 (x1,x2, t0) = Bsin(k1x1)cos(k2x2)

with Ak1 +Bk2 = 0 to satisfy the incompressibility condition ∇ ·u = 0
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x Introduction q

Non-linearity of Navier-Stokes’ equations (cont.)

A Taylor series of the velocity u around t0 provides

u(x, t) = u(x, t0) + (t − t0)∂tu|t0 + ... with ∂tu|t0 = −u · ∇u|t0

As an illustration, one gets for u1

u1 (x1,x2, t) = Acos(k1x1)sin(k2x2)

+ (t − t0)
k1A

2

2

[

cos(2k1x1)sin
2(k2x2) + sin(2k1x1)cos

2(k2x2)
]

+ ...

It can be noted the production of higher harmonics (2k1,2k2, k1 + k2), that is of

larger wavenumbers corresponding to smaller structures, and also of smaller har-

monics (k1 − k2)

What is a turbulent structure of wavenumber k ?

What is the smallest structure that can survive in the flow, before destruction by

viscosity ?
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x Introduction q

Representation in spectral space

Model of a turbulent structure of

wavenumber k : energy is contained in a

narrow band around k = 2π/l, where l is a
characteristic length scale, see figure on the

right

A real turbulent structure (vortex or eddy)

can be decomposed into waves of different

wavelengths, with their amplitude and

phase, using Fourier transform

Various other decompositions can also be

used (wavelets for instance)

A structure of wavenumber k (of size ∼ 1/k)
can be seen as an elementary component of

the previous decomposition

-2 -1 0 1 2

f (r) = cos(kr)exp(− log(2)(r/r0)2)
with r0 = 4/k here

The Fourier transform of f is cente-

red around k
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x Introduction q

Viscous scales

The energy transfer induced by the convective acceleration u · ∇u is stopped by

the molecular viscosity (impossible to preserve small structures with too large

velocity gradient)

Smallest structures uη kη ∼ 1/lη

∂u

∂t
≃ ν∇2u (Stokes)

The balance between the two terms

∂u

∂t
∼
u2
η

lη
ν∇2u ∼ ν

uη

l2η

leads to

Reη =
lηuη

ν
∼ 1

These viscous scales (uη, lη), also called Kolmogorov’s scales, are the smallest

scales of the flow allowed by viscosity. They impose the spatial resolution ne-

cessary for measurement or simulation
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x Introduction q

Turbulence is part of continuummechanics
Viscous scale lη wrt the free mean path λl of molecules

Knudsen number Kn =
λl

lη
≪ 1

Sensitivity to initial conditions

The nonlinearity of the Navier-Stokes equations does not allow the time evolution

of turbulent fields to be predicted over a long period. The reason for this is that a

small difference in the initial conditions introduces significant differences as time

goes, linked to the largest Lyapunov exponent for chaotic systems.

An initial separation of 1 cm between two fluid particles in the atmosphere results

in a 10 km separation within just a day, the butterfly effect in chaos theory !

Ruelle, D. and Takens, F., 1971, On the nature of turbulence, Commun. Math. Phys., 20, 167–192
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x Introduction q

Mean and fluctuating quantities

The statistical mean F̄(x, t) of a variable f (x, t) is defined as

F̄(x, t) = lim
N→∞

1

N

N∑

i=1

f (i) (x, t)

where f (i) is the i-th realization : convenient when manipulating equations but

difficult to implement in practice, or even impossible for geophysical flows !

Can we approximate the ensemble mean F̄ of f = F̄+f ′ by a sufficiently long time

average FT of one realization only?

FT =
1

T

∫ T

0

f (t)dt
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x Introduction q

Time average

Time average makes sense only if turbulence is stationary, that is statistics are

independent of time. The autocorrelation coefficientR is then only an even func-

tion of the time separation τ

R(τ) = f ′(t)f ′(t + τ)

f ′2

We can estimate the difference between FT obtained by a finite integration time

and the true (ensemble) mean value F̄ by considering

FT − F̄ =
1

T

∫ T

0

[

f (t)− F̄
]

dt =
1

T

∫ T

0

f ′(t)dt

The mean square value is

(FT − F̄)2 =
1

T

∫ T

0

f ′(t1)dt1 ×
1

T

∫ T

0

f ′(t2)dt2
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x Introduction q

Time average (cont.)

By taking the statistical average, that is (FT − F̄)2, one has

(FT − F̄)2 =
f ′2

T 2

�

D
R(t2 − t1)dt1dt2 =

f ′2

T 2

�

D′
R(τ)dt1dτ τ = t2 − t1

The integration over t1 can be achieved by

splitting the domain D′ as follows,
�

D′
R(τ)dt1dτ

=

∫ T

0

(T − τ)R(τ)dτ +
∫ 0

−T
(T + τ)R(τ)dτ

= 2

∫ T

0

(T − τ)R(τ)dτ

t1T

t2
T

0

D

t10

τ

T

−T

D′

T − τ (τ ≥ 0)

T + τ (τ ≤ 0)
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x Introduction q

Time average (cont.)

The mean square error between FT and the true mean value F̄ can thus be esti-

mated as

(FT − F̄)2 = 2
f ′2

T

∫ T

0

(

1− τ

T

)

R(τ)dτ ≃ 2
f ′2

T

∫ T

0

R(τ)dτ ≃ 2f ′2
Θ

T

if the time integration T is much longer than

the integral time scale Θ, defined by

Θ =

∫ τ⋆

0

R(τ)dτ

where τ⋆ =∞ or the first zero crossing of

R(τ) in practice

The term τ/T is then small in the range of τ
where R(τ) is non-zero, and the time average

value FT → F̄ as T →∞
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 0.0

 0.2

 0.4
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 1.0

R(τ) e−τ/Θ

Θ ≃ 0.3D/Uj

Subsonic jet at ReD = 105

x1 = 0, x2 = 2D
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x Introduction q

Ergodicity

By considering the time average in signal processing to approximate the ensemble

mean, we assume that turbulence is an ergodic process.

Ergodicity expresses the idea that a trajectory of a dynamical system (of a sto-

chastic process signal) will eventually visit all parts of the phase space in which

the system moves, in a uniform and random direction. Statistical properties can

thus be deduced from a single (sufficiently long) realization.
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x Introduction q

Textbooks

Batchelor, G.K., 1967, An introduction to fluid dynamics, Cambridge University Press, Cambridge.

Bailly C. & Comte Bellot G., 2003 Turbulence, CNRS éditions, Paris (out of print).

——–, 2015, Turbulence (in english), Springer, Heidelberg.

(360 pages, 147 illustrations, Foreword by Charles Meneveau)

Bailly C. & Comte Bellot G., 2003, Turbulence (in french), CNRS éditions, Paris.

——–, 2015, Turbulence (in english), Springer, Heidelberg.

Springer, ISBN 978-3-319-16159-4,

360 pages, 147 illustrations.

Candel S., 1995, Mécanique des fluides, Dunod Université, 2nd édition, Paris.

Davidson P.A., 2004, Turbulence. An introduction for scientists and engineers, Oxford University Press, Oxford.

Davidson, P.A., Kaneda, Y., Moffatt, H.K. & Sreenivasan, K.R., Edts, 2011, A voyage through Turbulence, Cambridge

University Press, Cambridge.

Guyon E., Hulin J.P. & Petit L., 2001, Physical hydrodynamics, EDP Sciences / Editions du CNRS, première édition

1991, Paris - Meudon.
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x Introduction q

Textbooks (cont.)

Hinze J.O., 1975, Turbulence, McGraw-Hill International Book Company, New York, 1ère édition en 1959.

Landau L. & Lifchitz E., 1971, Mécanique des fluides, Editions MIR, Moscou.

Also Pergamon Press, 2nd edition, 1987.

LesieurM., 2008, Turbulence in fluids : stochastic and numerical modelling, Kluwer Academic Publishers, 4th revised

and enlarged ed., Springer.

Pope S.B., 2000, Turbulent flows, Cambridge University Press.

Tennekes H. & Lumley J.L., 1972, A first course in turbulence, MIT Press, Cambridge, Massachussetts.

Van Dyke M., 1982, An album of fluid motion, The Parabolic Press, Stanford, California.

White F., 2005, Viscous fluid flow, 3ed Ed., McGraw-Hill, Inc., New-York (1st Ed. 1974).
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x Organization of the course q

Outline

The main objectives are the mastery of basic concepts (turbulence production,

turbulence boundary layer, role of vorticity, homogeneous and isotropic turbu-

lence, Kolmogorov theory), the development of skills in turbulence modeling, the

critical analysis of results, and the acquisition of a global vision of experimental

approaches.

Introduction

Statistical description of turbulent flows

Wall-bounded turbulent flows

Dynamics of vorticity

Homogeneous and isotropic turbulence

Dynamics of isotropic turbulence – Kolmogorov’s theory

Introduction to experimental techniques
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x Organization of the course q

Outline (cont.)

Practical work

Lab-session Numerical simulation of the mean flow in a channel

BE1 – Small class of 4 hours - exercices

BE2 – Small class of 4 hours to solve a complete problem

Auditors : you are invited to follow these practical activities

(Let us know about it !)

Teaching team Christophe Bailly

Christophe Bogey
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x Organization of the course q

Assessment for this course

There are one practical lab session, and two small classes of 4h (so-called ‘BE’,

may involve signal processing, coding of simple models using Matlab and ana-

lytical developments). For 3rd year students, the grade is obtained with BE

60% and lab work 40%.

Absence : it is possible to exceptionally modify a lab session, only by exchan-

ging your session with that of another student.

Master student, additional final exam (closed book and open notes), wednes-

day 20 december 2023. The final mark will be the max between – the final

exam mark – and (50% final exam + 30% BE + 20% lab work).

Course slides can be downloaded by following this link

https://acoustique.ec-lyon.fr/christophe.bailly.php#turbulence
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x Glossary q

airfoil profil

bluff body corps non profilé

boundary layer couche limite

bulk velocity vitesse de débit

buoyancy flottabilité

curl rotationnel

chord corde

conservative force force qui dérive d’un potentiel (gravité par exemple)

creeping flow écoulement rampant

Darcy friction coefficient coefficient de pertes de charge

drag traînée

density (mass per unit volume) masse volumique

efficiency rendement

energy head charge

friction velocity vitesse de frottement

head loss perte de charge

inviscid flow écoulement non visqueux

leading edge bord d’attaque (d’un profil)

lift portance

lift-to-drag ratio finesse

mass fraction fraction massique

mixture mélange

point vortex tourbillon ponctuel
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x Glossary q

relative density densité

shaft work travail de l’arbre (d’une machine tournante)

skin-friction coefficient coefficient de frottement

slip boundary condition condition aux limite glissante

stall décrochage

strain (deformation) tensor tenseur des déformations

stream function fonction de courant

streamlined body corps profilé

stress tensor tenseur des contraintes

thrust poussée

torque (angular momentum) couple

trailing edge bord de fuite (d’un profil)

vortex shedding frequency fréquence du lâcher tourbillonnaire

vortex sheet nappe (infiniment mince) de vorticité

wake sillage

wall shear stress contrainte pariétale

aka also known as

wrt with respect to
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x Notations q

Both indicial and boldface notations are used to indicate vectors

vector U ≡ −→U , i-th component Ui, norm U , U2 =U ·U
gravity g, gi = −gδ3i, g = (g1, g2, g3) = (0,0,−g), g = 9.81 m.s−2

density ρ (kg.m−3)
δij Kronecker delta

Einstein summation convention

When an index variable appears twice in a single term (dummy index), it implies

summation of that term over all the values of the index.

Scalar product between two vectors a and b

a · b =
3∑

i=1

aibi = aibi (dummy index i repeated)

Short quiz δijaj =? δijδij =?
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x Notations q

Differential operators (expressed in Cartesian coordinates here)
The dot symbol · is never decorative : scalar product

Gradient

b = ∇f ≡ −−−−→grad f bi =
∂f

∂xi

Divergence

∇ ·U = div(U) =
3∑

i=1

∂Ui

∂xi
=
∂Ui

∂xi

Laplacian

∇2f = ∆f =

3∑

i=1

∂2f

∂xi∂xi
=

∂2f

∂xi∂xi

Curl

∇×U =
−−→
rot U
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x Notations q

Differential operators (cont.)

Explicit expression of the velocity gradient tensor ∇U

∇U
∣
∣
∣
ij
=
∂U

∂x

∣
∣
∣
∣
∣
ij

=

















∂U1

∂x1

∂U1

∂x2

∂U1

∂x3
∂U2

∂x1

∂U2

∂x2

∂U2

∂x3
∂U3

∂x1

∂U3

∂x2

∂U3

∂x3
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x Notations q

Differential operators (cont.)

Divergence theorem : the involved surface is a closed surface

(domain D bounded by the surface S and n unit outward normal vector)

∫

D
∇ ·A dV =

∫

S
A ·n dS

for any given tensor A.

As an illustration, one has for the pressure term :

∫

D
∇p dV =

∫

D
∇ · (pI) dV =

∫

S
pI ·n dS =

∫

S
pn dS
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x Statistical description q

Statistical description of turbulent flow
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x Statistical description q

Introduction

The objective of this chapter is to establish the equations governing the mean flow

field, and then to provide some hints on the closure of these equations.

For a given variable f , the Reynolds decomposition into mean and fluctuating

components is introduced, f = F̄ + f ′. For a stationary turbulence, F̄(x, t) = F̄(x),
and the mean average can be well estimated by the time average of one realiza-

tion, as discussed in the previous chapter.

A dual configuration is often considered for homogeneous turbulence. Statistics

are independent of space, in particular F̄(x, t) = F̄(t). The ensemble mean is then

usually approximated by spatial average,

F̄(t) =
1

V

∫

V

f (x′, t)dx′
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x Statistical description q

Properties of Reynolds decomposition

The statistical mean is a linear operator, which commutes with time and space

derivative operators (the so-called rules of Reynolds)

Centered fluctuating field

f ≡ F̄ + f ′ with f ′ = 0 (f ′ = f − F̄, and f ′ = F̄ − F̄ = 0)

Product of two variables f and g

f g ≡ (F̄ + f ′)(Ḡ + g ′) = F̄Ḡ + F̄g ′ + f ′Ḡ + f ′g ′

and thus,

f g = F̄ Ḡ + F̄ g ′ + f ′ Ḡ + f ′g ′ = F̄ Ḡ + f ′g ′

f ′g ′ is a new second-moment unknown variable

Philosophy of the Reynolds decomposition, ui ≡ Ūi + u ′i with u ′i = 0

Ūi part which can be reasonably calculated

u ′i part which must be modelled (turbulent fluctuations)
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x Statistical description q

The Reynolds Averaged Navier-Stokes (RANS) equations

For an incompressible flow ∇ ·u = 0 with constant density ρ = cst to simplify, the

Navier-Stokes equations are given by

∂ui

∂xi
= 0

∂ (ρui)

∂t
+

∂

∂xj

(

ρuiuj

)

= −∂p
∂xi

+
∂τij
∂xj

τij = 2µsij sij =
1

2

(

∂ui

∂xj
+
∂uj

∂xi

)

By introducing the Reynolds decomposition, and taking the average

ui ≡ Ūi +u ′i p ≡ P̄ + p′ τij ≡ τ̄ij + τ′ij

∂Ūi

∂xi
= 0 =⇒ ∂u ′i

∂xi
= 0

∂(ρŪi)

∂t
+
∂(ρŪi Ūj)

∂xj
= −∂P̄

∂xi
+

∂

∂xj

(

τ̄ij−ρu ′iu ′j
)
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x Statistical description q

Reynolds Averaged Navier-Stokes (RANS) equations

−ρu ′iu ′j Reynolds stress tensor (new unknown)

Generally this term is larger than the mean viscous stress tensor except for wall

bounded flows, where viscosity effects become preponderant close to the wall.

Total stress seen by the fluid, τt = τ̄ij − ρu ′iu ′j

closure problem

for −ρu ′iu ′j
by writting a transport equation for −ρu ′iu ′j
by directly modelling the Reynolds stress tensor

The study of the turbulent kinetic energy balance gives a global view on the

energy exchange between the mean field and the turbulent field, and allows to

identify the term(s) responsible of the production of this turbulent kinetic energy.
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x Statistical description q

Kinetic energy budget of the mean flow

Ūi ×
{

∂(ρŪi)

∂t
+
∂(ρŪiŪj)

∂xj
= −∂P̄

∂xi
+

∂

∂xj

(

τ̄ij − ρu ′iu ′j
)
}

and
∂Ūi

∂xi
= 0

The final result can be recast as

ρ
D̄

Dt

(

Ū2
i

2

)

= ρu ′iu
′
j

∂Ūi

∂xj
− τ̄ij

∂Ūi

∂xj
−∂(ŪiP̄)

∂xi
+

∂

∂xj
(Ūiτ̄ij)−

∂

∂xj
(Ūi ρu

′
iu
′
j)

︸                                          ︷︷                                          ︸

transport terms

where D̄/Dt ≡ ∂/∂t + Ū · ∇ = ∂/∂t + Ūj ∂/∂xj is the material derivative along the

mean flow. We recall that

ρ
D̄ϕ

Dt
= ρ

(

∂ϕ

∂t
+ Ū · ∇ϕ

)

=
∂(ρϕ)

∂t
+∇ · (ρϕŪ)
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x Statistical description q

Kinetic energy budget of the mean flow (cont.)

Transport terms are terms of the form ∇ ·F , with F̄j = Ūi ρu
′
iu
′
j for instance. From

the divergence theorem,
∫

V
∇ ·F dV =

∫

S
F ·n dS→ 0

if F̄ tends to zero on the control surface S . In general, these terms act to homoge-

nise F inside the volume V .

By integration over a control volume including the turbulent region of the flow,

the kinetic energy budget is reduced to

∫

V
ρ
D̄

Dt

(

Ū2
i

2

)

dS =

∫

V
ρu ′iu

′
j

∂Ūi

∂xj
dS −

∫

V
τ̄ij

∂Ūi

∂xj
dS

variation of the

kinetic energy

inside V

in general, transfer

to the turbulent

field

dissipation of the

kinetic energy by

viscous effects
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x Statistical description q

Kinetic energy budget of the fluctuating field

To derive the transport equation on ρu ′2i /2, we first consider the equation for the

fluctuating velocity u ′i , obtained by substraction between

and



















∂(ρui)

∂t
+

∂

∂xj
(ρuiuj) = −

∂p

∂xi
+
∂τij
∂xj

∂(ρŪi)

∂t
+
∂(ρŪi Ūj)

∂xj
= −∂P̄

∂xi
+

∂

∂xj
(τ̄ij − ρu ′iu ′j)

which provides

∂
(

ρu ′i
)

∂t
+

∂

∂xk

[

ρ(u ′iŪk + Ūiu
′
k +u ′iu

′
k)
]

= −∂p
′

∂xi
+

∂

∂xk

(

ρu ′iu
′
k + τ′ik

)

That equation is thenmultiplied by u ′i and statistically averaged, by remembering

that ∂u ′i/∂xi = 0. One obtains,
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Kinetic energy budget of the fluctuating field (cont.)

ρ
D̄kt
Dt

= −ρu ′iu ′k
∂Ūi

∂xk
− τ′ik

∂u ′i
∂xk
−1
2

∂

∂xk
ρu ′iu

′
iu
′
k −u ′i

∂p′

∂xi
+

∂

∂xk
u ′iτ

′
ik

︸                                     ︷︷                                     ︸

transport terms

kt ≡
1

2
u ′iu

′
i =

u ′21 + u ′22 +u ′23
2

(mean) turbulent kinetic energy (m2.s−2)

Homogeneous turbulence case : statistical properties of turbulence are independent

of the observer position x, leading to

ρ
D̄kt
Dt

= −ρu ′iu ′j
∂Ūi

∂xj
− τ′ik

∂u ′i
∂xk

variation of the

kinetic energy along

the mean flow

energy transfer

between the mean

and turbulent fields

dissipation of the

turbulent kinetic energy

by viscous effects
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Kinetic energy budget of the fluctuating field (cont.)

Dissipation rate of kt

ρǫ ≡ τ′ik
∂u ′i
∂xk

= 2µ s′2ij =
1

2
µ









∂u ′i
∂xj

+
∂u ′j
∂xi









2

≥ 0 (ǫ ∼m2.s−3)

Homogeneous turbulence case

ρ
D̄kt
Dt

= −ρu ′iu ′k
∂Ūi

∂xk
− τ′ik

∂u ′i
∂xk

= −ρu ′iu ′k
∂Ūi

∂xk
− ρǫ P ≡ −ρu ′iu ′j

∂Ūi

∂xj
?
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Heuristic interpretation of the term P

x1

x2
Ū1

{

u ′2 > 0

u ′1 < 0
u ′1u

′
2 < 0

{

u ′2 < 0

u ′1 > 0
u ′1u

′
2 < 0

Therefore, a positive production term is expected

P ≃ −ρu ′1u ′2
dŪ1

dx2
> 0

The term P is generally a production term for the

turbulent kinetic energy kt.
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Transfers between the mean flow and the turbulent field

mean
field

fluctuating
field

heat
(internal energy)

P = −ρu ′iu ′j
∂Ūi

∂xj

τij
∂Ūi

∂xj
ρǫ = τ′ij

∂u ′i
∂xj

T = T̄ +θ′ a = λ/(ρcp)

∂T̄

∂t
+
∂(ŪjT̄ )

∂xj
= − ∂

∂xj

(

−a∂T̄
∂xj

+θu ′j

)

+
1

ρcp

(

τ̄ij
∂Ūi

∂xj
+ τ′ij

∂u ′i
∂xj

)
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Small exercise : fluctuating irrotational field

The necessary rotational feature of a turbulent velocity field has been emphasized

by Corrsin & Kistler (1954)

1. Remind the definition of an irrotational flow

2. By considering the following quantity

u ′i

(

∂u ′i
∂xj
−
∂u ′j
∂xi

)

demonstrate that
∂

∂xi
u ′iu

′
j =

∂kt
∂xj

3. Deduce the form of the RANS Equation for the case of a fluctuating irrotational velocity field,

and comment carefully your result.

4. Is the Reynolds tensor diagonal for an irrotational flow?
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Turbulent viscosity concept for the Reynolds tensor
Boussinesq model (1877)

By analogy with the definition of the viscous tensor τ, the Reynolds stress

tensor −ρu ′iu ′j is modelled by

−ρu ′iu ′j = 2µtS̄ij −
2

3
ρktδij = µt

(

∂Ūi

∂xj
+
∂Ūj

∂xi

)

− 2
3
ρktδij

turbulent viscosity µt = µt(x, t) : intrinsic property of the turbulent flow, and

not of the fluid as the molecular viscosity.

There is still a closure problem since the expression of µt is not defined

(6 unknowns u ′iu
′
j → 1 unknown µt).

A consequence of the turbulent-viscosity hypothesis is that P = 2µtS
2

ij ≥ 0 by

construction : always a positive energy transfer towards the turbulent field.
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Application to free shear flows (jet, wake, mixing layer)

Mean velocity field (Ū1, Ū2), and slowly variable flow along the x1 direction,
that is ∂/∂x1≪ ∂/∂x2 : quasi-homogeneous flow in the x1 direction

Averaged Navier-Stokes equation along the x1 axis

∂(Ū1Ū1)

∂x1
+
∂(Ū1Ū2)

∂x2
= − ∂P̄

∂x1
+

∂

∂x1
(τ̄11 − ρu ′1u ′1) +

∂

∂x2

(

τ̄12 − ρu ′1u ′2
)

The total stress τt acting on the fluid reads

τt = τ̄12−ρu ′1u ′2 = µ
dŪ1

dx2
+µt

dŪ1

dx2
= (µ+µt)

dŪ1

dx2

The total stress τt is therefore null when the mean velocity profile Ū1

reaches a local extremum. Furthermore, it is also expected that µ≪ µt
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Illustration for a subsonic round jet
M = 0.16 and ReD = 9.5× 104 (from Hussein, Capp & George, 1994)

0.00 0.05 0.01 0.15 0.20 0.25
0.0

0.2

0.4

0.6

0.8

1.0

r/(z − z0)

Ū
z
/
U

a
x
e

0.00 0.05 0.10 0.15 0.20
0.0

0.5

1.0

1.5

2.0

2.5

r/(z − z0)

u
′ r
u
′ z
/
U

2 a
x
e
×

1
0
0

Ūz/Uaxis u ′ru
′
z/U

2
axis

r

zzc

δl Uaxis

Ūz(r,z)nozzle

potential core (z0 fictitious origin
of the self-similar flow)
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Two famous counter-examples (asymmetrical mean flow)

channel flow with smooth and rough surfaces (Hanjalić & Launder, 1972)

plane wall jet (Mathieu, 1967)

jet

wall

-1.5 -1 -0.5 0 0.5 1

0.5

1

1.5

2

x2/x
⋆
2

b
b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

100τt/ρŪ
2
1max

τw

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

Ū1/Ū1max

Ū1max

Plane wall jet (nozzle exit)

Re ≃ 2× 104

τt = µ
dŪ1

dx2
− ρu ′1u ′2
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Some practical consequences

The total shear is usually much higher in turbulent régime :

Reattachment of a turbulent boundary layer after detachment

(and possible relaminarisation)

Reduction of flow separation regions : the drag crisis phenomenon.

The boundary layer separation point is moved downstream along a bluff body,

with a reduction of the total drag with respect to the laminar regime : the

increase in friction induced by turbulence is compensated by the reduction of

the pressure drag, induced by the turbulent wake.
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Flow past a sphere

ONERA / DAFE, water tunnel, ReD = 103
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Flow past a sphere

ReD = 1.5× 104 ReD = 3.0× 104 with a trip wire

ONERA, Werle (1980) in An album of fluid motion, Van Dyke (1982)

Sphere : critical Reynolds number RecD ≃ 3×105
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Flow around a bluff body

Drag crisis – critical Reynolds number for which the flowpattern changes, leaving

a narrower turbulent wake : the boundary layer on the front surface becomes

turbulent

RANS equation

ρ

(

∂Ū

∂t
+ Ū · ∇Ū

)

= −∇P̄ +∇ · (R+ τ)

R Reynolds stress tensor

Rij ≡ −ρu ′iu ′j

Fflow→ body ≡ F =

∫

Sw
−P̄n dS +

∫

Sw
τ ·n dS (remembering that R = 0 on Sw)

Mean drag force FD = F · e∞ = pressure drag (form drag) + skin friction drag

A streamlined body looks like an airfoil at small angles of attack (narrow wake), whereas a bluff

body looks like a sphere, or an airfoil at large angles of attack. For streamlined bodies, frictional

drag is the dominant term. For a bluff body, drag is dominated by the pressure term
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Drag coefficient for a smooth sphere (adapted from Clift, Grace, & Weber, 1978)

ReD = 103 (ONERA)

ReD = 1.5× 104 (Van Dyke, 1982)

ReD ≃ 4× 105 (Werlé, 1987)

RecD ≃ 3× 105
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Why golf balls have dimples?

Moin & Kim, 1997, Scientific American

Drag coefficient of spheres with varying surface

roughness. The drag crisis or sudden drop in drag as

Reynolds number increases occurs when the boundary

layer transitions to turbulence upstream of separation

D = 4.3 cm, U ≃ 67 m.s−1, Re ≃ 1.9× 105 (professional golfer)

Munson et al., 2014, Fundamentals of fluid mechanics
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Vortex generators for delaying boundary layer separation

Beechcraft Baron

(twin-engined piston aircraft)

Boeing-777-3ZG-ER

http://www.airliners.net/
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Boundary layer separation

Separation of the laminar boundary

layer on a body of revolution

(Rankine ogive, ReD = 6000). The

boundary layer becomes quickly

turbulent and then reattaches to the

surface, enclosing a short thin region

of recirculation flow (visualization

by air bubbles in water)

Werlé (ONERA) in Van Dyke (1982, fig. 33)
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Elite cyclist : reduction of drag ... (Blocken & Toparlar, J. Wing. Eng. Ind. Aerodyn., 2015)

... when a cyclist is followed by a car

For a 50 km individual time trial : 3 ≤ d ≤ 10 m =⇒ 1 mm→ 4 s time reduction !

Recommendation for UCI, d ≥ 30 m
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Run a new marathon record in under two hours

Elite runner Eliud Kipchoge became the first

person to run a marathon in under two hours in

Vienna (INEOS 1 :59 Challenge on 12th Oct. 2019,

unofficial race in 1 :59 :40). He is assisted by seven

pacers, five forming an inverted arrow in front of

him and two others behind him

Drafting formation used to reduce air resistance by positioning

other pacers around the top runner

Mannequins mounted

around the main runner

(fixed on the load cell

support) in wind tunnel to

replicate the formation

used by Eliud Kipchoge
(drag reduced by 50%)

Swordfish-shaped
arrangement of seven
pacers that lowered the air

resistance on the top

runner by about 60%

compared with a solo

runner

The identified swordfish-shaped configuration, a skinny diamond in front of the top

runner and two pacers in the back, would save roughly four minutes off of a

marathon time. Eliud Kipchoge could reduced his time by an additional 40 seconds

Massimo Marro, Jack Leckert, Ethan Rollier, Pietro Salizzoni and Christophe Bailly

Wind tunnel evaluation of novel drafting formations for an elite marathon runner,
Proc. Roy Soc. A, 479, 2023

51 Centrale Lyon | LMFA Physics of turbulent flow – cb1 – 13-12-2023



xWall-bounded turbulent flow q

Wall-bounded turbulent flow
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Two main classes of wall flows : confined flows & external flows

x1

x2

δ(x1)

Ue1

Ū1(x1,x2)

x2

x1

Ū1(x2)2h

flat-plate boundary layer

Reδ =
Ue1δ

ν
fully turbulent for Reδ ≥ 2800

channel flow

Re2h =
Ud2h

ν
(Ud bulk velocity)

fully turbulent for Re2h ≥ 1800

homogeneous flow along x1
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Fully developed channel flow

Reynolds-Averaged Navier-Stokes equations : Ū1 = Ū1(x2) and Ū2 = Ū3 = 0.

In addition, the flow is homogenous along x1
















0 = − ∂P̄
∂x1
− d

dx1
(ρu ′21 ) +

d

dx2

(

µ
dŪ1

dx2
− ρu ′1u ′2

)

(i)

0 = − ∂P̄
∂x2
− d

dx1
(ρu ′1u

′
2)−

d

dx2

(

ρu ′2u
′
2

)

(ii)

By integration of Eq. (ii) from the wall (x2 = 0) to a current point x2,
one obtains

P̄ (x1,x2) = P̄w − ρu ′2u ′2

where P̄w = P̄ (x1,x2 = 0) is the mean wall pressure (measurable quantity)
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Fully developed channel flow

The Navier-Stokes equation (i) can now be rewritten as

0 = −dP̄w
dx1

+
d

dx2

(

−ρu ′1u ′2 +µ
dŪ1

dx2

)

︸                ︷︷                ︸

τ̄t (x2)

τ̄t mean total stress applied to the fluid

By integration along the transverse direction again, up to a current point x2

dP̄w
dx1

x2 = −ρu ′1u ′2 +µ
dŪ1

dx2
− τ̄w where τ̄w ≡ µ

dŪ1

dx2

∣
∣
∣
∣
∣
∣
x2=0

where τ̄w is the mean shear stress at the wall.
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Fully developed channel flow

Introduction of the friction velocity

uτ ≡
√

τ̄w/ρ

The friction velocity is the characteristic turbulent velocity scale for the turbulent

boundary layer near the wall. In particular, |u ′iu ′j | ∼ u2
τ

There is a direct link between this friction velocity and the pressure drop. For

x2 = h, that is on the symmetry plane of the channel, one has

dP̄w
dx1

h = −τ̄w =⇒ u2
τ = −

1

ρ

dP̄w
dx1

h = cst for a pipe flow

In the end, the mean velocity Ū1 is governed by

u2
τ

(
x2
h
− 1

)

−u ′1u ′2 + ν
dŪ1

dx2
= 0 or equivalently τ̄t = τ̄w

(

1− x2
h

)

(1)

56 Centrale Lyon | LMFA Physics of turbulent flow – cb1 – 13-12-2023



xWall-bounded turbulent flow q

Fully developed channel flow
Plane channel of width 2h ≡ 2D (Comte-Bellot, 1965)

(wall) (axis)

5.7× 104 ≤ Reh ≤ 2.3× 105 Reτ = 178,392,587

57 Centrale Lyon | LMFA Physics of turbulent flow – cb1 – 13-12-2023



xWall-bounded turbulent flow q

Fully developed channel flow
Geneviève Comte-Bellot (PhD thesis, Grenoble in 1963)
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Small exercise : skin-friction coefficient for a circular pipe

p1 p2

D
n1

S 1. Identify the following equation,

ρ
Du

Dt
= ∇ ·σ

2. For a pipe of diameter D and length L, write the

integral momentum conservation.

3. By introducing the wall shear stress τw, and the

skin-friction coefficient Cf = τw/(ρU
2
d /2) where

Ud is the bulk velocity, show that the head pres-

sure lost ∆p = p1 − p2 can be recast as

∆p = 4Cf
L

D

1

2
ρU2

d

4. Now consider in the above Reynolds’ decompo-

sition : what should be changed?
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Small exercise : skin-friction coefficient for a circular pipe

10
0

10
2

10
4

10
6

10
8

10
-3

10
-2

10
-1

10
0

laminar
regime

turbulent regime

transition Re ≃ O(103)

laminar regime Cf = 16/Re

Blasius’ relationship, Cf ≃ 0.0791Re−1/4

1/C1/2
f ≃ 3.860log10(ReC

1/2
f )− 0.088

• Oregon facility

� Princeton Superpipe

McKeon et al. (2004) - Superpipe, the

Reynolds number is increased through

the pressure

Laminar versus turbulent regime

ez
D U (r)Ū(r)
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Turbulent boundary layer equations

Prandtl’s approximations (δ≪ L) for the RANS equations

Conservation of mass

∂Ū1

∂x1
+
∂Ū2

∂x2
= 0 =⇒ V ∼ δ

L
U

Averaged Navier-Stokes equation along x1 (, laminar case)


















Ū1

∂Ū1

∂x1
+ Ū2

∂Ū1

∂x2
= −1

ρ

∂P̄

∂x1
− ∂u ′21

∂x1
− ∂u ′1u

′
2

∂x2
+ ν

(

∂2

∂x21
+

∂2

∂x22

)

Ū1

∼ U2

L
∼ U2

L
∼ u2

L
∼ u2

δ
∼ ν

(
U

L2
;
U

δ2

)

We impose the balance between the convection along x1 and the turbulent diffu-

sion along x2 : a turbulent flow can only be observed if u ∼
√
δ/L U
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Turbulent boundary layer equations (cont.)

Averaged Navier-Stokes equation along x2


















Ū1

∂Ū2

∂x1
+ Ū2

∂Ū2

∂x2
= −1

ρ

∂P̄

∂x2
− ∂u ′1u

′
2

∂x1
− ∂u ′22

∂x2
+ ν

(

∂2

∂x21
+

∂2

∂x22

)

Ū2

∼ δ

L

U2

L
∼ δ

L

U2

L
∼ δ

L

U2

L
∼ δ

L

U2

δ
∼ ν

δ

L

U

δ2
∼ 1

Reδ

δ

L

U2

δ

All the terms are smaller by a factor δ/L (refer also to the laminar boundary layer).

In addition, the pressure term must balance the dominant red term. By integra-

tion in the transverse direction x2, one gets P̄+ρu
′2
2 = cst across the boundary layer.

62 Centrale Lyon | LMFA Physics of turbulent flow – cb1 – 13-12-2023



xWall-bounded turbulent flow q

Turbulent boundary layer equations (cont.)

The mean pressure gra-

dient is imposed by the

external flow (through

wall curvature for ins-

tance)

P̄ + ρu ′22 = Pe = P̄w x1

x2

δ(x1)

Ue1

Ū1(x1,x2)

L
(from the plate leading edge)

Ue1
∂Ue1

∂x1
= −1

ρ

∂Pe
∂x1

(Euler)

boundary
layer
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Turbulent boundary layer equations (cont.)















Ū1

∂Ū1

∂x1
+ Ū2

∂Ū1

∂x2
= −1

ρ

dPe
dx1

+
∂

∂x2

(

ν
∂Ū1

∂x2
−u ′1u ′2

)

(i)

P̄(x1,x2) = Pe − ρu ′22 (ii)

Compared with pipe and channel flows, there is a continuous growth of the boun-

dary layer, and the flow is thus never homogeneous along the x1 direction (but

slowly variable). In addition, the mean pressure gradient is imposed by the exter-

nal flow.

In what follows, a zero-pressure-gradient (ZPG) boundary layer is assumed,

dPe
dx1

= 0 (uniform external mean flow, Ue1 = cst)
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Turbulent boundary layer equations : Ludwig Prandtl (1875-1953)

Ludwig Prandtl with his water tunnel in 1903

(for flow visualization of large structures

using particle tracers)

and in the mid to late 1930s

A voyage through Turbulence

edited by, P. A. Davidson, Y Kaneda, H.K. Moffatt & K.R. Sreenivasan

(Cambridge University Press, 2011)

Anderson Jr, D.J., 2005, Physics Today, 58(12), 42–48.
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Small exercise : unsteady free stream velocity

The following unsteady external velocity Ue1 is imposed for a flow past a flat

plate, Ue1 = u∞(1− ax̃1) + u∞ax̃1 sin(ωt) where 0 ≤ x̃1 ≤ 1 is a normalized distance,

and a > 0 a dimensionless control parameter.

1. Discuss briefly the expression of Ue1

2. Calculate the pressure gradient dpe/dx1 associated with the unsteady free stream, and its mean

value dP̄e/dx1 over one oscillation period

3. Examine the two cases f = 0 and f , 0
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Zero-pressure-gradient boundary layer

For a boundary layer (as also for wake flows), a velocity defect Ue1− Ū1 is usually

introduced : this quantity is bounded in x2 = 0 and in x2→∞(δ in practice).

The rearrangement of the mass conservation equation leads to,

∂

∂x1
(Ū1Ue1) +

∂

∂x2
(Ū2Ue1) = 0 (iii)

By integration in the transverse direction of the Navier-Stokes Eqs. (i) + (iii)
∫ ∞

0

∂

∂x1
Ū1(Ū1 −Ue1)dx2 +

[

Ū2(Ū1 −Ue1)
]∞

0
=

[

−u ′1u ′2 + ν
∂Ū1

∂x2

]∞

0

U2
e1

∂

∂x1

∫ ∞

0

Ū1

Ue1

(

Ū1

Ue1
− 1

)

dx2 +0 = 0−u2
τ

u2
τ =U2

e1

dδθ
dx1

with δθ ≡
∫ ∞

0

Ū1

Ue1

(

1− Ū1

Ue1

)

dx2

δθ is the momentum thickness of the boundary layer
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Zero-pressure-gradient boundary layer

Friction velocity uτ and local skin-friction coefficient Cf

u2
τ =U2

e1

dδθ
dx1

Cf ≡
ρu2

τ
1
2ρU

2
e1

= 2
dδθ
dx1

The friction velocity uτ is a function of x1 (but slow variable) in a boundary layer

(, established flow in pipe)

Theodore von Kármán (1881-1963)

General expression for the

momentum-integral equation

(Gruschwitz, 1931)

u2
τ =

d(U2
e1δθ)

dx1
+ δ⋆ Ue1

dUe1

dx1
︸   ︷︷   ︸

=−(1/ρ)∂x1
Pe
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Zero-pressure-gradient boundary layer : interpretation of δθ ?

streamline (external flow)
U ·n = 0

δ1

Ue1

U1

Ue1

Ū1

x2

0 x1

thickness δ
of the BL edge

ṁe ṁ

ṁe − ṁ
δ

Using the green control volume,

ṁe − ṁ =

∫ δ

0

(ρUe1 − ρŪ1)dx2

= ρUe1δ1

Using the blue control volume,

ρU2
e1δ −

∫ δ

0

ρŪ2
1dx2 − ρU2

e1δ1

= ρU2
e1

∫ δ

0

Ū1

Ue1

(

1− Ū1

Ue1

)

dx2

= ρU2
e1δθ

Integral momentum conservation (cst pressure)

d

dt

∫

V
ρu = 0 =

∫

V
ρ
Du

Dt
−
∫

S
ρu(u ·n) dS =

∫

S
τ ·n dS −

∫

S
ρu(u ·n) dS

Wall force acting on the wall, Ff→w = ρU2
e1δθe1
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Mean velocity of a zero-pressure-gradient boundary layer

From the Navier-Stokes Eq. (i), by integration in the normal direction to the wall

up to a given point x2

∫ x2

0

ρ

(

Ū1

∂Ū1

∂x1
+ Ū2

∂Ū1

∂x2

)

dx2 = τ̄t(x2)− τ̄w τ̄t(x2) ≡ −ρu ′1u ′2 +µ
∂Ū1

∂x2
(2)

Simplistic assumption : the left-hand side is approximated by a linear term as

follows,
∫ x2

0

ρ

(

Ū1

∂Ū1

∂x1
+ Ū2

∂Ū1

∂x2

)

dx2 ≃ −
x2
δ
τw τ̄t(x2) ≃ τw

(

1− x2
δ

)

As a result, the mean velocity Ū1 is governed by the same equation than for the

channel/pipe (by noting δ ≡ h) except that the friction velocity is now a function

of x1, uτ = uτ(x1).

(refer to the exercises for further discussion)
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Mean velocity profile : the viscous sublayer

Very close to the wall, x2/δ≪ 1, turbulence cannot develop and the viscous stress

dominates the total stress τ̄t (at the wall u ′i = 0),

τ̄t ≃ µ
∂Ū1

∂x2
and τ̄w = ρu2

τ in the viscous sublayer

Consequently, a linear evolution of the mean velocity Ū1 is predicted, as in the

case of the Couette flow,
Ū1

uτ
=
x2uτ

ν

Introduction of wall units to form dimensionless variables

Ū+
1 ≡

Ū1

uτ
x+2 ≡

x2uτ

ν
=
x2
lv

with lv =
ν

uτ
≡ wall unit length

In the viscous sublayer, Ū+
1 = x+2
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Mean velocity profile : the viscous sublayer (cont.)

The viscous length scale lv and the friction velocity uτ are

the two appropriate scales for describing flow in the near-wall region :

inner scales of the boundary layer

F. Laadhari (LMFA)

Reθ ≃ 1000 Ue1 = 2.1 m.s−1

δ ≃ 7 cm uτ ≃ 0.1 m.s−1

x1 ≃ 3 m (air flow)

x+2 =
uτx2
ν

= 1 =⇒ x2 = lv = 0.15 mm
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Mean velocity profile : the viscous sublayer (cont.)
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Ū
+ 1

viscous sublayer
Ū+

1 = x+2

(data from Osterlünd, 1999)

Reδ0.95 1.7× 104 2.8× 104 4.3× 104 6.9× 104 1.1× 105 1.9× 105
Re+δ0.95 684 1092 1594 2462 3944 6147

◦ ⊳ ♦ ▽ � ⊲
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Two illustrations of the disparity in scales

Turbulent boundary layer along a flat plate : particle tracing in water, hydrogen

bubble method, U∞ = 20.4 cm.s−1,Reδθ = 990

from Visualized flow, Japan Soc. Mech. Eng. (1988)

Spatially developing turbulent boundary layer on a flat plate

from Lee, Kwon, Hutchins & Monty (University of Melbourne)
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Mean velocity profile : the logarithmic law

We have two characteristic length scales in a boundary layer : δ and lv = ν/uτ,

x+2 =
x2uτ

ν
= Re+ × x2

δ
Re+ ≡ uτδ

ν
= δ+ Karman number

F. Laadhari (LMFA)

Reθ ≃ 1000 Ue1 = 2.1 m.s−1

δ ≃ 7 cm uτ ≃ 0.1 m.s−1

x1 ≃ 3 m (air flow)

lv = 0.15 mm (x+2 = 1) Re+ ≃ 467

It is thus possible to satisfy x+2 ≫ 1, Re+≫ 1, but also x2/δ≪ 1

As an illustration, one has for this flow,

x+2 = 30
x2
δ

=
x+2
Re+
≃ 6×10−2≪ 1
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Mean velocity profile : the logarithmic law (cont.)

Dimensional analysis

Ū1

uτ
= f

(
x2uτ

ν
,
x2
δ

)

=⇒

















Ū1

uτ
= f1

(
uτx2
ν

)

in the inner layer

Ue1 − Ū1

uτ
= f2

(
x2
δ

)

in the outer layer

By imposing the continuity of the velocity Ū1 and of its derivative ∂Ū1/∂x2
















Ū1

uτ
=
1

κ
ln

(
uτx2
ν

)

+B

Ue1 − Ū1

uτ
= −1

κ
ln

(
x2
δ

)

+A

with
Ue1

uτ
= ln(Re+) +A+B

where κ is the von Kármán constant : does not seem to be a universal constant,

even for canonical flows ! 0.38 ≤ κ ≤ 0.41
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Mean velocity profile : the logarithmic law (inner scales)
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(data from Osterlünd, 1999)

For a zero-

pressure-gradient

boundary layer,

κ ≃ 0.384 B ≃ 4.17
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Mean velocity profile : the logarithmic law (outer scales, wake law)
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κ
ln
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δ

)
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For a zero-

pressure-gradient

boundary layer,

κ ≃ 0.384 A ≃ 3.54
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Mean velocity profiles in a turbulent pipe flow
Zagarola & Smits (1998, Princeton Superpipe facility)
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Fully developed channel flow : experiments
Comte-Bellot, G. (1965)

Plane channel of width 2h ≡ 2D 5.7× 104 ≤ Reh ≤ 2.3× 105
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Fully developed channel flow : Direct Numerical Simulation (DNS)
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Balance between production and dissipation in the log-law

For an observer located in the log-law region of a boundary layer, an almost per-

fect balance is found between production and dissipation of the turbulent kine-

tic energy kt, that is

P ≡ −ρu ′1u ′2
dŪ1

dx2
≃ ρǫ inside the log-law

This result is the starting point of various developments for turbulence models,

even if there is no formal demonstration.
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Turbulent kinetic energy budget in a channel flow

Ratio of P /(ρǫh) for Re+ = 180,550,950,2000 (DNS by Hoyas & Jiménez, 2006)

We can observe the increase of the equilibrium region with the increase of the

Reynolds number
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A first example of turbulence model : mixing length model

We first investigate the near wall region, in assuming that x2/δ≪ 1, to derive the

mixing length model by Prandtl (1925), and the governing equation for the mean

velocity Ū1 (also valid for a channel flow with h = δ)

τ̄t(x2) = −ρu ′1u ′2 +µ
dŪ1

dx2
≃ τ̄w or also −u ′1u ′2 + +

dŪ+
1

dx+2
≃ 1

The turbulent viscosity concept (introduced in Chapter 2) leads to

−u ′1u ′2
+
= −u

′
1u
′
2

u2
τ

= ν+
t

dŪ+
1

dx+2
ν+
t ≡

νt
ν

where the turbulent viscosity is dimensionally the product of a velocity scale u ′

by a length scale lm, that is νt ∼ u ′ × lm.
(by analogy with the molecular motion for a perfect gas : ν is roughly the product

of the speed of sound by the free mean path)
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Mixing length model (cont.)

In an algebraic model (aka a zero-equation model), the evolution of the mixing

length lm is imposed by the user. For a boundary layer, a linear evolution in the

normal direction to the wall is assumed, that is l+m = αx+2

The velocity scale u ′ is then obtained by assuming that the frequency of the mean

flow is imposed to the turbulent motion (through the production term). This fre-

quency matching leads to
u ′+

l+m
=
dŪ+

1

dx+2

As a result, the turbulent viscosity and the Reynolds stress component are given

in wall unit by

ν+
t = (l+m)

2

∣
∣
∣
∣
∣
∣

dŪ+
1

dx+2

∣
∣
∣
∣
∣
∣

and −u ′1u ′2 + = (l+m)
2

∣
∣
∣
∣
∣
∣

dŪ+
1

dx+2

∣
∣
∣
∣
∣
∣

︸       ︷︷       ︸

ν+
t

dŪ+
1

dx+2
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Mixing length model (cont.)

The governing equation for the mean velocity can thus be recast as follows with

our assumptions

(αx+2 )
2

(

dŪ+
1

dx+2

)2

+
dŪ+

1

dx+2
− 1 = 0

The mean velocity gradient dŪ+
1 /dx

+
2 satisfies a quadratic equation. The relevant

solution is given by

dŪ+
1

dx+2
=
−1+

√

1+ 4 (αx+2)
2

2 (αx+2)
2

≥ 0

For x+2 → 0,
dŪ+

1

dx+2
→ 1

One finds Ū+
1 = x+2 , that is the velocity

law expected in the viscous sublayer

For x+2 →∞,
dŪ+

1

dx+2
→ 1

αx+2

A log-law is found for Ū+
1 , and by

identification, α = κ (x2/δ≪ 1)
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Mixing length model (cont.)

However, the previous model has one flaw, and thus requires a correction propo-

sed by Van Driest (see next small classe)

10
-1

10
0

10
1

10
2

10
3

0

5

10

15

20

25 l+m = κx+2
l+m = κx+2(1− e−x

+
2 /A

+
0) A+

0 = 26

U+
1 = x+2 viscous sublayer

U+
1 = (1/κ) ln(x+2 ) +B

Using Van Driest damping function,

−u ′1u ′2
+ ∼ x+2

4 as x+2 → 0, rather than

−u ′1u ′2
+ ∼ x+2

2 using l+m = κx+2 .

However,from the governing equations, it can be shown that −u ′1u ′2
+ ∼ x+2

3 !
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The buffer layer : streaks and harpin (horseshoe) vortices

λ+
2 ≃ 10

≃ 15− 20δ
(λ+

1 ≥ 1000)

λ+
3 ≃ 100

high-speed streakslow-speed streaks

streamwise vorticity associated with
successive harpin vortices

x1

x2

x3

Cantwell, Coles & Dimotakis (1978)

Visualization of sublayer streaks from

a suspension of aluminium particules

(water, U∞ = 15 cm.s−1)
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The buffer layer : streaks and harpin (horseshoe) vortices
Conceptual view from Adrian, Meinhart & Tomkins (2000)
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plot of u− 0.87Ue1
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The buffer layer : streaks and harpin (horseshoe) vortices

Side view of large eddies in a turbulent boundary layer

by laser-induced fluorescence

Gad-el-Hak, University of Notre-Dame, USA

http://www.efluids.com

90 Centrale Lyon | LMFA Physics of turbulent flow – cb1 – 13-12-2023

http://www.efluids.com


xWall-bounded turbulent flow q

The buffer layer

u ′2

u ′1

Q1Q2

ejections

Q3 Q4
sweeps

Drag generating events fall in the

second and fourth quadrant,

positive turbulent production

P ≃ −ρu ′1u ′2
∂Ū1

∂x2
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DNS of a plane channel flow

Iso-surfaces of the streamwise fluctating velocity

(red u′/Uc = 0.12, blue u′/Uc = −0.12)

Laadhari, Phys. Fluids (2007)

ndof = 512× 385× 512 ≃ 101× 106
Reh = 20100, Re+ = 1000

(Re+)3/4/ny ≃ 0.46

cost∼ Re+3 ∼ 109

IBM SP4 / CINES
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DNS of a boundary layer over a flate plate

Isocontours of λ2 (colour

proportional to the wall distance)

around approximately Reδθ = 1400

by Schlatter et al. (2009)

http://www.mech.kth.se/~pschlatt/DATA/
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Turbulent boundary layer with pressure gradient

Dimensionless parameter β

β =
δ1
ρu2

τ

dPe
dx1

= −δc
uτ

dUe1

dx1
∼ τbl

τe
δc =

∫ ∞

0

Ue1 −U1

uτ
dx2 = δ1

Ue1

uτ

time scale of the boundary layer τbl ∼ δc/uτ

time scale of the external flow τe ∼ (dUe1/dx1)
−1

Coles (1956)

f2 = Acos2
(
πx2
2δ

)

− 1
κ
ln

(
x2
δ

)
Ue1

uτ
=
1

κ
ln(Re+) +A+B

A ≃ 2.5 zero pressure gradient

A < 2.5 favorable gradient

A > 2.5 adverse gradient
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Small exercise : key scales for the log-law of a boundary layer

1. Determine the general expression of the Kolmogorov length scale lη by considering the dissi-

pation ǫ and the Reynolds number for viscous scales.

2. Show that in the logarithmic region of the mean velocity profile of a turbulent boundary layer,

the Kolmogorov scale is approximated by the expression

l+η ≃ (κx+2 )1/4

3. Recall also the expression of the mixing length l+m and of the turbulent viscosity ν+
t ?
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Dynamics of vorticity
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Vorticity vector ω

ω = ∇×u ωi = ǫijk
∂uk

∂xj
ǫijk =

1

2
(i − j)(j − k)(k − i)

permutation tensor

The vorticity is always assumed to be a concentrated (localized) quantity in space,

vortex tube or sheet.

The Biot & Savart law allows to express the velocity field induced by a given

vorticity distribution.

For an incompressible velocity field, ∇ · u = 0. A vector potential defined by

u = ∇×A can thus be introduced, associated with the condition ∇ ·A = 0 (uni-

queness)

This vector potential A satisfies a Poisson equation whose source term is the

vorticity vector,

ω =∇×u = ∇× (∇×A) = ∇ (∇ ·A)−∇2A = −∇2A
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Biot & Savart’s law (1820)

From the knowledge of the free-space Green’s function, the integral solution is

given by

A (x) =
1

4π

∫

V

ω(y)
∣
∣
∣x − y

∣
∣
∣

dy

The velocity field is then obtained by taking the curl of A

u (x) = ∇x ×A =
1

4π
∇x ×

∫

V

ω(y)
∣
∣
∣x − y

∣
∣
∣

dy =
1

4π

∫

V

ω(y)× (x − y)
∣
∣
∣x − y

∣
∣
∣
3

dy

y

ω

x r = x − y

u

V

u (x) =
1

4π

∫

V

ω(y)× r
r3

dy

Nonlocal relationship between the vorticity

field ω and the velocity field u
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Example of the Rankine vortex (1858) Rankine (1820-1872)













u(r) = v0
r

r0
=Ω0r r ≤ r0

u(r) = v0
r0
r
=Ω0r0

r0
r

r > r0

(v0 =Ω0r0 = ω0r0/2)
x1

x2

θ

r

u(r)eθ

ω = ω0 = 2Ω0 = cst
for r ≤ r0

0  1  2  3  4  5  6  7
0

1

Solid body motion inside the vortex itself,

i.e. for r ≤ r0 in the vortical region

Irrotational flow outside, for r > r0 : the
localized circular patch of vorticity

produces a velocity field away from the

vortical region

99 Centrale Lyon | LMFA Physics of turbulent flow – cb1 – 13-12-2023



x Vortex dynamics q

Vorticity distribution in a turbulence box

in a slab of 10242 × 128 in the inertial range

Porter, Woodward & Pouquet, Phys. Fluids, 1998
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Kelvin’s circulation theorem (1869)

For an inviscid flow submitted to conservative body forces, the circulation around

a material closed curve C is governed by

DΓC
Dt

=
D

Dt

∮

U · dl =
∫

S

1

ρ2
∇ρ ×∇p ·n dS = 0 for barotropic flows, ρ = ρ(p)

Note that constant density, isothermal, and isentropic flows are barotropic. As a

result, the material circulation ΓC is preserved,

C

S

n ω DΓC
Dt

= 0

Γc =

∮

C
U · dl =

∫

S
ω ·n dS = cst
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Introduction to vortex stretching

A consequence of Kelvin’s circulation theorem

dΓ

dt
=

d

dt

[∮

C
u · dl

]

=
d

dt

∫

S
(∇×u) ·n dS =

d

dt

∫

S
ω ·n dS = 0

is that the vorticity flux crossing the material surface S is also an invariant.

Consider an elementary homogeneous vortex tube of length L, radius R and vor-

ticity ω,

L

RS = πR2 ω

Γ =

∮

C
u · dl =

∫

S
ω · dx = πR2ω
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Introduction to vortex strechting (cont.)

For this elementary vortex,

- conservation of circulation Γ, R2ω = cst

- conservation of mass, ρπR2L ∼ R2L = cst

and an estimate of the kinetic energy Ec is given by

Ec = ρπR2L
R2ω2

2
∼ R2L R2ω

︸    ︷︷    ︸

cst

ω =⇒ Ec ∼ ω ∼ 1

R2
∼ L

The kinetic energy is directly proportional to the vortex length. The increase in

kinetic energy for the vortex - and consequently for the turbulent velocity field, is

associated with vortex stretching. It’s an important basic mechanism to interprete

the behaviour of turbulent flow.

In other words, during the stretching process in one direction, the kinetic energy

in the perpendicular plane increases whereas the length scales decrease.
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Introduction to vortex strechting (cont.)

Principal axes of the deformation tensor for shear flow

Ū1 = Sx2 et Ū2 = Ū3 = 0

π
4

shrinking stretching

O
x1

x2

S̄ij =
1

2

(

∂Ūi

∂xj
+
∂Ūj

∂xi

)

=
S

2

(

0 1

1 0

)

S̄d
ij =

S

2

(

1 0

0 −1

)
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Helmholtz’s equation

The Helmholtz equation is the transport equation for the vorticity vector, obtai-

ned by taking the curl of the Navier-Stokes equation

∇×
{

∂u

∂t
+u · ∇u = −1

ρ
∇p + ν∇2u

}

Using the following vectorial identities

∇× (u · ∇u) = ∇×
[

∇
(

u2

2

)

+ω ×u
]

= ∇× (ω ×u)

and moreover ∇× (ω ×u) = u · ∇ω −u∇ ·ω −ω · ∇u+ω∇ ·u
since ∇ ·ω ≡ 0 (solenoidal vorticity field) and ∇ ·u = 0 (incompressible flow)

∂ω

∂t
+u · ∇ω =ω · ∇u−∇×

(

1

ρ
∇p

)

+ ν∇2ω
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Helmholtz’s equation (cont.)

Assuming a barotropic flow, that is a flow whose pressure is a function of density

only p = p(ρ), one has for the pressure term

∇×
(

1

ρ
∇p

)

= ∇
(

1

ρ

)

×∇p + 1

ρ
∇× (∇p) = − 1

ρ2
∇ρ ×∇p = 0

The transport equation for vorticity reads

∂ω

∂t
+u · ∇ω =ω · ∇u+ ν∇2ω

{
convection

of ω

}

=
{

3-D effect

(source term)

}

+
{

viscous

diffusion

}

Hermann von Helmholtz

(1821 - 1894)

The evolution of vorticity is directly linked to the term associated with 3-D effect :

this term is zero for a two-dimensional flow, ω · ∇u ≡ 0

2-D flow represents a specific/particular configuration ...
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Interpretation of Helmholtz’s equation

u(x)δt

u(x + δs)δt

δs(t + δt)
δs(t)

ω = ωα

Deformation of an elementary tube

(filament) of vorticity

δs(t + dt)− δs(t)
δt

= u(x + δs)−u(x)

dδs(t)

dt
= δs · ∇u

Length of the elementary tube

δ̃s = ||δs|| = δs ·α α2 = 1

Dδ̃s
Dt

= α · (δs · ∇u)

=
ωi

ω

(

δ̃s
ωj

ω

∂ui

∂xj

)

=
ωiωj

ω2

∂ui

∂xj
δ̃s
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Interpretation of Helmholtz’s equation (cont.)

Furthermore, by neglecting the viscous term in Helmholtz’s ’equation and taking

the scalar product with ω, we obtain

ω·Dω

Dt
=ω· (ω · ∇u) that is

D

Dt

(

ω2

2

)

= ωiωj
∂ui

∂xj

By identification with the previous equation, it can be deduced that

1

ω2

D

Dt

(

ω2

2

)

=
1

δ̃s

Dδ̃s
Dt

and by integration,
ω

δ̃s
= cst

The length of an elementary tube vortex is thus proportional to vorticity ω. We

find the conclusion already obtained with the dimensional analysis, to highlight

vortex stretching mechanism and the increase in turbulent fluctuations. In addi-

tion, the term associated with the lengthening of vortex tubes corresponds to the

term of 3-D effect in the transport equation of vorticity.
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Interpretation of Helmholtz’s equation (cont.)

Growth of material lines in isotropic

turbulence ReD = 1360 (based on the

grid rod diameter)

Corrsin & Karweit, 1969, J. Fluid Mech., 39(1)

The increase in vortex intensity, and thus in turbulent fluctuations, is accompa-

nied by stretching of vorticity filaments, and by the increase of distance between

fluid particles : the origin of sensitivity to initial conditions ...
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An illustration of the lengthening of vortex filament
(from Tennekes & Lumley, 1972, chap. 8)

Mean flow for which gradients are aligned with the frame axes

∂Ūi

∂xj
=

(

S 0

0 −S

)

Ū1 = Sx1 Ū2 = −Sx2 Ω̄i ≡ 0

pure strain flow

ω′1

ω′2

ω′1

ω′2

Helmholtz’s Eq. linearized around this mean flow (inviscid flow to simplify alge-

bra, not an issue because the viscous terms are linear)

∂ω′

∂t
+ Ū · ∇ω′ =ω′ · ∇Ū

D̄ω′1
D̄t

= +Sω′1
D̄ω′2
D̄t

= −Sω′2
D̄

D̄t
≡ ∂

∂t
+ Ūj

∂

∂xj
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An illustration of the lengthening of vortex filament (cont.)

By integration along the mean flow, or with the following formal change of va-

riables ξ1 = x1e
−St, ξ2 = x2e

St and τ = t, one gets

ω′1 = ω0e
St ω′2 = ω0e

−St

The vorticity componentω′1 is thus stretched faster than the componentω′2 through
a nonlinear processus, and finally vorticity fluctuations increase as

ω′21 +ω′22 = 2ω2
0 cosh(2St)
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Bradshaw’s tree diagram (1971) illustrating of the concept of energy cascade
originally introduced by Richardson (1926)

direction of vortex streching

anisotropy x3
︷           ︸︸           ︷

x1 x2
︷  ︸︸  ︷

x2 x3
︷  ︸︸  ︷

x1 x3
︷ ︸︸ ︷

x3 x1
︷ ︸︸ ︷

x1 x2
︷ ︸︸ ︷

x2 x3
︷ ︸︸ ︷

x1 x2

return to isotropy
︷︸︸︷

x1 x2
︷︸︸︷

x2 x3
︷︸︸︷

x2 x3
︷︸︸︷

x3 x1
︷︸︸︷

x3 x1
︷︸︸︷

x1 x2
︷︸︸︷

x2 x3
︷︸︸︷

x3 x1
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Plane mixing layer – an example of inverse energy cascade
Identification of vortex pairing

Simulation of a plane mixing layer (M1 = 0.12, M2 = 0.48, Reδω = 1.28 × 104), snaphots of the

vorticity field at 4 consecutive times separated by 17δω/Uc, where Uc is the convection velocity.

(Bogey, Bailly & Juvé, AIAA Journal, 2000)
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Plane mixing layer forced at f0
(f0 fundamental frequency corresponding to most amplified perturbations)
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Plane mixing layer forced at f1
(f1 = f0/2, first subharmonic frequency)
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Plane mixing layer forced at f0 and f1
Vortex pairings occurred at fixed streamwise locations
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Vortex pairing in a plane mixing layer

Winant & Browand

J. Fluid Mech. (1974)
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2-D simulations must be proscribed : no energy cascade

Flow separation behind a rounded

leading edge (3-D versus 2-D!)

Spanwise vorticity ωz, from red to blue with

ωz = ±5U∞/H , DNS with inflow perturbations

u ′inflow = 0.1%U∞ (η = 0.125)

Courtesy of Lamballais, Sylvestrini & Laizet

Int. Journal Heat Fluid Flow, 31, 2010

2-D free jet, vorticity field

Bogey (Ph.D. EC-Lyon, 1999)
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Transport equation for the mean vorticity ωi = Ω̄i +ω′i

∂Ω̄i

∂t
+ Ūj

∂Ω̄i

∂xj
= Ω̄j

∂Ūi

∂xj
+

∂

∂xj

(

ω′ju
′
i −ω′iu ′j

)

︸               ︷︷               ︸

(a)

+ν
∂2Ω̄i

∂xj∂xj
︸   ︷︷   ︸

(b)

(a) ∼ correlation term involving turbulence fluctuations only,

must be closed to solve this equation

(b) ∼ viscous diffusion

In practice, this equation is rarely (if ever !) solved to obtain the mean flow field :

turbulence models are based on the resolution of the mean velocity field (RANS

Eqs.). This equation is theoretically used to study enstrophy.
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Enstrophy
Similar to the kinetic energy for velocity, that is

ω′iω
′
i

2
≡ ω′21 +ω′22 +ω′23

2

To quickly derive its transport equation, we assume that there is no mean flow,

that is Ūi ≡ 0 et Ω̄i ≡ 0

∂

∂t

(

ω′iω
′
i

2

)

+
∂

∂xj

(

u ′j
ω′iω

′
i

2

)

= ω′iω
′
j

∂u ′i
∂xj
− ν∂ω

′
i

∂xj

∂ω′i
∂xj

+ ν
∂2

∂x2j

(

ω′iω
′
i

2

)

As usual, this Eq. can be greatly simplified for homogeneous turbulence,

in order to isolate basic physical mechanisms

∂

∂t

(

ω′iω
′
i

2

)

= ω′iω
′
j

∂u ′i
∂xj

︸    ︷︷    ︸

(a)

−ν∂ω
′
i

∂xj

∂ω′i
∂xj

︸     ︷︷     ︸

(b)

(3)
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Enstrophy (cont.)

The term (a) is linked to the stretching of vortices, and the term (b) to viscous

dissipation.

Historically, the term (a) was assumed to be zero by von Kármán (1937), but Tay-

lor (1938) demonstrated later that this term is not zero and furthermore, must

be positive. It expresses that two fluid particles initially close one from the other

will be later separated by turbulence in average.

Singular behaviour of two-dimensional turbulent flow again,

enstrophy can only decrease

∂

∂t

(

ω′iω
′
i

2

)

= −ν∂ω
′
i

∂xj

∂ω′i
∂xj
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Enstrophy (cont.)

In order to solve Eq. (3), the nonlinear term can be modeled with an acceptable

dimensional expression. For instance,

ω′iω
′
j

∂u ′i
∂xj
≃ A(ω2)3/2 A = cst ω2 ≡ ω′iω

′
i

Neglecting viscous effects to simplify calculations, the integration leads to the

following time evolution.

ω2

ω2
0

=
1

[

1−A
√

ω2
0 (t0 − t)

]2

A singularity is thus obtained for a finite time ... refer to Leray (1934), Moffatt

(2000) : artefact induced by the model itself and the incompressibility condition.

Not so easy to derive an acceptable model for physics !
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Helicity
Quantity widely studied by Moffatt (1969)

H ≡
∫

V

u ·ω dx

This quantity is an invariant of the flow motion, under the same assumptions

introduced for Kelvin’s circulation theorem.

For a two-dimensional flow, H = 0.

Interpretation?
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Helicity (cont.)
Sketch of two linked vortex tubes T1 and T2

C1 (S1)

T1

Γ1

Γ2

T2

H =

∫

V
u ·ω dx =

∫

T1

u ·ω dx +

∫

T2

u ·ω dx

Consider the integral over the vortex T1
∫

T1

u ·ω dx ≃ Γ1

∮

C1
u · dl = Γ1

∫

S1
(∇×u) ·n dS

=

{

Γ1Γ2 if C1 and C2 are linked,
0 otherwise

H = ±2nΓ1Γ2 n linking number
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Homogeneous and isotropic turbulence

125 Centrale Lyon | LMFA Physics of turbulent flow – cb1 – 13-12-2023



x Homogeneous turbulence q

Homogeneous turbulence

Generation of turbulence behind a grid, ReM = 1500 & M = 2.54 cm

Corke & Nagib, in Van Dyke, figs. 152 & 152 (1982)

Statistics are independants of space coordinates in homogeneous directions. In

the present case, the turbulent flow is homogeneous in the x2 and x3 directions

(transverse plane), e.g. the Reynolds tensor −u ′iu ′j is only a function of x1 (and t).

The objective is to obtain simple configurations, without transport term
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Homogeneous turbulence

Wrinkling of a fluid surface in isotropic turbulence

Karweit in Van Dyke, fig. 155 (1982)

A platinum wire generates a continuous sheet of hydrogen bubbles, which is then

deformed by the nearly isotropic turbulence behind the grid.
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Velocity correlation tensor

Definition :

Rij (x,r, t) ≡ u ′i (x, t)u
′
j (x + r, t) = Rij (r, t)

r

u ′i(x)

u ′j(x + r)

The function Rij is only a function of the separation vector r, between the two

measurement points x and x′ = x + r : invariance by translation of the observer

location x.

Correlation coefficient Rij (normalized correlation function Rij)

−1 ≤ Rij(r) ≡
u ′i (x)u

′
j (x
′)

√

u ′2i (x)

√

u ′2j (x′)

≤ +1
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Velocity correlation tensor (cont.)

A few remarks

Autocorrelation

R11(r,0,0) = u ′21 R11(r,0,0) with r = (r,0,0)
R11(r) = R11(−r), the autocorrelation function is an even function

Rij(r) = Rji(−r)

Incompressibility of the turbulent field

∂u ′j
∂xj

= 0 =⇒ ∂

∂rj
Rij(r) = 0

∂

∂ri
Rij(r) = 0

Rii(0) = u ′21 +u ′22 +u ′22 = 2kt
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Turbulent kinetic energy budget kt (refer to this slide)

General case of homogeneous turbulence

∂(ρkt)

∂t
= −ρu ′iu ′j

∂Ūi

∂xj
− τ′ij

∂u ′i
∂xj

(= P − ρǫ)
with ∂Ūi/∂xj = cst to preserve

homogeneous turbulence

(Craya, 1958)

Decaying turbulence generated behind a grid,

Stationary turbulence, homogeneous in the plane

(x2,x3) only

Ū1

∂kt
∂x1

= −ǫ

In a frame moving with the mean velocity Ū1,

∂kt
∂t

= −ǫ

Ū1
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Integral length scales

Longitudinal integral length scale : an estimate of the size of the most energetic

turbulent structures, given by the integration of the correlation coefficient of the

velocity component u ′1 between two points in the x1 direction

re1

R11

1

0
Lf

u ′1(x) u ′1(x + re1)

r = re1

Lf ≡ L
(1)
11 =

∫ ∞

0

R11(r,0,0)dr

L

u ′

Tavoularis (2003), passive

scalar mixing, Sc ≃ 2000

A transverse integral length scale Lg ≡ L
(2)
11 is also introduced

Lg ≡ L
(2)
11 =

∫ ∞

0

R11 (0, r,0)dr
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Turbulence scales

Large scales (u ′,L) associated with production of larger scales by the mean

shear flow; energy containing eddies : the peak of the turbulent kinetic energy

spectrum is located arround kL ∼ 1

We need also to introduce Taylor microscales λ associated with large scales of

the dissipation spectrum, and formally defined from the Taylor series of the

velocity correlation coefficient at the origin,

re1

R11

1

0
Lfλf

R11 (r,0,0) = 1− r2

λf
2
+ ... (λf ≪ Lf )
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Taylor microscales

Taylor series of u ′1 (r,0,0) as r→ 0,

u ′1 (r,0,0) = u ′1 (0,0,0) + r
∂u ′1
∂x1

∣
∣
∣
∣
∣
x=0

+
r2

2

∂2u ′1
∂x21

∣
∣
∣
∣
∣
∣
x=0

+ ...

Hence,

R11 (r,0,0) = u ′1 (0,0,0)u
′
1 (r,0,0)

= u ′21 + r u ′1
∂u ′1
∂x1

+
r2

2
u ′1

∂2u ′1
∂x21

+ ...

= u ′21 + r
∂

∂x1










u ′21
2









+
r2

2

∂

∂x1








u ′1

∂u ′1
∂x1








− r

2

2

(

∂u ′1
∂x1

)2

+ ...

R11 (r,0,0) = 1− r2

2u ′21

(

∂u ′1
∂x1

)2

≡ 1− r2

λ2
f

+ ...
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Taylor microscales (cont.)

Longitudinal Taylor microscale λf

1

λ2
f

≡ −1
2

d2R11

dr21

∣
∣
∣
∣
∣
∣
r=0

=
1

2u ′21

(

∂u ′1
∂x1

)2

re1

u ′1(x) u ′1(x + re1)

Transverse Taylor microscale λg

1

λ2
g

≡ −1
2

d2R11

dr22

∣
∣
∣
∣
∣
∣
r=0

=
1

2u ′21

(

∂u ′1
∂x2

)2
re2

u ′1(x)

u ′1(x + re2)
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Dissipation rate ǫ of the turbulent kinetic energy

ρǫ = τ′ik
∂u ′i
∂xk

= 2µs′ijs
′
ij = 2µ

1

4









∂u ′i
∂xj

+
∂u ′j
∂xi









2

= µ
∂u ′i
∂xj

∂u ′i
∂xj

︸  ︷︷  ︸

(a)

+µ
∂u ′i
∂xj

∂u ′j
∂xi

︸  ︷︷  ︸

(b)

(a) ≡ ǫh = ν
∂u ′i
∂xj

∂u ′i
∂xj
∼ ν

u ′2

λ2

correlation of the turbulent velocity gradients,

dominant term for the dissipation since λ≪ L

(b) = ν
∂u ′i
∂xj

∂u ′j
∂xi

=
∂2u ′iu

′
j

∂xi∂xj
∼ ν

u ′2

L2

derivative of the turbulent velocity correlation

(using the incompressibility condition)

for homogeneous turbulence, (b) is identically zero

and ǫ = ǫh

ǫh is an approximation of the dissipation ǫ when λ≪ L, that is for high Reynolds

number turbulent flow (the ǫh equation is solved in the standard kt − ǫ model)
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Spectral tensor

The spectral tensor φij(k) is defined as the Fourier transform of the velocity cor-

relation tensor Rij(r)
















φij (k) =
1

(2π)3

∫

IR3

Rij (r)e
−ik·rdr

Rij (r) =

∫

IR3

φij (k)e
ik·rdk

The incompressibility condition formulated in Fourier space reads,

kiφij (k) = kjφij (k) = 0

It is essential in practice to introduce one-dimensional spectra, which can bemea-

sured or computed numerically,

E
(1)
ij (k1) =

�

IR2

φij (k) dk2dk3
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One-dimensional spectrum

Let us consider the case i = j = 1 with a zero separation vector r = 0,

u ′21 = R11(r = 0) =

∫

IR3

φ11(k)dk =

∫ +∞

−∞
E
(1)
11 (k1) dk1

The relation between the autocorrelation R11(r) with r = (r1,0,0), and the one-

dimensional spectrum E
(1)
11 (k1) is found to be

R11 (r1,0,0) =

∫

IR3

φ11 (k) e
ik1r1dk =

∫ +∞

−∞
E
(1)
11 (k1) e

ik1r1dk1

and conversely by Fourier transform, one has

E
(1)
11 (k1) =

1

2π

∫ +∞

−∞
R11 (r1,0,0) e

−ik1r1dr1

For k1 = 0, E
(1)
11 (0) =

1

2π

∫ +∞

−∞
R11 (r1,0,0) dr1 =

1

2π
2u ′21 Lf Lf = π

E
(1)
11 (0)

u ′21
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Frozen turbulence approximation or Taylor’s hypothesis (1938)

The velocity spectral tensor and the corresponding one-dimensional spectra can-

not be directly measured from the Fourier transform of velocity correlation func-

tions in general. Only the time evolution of the velocity in one given point is

known, that is u ′1(t).

In order to estimate these spectral functions, it is usually assumed that the turbu-

lent flow is frozen during the measurement, meaning that the observed quantity

is simply convected by the local mean flow Ū1, which leads to

∂

∂t
= −Ū1

∂

∂x1
k1 = 2πf /Ū1 Taylor’s hypothesis

2π/k1
Ū1

convection
velocity

passing

frequency f

(fixed probe)
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Frozen turbulence approximation or Taylor’s hypothesis (1938)

Geoffrey Ingram Taylor (right) at

age 69 (in 1956), in his laboratory

with his assistant Walter Thompson

(Physics Today, May 2000)

At Stanford (1968)

Application to the estimation of L1, u ′1(t)→Φ11(f ) u
′2
1 ≡

∫ ∞

0

Φ11(f )df

u
′2
1 =

∫ +∞

−∞
E
(1)
11 (k1) dk1 ≡

∫ ∞

0

Ū1

2π
Φ11

(

f = k1Ū1/2π
)

dk1

L
(1)
11 = π

E
(1)
11 (k1 = 0)

u
′2
1

=
1

4
Ū1

Φ11(f = 0)

u
′2
1
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Frozen turbulence approximation or Taylor’s hypothesis (1938)

Spectrum of longitudinal velocity fluctuations

free round jet, ReD ≃ 105, hot-wire located at x1 = 2D and x2 =D/2
(see also the time correlation function, Θ ≃ Lf /Ū1)

Φ11(f ) for f ≥ 0

to estimate Lf and f −5/3 law

101 102 103 104
10-4

10-3

10-2

10-1

E
(1)
11 (k1) for −∞ ≤ k1 ≤∞

to estimate Lf and k−5/31 law

101 102 103

10-3

10-2

10-1
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Turbulent kinetic energy and dissipation spectra

Turbulent kinetic energy spectrum

kt =
u ′iu

′
i

2
=
1

2
Rii (r = 0) =

1

2

∫

IR3

φii (k)dk

Dissipation spectrum

Usually, it is more convenient to first calculate the enstrophy spectrum from the

Fourier transform of the vorticity vector, ω̂ (k) = ik× û (k). It can be shown that,

ω′iω
′
i

2
=
1

2

∫

IR3

k2φii (k)dk

Then, by noting that ǫ = νω′iω
′
i, the following expression is obtained from the

dissipation spectrum

ǫ = νω′iω
′
i = ν

∫ ∞

0

k2φii(k)dk
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Isotropic turbulence

An isotropic turbulent flow is a class of homogeneous turbulent flow whose sta-

tistics are invariant under rotation of the coordinate axes and under reflection in

a plane.

Impossible to distinguish any privileged direction

a priori, the most simple configuration ! (ideal theoretical framework)

In order to characterize properties induced by homogeneous and isotropic turbu-

lence, a virtual device is introduced to measure

– a fluctuating scalar quantity : temperature, pressure, ...

– a fluctuating vector quantity : projection on a given unit vector of the turbulent

velocity, ...
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Second-order correlation in one point : Reynolds tensor

x1

x2

A

a

u′A ·a = u ′1

rotation by π/2
of the device

x1

x2

A

a

u′A ·a = u ′2

The two measurements must be equal for isotropic turbulence, and therefore

u ′21 = u ′22 . More generally,

u ′21 = u ′22 = u ′23 = u ′2 by noting u ′ ≡
(

u ′2
)1/2
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Second-order correlation in one point : Reynolds tensor

x1

x2

A a

b

(u′A ·a)(u′A · b) = u ′1u
′
2

x1

x2

Ab

a

(u′A ·a)(u′A · b) = −u ′1u ′2

Consequently, u ′1u
′
2 = − u ′1u ′2 and u ′1u

′
2 = 0

u ′iu
′
j = u ′2 δij =

2

3
kt δij
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Second-order velocity correlation in two points
A at x and B at x + r :

F ≡
(

u′A ·a
)

(u′B · b)
√

u′2A

√

u′2B

=
u ′iAu

′
jB (r)

u ′2
aibj =Rij aibj

a

A

r

b

B

The bilinear function F can only be a function of the invariants associated with

the measurement device, that is distances and angles :

r2 = riri, a · r = airi, b · r = bjrj , a · b = aibi = aibjδij
and also the volume defined by (r,a,b), given by the mixed product

(a×b) · r = ǫijkaibjrk

General expression of an isotropic second-order two-point tensor

(Robertson, 1940)

Rij (r) = α (r)rirj + β (r)δij

where α and β are two scalar functions of r.
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Second-order two-point velocity correlation (cont.)

It is generally found more convenient to introduce two functions f (r) and g(r)
that can be measured in practice, rather than the two arbitrary functions α(r)
and β(r). Hence,

f (r) ≡R11(r,0,0) longitudinal correlation function

g(r) ≡ R11(0, r,0) transverse correlation function

r = re1

r = re2

u ′1(0,0,0) u ′1(r,0,0)

u ′1(0, r,0)
Kármán & Howarth (1938)

Rij (r) = (f − g)
rirj
r2

+ gδij

Take care of Rij(r) = u ′2Rij(r)

146 Centrale Lyon | LMFA Physics of turbulent flow – cb1 – 13-12-2023



x Homogeneous and isotropic turbulence q

Compressibility condition applied to the second-order two-point velocity

correlation recast by Kármán & Howarth

∂Rij (r)

∂ri
= 0 =⇒ ∂

∂ri

[

f − g
r2

rirj + gδij

]

= 0

which leads for a 3-D turbulence to the following expression (the details are left

as an exercise),

g = f +
r

2
f ′ =

1

r

d

dr

(

r2

2
f

)

The correlation coefficient Rij is determined by a single scalar function, the lon-

gitudinal autocorrelation in space f (r), for incompressible isotropic turbulence.
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Turbulent kinetic energy and dissipation spectra

Using a similar approach applied now to the spectral tensor φij(k), and taking

account for the incompressibility condition, it can be shown that only one scalar

function E(k) is required to specify φij(k), that is

φij (k) =
E (k)

4πk2

(

δij −
kikj
k2

)

with kt ≡
∫ ∞

0

E (k)dk

The expression of the dissipation spectrum is then deduced from the relationship

established for homogeneous turbulence, see here,

ǫ = 2ν

∫ ∞

0

k2E (k)dk
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Isotropic turbulence

Many other remarkable results can be established for homogeneous and isotropic

turbulence : refer to textbooks mentioned in the introduction of this course.

Three points must be however still considered to provide a first full overview of

isotropic turbulence

– How to generate isotropic turbulence in laboratory?

– What is the time evolution of isotropic turbulence?

– Can we measure or derive analytically the expression of E(k) ?
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Isotropic turbulence in laboratory

Various configurations have

been investigated to generate

isotropic turbulence. One of

the most famous is the

so-called “Porcupine” by

Betchov (1957)
M

U0

U0

U0

d

Turbulence behind a grid, homogeneous but not

fully isotropic turbulent flow

u ′21 = 1.2 u ′22 = 1.2 u ′23

and one typically gets for turbulence intensity
u ′

U0

≃ 2% ReM =
U0M

ν
≃ 104 to 105
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Isotropic turbulence in laboratory (cont.)

Experiences by Comte-Bellot & Corrsin at Johns Hopkins University

J. Fluid Mech., 1966, 25(4) & 1971 48(2)

Ū1 = cU0

u ′21 = u ′22 = u ′23

U0

u ′21 = 1.2u ′22

u ′22 = u ′23

grid

18M

contraction c ≃ 1.27
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Stanley Corrsin
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Decaying isotropic turbulence

In a frame moving with the mean velocity,

Decay of the normal stresses

u ′2

U2
0

=
1

A

(
tU0

M
− t0U0

M

)−n
with n ≃ 1.3

Comte-Bellot & Corrsin (1966), Mohamed & Larue (1990)

The dissipation rate of the turbulent kinetic energy is imposed by

larger turbulent structures,

ǫ ≃ u ′3

Lf

∂kt
∂t

= −ǫ ∼ u ′2

Lf /u ′

where Lf is the longitudinal integral length scale, Lf =

∫ ∞

0

f (r)dr
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Decaying isotropic turbulence

0.1   1  10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

Time correlation in a frame travelling with the mean velocity Ū1 for different

values of the wavenumber, from k1 = 0.25 cm−1 (�) to k = 10.10 cm−1 (+)

total signal (full-band case)
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Space-time correlations

R11(∆x1,0,0;τ) = u ′1(x, t)u
′
1(x +∆x1e1, t + τ)/ u ′21

        
0.0

   

0.2

   

0.4

   

0.6

   

0.8

   

1.0

u ′1(t) u ′1(t + τ)

∆x1

time autocorrelation function

(∆x1 = 0), which provides the in-

tegral time scale in the fixed frame

Θ1 ∼ Lf /Uc1 (Taylor)

time correlation for a given se-

paration ∆x1 of the two probes

time autocorrelation function

in the convected frame

Θc1 =

∫ ∞

0

Rc11(τ)dτ

Θc1 ∼ Lf /u
′
1 represents the time characterizing the loss of coherence

or the memory time of turbulence
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Isotropic turbulence submitted to ...

Tucker & Reynolds - Plane strain

Champagne et al. - Sheared mean flow

Wigeland & Nagib - Solid body rotation
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Exercise #1

r

θ(x)

u ′i(y)
Correlation between temperature and a velocity component

in two points x and y = x+r where r = y−x is the separation

vector

1. Expression of the two-point correlation θ(x)u ′i(y) for iso-

tropic turbulence?

2. Can we generalize the previous result for any scalar

quantity? (temperature, pressure, concentration, ...)
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Exercise #2

Scales

1. Show from Kármán & Howarth’s relation, that for 3-D incompressible turbulence,

g = f +
r

2
f ′

2. Deduce that Lf = 2Lg and that λf =
√
2λg , by noting that

1

λ2
f

= −1
2
f ′′(0)

1

λ2
g

= −1
2
g ′′(0)

3. Deduce the two followwing addtional expressions of dissipation,

ǫ =
15

2
ν

(

∂u ′1
∂x2

)2

= 15ν

(

∂u ′1
∂x1

)2
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Exercise #3

Cumulus clouds : the length

scale of the large eddies is

about 250 m and the

fluctuating velocity is 1 m.s−1

1. Estimate the energy dissipation rate in a cumulus cloud,

both per unit mass and for the entire cloud (from Ten-

nekes & Lumley, 1972). Compute the total dissipation

rate in kilowatts. Also estimate the Kolmogorov scale.

Compare with the power received at the surface of the

Earth from the Sun.
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Dynamics of isotropic turbulence – Kolmogorov’s theory
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Introduction

The spectrum of turbulent kinetic energy is the key function for isotropic turbu-

lence. Can we determine the form of E(k) and its time evolution?

0 kkLf ∼ 1
integral scale

klη ∼ 1
Kolmogorov scale

E(k)

kλg ∼ 1
Taylor scale

Dν(k) = 2νk2E(k)

ǫ ≃ u ′3/Lf
The rate of dissipation is imposed by larger structures,

energy-containing eddies u ′ ∼ k1/2t time ∼ Lf /u
′

ǫ

viscous scales (Reη = 1)

lη = ν3/4ǫ−1/4 uη = ν1/4ǫ1/4
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Energy cascade

The higher the Reynolds number is, the more spectra of the kinetic energy and

dissipation will be separated : fully developed turbulence.

Lf

lη
=

Lf

ν3/4ǫ−1/4
=

(
u ′Lf

ν

)3/4

= Re3/4Lf
ReLf

≡
u ′Lf

ν
Reynolds number

of large structures

Kolmogorov (1941) – energy cascade

The dissipation rate ǫ is imposed by large eddies, but carries out by the smallest

ones (at Kolmogorov scales), it can be argued as assumptions that

– the dissipation rate ǫ is finite, even when Re→∞,

– there is a self-similar dynamics ; velocity scale of an eddy of size l va-
ries as ul ∼ lp (that is a power law)
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Representation in spectral space

Fourier
space

physical
space

small k intermediate k high k
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Representation in spectral space (cont.)

For isotropic turbulence, the turbulent kinetic energy spectrum E(k) is decompo-

sed over spheres of radius k, with elementary turbulent structures of wavenum-

ber k as already discussed in the Introduction Chapter.

For exponential spectra, this will be the case for E(k), it is interesting to introduce

a linear representation in logarithmic scale. For a geometric sequence kn,

kn
kn−1/2

= a =
kn+1/2
kn

∆kn = kn+1/2 − kn−1/2

and it is always possible to choose the common ratio a such as ∆kn/kn = 1.

With a constant bandwidth for d lnk = dk/k,
∫ kn+1/2

kn−1/2

E(k) dk =

∫ kn+1/2

kn−1/2

kE(k) d lnk ∼ knE(kn)

In the same way, the importance of frequency weighted spectra or compensated

spectra is underlined for exponential form.
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Benefit of frequency weighted spectrum
equal areas = equal contributions using log-axes

10
-1

10
0

10
1

10
2

10
3

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

kt =

∫ ∞

0

E(k) dk =

∫ ∞

0

kE(k) d lnk

-2    0    2    4    6    8   10
0.0

   

0.1

   

0.2

   

0.3

   

0.4

von Kármán spectrum model,

E(k) =
k4

(1 + k2)17/6
ktexact ≃ 1.0325
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Benefit of frequency weighted spectrum (cont.)

10
0

10
1

10
2

10
3

10
4

10
−7

10
−5

10
−3

10
−1

k

E
(k
)

∼ k−5/3

log10(k)

k
×

E
(k
)

0 1 2 3 4
0.0

0.3

0.6

0.9

1.2

von Kármán spectrum (arbitrary units here)

for kt = 3 for kt = 1.5

log-log scales (to observe the −5/3 law) versus k ×E(k) on linear scales

On the right, area of the grey rectangle, 1.25× ln(10)× 1.05 ≃ 3

(error detection is straightforward)
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Theory of Kolmogorov – K41

Eddy of size l and of velocity ul,

eddy-life time or turn-over time tl ∼ l/ul

u2
l

l/ul
= cst = ǫ =⇒ ul ∼ (ǫl)1/3

Kinematic energy El associated with eddies of size l ∼ 1/kl
El ∼ u ′l

2 ∼ (ǫl)2/3

Turbulent kinetic energy spectrum El ∼ klE(kl), and thus

E(kl) ∼
ǫ2/3k−2/3l

kl
∼ ǫ2/3k−5/3l Kolmogorov’s law

Inertial subrange between kLf and klη at high-Reynolds number,

where E(k,ǫ,ν) = E(k,ǫ)
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Theory of Kolmogorov – K41 (cont.)

In the inertial subrange (fine turbulence structures)

of the turbulent kinetic energy spectrum, there is a

universal spectrum shape

E(k) = CKǫ
2/3k−5/3 CK ≃ 1.5

where CK is the Kolmogorov constant, and this re-

gion widens as the Reynolds number increases.

The original formulation by Kolmogorov (1941, 1962) is ba-

sed on structure functions, see exercises. The theory is still

debated, e.g. self-similarity at small scales, intermittence in

the dissipation process.

The concept of energy cascade has been introduced by Ri-

chardson (1922), and first developed theoretically by Kolmo-

gorov (1941) and also Obukhov (1941).

Arnold Kolmogorov (1903-1987)
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Theory of Kolmogorov – Experimental evidence

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

k1lη

2
×

E
1
1
(k

1
)/

(ǫ
ν

5
)1

/
4

Pao (1965)

∼ k−5/31

u ′21 =

∫ +∞

−∞
E
(1)
11 (k1)dk1

Reλg

◦ 23 boundary layer (Tielman, 1967)

� 23 cylinder wake (Uberoi & Freymuth, 1969)

▽ 37 grid turbulence (Comte Bellot & Corrsin, 1971)

⊳ 72 grid turbulence (Comte Bellot & Corrsin, 1971)

� 130 homogeneous shear flow (Champagne et al., 1970)

+ 170 pipe flow (Laufer, 1952)

× 282 boundary layer (Tielman, 1969)

� 308 cylinder wake (Uberoi & Freymuth, 1969)

△ 401 boundary layer (Sanborn & Marshall, 1965)

⊲ 540 grid turbulence (Kistler & Vrebalovich, 1966)

⊳· 600 boundary layer (Saddoughi, 1994)

⊙ 780 round jet (Gibson, 1963)• 850 boundary layer (Coantic & Favre, 1974)

⊲· 1500 boundary layer (Saddoughi, 1994)

⊕ 2000 tidal channel (Grant et al., 1962)

△· 3180 return channel (CAHI Moscou, 1991)
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Theory of Kolmogorov – Experimental evidence
Measurements of Grant, Stewart & Moilliet (1962)
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In summary

0 kkLf ∼ 1

integral scale

klη ∼ 1

Kolmogorov scale

E(k)

kλg ∼ 1

Taylor scale

Dν(k) = 2νk2E(k)

ǫ ≃ u ′3/Lf

ǫ

E(k) = CKǫ
2/3k−5/3

∼ k4

L/lη ∼ Re3/4Lf

The rate of dissipation is imposed by larger structures,

energy-containing eddies u ′ ∼ k1/2t time ∼ Lf /u
′

viscous scales (Reη = 1)

lη = ν3/4ǫ−1/4 uη = ν1/4ǫ1/4
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Energy cascade in a turbulent mixing layer (Brown & Roshko, 1974)
Shadowgraphs (spark source)

Energy cascade in a mixing

layer by increasing the

Reynolds number (through

pressure and velocity, ×2 for

each view)

More small-scale structures

are produced without basically

altering the large-scale ones

Anatol Roshko (1923-2017)
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Lin’s equation (1947)
Transport equation for the turbulent kinetic energy spectrum E(k)

A way to derive this equation is

to consider the transport equation for the Reynolds tensor Rij = u ′i(x)u
′
j(x + r),

known as the Kármán & Howarth equation

to take its Fourier transform and to contract subscripts as follows i = j

. . . which gives

∂

∂t
E (k, t) = T (k, t)− 2νk2E (k, t)

where the nonlinear term T (E) is linked to the third-order (triple) velocity cor-

relation. This term can be directly associated with the energy transfer between

turbulent structures of different size.
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Lin’s equation (cont.)

In order to illustrate this point, Lin’s equation can be integrated over all the wa-

venumbers k

∂

∂t

∫ ∞

0

E (k, t)dk

︸             ︷︷             ︸

= ∂kt/∂t

=

∫ ∞

0

T (k, t)dk − 2ν
∫ ∞

0

k2E (k, t)dk

︸                ︷︷                ︸

= ǫ

For isotropic turbulence ∂kt/∂t = −ǫ. Consequently, the transfer term integral

must be zero ∫ ∞

0

T (k, t)dk = 0

The term T corresponds to the rate of energy transferred to successively smaller

and smaller scales of the turbulent field.

Note that this term T is difficult to measure, and it makes sense only for high

Reynolds number turbulent flows, in order to ensure the presence of an inertial

region in the spectrum E(k).
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Lin’s equation (cont.)

Let us introduce the function S(k, t) defined by

S(k, t) = −
∫ k

0

T (k′, t)dk′

S(k, t) represents the

energy transferred from

all the wavenumbers

smaller than k (large

structures) to

wavenumbers larger

than k (small

structures)
0

k

kLf ∼ 1 klη ∼ 1

E(k)

kλg ∼ 1

Dν(k) = 2νk2E(k)

T (k)

−S(k)
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Introduction to experimental techniques
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Flow field survey and visualization

Aerodynamics : loads (forces, moments) acting on a

tested body, Pitot tube, pressure rack (flow distorsion),

5-hole pressure probe (flow direction), surface flow

visualization (skin friction line pattern, separation),

wall shear stress τw

Velocity field : hot wire anemometry (HWA), laser

doppler velocimetry (LDV), particle image velocimetry

(PIV), and also time-resolved 3D-particle tracking

(PTV-4D)

Optical techniques for flow visualization : ombroscopy,

Schlieren methods, laser-induced fluorescence (LIF)

Wall pressure field : pressure sensitive paint (PSP),

MEMS microphone antenna

More advances methods : Rayleigh diffusion (velocity

and temperature)

Water tunnel visualisation of the flow past

the Citroën DS21 (H. Werlé, ONERA)

PIV on a wind

turbine blade

(E. Jondeau,

LMFA)
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Flow field survey and visualization (cont.)

All these measurement techniques are complementary : intrusive or not, global

view of the field versus single point measurement, quantitative/qualitative

technique, ease of implementation, space and time resolution, ...

There are many similarities between numerical simulation and experimental

work : spatial and temporal resolutions, signal processing, processing on

supercomputers (PIV for example)

Some introductory references to complement the textbook lists given in Introduction :

Délery, J., 2011, courses & conferences, https://www.onera.fr/fr/cours-exposes-conferences

Fernholz, H.H. et al., 1996, New developments and applications of skin-friction measuring techniques Meas. Sci.

Technol., 7 1396-1409.

Goldstein, R.J., 1996, Fluid Mechanics Measurements (2nd ed.), CRC Press.

Merzkirch, W., 1987, Flow visualization (2nd ed.), Academic Press, New-York.

Settles, G.S., 2001, Schlieren and shadowgraph techniques : Visualizing phenomena in transparent media,

Springer-Verlag, Berlin.
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Hot Wire Anemometry (HWA)
The fluid flow will cool the resistance proportionally to its velocity

Single wire set normal to

the mean flow Ū1

Ū1

u ′1

u ′2

Un ≃ Ū1 + u ′1

X hot-wire probe

wire 1wire 2

Ū1

u ′1

u ′2φ̄2

φ̄1

n2

n1

{

Un1
≃ (Ū1+ u ′1)cos φ̄1 −u ′2 sin φ̄1

Un2
≃ (Ū1+ u ′1)cos φ̄2 +u ′2 sin φ̄2
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Hot Wire Anemometry (cont.)

(image from LMFA UMR 5509) Tri-axial probes for 3-D flows : 3 sensors in an ortho-

gonal system, measures within 70◦ cone

(image from Dantec)

180 Centrale Lyon | LMFA Physics of turbulent flow – cb1 – 13-12-2023



x Experimental techniques q

Hot Wire Anemometry (cont.)

usually wire made of platinum or tungsten,

d ≃ 2 to 5 µm, 2l ≃ 0.5 to 1 mm (which impo-

sed the spatial resolution)

wire cooling by forced convection, the

heat balance was formulated by King’s law

(1914) : Joule energy brought to the wire cor-

responds to the heat loss by forced convec-

tion

Nud = f (Red ,Pr) = a Pr1/5 + b Pr1/3 Re1/2d

with Red =
Und

ν
and Nud =

RwI
2
w

2πlλ(Tw −T )

Louis Vessot King (1886 - 1956)

3 possible modes : Constant Temperature Anemometer (CTA), Constant Current Anemometer

(CCA) and more recently Constant Voltage Anemometer (CVA, velocity and temperature)
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x Experimental techniques q

Hot Wire Anemometry (cont.)

Advantages

- u ′i , u
′
iu
′
j and also θ, u ′iθ with greater difficulty

- wall shear stress τw (hot film)

- continuous detection f ∼ 70 kHz

- inexpensive

Drawbacks

- intrusive, point measurement

- tricky for free edges, recirculations zones...

(no forced convection regime)

- no information about the sign of Un

- calibration, nonlinear response for

high-intensity turbulence (high levels)

- fragile

Hot-wire sensor and wall pressure pin-

hole microphone to investigate a turbu-

lent boundary layer (E. Salze, LMFA)

182 Centrale Lyon | LMFA Physics of turbulent flow – cb1 – 13-12-2023



x Experimental techniques q

Hot Wire Anemometry (cont.)

HWA in mode CVA to mesure u ′1 in a supersonic boundary layer

M = 2.3, x2 = 0.27δ, δ = 15× 10−3, Ue1 = 555 m.s−1, Te = 145 K, Pe = 0.492× 105 Pa
Comte-Bellot & Sarma, 2001, AIAA Journal, 39(2)
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x Experimental techniques q

Laser Doppler Anemometry (LDA)

Set-up for 3-D velocity measurements

(image from Dantec)

Measurement of the velocity in

the shear layer developing above a

round cavity (E. Jondeau, LMFA)
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x Experimental techniques q

Doppler effect

f0

ei

es
fs

u

P

incident beam scattered beam

n > 1

n = 1

Doppler effect for a fluid particle P moving at velocity u

in a medium of refractive index n

∆f = fs − f0 =
1

λb
u · (es − ei)
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x Experimental techniques q

Dual-beam Laser Doppler Anemometer
Scattered light collected in the backward direction (back scattering)

beam 1, λ De−2

fi

beam 2, λ

θ

u2

df

∆x1

∆x2

(ellipsoidal measuring volume
beam crossing)

receptor

PM (photomultiplier)

t

df /u2 = 1/∆f
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x Experimental techniques q

Laser Doppler Anemometry

Advantages

- non-intrusive method

- only the velocity is measured u ′i , in 3−D, and

also two-point correlation u ′iu
′
j

- detached flows, recirculation zones, high levels

of velocity fluctuations (linear response for the

Doppler shift)

Drawbacks

- seeding of the flow with tracer particles (fluid

which must be optically transparent)

- detection (random sampling)

- formally measurement of particle velocity :

relaxation time τs = d2
PρP/(18µ) from Stokes drag

uP = u(1− e−t/τs)

LDV measurement in a free subsonic jet in the

anechoic wind tunnel (V. Fleury & S. Barré,

LMFA)

Argon-ion laser W ≃ 1 W; two colors, green

λb = 514.5 nm and blue λb = 488.0 nm;

continuous laser excitation
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x Experimental techniques q

Particle Image Velocimetry (PIV)

Particles are illuminated in a plane of the flow twice within

a short time interval ∆t ∼ µs

u1 ≃ ∆x1/∆t u2 ≃ ∆x2/∆t
(How to match each particle between the two images?)

Two successive particle images of a free subsonic jet (V. Fleury, LMFA)
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x Experimental techniques q

Particle Image Velocimetry (cont.)

Advantages

- non-intrusive method

- only the velocity is measured u ′i , in 3−D, and

also two-point correlation u ′iu
′
j

- vue instantanée globale du champ de vitesse

- facile d’emploi

Drawbacks

- ensemencement de l’écoulement (optiquement

transparent)

- fréquence d’acquisition faible, f ≤ 100 Hz

- mesure ponctuelle de vitesses de particules (cf.

LDV)

- relativement coûteux
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Subsonic jet, ReD = 6.3× 104, uj = 18.8 m.s−1,

D = 5 cm, (V. Fleury, LMFA)
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x Experimental techniques q

Space-time velocity correlations by dual-PIV (Fleury et al., AIAA J., 2008)

Subsonic jet flow

ReD = 7.5× 105, M = 0.9, D = 3.8 cm, δθ/D|init ≃ 3× 10−3

At x = 5D, L
(1)
11 ≃ 0.27D ∼ cm, Kolmogorov scale lη ≃ 10−4 D ∼ µm

Space-time second-order correlation functions R11(x,ξ,τ) and R22(x,ξ,τ)

measured at x = (6.5D,0.5D) L
(1)
11 ≃ 2δθ L

(1)
22 ≃ δθ

τ = 0 µs τ = 50 µs τ = 150 µs τ = 250 µs

ts
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x Experimental techniques q

Particle Image Velocimetry (TR-PIV)

Recollement de la zone séparée en aval d’un cylindre

par effet d’un jet pulsé à 200 Hz, issu d’une fente de 1.5 mm

placé à 110 degrés du point d’arrêt,

diamètre du cylindre 10 cm, vitesse incidente 20 m.s−1

Béra et al., Eur. J. Mech. B-Fluids (2000)
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x Experimental techniques q

Particle Image Velocimetry

2D-2C PIV measurement in a turbulent

boundary layer

Velocity field colored by vorticity

magnitude |ω2| (the convection velocity

Uc = 0.85U∞ has been substracted to

enlight large structures)

3 velocity fields at t = 0, t = 161µs and

t = 322µs

δ ≃ 20 mm, U∞ = 45 m.s−1

Window size 68× 21 mm, pairs of

images with a delay of 10 µs @ 6.2 kHz,

LaVision software to compute the flow

field, cross-correlations on 12× 12 pixels

with 50% overlap

(E. Salze & E. Jondeau, LMFA)
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x Visualization q

Various techniques

Visualization of airflow over a European starling using

the smoke-wire technique

media.efluids.com

Planar laser induced fluorescence

D. Edgington-Mitchell (Monash Univ)
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x Visualization q

Shadowgraph of transition on a sharp cone at Mach 4.31
(Schneider, Prog. Aero. Sci., 2004, from Naval Ordnance Lab ballistics range)

A shock wave emanating from the nose of a cone travelling at Mach 4 in a ballistic range shows up

as a thin dark line in this Schlieren image ; the sharp jump in density across the shock produces

a steep refractive-index gradient, which in turn deflects transmitted light, thereby producing the

contrast that we observe in the figure. Also visible are laminar and turbulent boundary layers and

the wake. Re ≃ 6.2× 105
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x Visualization q

Shadowgraphy (cont.)

Shadowgraph image of supersonic

flow (from the left to the right) at a

Mach number M = 1.7 past a sphere

(Stilp, 1968 in Merzkirch, 1987, fig. 3.10)
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x Visualization q

Schlieren vs shadowgraphy

Refraction index n for perfect gas :

Gladstone - Dale law n− 1 ≃ kρ with k ≃ 0.226× 10−3 m3.kg (air)

shadowgraphy

illuminance level ∼ ∇2
⊥n ∼ ∇2

⊥ρ

schlieren

illuminance level ∼ ∇⊥n ∼ ∇⊥ρ
(useful when high sensitivity is

required)

NPR = 3.68 Mj = 1.5 Tt/T∞ = 1.04

view obtained by averaging 500 images

x⊥ direction perpendicular to the optical axis of the schlieren system
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x Visualization q

Z-type schlieren system

parabolic
mirror

parabolic
mirror

jet flow

pinhole
light source

knife-edge
at focal point

camera
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x Visualization q

Noise of underexpanded screeching jets
Time-averaged Schlieren pictures (D = 38 mm, Mj = 1.5)

Mj = 1.5 Mf = 0.39 phase average

André et al., 2011, AIAA Journal, 49(7)
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x Concluding remarks q

Concluding remarks
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x To start a PhD thesis ... q

Turbulence and Aeroacoustics

Highly qualified candidates are encouraged to apply at any

time !

Contact directly Christophe Bogey (numerics) and Thomas

Castelain (experiments)

http://acoustique.ec-lyon.fr
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